
Verified compilation
An introduction to CompCert

Sandrine Blazy

VTSA, Nancy, 2023-08-28

1

Deductive verification

2

SPECIFICATIONSOFTWARE CORRECT

LOGIC

in

PROOF

in the sense of

MATHEMATICAL
RIGOUR

conducted with

From early intuitions …

A. M. Turing.  
Checking a large routine.1949.

3

… to deductive-verification and automated tools

4

SPECIFICATIONSOFTWARE CORRECT

LANGUAGE

SEMANTICS

PROOF LOGIC

INVARIANTS

INTERPRETER

SOFTWARE
TOOL

MATHEMATICAL
RIGOUR

AUTOMATED INTERACTIVE
FUNCTIONAL
LANGUAGE

PROOF
CERTIFICATE

written in

defined by

e.g.

in the sense ofVERIFIED
SOFTWARE

inincluding

produces
conducted with

either or implemented in

enforces

Floyd 1967, Hoare 1969

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

5

majority = A

cpt_delta = 3

A A A C C B B C C C B C C

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

6

majority = A

cpt_delta = 3

A A A C C B B C C C B C C

A A A C C B B C C C B C C

majority = A

cpt_delta = 1

Part 1: summary

7

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SEMANTICS

PROOF

INVARIANTS

INTERPRETER

COQ PROOF
ASSISTANT

written in

defined by

e.g.

in the sense ofVERIFIED
COMPILER

including

conducted with
enforces

Lecture material

These slides  
(with many slides borrowed from Xavier Leroy)

Companion Coq development

8

https://people.irisa.fr/Sandrine.Blazy/2023-VTSA

https://people.irisa.fr/Sandrine.Blazy/2023-VTSA

Part 2:
early intuitions

9

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SEMANTICS

PROOF

INVARIANTS

INTERPRETER

COQ PROOF
ASSISTANT

written in

defined by

e.g.

in the sense of including

conducted with

enforces

VERIFIED
COMPILER

The miscompilation risk

Compilers still contain bugs!

[Yang, Chen, Eide, Regehr. Finding and understanding bugs in C compilers. PLDI’11]

10

We found and reported hundreds of previously unknown
bugs [...]. Many of the bugs we found cause a compiler to
emit incorrect code without any warning. 25 of the bugs we
reported against GCC were classified as release-blocking.

Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end
specification:

This specification becomes mathematically precise as soon as we have formal
semantics for the source language and the machine language.

Then, a formal verification of a compiler can be considered.

11

The generated code must behave as prescribed
by the semantics of the source program.

An old idea …

Mathematical Aspects of Computer Science, 1967

12

Machine Intelligence (7), 1972

Now taught as an exercise
(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)

13

type exp = Nb of int | Id of string | Plus of exp * exp

type state = string → int

type instr = Iconst of int | Ivar of string | Iadd

let rec s_execute (s:state)(stack: int list)(pgm: instr list): int list =
 match (pgm, stack) with
 | ([], _) → stack
 | (Iconst n :: pgm', _) → s_execute s (n :: stack) pgm'
 | (Ivar x :: pgm', _) → s_execute s (s x :: stack) pgm'
 | (Iadd :: pgm', n:: m :: stack') → s_execute s ((m+n) :: stack') pgm'
 | (_ :: pgm', _) → s_execute s stack pgm'

let rec aeval (s:state)(a:exp): int =
match a with
 | Nb n → n
 | Id x → s x
 | Plus (a1,a2) → (aeval s a1)+(aeval s a2)

semantics
(aeval,

s_execute)
compiler
(compile)

3
6 9

Iadd

n
Iconst n

4
Ivar x

e(x)=4

let rec compile (a:exp): instr list = match a with
 | Nb n → [Iconst n]
 | Id x → [Ivar x]
 | Plus (a1,a2) → (compile a1)@ (compile a2)@ [Iadd]

com
pilation

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Now taught as an exercise
(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)

14

Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := ...

semantics
(aeval,

s_execute)

compiler
(compile)

Fixpoint compile(a:aexp): list sinstr := ...

Fixpoint aeval(s:state)(a:aexp):nat := ...

Theorem s_compile_correct: ∀ s a,
 s_execute s [] (compile a) = [aeval s a].
Proof.

com
pilation interactive proof

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Now taught as an exercise
(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)

15

Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := ...

semantics
(aeval,
cexec)

compiler
(compile)

Fixpoint compile(a:aexp): list sinstr := ...

Fixpoint aeval(s:state)(a:aexp):nat := ...

Theorem s_compile_correct: ∀ s a,
 s_execute s [] (compile a) = [aeval s a].
Proof.
 intros. apply s_compile_correct_aux.
Qed.

Extraction compile.

com
pilation

toy-compiler.ml

interactive proof

extractionTheorem s_compile_correct_aux: ∀ s a stack,
 s_execute s stack (compile a) = aeval a :: stack.
Proof.
 induction a; (* … *)
Qed. proof by induction on

the structure of a

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Proof by induction on the structure of expressions

stack (aeval a)::stack

 s s

16

Theorem s_compile_correct_aux: ∀ s a stack,
 s_execute s stack (compile a) = aeval a :: stack.
Proof.
 induction a; (* … *)
Qed.

code for a

Base case: a = Id x

stack s(x)::stack

 s s

17

Theorem s_compile_correct_aux: ∀ s a stack,
 s_execute s stack (compile a) = aeval a :: stack.
Proof.
 induction a; (* … *)
Qed.

