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Deductive verification 

2

SPECIFICATIONSOFTWARE CORRECT

LOGIC

in

PROOF

in the sense of

MATHEMATICAL 
RIGOUR

conducted with



From early intuitions …

A. M. Turing.  
Checking a large routine.1949.
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… to deductive-verification and automated tools 
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Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any
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Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any
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majority = A

cpt_delta = 3

A A A C C B B C C C B C C

A A A C C B B C C C B C C

majority = A

cpt_delta = 1



Part 1: summary
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Lecture material

These slides  
(with many slides borrowed from Xavier Leroy)


Companion Coq development
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https://people.irisa.fr/Sandrine.Blazy/2023-VTSA

https://people.irisa.fr/Sandrine.Blazy/2023-VTSA


Part 2:  
early intuitions

9

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SEMANTICS

PROOF

INVARIANTS

INTERPRETER

COQ PROOF 
ASSISTANT

written in

defined by

e.g.

in the sense of including

conducted with

enforces

VERIFIED 
COMPILER



The miscompilation risk

Compilers still contain bugs!


[Yang, Chen, Eide, Regehr. Finding and understanding bugs in C compilers. PLDI’11]
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We found and reported hundreds of previously unknown 
bugs [...]. Many of the bugs we found cause a compiler to 
emit incorrect code without any warning. 25 of the bugs we 
reported against GCC were classified as release-blocking.



Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end 
specification: 


This specification becomes mathematically precise as soon as we have formal 
semantics for the source language and the machine language. 


Then, a formal verification of a compiler can be considered.
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The generated code must behave as prescribed 
by the semantics of the source program. 



An old idea …

Mathematical Aspects of Computer Science, 1967
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Machine Intelligence (7), 1972



Now taught as an exercise 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct) 
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type exp = Nb of int | Id of string | Plus of exp * exp

type state = string → int

type instr = Iconst of int | Ivar of string  | Iadd

let rec s_execute (s:state)(stack: int list)(pgm: instr list): int list =
  match (pgm, stack) with
  | ([], _) → stack
  | (Iconst n :: pgm', _) → s_execute s (n :: stack) pgm'
  | (Ivar x :: pgm', _) → s_execute s (s x :: stack) pgm'
  | (Iadd :: pgm', n:: m :: stack') → s_execute s ((m+n) :: stack') pgm'
  | (_ :: pgm', _) → s_execute s stack pgm'

let rec aeval (s:state)(a:exp): int =  
match a with
  | Nb n → n       
  | Id x → s x
  | Plus (a1,a2) → (aeval s a1)+(aeval s a2)

semantics 
(aeval, 

s_execute)
compiler 
(compile)

3
6 9

Iadd

n
Iconst n

4
Ivar x

e(x)=4

let rec compile (a:exp): instr list =  match a with
  | Nb n →  [ Iconst n ]
  | Id x →  [ Ivar x ]
  | Plus (a1,a2) → (compile a1)@ (compile a2)@ [Iadd]

com
pilation

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state


Now taught as an exercise 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)
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Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := ... 

semantics 
(aeval, 

s_execute)

compiler 
(compile)

Fixpoint compile(a:aexp): list sinstr := ...

Fixpoint aeval(s:state)(a:aexp):nat := ... 

Theorem s_compile_correct: ∀ s a,
 s_execute s [] (compile a) = [aeval s a].
Proof.
  

com
pilation interactive proof

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state


Now taught as an exercise 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)
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Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := ... 

semantics 
(aeval, 
cexec)

compiler 
(compile)

Fixpoint compile(a:aexp): list sinstr := ...

Fixpoint aeval(s:state)(a:aexp):nat := ... 

Theorem s_compile_correct: ∀ s a,
 s_execute s [] (compile a) = [aeval s a].
Proof.
   intros. apply s_compile_correct_aux. 
Qed.