Ivar x

Inductive case: a = Plus (a1,a2)

stack n1::stack n2::n1::stack (n1+n2)::stack

 s s s s

18

Theorem s_compile_correct_aux: ∀ s a stack,
 s_execute s stack (compile a) = aeval a :: stack.
Proof.
 induction a; (* … *)
Qed.

code for a1 code for a2 Iadd

Course outline

Mechanized semantics of imperative languages

Formal verification in Coq of a non-optimizing compiler for a simple imperative
language (from IMP to VM language)

• study of proof techniques for semantic preservation

Extension of these ideas to CompCert, a realistic C compiler

19

The CompCert formally verified compiler
(X.Leroy, S.Blazy et al.) https://compcert.org

A moderately optimizing C compiler

Targets several architectures (PowerPC, ARM, RISC-V and x86)

Programmed and verified using the Coq proof assistant

Shared infrastructure for ongoing research

Used in commercial settings (for emergency power generators and flight
control navigation algorithms) and for software certification - AbsInt company 
Improved performances of the generated code while providing proven
traceability information

ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022

20

Part 3:
basics of
verified compilation

21

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

OPERATIONAL
SEMANTICS

PROOF

INVARIANTSCOQ PROOF
ASSISTANT

written in

defined by

in the sense ofVERIFIED
COMPILER including

conducted with

enforces

Compiling IMP commands

Big-step style for the semantics of IMP expressions,  
with a functional definition

Big-step style for commands, using a relational definition c / s ⇒ s’

For IMP commands, a relational definition is better than a functional definition.

22

aeval (s:state) (a:aexp)

b:bexp := true | false | a1 = a2 | a1 ≤ a2  
 | not b | b1 and b2

semantics
(aeval,
beval,
ceval)

boolean
expressions

c:com := skip
 | x := a
 | c1 ; c2
 | if b then c1 else c2
 | while b do c done

a:aexp := n | x | a1 + a2 | a1 - a2

A big-step semantics for IMP

23

Relation c / s ⇒ s’

skip / s ⇒ s x := a / s ⇒ s [x ←(aeval a s)]

c1 / s1 ⇒ s c2 / s ⇒ s2 eval s b = true c1 / s ⇒ s1

(c1 ; c2) / s1 ⇒ s2 (if b then c1 else c2) / s ⇒ s1

eval s b = false c2 / s ⇒ s2 eval s b = false

(if b then c1 else c2) / s ⇒ s2 (while b do c end) / s ⇒ s

 eval s1 b = true c / s1 ⇒ s while b do c end / s ⇒ s2

 (while b do c end) / s1 ⇒ s2

In Coq: an inductive predicate (cexec s c s’)
This rule can not

be defined by a terminating Coq
function.

Extending the VM language:
components of the machine

24

The code C: a fixed list of instructions

The program counter pc: an integer giving the position of the currently
executing instruction in C

The store and the stack, as before

Inspiration: old HP pocket calculators, the Java Virtual Machine

Extending the VM language: instruction set
compil.v

25

i := Iconst(n)
 | Ivar(x)
 | Iadd
 | Isetvar(x) pop an integer and assign it to variable

 | Ibranch(d) skip forward or backward d instructions

 | Iopp pop one integer, push its opposite
 | Ibeq(d1,d0) pop 2 integers, skip d1 instructions if =, d0 if ≠
 | Ible (d1 d0: Z) pop 2 integers, skip d1 instructions if ≤, if >

 | Ihalt stop execution

Definition ex_code1:code := Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil.
Definition ex_code2:code := Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: Ibranch (-5) :: nil.

x := x + 1

branch offset
relative to the next

instruction

By default, each instruction increments pc by 1.

Exception: branch instructions increment it by 1+d.

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

VM semantics
compil.v

26

Definition code := list instr.
Definition stack := list Z.
Definition store := ident → Z.
Definition config := (Z * stack * store).

Small-step semantics, given by a transition relation representing the
execution of one instruction

s → s′

pc, position of
the currently executing

instruction

C i

pc

instr_at C pc = Some i

Inductive transition (C:code): config → config → Prop := …

S → S′

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html
http://coq.inria.fr/library/Coq.Init.Datatypes.html#list
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z

Executing machine programs

By iterating the transition relation

27

initial state

S → S′

final state

Definition transitions (C: code): config → config → Prop :=
 star (transition C).

Definition machine_terminates (C: code) (s_init s_final: store) :=
 ∃ pc, transitions C (0, nil, s_init) (pc, nil, s_final)
 ∧ instr_at C pc = Some Ihalt.

initial stores final stores
reflexive transitive closure

C Ihalt

pc0

nil nil

Compilation of boolean expressions

28

code for (a1 = a2)

code for a1 code for a2 Ibeq(d1,d0)

d1

d0

Short-circuiting and expressions

29

code for b1 code for b2 Ibeq(d1,d0)

0

code for (b1 and b2)

d0

d1

d0+|code(b2)|

If b1 evaluates to false, so does b1 and b2: no need to evaluate b2

Compilation of commands
(compile_com)

30

code for (CIf b c1 c2)

code for (CWhile b c)

code for b code for c1 code for c2Ibranch

code for b code for c Ibranch

Verifying the compilation of commands
compil.v

31

Lemma compile_com_correct_terminating:
 ∀ s c s',
 cexec s c s' →
 ∀ C pc stack,
 code_at C pc (compile_com c) →
 transitions C
 (pc, stack, s)
 (pc + codelen (compile_com c), stack, s').

proof by induction
on the derivation of

cexec s c s’

remember
s_compile_correct_aux!

length of the list

C compile_com c

pc

semantics
(cexec,

transitions)
compiler

(compile_com)

interactive proof

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

Compiler correctness
compil.v

32

Definition compile_program (p: com) : code :=
 compile_com p ++ Ihalt :: nil.

Theorem compile_program_correct_terminating:
 ∀ s c s',
 cexec s c s' →
 machine_terminates (compile_program c) s s'.