Extraction compile.

com
pilation

toy-compiler.ml

interactive proof

extractionTheorem s_compile_correct_aux: ∀ s a stack,
 s_execute s stack (compile a) = aeval a :: stack.
Proof.
   induction a; (* … *)
Qed. proof by induction on 

the structure of a

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state


Proof by induction on the structure of expressions

stack        (aeval a)::stack

   s              s
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Theorem s_compile_correct_aux: ∀ s a stack,
 s_execute s stack (compile a) = aeval a :: stack.
Proof.
   induction a; (* … *)
Qed.

code for a



Base case: a = Id x 

stack        s(x)::stack

   s              s
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Theorem s_compile_correct_aux: ∀ s a stack,
 s_execute s stack (compile a) = aeval a :: stack.
Proof.
   induction a; (* … *)
Qed.

Ivar x



Inductive case: a = Plus (a1,a2) 

stack       n1::stack     n2::n1::stack   (n1+n2)::stack

   s              s               s        s
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Theorem s_compile_correct_aux: ∀ s a stack,
 s_execute s stack (compile a) = aeval a :: stack.
Proof.
   induction a; (* … *)
Qed.

code for a1 code for a2 Iadd



Course outline

Mechanized semantics of imperative languages


Formal verification in Coq of a non-optimizing compiler for a simple imperative 
language (from IMP to VM language)

• study of proof techniques for semantic preservation


Extension of these ideas to CompCert, a realistic C compiler


19



The CompCert formally verified compiler 
(X.Leroy, S.Blazy et al.)                                                            https://compcert.org

A moderately optimizing C compiler


Targets several architectures (PowerPC, ARM, RISC-V and x86)


Programmed and verified using the Coq proof assistant


Shared infrastructure for ongoing research 


Used in commercial settings (for emergency power generators and flight 
control navigation algorithms) and for software certification - AbsInt company 
Improved performances of the generated code while providing proven 
traceability information


ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022
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Part 3:  
basics of  
verified compilation 

21

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

OPERATIONAL 
SEMANTICS

PROOF

INVARIANTSCOQ PROOF 
ASSISTANT

written in

defined by

in the sense ofVERIFIED 
COMPILER including

conducted with

enforces



Compiling IMP commands 

Big-step style for the semantics of IMP expressions,  
with a functional definition


Big-step style for commands, using a relational definition c / s ⇒ s’


For IMP commands, a relational definition is better than a functional definition.
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aeval (s:state) (a:aexp) 

b:bexp := true | false | a1 = a2 | a1 ≤ a2   
      | not b | b1 and b2

semantics 
(aeval, 
beval, 
ceval)

boolean 
expressions

c:com := skip
  | x := a
  | c1 ; c2
  | if b then c1 else c2
  | while b do c done

a:aexp := n | x | a1 + a2 | a1 - a2 



A big-step semantics for IMP
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Relation c / s ⇒ s’       


skip / s ⇒ s                                                                        x := a / s ⇒ s [x ←(aeval a s)]


c1 / s1 ⇒ s         c2 / s ⇒ s2                                                 eval s b = true      c1 / s ⇒ s1

(c1 ; c2) / s1 ⇒ s2                                                                    (if b then c1 else c2) / s ⇒ s1


eval s b = false          c2 / s ⇒ s2                                                     eval s b = false

(if b then c1 else c2) / s ⇒ s2                                                     (while b do c end) / s ⇒ s


              eval s1 b = true        c / s1 ⇒  s         while b do c end / s ⇒  s2

                                         (while b do c end) / s1 ⇒ s2 


In Coq: an inductive predicate (cexec s c s’)
This rule can not 

be defined by a terminating  Coq 
function.



Extending the VM language:  
components of the machine
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The code C: a fixed list of instructions


The program counter pc: an integer giving the position of the currently 
executing instruction in C


The store and the stack, as before


Inspiration: old HP pocket calculators, the Java Virtual Machine



Extending the VM language: instruction set 
compil.v 

25

i := Iconst(n)
  | Ivar(x)
  | Iadd
  | Isetvar(x)        pop an integer and assign it to variable

  | Ibranch(d)        skip forward or backward d instructions

  | Iopp              pop one integer, push its opposite     
  | Ibeq(d1,d0)       pop 2 integers, skip d1 instructions if =, d0 if ≠ 
  | Ible (d1 d0: Z)   pop 2 integers, skip d1 instructions if ≤, if >

  | Ihalt                                                                              stop execution 

Definition ex_code1:code := Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil.
Definition ex_code2:code := Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: Ibranch (-5) :: nil.

x := x + 1

branch offset 
relative to the next 

instruction

By default, each instruction increments pc by 1.

Exception: branch instructions increment it by 1+d.

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html


VM semantics 
compil.v 
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Definition code := list instr.
Definition stack := list Z.
Definition store := ident → Z.
Definition config := (Z * stack * store).

Small-step semantics, given by a transition relation  representing the 
execution of one instruction

s → s′ 

pc, position of 
the currently executing 

instruction

C i

pc

instr_at C pc = Some i

Inductive transition (C:code): config → config → Prop := …

S → S′ 

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html
http://coq.inria.fr/library/Coq.Init.Datatypes.html#list
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z


Executing machine programs

By iterating the transition relation

27

initial state

S → S′ 

final state

Definition transitions (C: code): config → config → Prop :=
  star (transition C).

Definition machine_terminates (C: code) (s_init s_final: store) :=
  ∃ pc, transitions C (0, nil, s_init) (pc, nil, s_final)
          ∧ instr_at C pc = Some Ihalt.

initial stores final stores
reflexive transitive closure

C Ihalt

pc0

nil nil



Compilation of boolean expressions
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code for (a1 = a2)

code for a1 code for a2 Ibeq(d1,d0)

d1

d0



Short-circuiting and expressions
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code for b1 code for b2 Ibeq(d1,d0)

0

code for (b1 and b2)

d0

d1

d0+|code(b2)|

If b1 evaluates to false, so does b1 and b2: no need to evaluate b2



Compilation of commands 
(compile_com)

30

code for (CIf b c1 c2)

code for (CWhile b c)

code for b code for c1 code for c2Ibranch

code for b code for c Ibranch



Verifying the compilation of commands 
compil.v 

31

Lemma compile_com_correct_terminating:
  ∀ s c s',
  cexec s c s' →
  ∀ C pc stack,
  code_at C pc (compile_com c) →
  transitions C
      (pc, stack, s)
      (pc + codelen (compile_com c), stack, s').

proof by induction 
on the derivation of 

cexec s c s’

remember 
s_compile_correct_aux!

length of the list

C compile_com c

pc

semantics 
(cexec, 

transitions)
compiler 

(compile_com)

interactive proof

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html


Compiler correctness 
compil.v 

32

Definition compile_program (p: com) : code :=
  compile_com p ++ Ihalt :: nil.

Theorem compile_program_correct_terminating:
  ∀ s c s',
  cexec s c s' →
  machine_terminates (compile_program c) s s'.

Definition machine_terminates (C: code) (s_init s_final: store) :=
  ∃ pc, transitions C (0, nil, s_init) (pc, nil, s_final)
          ∧ instr_at C pc = Some Ihalt.

semantics (cexec, 
machine_terminates)

compiler 
(compile_program)

interactive proof

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html


Part 3: summary
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compiler 
correctness 

theorem

behaviors

termination

big-step 
semanticsabout

is

observe

Expressions: big-step semantics

Commands: big-step semantics

Instructions: 
small-step 
semantics

IMP

VM

com
piler

c / s ⇒ s’

Theorem compile_program_correct_terminating:
  ∀ s c s',
  cexec s c s' →
  machine_terminates (compile_program c) s s'.

This is not enough to conclude that 
the compiler is correct!

« The generated code must behave as prescribed by 
the semantics of the source program. »

What about 
diverging programs? How do we 

compare the 
behaviors of two 

programs?



Part 4:  
semantic preservation 
and 
compiler verification 
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What should be preserved? 
Observable behaviors

35

S * S′ S + S′ S ∞

observable behaviors

normal termination divergence

abnormal termination  
(a.k.a. going wrong)

x := 1;

IMP VM C

while true do skip end

impossible

Ihalt Ibranch (-1)

Iadd

return 0; for(;;) { }

x = 1/0 ;

finite sequence of 
transitions to a state that 

is stuck and not final

infinite 
sequence of transitions

finite 
sequence of 

transitions to a 
final state

We need to equip 
IMP with a small-step 

semantics 

S S′ 



Notions of semantic preservation: bisimulation

The source program S and the compiled program C have exactly the same 
behaviors.