Definition machine_terminates (C: code) (s_init s_final: store) :=
 ∃ pc, transitions C (0, nil, s_init) (pc, nil, s_final)
 ∧ instr_at C pc = Some Ihalt.

semantics (cexec,
machine_terminates)

compiler
(compile_program)

interactive proof

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

Part 3: summary

33

compiler
correctness

theorem

behaviors

termination

big-step
semanticsabout

is

observe

Expressions: big-step semantics

Commands: big-step semantics

Instructions:
small-step
semantics

IMP

VM

com
piler

c / s ⇒ s’

Theorem compile_program_correct_terminating:
 ∀ s c s',
 cexec s c s' →
 machine_terminates (compile_program c) s s'.

This is not enough to conclude that
the compiler is correct!

« The generated code must behave as prescribed by
the semantics of the source program. »

What about
diverging programs? How do we

compare the
behaviors of two

programs?

Part 4:
semantic preservation
and
compiler verification

34

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SMALL-STEP
SEMANTICS

PROOF

INVARIANTS:

SIMULATIONS

COQ PROOF
ASSISTANT

written in

defined by

in the sense ofVERIFIED
COMPILER including

conducted with

enforces

How do we
compare the

behaviors of two
programs?

We need to equip
IMP with a small-step

semantics

S S′

What should be preserved?
Observable behaviors

35

S * S′ S + S′ S ∞

observable behaviors

normal termination divergence

abnormal termination  
(a.k.a. going wrong)

x := 1;

IMP VM C

while true do skip end

impossible

Ihalt Ibranch (-1)

Iadd

return 0; for(;;) { }

x = 1/0 ;

finite sequence of
transitions to a state that

is stuck and not final

infinite
sequence of transitions

finite
sequence of

transitions to a
final state

We need to equip
IMP with a small-step

semantics

S S′

Notions of semantic preservation: bisimulation

The source program S and the compiled program C have exactly the same
behaviors.

• Every possible behavior of S is a possible behavior of C.

• Every possible behavior of C is a possible behavior of S.

Example for the IMP to VM compiler

• (compile_com c) terminates if and only if c terminates, with the same final

store

• (compile_com c) diverges if and only if c diverges

• (compile_com c) never goes wrong

Forward simulation

Forward simulation from a source program S to a compiled code C:  
every possible behavior of S is a possible behavior of C

Example:

• theorem compile_program_correct_terminating

• If C diverges, (compile_com C) diverges

This looks insufficient: what if C has more behaviors than S?  
For instance, if C can terminate or go wrong?

37

Forward simulation + determinism = bismimulation

A language is deterministic if every program has only one behavior.

Lemma 
If the target language is deterministic, forward simulation implies backward
simulation and therefore bisimulation.

Proof 
Let C be a compiled program and S its source. 
Let b be a behavior of C and b’ a behavior of S. 
By forward simulation, b’ is a behavior of C. 
By determinism of C, b’ = b. 
Hence every behavior b of C is a behavior of S.

38

Reducing non-determinism during compilation

The C language is not deterministic: the evaluation order is partially
unspecified.

The expression f()+g() can evaluate either to:

• 1 if f() is evaluated first (returning 1), then g() (returning 0);

• -1 if g() is evaluated first (returning 1), then f() (returning 0).

Every C compiler chooses one evaluation order at compile-time. 
The compiled code therefore has fewer behaviors than the source program 
(1 instead of 2). Forward simulation and bisimulation fail.

39

int x = 0;
int f(void) { x = x + 1; return x; }
int g(void) { x = x - 1; return x; }

Backward simulation, a.k.a. refinement

Backward simulation from a source program S to a compiled code C:  
every possible behavior of C is a possible behavior of S.  
However, C may have fewer behaviors than S.

Backward simulation suffices to show the preservation of properties
established by source-level verification:

If all behaviors of S satisfy a specification Spec, 
then all behaviors of C satisfy Spec as well.

40

Should «going wrong» behaviors be preserved?

Compilers routinely optimize away going-wrong behaviors.

This program goes wrong.

However, the compiler eliminates x=1/0; as it is dead
code.

Thus, the generated code always terminates.

41

 #include <stdio.h>
 int main()
 {
 int x;
 x = 1 / 0;
 return 0;
 }

Justifications

• We know that the program does not go wrong (e.g. by static analysis).

• It is the programmer’s responsibility to avoid going-wrong behaviors  

(C standards).

Should «going wrong» behaviors be preserved?

This program goes wrong.

However, the code generated by the
compiler does not check the array bounds.

The generated code may crash but in
general it prints an arbitrary integer and
terminates normally.

 #include <stdio.h>
 int main()
 {
 int x[2] = { 12, 34 };
 printf("x[2] = %d\n", x[2]);
 return 0;
 }

This out-of-bound access is an example of an undefined behavior (according
to the ISO C standard).

Simulations for safe programs

A program is safe when it either terminates or diverges.

Safe forward simulation: any behavior of the source program S other than
« going wrong » is a possible behavior of the compiled code C.

Safe backward simulation: for any behavior b of the compiled code C, the
source program S can either have behavior b or go wrong.

43

Handling multiple compilation passes

44

CompCertC

Clight

C#minor

Cminor

ASM

CminorSel

RTL

LTL

Mach

Linear

LTLin

safe forward simulation proof

safe backward simulation proof

compiler pass

Theorem transf_c_program_correct:
 ∀ p tp,
 transf_c_program p = OK tp →
 backward_simulation (Csem.semantics p)  
 (Asm.semantics tp).

Compiler.v

https://compcert.org/doc/html/compcert.driver.Compiler.html

Simulation diagrams

Behaviors are defined in terms of sequences of transitions.

Forward simulation from a source program S to a compiled code C can be
proved as follows:

• show that every transition in S is simulated by some transitions in C

• while preserving an invariant ≈ between the states of S and C

Backward simulation is similar but simulates transitions of C by transitions of S.

45

Lock-step simulation

Every transition in the source S is simulated by exactly one transition in the
compiled code C

Further show that initial states are related:

and final states are related:

Sinit ≈ Cinit

S ≈ C ∧ S ∈ 𝙵𝚒𝚗𝚊𝚕 ⇒ C ∈ 𝙵𝚒𝚗𝚊𝚕

46

target 
state

source 
state

S1
≈ C1

C2≈S2

From lock-step simulation to forward simulation

Likewise if Sinit makes an infinity of transitions

47

≈ Cn-1Sn-1

Cn ∈ 𝙵𝚒𝚗𝚊𝚕≈Sn𝙵𝚒𝚗𝚊𝚕 ∋

Sinit
≈ Cinit

C1≈S1

Plus simulation

Example: compilation of X := X + 1 into  
 Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil  
(already seen on this slide)

Forward simulation still holds

48

target 
state

source 
state

S1
≈ C1

C2≈S2

+

Incorrect star simulation

Forward simulation is not guaranteed:

• terminating executions are preserved,

• but diverging executions may not be preserved

49

target 
state

source 
state

S1
≈ C1

C2≈S2

*

The problem of infinite stuttering

The source program diverges but the compiled code can terminate (normally or
abnormally).

This denotes an incorrect optimization of a diverging program,  
e.g. compiling (while true skip) into skip

50

Sn-1

S2

Sn

S1
≈ C
≈
≈

≈

Corrected star simulation

51

or

with 0 ≤ measure(S’) < measure(S)

S ≈ C

S’

≈

target 
state

source 
state

S1
≈ C1

C2≈S2

+

measure(S):nat from source states (could be to a well-founded set)

If the source program diverges, it must perform infinitely many non-stuttering
steps, so the compiled code executes infinitely many transitions.

Part 4: summary

52

correctness
theorem

behaviors

termination divergence

small-step
semanticsabout

is

observe reasoning simulation
diagrams

using

is proved by

anti-stuttering
measure

strengthened
w

ithnot yet fully proved!

We need to equip
IMP with a small-step

semantics

S S′

Part 5:
small-step semantics
and
compiler verification

53

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

OPERATIONAL
SEMANTICS

PROOF

INVARIANTS:

SIMULATIONS

COQ PROOF
ASSISTANT

written in

defined by

in the sense ofVERIFIED
COMPILER including

conducted with

enforces

SMALL-STEP
SEMANTICS

We need to equip
IMP with a small-step

semantics

S S′

A small-step semantics for IMP

54

Relation

x := a / s → skip / s [x ←(aeval a s)]

(skip; c) / s → c / s c1 / s1 → c2 / s2

 (c1 ; c) / s1 → (c2 ; c) / s2

 eval s b = true eval s b = false

(if b then c1 else c2) / s → c1 / s (if b then c1 else c2) / s → c2 / s

 eval s b = false eval s b = true

(while b do c end) / s → skip / s (while b do c end) / s → c; while b do c end / s

c / s → c’ / s’ big-step semantics for
expressions

Equivalence with big-step semantics
IMP.v

A classic result:

This proof is useful to build confidence in both semantics.

• From big-step to small-step : by induction on the ⇒ relation

• From small-step to big-step: intermediate lemma 

55

If c1 / s1 → c2 / s2 and c2 / s2 ⇒ s’ then c1 / s2 ⇒ s’

c / s ⇒ s’ if and only if c/s * 𝚜𝚔𝚒𝚙/s′

https://xavierleroy.org/cdf-mech-sem/CDF.IMP.html

Spontaneous generation of commands

56

(if b then c1 else c2); c / s → (c1; c) / s

Raises two issues when using simulation diagrams:

• impractical to reason on the execution relation

•difficult to define the measure

Some rules generate fresh commands that are not subterms of the source program.

code for b code for c1 code for c2Ibranch code for c code for c1 code for cdoes not contain

compilationcompilation

Small-step semantics with continuations

Instead of rewriting whole commands:

rewrite pairs of (subcommand under focus, continuation):

Continuation

• remainder of command

• context in which it occurs (control stack)

Kstop nothing remains to be done

c ● k execution of a sequence of two commands

Kwhile b c k execution of a loop

57

c / k / s → c’ / k’ / s’

c / s → c’ / s’

Small-step semantics with continuations

 No generation of fresh commands: c’ is always a subterm of c

New kinds of rules for dealing with continuations

Focus (on the left of a sequence)

Resume (the remaining computations)

58

c / k / s → c’ / k’ / s’

(if b then c1 else c2) / k / s → c1 / k / s when eval s b = true

(c1;c2) / k / s → c1 / c2 ● k / s

skip / c ● k / s → c / k / s

A small-step semantics for IMP

59

x := a / k / s → skip / k / x ↦(aeval a s); s

(c1 ; c2) / k / s → c1 / c2 ● k / s

 eval s b = true eval s b = false

(if b then c1 else c2) / k / s → c1 / k / s (if b then c1 else c2) / k / s → c2 / k / s

 eval s b = false eval s b = true

(while b do c end) / k / s → skip / k / s (while b do c end) / k / s → c / Kwhile b c k / s

skip / c ● k / s → c / k / s

skip / Kwhile b c k / s → while b do c end / k / s

c / k / s → c’ / k’ / s’

Program execution

Termination

Divergence

Equivalence between small-step semantics

60

Definition kterminates (s: store) (c: com) (s': store) :=
 star step (c, Kstop, s) (SKIP, Kstop, s’).

Definition kdiverges (s: store) (c: com) :=
 infseq step (c, Kstop, s).