• Every possible behavior of S is a possible behavior of C.

• Every possible behavior of C is a possible behavior of S.


Example for the IMP to VM compiler

• (compile_com c) terminates if and only if c terminates, with the same final 

store

• (compile_com c) diverges if and only if c diverges

• (compile_com c) never goes wrong




Forward simulation

Forward simulation from a source program S to a compiled code C:  
every possible behavior of S is a possible behavior of C


Example:

• theorem compile_program_correct_terminating

• If C diverges, (compile_com C) diverges


This looks insufficient: what if C has more behaviors than S?  
For instance, if C can terminate or go wrong?


37



Forward simulation + determinism = bismimulation

A language is deterministic if every program has only one behavior. 


Lemma 
If the target language is deterministic, forward simulation implies backward 
simulation and therefore bisimulation.


Proof 
Let C be a compiled program and S its source. 
Let b be a behavior of C and b’ a behavior of S. 
By forward simulation, b’ is a behavior of C. 
By determinism of C, b’ = b. 
Hence every behavior b of C is a behavior of S.


38



Reducing non-determinism during compilation

The C language is not deterministic: the evaluation order is partially 
unspecified.


The expression f()+g() can evaluate either to:


• 1 if f() is evaluated first (returning 1), then g() (returning 0);

• -1 if g() is evaluated first (returning 1), then f() (returning 0).


Every C compiler chooses one evaluation order at compile-time. 
The compiled code therefore has fewer behaviors than the source program 
(1 instead of 2). Forward simulation and bisimulation fail.

39

int x = 0;
int f(void) { x = x + 1; return x; }
int g(void) { x = x - 1; return x; }



Backward simulation, a.k.a. refinement

Backward simulation from a source program S to a compiled code C:  
every possible behavior of C is a possible behavior of S.  
However, C may have fewer behaviors than S.


Backward simulation suffices to show the preservation of properties 
established by source-level verification:


If all behaviors of S satisfy a specification Spec, 
then all behaviors of C satisfy Spec as well.

40



Should «going wrong» behaviors be preserved?

Compilers routinely optimize away going-wrong behaviors.


This program goes wrong.


However, the compiler eliminates x=1/0; as it is dead 
code.


Thus, the generated code always terminates.

41

 #include <stdio.h>
 int main()
 {
    int x;
    x = 1 / 0;
    return 0;
 }

Justifications

• We know that the program does not go wrong (e.g. by static analysis).

• It is the programmer’s responsibility to avoid going-wrong behaviors  

(C standards).



Should «going wrong» behaviors be preserved?

This program goes wrong.


However, the code generated by the 
compiler does not check the array bounds.


The generated code may crash but in 
general it prints an arbitrary integer and 
terminates normally.

 #include <stdio.h>
 int main()
 {
    int x[2] = { 12, 34 };
    printf("x[2] = %d\n", x[2]);
    return 0;
 }

This out-of-bound access is an example of an undefined behavior (according 
to the ISO C standard).



Simulations for safe programs

A program is safe when it either terminates or diverges.


Safe forward simulation: any behavior of the source program S other than 
« going wrong » is a possible behavior of the compiled code C.


Safe backward simulation: for any behavior b of the compiled code C, the 
source program S can either have behavior b or go wrong.


43



Handling multiple compilation passes

44

CompCertC

Clight

C#minor

Cminor

ASM

CminorSel

RTL

LTL

Mach

Linear

LTLin

safe forward simulation proof

safe backward simulation proof

compiler pass

Theorem transf_c_program_correct:
  ∀ p tp,
  transf_c_program p = OK tp →
  backward_simulation (Csem.semantics p)  
                      (Asm.semantics tp).

Compiler.v 

https://compcert.org/doc/html/compcert.driver.Compiler.html


Simulation diagrams

Behaviors are defined in terms of sequences of transitions.


Forward simulation from a source program S to a compiled code C can be 
proved as follows:


• show that every transition in S is simulated by some transitions in C


• while preserving an invariant ≈ between the states of S and C


Backward simulation is similar but simulates transitions of C by transitions of S.