Theorem equiv_smallstep_terminates:
 ∀ s c s', terminates s c s' ↔ kterminates s c s'.

Theorem equiv_smallstep_diverges:
∀ s c, diverges s c ↔ kdiverges s c.

Full proof of compiler correctness
Simulation diagram

Difficulties

• find the invariant between source and target states

• find the measure from source states to a natural number

≈

61

or

with 0 ≤ measure(c2,k2) < measure(c1,k1)

C ⊢c2/k2/s2 ≈ (pc1, [],
s’1)

C ⊢c1/k1/s1 ≈ (pc1, [], s’1) c1/k1/s1

c2/k2/s2

VM 
state

IMP 
state

(pc1, [], s’1)

+
(pc2, [], s’2)

c1/k1/s1

c2/k2/s2

C ⊢c1/k1/s1 ≈ (pc1, [], s’1) (pc1, [], s’1)

C ⊢c2/k2/s2 ≈ (pc2, [], s’2)

Full proof of compiler correctness
The anti-stuttering measure

When do the source program stutter? When no VM instruction is executed.

62

(c1 ; c2) / k / s → c1 / c2 ● k / s

skip / c ● k / s → c / k / s

(if true then c1 else c2) / k / s → c1 / k / s

(while true do c end) / k / s → c / Kwhile b c k / s

measure(c,k): sum of the sizes of c and all the commands appearing in k

skip and := have size 1

The size of a sequence s1;s2 is the

sum of the sizes of s1 and s2.

Trick: the size of Kwhile b c k
is the size of k.

Full proof of compiler correctness
The simulation invariant

Remember this slide:

C ⊢ c / k / s ≈ (pc, stack, s’) is defined as:

• s = s’

• stack = []

• code_at C pc (compile_com c) as in the previous proof

• C contains compiled code matching k at pc + codelen(compile_com c)

63

Lemma compile_com_correct_terminating:
 ∀ s c s', ceval s c s' →
 ∀ C pc stack,
 code_at C pc (compile_com c) →
 transitions C (pc, stack, s)
 (pc + codelen(compile_com c), stack, s').

C compile_com c

pc

Compiler correctness: wrapping up
compil.v

64

Theorem compile_program_correct_terminating:
 ∀ s c s',
 cexec s c s' →
 machine_terminates (compile_program c) s s'.

Theorem compile_program_correct_terminating_2:
 ∀ s c s',
 star step (c, Kstop, s) (SKIP, Kstop, s') →
 machine_terminates (compile_program c) s s'.

Theorem compile_program_correct_diverging:
 ∀ c s,
 infseq step (c, Kstop, s) →
 machine_diverges (compile_program c) s.

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

Part 5: summary

65

correctness
theorem for
terminating

and diverging
programs

behaviors

termination divergence

small-
step

semanticsabout
is

observe traces

belong to

emit

reasoning simulation
diagrams

using

continuations

rel
y o

n

is proved by

fac
ilita

te

anti-stuttering
measure

strengthened
w

ith

alternate proof for
terminating programs

Part 6
How to turn CompCert
from a prototype in a lab
into a real-world compiler?

Observable behaviors
Behaviors.v and Events.v

t = list of I/O events

tinf = infinite list of I/O events

I/O event

• call to an external function (e.g. printf)

• memory accesses to global volatile variables (hardware devices)

67

program_behavior :=
 | Terminates t n
 | Diverges t
 | Reacts tinf
 | Goes_wrong t

https://compcert.org/doc/html/compcert.common.Behaviors.html
https://compcert.org/doc/html/compcert.common.Events.html

CompCert compiler: 11 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

ASM

68

ClightCompCertC

LTL

S t S′

S t * S′ S t n S′ S t + S′ S t ∞

Behaviors

termination divergence

abnormal
termination

Small-step semantics

Mach

General form of small-step semantics
Smallstep.v

 maps:

• each name of a function or global variable to a memory address

• each function pointer to a function definition

Semantic states include a memory state, mapping addresses to values.

G

S
69

initial_state()SG ⊢ S t S′

does not change
during transitions

observed events

final_state(,n)S

return value

The semantics L.sem of a language L is defined by a step relation between
semantic states, the initial and final states.

https://compcert.org/doc/html/compcert.common.Smallstep.html

CompCert: main correctness theorem
Compiler.v

70

Theorem transf_c_program_correct:
 ∀ p tp,
 transf_c_program p = OK tp →
 backward_simulation (Csem.semantics p) (Asm.semantics tp).

https://compcert.org/doc/html/compcert.driver.Compiler.html

The CompCert memory model
Memory.v

Shared by all the languages of the compiler

An abstract view of memory refined into a concrete memory layout

In the semantics:

Memory: a collection of disjoint blocks 
Values: machine integers, pointers, floating-point numbers

In C semantics, there are as many blocks as variables.

The number of blocks decreases during compilation.

71

int(5)

int(7)

int(0)

int(128)

b2

ptr(b2, 2)
b1

int(5)
b3

m: mem

https://compcert.org/doc/html/compcert.common.Memory.html

The CompCert memory model

Memory operations (load, store, alloc, free) over values  

Memory safety preserved by CompCert (good variable properties)

72

int(5)

int(7)

int(0)

int(128)

b2

ptr(b2, 2)
b1

int(5)
b3

If then 𝚊𝚕𝚕𝚘𝚌(m, l, h) = 𝙾𝙺(b, m′) ∧ b′ ≠ b, 𝚕𝚘𝚊𝚍(τ, m′ , b′ , ofs) = 𝚕𝚘𝚊𝚍(τ, m, b′ , ofs)

If then 𝚜𝚝𝚘𝚛𝚎(τ, m, b, ofs, v) = 𝙾𝙺(m′) ∧ τ ∼ τ′ , 𝚕𝚘𝚊𝚍(τ′ , m′ , b, ofs) = 𝚌𝚘𝚗𝚟𝚎𝚛𝚝(v, τ′)

load chunk m b ofs : option value

chunk: memory_chunk (ex. 16-bit unsigned int)

The CompCert memory model
Generic memory transformations

Memory extensions: m2 extends m1

73

0
Vundef

2

0
1
2

0

2

1

0
1
2

1

0

2

Memory injections: m1 is injected into m2

m1 m2

m2

m2

m1

m1

Memory operations are preserved by
these transformations.

Semantic states

74

return statecall state internal
function

return
instr.

other instr.

external function

program

starts

program

ends

Exemple: Clight

state :=
 | State f stmt k env tempenv m
 | Callstate fdef args k m
 | Returnstate res k m

Exception: assembly languages, where a state is a pair of a memory and a mapping from
processor registers to values

state

call instr. non-empty call stack

CompCert C source language
(see chapter 4 of the user’s manual)

Expressions are annotated with their type

Overloading and implicit conversions between types

Expressions have side-effects

‣Assignments are expressions

Expressions implicitly classified into l-values and r-values

Non-deterministic evaluation of expressions (e.g., see this slide)

Commands
All C constructs: loops, switch, goto, break, continue, return

75

Eval(int(5), Tint(I32,Signed)): expr

https://compcert.org/man/manual004.html
https://compcert.org/man/

The CompCert C reference interpreter
Cexec.v

Outcome:

• normal termination or aborting on an undefined behavior

• observable effects (I/O events: printf, volatile memory accesses)

Faithful to the formal semantics of CompCert C; the interpreter displays all
the behaviors according to the semantics

reference
interpreter.c outcome

Compcert C

76

step: genv → state → trace → state → Prop do_step: world → genv → state → list (trace * state)

external world:
uniquely determines the
results of external calls

predicate function
G ⊢ S t S′

https://compcert.org/doc/html/compcert.cfrontend.Cexec.html

Using the reference interpreter:
exhaustive exploration

77

S0

S1 S2 S3

S6 S7 S8S5

S9

Sb

Sa

S4

Time 0:

Time 1:

Time 2:

Time 3:

Time 4:

Using the reference interpreter:
randomized exploration

78

RandomizedFirst choice

S0

S3

S7

Sb

Sa

S0

S1

S4

S0

S1 S2 S3

S6 S7 S8S5

S9

Sb

Sa

S4

Using the reference interpreter
A first example

reference interpreter

Result is 76
Time 387: observable event: extcall printf(& __stringlit_1, 76)
Time 392: program terminated (exit code = 0)

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
 if (x < 9) x = x + 2;
 else if (x > 50) x = x + 1;
 else x = 2 * x;
 return x; }

int main(void) {
 int res = f(12);
 printf("Result is %d \n",res);
 return 0; }

number
of execution

steps

Using the reference interpreter
A first example with a detailed trace of execution

Time 0: calling main()
—[step_internal_function]—>
Time 1: in function main, statement
 res = f(12); printf(__stringlit_1, res); return 0;
—[step_seq]—>
…
Time 8: calling f(12)
—[step_internal_function]—>
Time 9: in function f, statement x = 1; for (…)…
—[step_seq]—>
Time 10: in function f, statement x = 1;
—[step_do_1]—>
Time 11: in function f, expression x = 1
—[red_var_local]—>
Time 12: in function f, expression <loc x> = 1
—[red_assign]—>
…

name of the
semantic rule

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
 if (x < 9) x = x + 2;
 else if (x > 50) x = x + 1;
 else x = 2 * x;
 return x; }

int main(void) {
 int res = f(12);
 printf("Result is %d \n",res);
 return 0; }

Using the reference interpreter
A second example

reference interpreter The interpreter stops on this undefined behavior.
This is not the case for the compiled code.

Stuck state: in function main, expression
 <printf>(<ptr __stringlit_1>, <loc x+8>)
Stuck subexpression: <loc x+8>
ERROR: Undefined behavior

int main(void)
{ int x[2] = { 12, 34 };
 printf("x[2] = %d\n", x[2]);
 return 0; }

Using the reference interpreter
A third example: randomized exploration

a Time 14: observable event: extcall printf(& __stringlit_1)
b Time 28: observable event: extcall printf(& __stringlit_2)
c Time 42: observable event: extcall printf(& __stringlit_3)
6
Time 50: observable event: extcall printf(& __stringlit_4, 6)
Time 55: program terminated (exit code = 0)

reference interpreter

int a() { printf("a "); return 1; }
int b() { printf("b "); return 2; }
int c() { printf("c "); return 3; }

int main () { printf("%d\n", a() + (b() + c())); return 0; }

Clight language
Clight.v

Expressions are annotated with their type

No overloading and explicit conversions between types and arithmetic operators

Expressions are pure

Temporary variables do not reside in memory

Commands
Assignments are commands

Single syntax for loops, continue command

‣ C loops are derived forms

83

& v

Sloop s1 s2

Econst_int(int(5), Tint(I32,Signed)): expr

https://compcert.org/doc/html/compcert.cfrontend.Clight.html

9

6

3

RTL language
RTL.v (a.k.a. 3-address code)

Each function is represented by its CFG

Elementary instructions only

Unlimited supply of pseudo-registers

84

Iop(int(5), args, dest, succ): instruction

list of
pseudo-regs

register to
store the result

successor
node

0 x := 1

1 i := 1

4

x<9

5 x := x+2

7

x>50

8

x := x+1 x := 2*x

return x

i := i+1

2 i<n

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
 if (x < 9) x = x + 2;
 else if (x > 50) x = x + 1;
 else x = 2 * x;
 return x; }

https://compcert.org/doc/html/compcert.backend.RTL.html

Assembly languages

A lot of lost information, including expressions, control flow, types, variable
identifiers

85

exec_instr (f:function) (i: instruction) (rs:regset) (m:mem): outcome

Next(rs’,m’) or
Stuck

CompCert compiler: 10 languages, 18 passes

Clight C#minor

CminorCminorSelRTL

type elimination

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

CFG construction

expr. decomp.