45



Lock-step simulation

Every transition in the source S is simulated by exactly one transition in the 
compiled code C


Further show that initial states are related: 


and final states are related: 

Sinit ≈ Cinit

S ≈ C ∧ S ∈ 𝙵𝚒𝚗𝚊𝚕 ⇒ C ∈ 𝙵𝚒𝚗𝚊𝚕

46

target 
state

source 
state

S1
≈ C1

C2≈S2



From lock-step simulation to forward simulation

Likewise if Sinit makes an infinity of transitions

47

≈ Cn-1Sn-1

Cn ∈ 𝙵𝚒𝚗𝚊𝚕≈Sn𝙵𝚒𝚗𝚊𝚕 ∋

Sinit
≈ Cinit

C1≈S1



Plus simulation

Example: compilation of X := X + 1 into  
                Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil  
(already seen on this slide)


Forward simulation still holds

48

target 
state

source 
state

S1
≈ C1

C2≈S2

+



Incorrect star simulation

Forward simulation is not guaranteed:


• terminating executions are preserved,

• but diverging executions may not be preserved

49

target 
state

source 
state

S1
≈ C1

C2≈S2

*



The problem of infinite stuttering

The source program diverges but the compiled code can terminate (normally or 
abnormally).


This denotes an incorrect optimization of a diverging program,  
e.g. compiling (while true skip) into skip 

50

Sn-1

S2

Sn

S1
≈ C
≈
≈

≈



Corrected star simulation

51

or

with 0 ≤ measure(S’) < measure(S)

S ≈ C

S’

≈

target 
state

source 
state

S1
≈ C1

C2≈S2

+

measure(S):nat from source states (could be to a well-founded set)


If the source program diverges, it must perform infinitely many non-stuttering 
steps, so the compiled code executes infinitely many transitions.



Part 4: summary
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ithnot yet fully proved!
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semantics 

S S′ 



Part 5:  
small-step semantics 
and 
compiler verification 
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A small-step semantics for IMP

54

Relation 


x := a / s → skip / s [x ←(aeval a s)] 


(skip; c) / s → c / s                                                                                       c1 / s1 → c2 / s2

                                                                                                           (c1 ; c) / s1 → (c2 ; c) / s2      


             eval s b = true                                                                             eval s b = false

(if b then c1 else c2) / s → c1 / s                                             (if b then c1 else c2) / s → c2 / s


          eval s b = false                                                     eval s b = true

(while b do c end) / s → skip / s                        (while b do c end) / s → c; while b do c end / s 

c / s → c’ / s’ big-step  semantics for 
expressions



Equivalence with big-step semantics 
IMP.v 

A classic result:


This proof is useful to build confidence in both semantics.


• From big-step to small-step : by induction on the ⇒ relation


• From small-step to big-step: intermediate lemma 

55

If c1 / s1 → c2 / s2   and  c2 / s2 ⇒ s’  then  c1 / s2 ⇒ s’

c / s ⇒ s’         if and only if         c/s * 𝚜𝚔𝚒𝚙/s′ 

https://xavierleroy.org/cdf-mech-sem/CDF.IMP.html


Spontaneous generation of commands

56

(if b then c1 else c2); c / s → (c1; c) / s        

Raises two issues when using simulation diagrams:

• impractical to reason on the execution relation 

•difficult to define the measure

Some rules generate fresh commands that are not subterms of the source program.

code for b code for c1 code for c2Ibranch code for c code for c1 code for cdoes not contain

compilationcompilation



Small-step semantics with continuations 

Instead of rewriting whole commands:


rewrite pairs of (subcommand under focus, continuation):


Continuation


• remainder of command

• context in which it occurs (control stack)


Kstop nothing remains to be done

c ● k execution of a sequence of two commands

Kwhile b c k execution of a loop


57

c / k / s → c’ / k’ / s’ 

c / s → c’ / s’ 



Small-step semantics with continuations 

                           No generation of fresh commands: c’ is always a subterm of c


New kinds of rules for dealing with continuations


Focus (on the left of a sequence)


Resume (the remaining computations)

58

c / k / s → c’ / k’ / s’ 