Optimizations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

86

no side-effect

determinization

CompCertC

LTL

branch tunneling

shortens sequences of
branches

incl. live-range splitting,
spilling, reloading

non @able scalar local var
are pulled out of memory

Linear Mach
linearisation

of the CFG

layout of

stack frames

ASM code

generation

ASM

Recognition of operators
and addressing modes

Ex. x*4 becomes rolm(x, 2, -4)

Verification patterns

Verified validator

• Less to prove (if validator simpler than transformation)

• Validator reusable for several variants of an optimization

• Can be efficient (cheap enough to be invoked on every compiler run)

Example: register allocation with advanced spilling and splitting

87

Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified

Part 6: summary

Proving a compiler pass mainly amounts to proving a simulation diagram

Many reusable libraries:

• simulations, memory model, C semantics, Clight and RTL languages

• machine integers, dataflow solver

Some useful compilation options

• using the CompCert C interpreter: -interp (-trace, -all, -random)

• tracing options: -dc, -dclight, -drtl, …

• show the time spent in compiler passes: -timing

88

Part 7: Compiling critical embedded
software with CompCert

89

Fly-by-wire softwareExecute pilot's commands

Flight assistance: keep aircraft within safe flight envelope

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%&G%HE%&&%EI

1J59K$?$@:%L%-M6:N?$%L

!"#$%&'($#

)(*+,*+-'./+
0$1&"#/.

!'.2.34#
1$5/

!67+7'($#

789:;+:.</.
0$=#.$(+>".432/
&$>'#'$=

Mostly control-command code (Scade) +  
a minimalistic OS (C) 

100k - 1M LOC code, but mostly generated from
block diagrams (Simulink, Scade)

Fly-by-wire software

!"#$%&'

(
%)
*+
,
-
.
%/
+
)
0
1
2
%.
3)
3.
3%4
56
7%
89
5:
;7
%9<
7$
9=
<7
3%>
5?
6@
$A
;%?
5A
B:8
$A
;:$
C3

#$9"983C"8:$9D":9E673?5@%%%''%F%GH%I'%GG%'J

495:7:K@$%L9:A?:L$

!"#$%&'

(
%)
*+
,
-
.
%/
+
)
0
1
2
%.
3)
3.
3%4
56
7%
89
5:
;7
%9<
7$
9=
<7
3%>
5?
6@
$A
;%?
5A
B:8
$A
;:$
C3

#$9"983C"8:$9D":9E673?5@%%%FF%G%HI%JF%HH%F'

K"%=<9:B:?";:5A

L K$%?M"N:;9$%C$%NC67%:@N59;"A;%86%>OPIQR,S2>PI&,
!$A%=5C6@$%T%IF%N"#$7%8$%8$7?9:N;:5A%U%V%G%N"#$7%N569%C$7%"6;9$7W
!$A%?M"9#$%8$%;9"=":C%:A86:;$%U)FR'%T%X%C:#A$7%8$%;$7;%N569%I%C:#A$%8$%?58$%
$@E"9Y6<ZW

The qualification
process (DO-178)

Rigorous validation: review (qualitative), analysis
(quantitative), testing (huge amounts)

Conducted at multiple levels, from design to final product

Meticulous development process; extensive documentation

From block diagrams
to assembly

code
generator compiler

output
outputinput

observation
point

variable stored
in RAM

delay symbol

delay macro

delay symbol

delay symbol
delay
macro

; annotation: Begin of a loop  
...  
addi r3, 0, 1  
; annotation: Here x is at r3  
...  
; annotation: End of a loop

Program annotations

A mechanism to attach annotations to program points

• Mark specific program points

• Provide information about the location of C variables

• Ensure that some variables are preserved (e.g. x must be kept in a register)

Annotations are preserved during compilation.

• Each annotation generates an observable event

• The correctness theorem ensures preservation of the sequencing of 1)

symbols, and 2) of accesses to hardware devices (volatile variables)

_annot("Begin of a loop");  
...  
x = 1;  
_annot("Here x is at %1",x);  
...  
_annot("End of a loop");

compiler

 Conformance to the qualification process:

CompCert gives traceability guarantees

How good is the
compiled code ?

Trade-off between

• traceability guarantees

• and efficiency of the generated
code

Low-level verifications

• reviews of the assembly

• computation of a WCET
estimation

95

Compiling critical embedded software
[Kästner et al., CompCert: Practical experience on integrating and qualifying a formally verified
optimizing compiler, ERTS’18]

WCET and stack use improvements on a real-time application  
while providing proven traceability guarantees thanks to annotations

96

Overall assessment

The improvement mainly comes from the register allocation pass.

• From: no register allocation

• To: sharing of local variables among available registers

Traceability guarantees

• From: tracking of all program variables

• To: tracking of meaningful variables (used in block diagrams)

97

From early intuitions to fundamental formalisms …
 verification tools that automate these ideas …
 actual use in the critical software industry

98

Operational
semantics for

terminating IMP
programs

Compiler
correctness

theorem

Operational
semantics for
diverging IMP

programs

Simulation proof
technique with
anti-stuttering

measure

Generalization to
C-like semantics

(non-determ.,
trace, memory)

Experimental
evaluation of the
generated code

CompCert C compiler

Part 8:
CompCert, a shared infrastructure
for ongoing research

Turning CompCert into a secure compiler
CT-CompCert [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline

100

unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT:
 ∀ S C,
 compiler S = OK C →  
 isCCT S →
 isCCT C.