(if b then c1 else c2) / k / s → c1 / k / s          when eval s b = true

(c1;c2) / k / s → c1 / c2 ● k / s 

skip / c ● k / s → c / k / s 



A small-step semantics for IMP

59

x := a / k / s → skip / k / x ↦(aeval a s); s                          


(c1 ; c2) / k / s → c1 / c2 ● k / s                                                                                                                                                                                                                                                     


             eval s b = true                                                                             eval s b = false

(if b then c1 else c2) / k / s → c1 / k / s                             (if b then c1 else c2) / k / s → c2 / k / s


          eval s b = false                                                                  eval s b = true

(while b do c end) / k / s → skip / k / s                   (while b do c end) / k / s → c / Kwhile b c k / s 


skip / c ● k / s → c / k / s


skip / Kwhile b c k / s → while b do c end / k / s

c / k / s → c’ / k’ / s’ 



Program execution

Termination


Divergence


Equivalence between small-step semantics
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Definition kterminates (s: store) (c: com) (s': store) :=
 star step (c, Kstop, s) (SKIP, Kstop, s’).

Definition kdiverges (s: store) (c: com) :=
 infseq step (c, Kstop, s).

Theorem equiv_smallstep_terminates:
 ∀ s c s', terminates s c s' ↔ kterminates s c s'.

Theorem equiv_smallstep_diverges:
∀ s c, diverges s c ↔ kdiverges s c.



Full proof of compiler correctness 
Simulation diagram

Difficulties


• find the invariant  between source and target states


• find the measure from source states to a natural number

≈
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or

with 0 ≤ measure(c2,k2) < measure(c1,k1)

C ⊢c2/k2/s2 ≈ (pc1, [ ], 
s’1) 

C ⊢c1/k1/s1 ≈ (pc1, [ ], s’1) c1/k1/s1

c2/k2/s2

VM 
state

IMP 
state

(pc1, [ ], s’1) 

+
(pc2, [ ], s’2) 

c1/k1/s1

c2/k2/s2

C ⊢c1/k1/s1 ≈ (pc1, [ ], s’1) (pc1, [ ], s’1) 

C ⊢c2/k2/s2 ≈ (pc2, [ ], s’2) 



Full proof of compiler correctness 
The anti-stuttering measure

When do the source program stutter? When no VM instruction is executed.
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(c1 ; c2) / k / s → c1 / c2 ● k / s         

skip / c ● k / s → c / k / s

(if true then c1 else c2) / k / s → c1 / k / s         

(while true do c end) / k / s → c / Kwhile b c k / s

measure(c,k):  sum of the sizes of c and all the commands appearing in k


skip and := have size 1

The size of a sequence s1;s2 is the 

sum of the sizes of s1 and s2.

Trick: the size of Kwhile b c k 
is the size of k.



Full proof of compiler correctness 
The simulation invariant

Remember this slide: 


C ⊢ c / k / s ≈ ( pc, stack, s’ ) is defined as:

• s = s’

• stack = [ ]

• code_at C pc (compile_com c) as in the previous proof

• C contains compiled code matching k at pc + codelen(compile_com c) 
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Lemma compile_com_correct_terminating:
  ∀ s c s', ceval s c s' →
  ∀ C pc stack,
  code_at C pc (compile_com c) →
  transitions C (pc, stack, s)
    (pc + codelen(compile_com c), stack, s').

C compile_com c

pc



Compiler correctness: wrapping up 
compil.v 
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Theorem compile_program_correct_terminating:
  ∀ s c s',
  cexec s c s' →
  machine_terminates (compile_program c) s s'.

Theorem compile_program_correct_terminating_2:
  ∀ s c s',
  star step (c, Kstop, s) (SKIP, Kstop, s') →
  machine_terminates (compile_program c) s s'.

Theorem compile_program_correct_diverging:
  ∀ c s,
  infseq step (c, Kstop, s) →
  machine_diverges (compile_program c) s.

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html


Part 5: summary
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correctness 
theorem for 
terminating 

and diverging 
programs 

behaviors

termination divergence

small-
step 

semanticsabout
is

observe traces

belong to

emit

reasoning simulation 
diagrams

using

continuations

rel
y o

n

is proved by

fac
ilita

te

anti-stuttering 
measure

strengthened
w

ith

alternate proof for 
terminating programs



Part 6 
How to turn CompCert  
from a prototype in a lab  
into a real-world compiler?



Observable behaviors 
Behaviors.v  and Events.v 

t = list of I/O events 

tinf = infinite list of I/O events 


I/O event


• call to an external function (e.g. printf)


• memory accesses to global volatile variables (hardware devices)

67

program_behavior :=
  | Terminates t n
  | Diverges t
  | Reacts tinf
  | Goes_wrong t

https://compcert.org/doc/html/compcert.common.Behaviors.html
https://compcert.org/doc/html/compcert.common.Events.html


CompCert compiler: 11 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

ASM

68

ClightCompCertC

LTL

S t S′ 

S t * S′ S t n S′ S t + S′ S t ∞

Behaviors

termination divergence

abnormal 
termination

Small-step semantics

Mach



General form of small-step semantics 
Smallstep.v 

 maps:


• each name of a function or global variable to a memory address

• each function pointer to a function definition


Semantic states  include a memory state, mapping addresses to values.

G

S
69

initial_state( )SG ⊢ S t S′ 

does not change 
during transitions

observed events

final_state( ,n)S

return value

The semantics L.sem of a language L is defined by a step relation between 
semantic states, the initial and final states.

https://compcert.org/doc/html/compcert.common.Smallstep.html


CompCert: main correctness theorem 
Compiler.v 
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Theorem transf_c_program_correct:
  ∀ p tp,
  transf_c_program p = OK tp →
  backward_simulation (Csem.semantics p) (Asm.semantics tp).

https://compcert.org/doc/html/compcert.driver.Compiler.html


The CompCert memory model 
Memory.v 

Shared by all the languages of the compiler


An abstract view of memory refined into a concrete memory layout


In the semantics:


Memory: a collection of disjoint blocks 
Values: machine integers, pointers, floating-point numbers


In C semantics, there are as many blocks as variables.


The number of blocks decreases during compilation. 
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int(5)

int(7)

int(0)

int(128)

b2

ptr(b2, 2)
b1

int(5)
b3

m: mem

https://compcert.org/doc/html/compcert.common.Memory.html


The CompCert memory model

Memory operations (load, store, alloc, free) over values  

Memory safety preserved by CompCert (good variable properties)
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int(5)

int(7)

int(0)

int(128)

b2

ptr(b2, 2)
b1

int(5)
b3

If then 𝚊𝚕𝚕𝚘𝚌(m, l, h) = 𝙾𝙺(b, m′ ) ∧ b′ ≠ b, 𝚕𝚘𝚊𝚍(τ, m′ , b′ , ofs) = 𝚕𝚘𝚊𝚍(τ, m, b′ , ofs)

If then 𝚜𝚝𝚘𝚛𝚎(τ, m, b, ofs, v) = 𝙾𝙺(m′ ) ∧ τ ∼ τ′ , 𝚕𝚘𝚊𝚍(τ′ , m′ , b, ofs) = 𝚌𝚘𝚗𝚟𝚎𝚛𝚝(v, τ′ )

load chunk m b ofs : option value

chunk: memory_chunk (ex. 16-bit unsigned int)



The CompCert memory model 
Generic memory transformations

Memory extensions: m2 extends m1
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0
Vundef

2

0
1
2

0

2

1

0
1
2

1

0

2

Memory injections: m1 is injected into m2

m1 m2

m2

m2

m1

m1

Memory operations are preserved by 
these transformations.