Theorem compiler-correct:
 ∀ S C b,
 compiler S = OK C →  
 execCompCertC S b →  
 execASM C b.

How to turn CompCert into a formally-verified secure compiler?

Which proof technique for the isCCT policy?

101

Difficulty: tricky proofs!

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

Theorem compiler-preserves-CCT:
 ∀ S C,
 compiler S = OK C →  
 isCCT S →
 isCCT C.

S1
ℓ S2

S′ 1
ℓ′ S′ 2

with φ(S1, S′ 1) implies ℓ = ℓ′

isCCT S

Observational non-interference: observing program leakage (boolean guards and memory
accesses) during execution does not reveal any information about secrets

Indistinguishability property : share public values, but may differ on secret valuesφ(Si, S′ i)

Proving CCT preservation:
back to simulation diagrams

102

must predict the
number of steps

at target level

Proof-engineering: leverage the existing proof scripts as much as possible

t’=t

or (t’ and t is leak only)= ε

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

S1
≈n C1

C2
≈n’S2

t’t
n

Verifying just-in-time (JIT) compilation [Barrière’s PhD 12/2022]
[Barrière, Blazy, Flückiger, Pichardie, Vitek, POPL’21] and [Barrière, Blazy, Pichardie, POPL’23]

A JIT compiler interleaves the execution of a program with its optimizations

Dynamic speculation: specializes functions, requires deoptimization

 
Non-deterministic semantics: either deoptimize to the source program or
continue to the next instruction in the optimized program

103

IR interpreter native exec.optimization

speculation

backend

monitor

profilerprofiler

source
program

… 
f();  
… 

g();

new
program

interpretation
interpretation

com
pilation
of f()

com
pilation
of g()

dynamic
optim.

dynamic
optim.

Proving semantics preservation:
the simulation approach

104

C4≈S4

JIT
program 

P0

source 
program

P0

S1
≈ C1

C2≈S2

Both the program and the execution
state are evolving

C3≈S3

JIT
program 

P2

JIT
program 

P1

dynamic
optim.

dynamic
optim.

Nested simulations for JIT verification

105

C4≈JIT
S4

JIT
program 

P0

source 
program

P0

S1
≈JIT C1

C2≈JIT
S2

Invariant ≈JIT: at any point during JIT
execution

• the current state Ci corresponds
to a source state Si

• the curent JIT program Pi is
equivalent to the source
program P0

Nested simulation: this equivalence
is expressed with another simulation

C3

≈JIT

S3

JIT
program 

P2

JIT
program 

P1

dynamic
optim.

dynamic
optim.

C2

C3 P2

P0

P0

P1

P1

P2

≈JIT

≈JIT

Both the program and the execution
state are evolving

Work in progress 🏗

106

Clight C#minor Cminor CminorSel RTL

LTLLTLinLinearMach

CompCertC

ASM

Catala

FPGA

SSA

GSA

new
 font-end

new
 back-end

new optimizations

new target

Conclusion and perspectives

CompCert is a shared infrastructure for ongoing research

•compilation : ProbCompCert (Boston College, USA), L2C (Tsinghua, China),
Velus (DIENS, Fr), CompCertO (Yale, USA), VeriCert (Imperial College, GB),
CompCert-KVX (Verimag, Fr)

•program logics: VST (Princeton, USA), Gillian (Imperial College, GB),  
VeriFast (KUL, Be)

•static analysis : Verasco (Inria, Fr)

Opens the way to the trust of development tools

107

Bibliography
• Boyer, R. S., Moore, J S. MJRTY - A Fast Majority Vote Algorithm. Essays in Honor of Woody Bledsoe. 1991.

• Yang, Chen, Eide, Regehr. Finding and understanding bugs in C compilers. PLDI’11.

• Leroy. Formal verification of a realistic compiler. Communications of the ACM 52(7), 2009.

• Leroy. A formally verified compiler back-end. JAR 43(4), 2009.

• Appel, Blazy. Separation logic for small-step Cminor. TPHOLs’07.

• Blazy, Leroy. Mechanized semantics for the Clight subset of the C language. JAR 43(3), 2009.

• Leroy, Appel, Blazy, Stewart. The CompCert memory model. 2014. Program Logics for Certified Compilers.

• Leroy, Blazy, Kästner, Schommer, Pister, Ferdinand. CompCert - A formally verified optimizing compiler. ERTS2’16.

• Kumar, Myreen, Norrish, Owens. CakeML: a verified implementation of ML. POPL’14.

• Jourdan, Laporte, Blazy, Leroy, Pichardie. A formally-verified static analyzer. POPL’15.

• Blazy, Laporte, Pichardie. An Abstract Memory Functor for Verified C Static Analyzers. ICFP’16.

• Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu. Formal verification of a constant-time preserving C

compiler. POPL’20.

• Barrière, Blazy, Flückiger, Pichardie, Vitek. Formally verified speculation and deoptimization in a JIT compiler. POPL’21.

• Barrière, Blazy, Pichardie. Formally verified native code generation in an effectful JIT - or: Turning the CompCert

backend into a formally verified JIT compiler. POPL’23.

• Barthe, Demange, Pichardie. Formal Verification of an SSA-based middle-end for CompCert. TOPLAS’14.

• Herklotz, Demange, Blazy. Mechanised semantics for gated static single assignment. CPP’23.

• Merigoux, Chataing, Protzenko. Catala: a programming language for the law. Proc. ICFP’21.

108

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA131702
https://xavierleroy.org/publi/compcert-CACM.pdf
https://xavierleroy.org/publi/compcert-backend.pdf
http://dx.doi.org/10.1007/s10817-009-9148-3