Semantic states 
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return statecall state internal
function

return
instr.

other instr.

external function

program 

starts

program 

ends

Exemple: Clight


state :=
  | State f stmt k env tempenv m
  | Callstate fdef args k m
  | Returnstate res k m

Exception: assembly languages, where a state is a pair of a memory and a mapping from 
processor registers to values


state

call instr. non-empty call stack



CompCert C source language 
(see chapter 4 of the user’s manual)

Expressions are annotated with their type

Overloading and implicit conversions between types

Expressions have side-effects

‣Assignments are expressions

Expressions implicitly classified into l-values and r-values

Non-deterministic evaluation of expressions (e.g., see this slide)


Commands 
All C constructs: loops, switch, goto, break, continue, return
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Eval(int(5), Tint(I32,Signed)): expr

https://compcert.org/man/manual004.html
https://compcert.org/man/


The CompCert C reference interpreter 
Cexec.v 

Outcome:

• normal termination or aborting on an undefined behavior


• observable effects (I/O events: printf, volatile memory accesses)


Faithful to the formal semantics of CompCert C; the interpreter displays all 
the behaviors according to the semantics

reference 
interpreter.c outcome

Compcert C
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step: genv → state → trace → state → Prop do_step: world → genv → state → list (trace * state)

external world: 
uniquely determines the 
results of external calls

predicate function
G ⊢ S t S′ 

https://compcert.org/doc/html/compcert.cfrontend.Cexec.html


Using the reference interpreter:  
exhaustive exploration
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S0

S1 S2 S3

S6 S7 S8S5

S9

Sb

Sa

S4

Time 0: 

Time 1: 

Time 2: 

Time 3: 

Time 4:



Using the reference interpreter:  
randomized exploration
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RandomizedFirst choice

S0

S3

S7

Sb

Sa

S0

S1

S4

S0

S1 S2 S3

S6 S7 S8S5

S9

Sb

Sa

S4



Using the reference interpreter 
A first example

reference interpreter

Result is 76 
Time 387: observable event: extcall printf(& __stringlit_1, 76) 
Time 392: program terminated (exit code = 0)

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
    if (x < 9) x = x + 2;
    else if (x > 50) x = x + 1;
    else x = 2 * x;
    return x;  }

int main(void) {
    int res = f(12);
    printf("Result is %d \n",res);
    return 0; }

number 
of execution 

steps



Using the reference interpreter 
A first example with a detailed trace of execution

Time 0: calling main()
—[step_internal_function]—>
Time 1: in function main, statement
  res = f(12); printf(__stringlit_1, res); return 0;
—[step_seq]—>
…
Time 8: calling f(12)
—[step_internal_function]—>
Time 9: in function f, statement x = 1; for (…)…
—[step_seq]—>
Time 10: in function f, statement x = 1;
—[step_do_1]—>
Time 11: in function f, expression x = 1
—[red_var_local]—>
Time 12: in function f, expression <loc x> = 1
—[red_assign]—>
…

name of the 
semantic rule

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
    if (x < 9) x = x + 2;
    else if (x > 50) x = x + 1;
    else x = 2 * x;
    return x;  }

int main(void) {
    int res = f(12);
    printf("Result is %d \n",res);
    return 0; }



Using the reference interpreter 
A second example

reference interpreter The interpreter stops on this undefined behavior.  
This is not the case for the compiled code.

Stuck state: in function main, expression
  <printf>(<ptr __stringlit_1>, <loc x+8>)
Stuck subexpression: <loc x+8>
ERROR: Undefined behavior

int main(void)
{  int x[2] = { 12, 34 };
  printf("x[2] = %d\n", x[2]);
  return 0;  }



Using the reference interpreter 
A third example: randomized exploration

a Time 14: observable event: extcall printf(& __stringlit_1)
b Time 28: observable event: extcall printf(& __stringlit_2)
c Time 42: observable event: extcall printf(& __stringlit_3)
6
Time 50: observable event: extcall printf(& __stringlit_4, 6) 
Time 55: program terminated (exit code = 0)

reference interpreter

int a() { printf("a "); return 1; }
int b() { printf("b "); return 2; }
int c() { printf("c "); return 3; }

int main () { printf("%d\n", a() + (b() + c())); return 0;  }



Clight language 
Clight.v 

Expressions are annotated with their type

No overloading and explicit conversions between types and arithmetic operators

Expressions are pure

Temporary variables do not reside in memory


Commands 
Assignments are commands

Single syntax for loops, continue command

‣ C loops are derived forms
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& v

Sloop s1 s2

Econst_int(int(5), Tint(I32,Signed)): expr

https://compcert.org/doc/html/compcert.cfrontend.Clight.html


9 

6 

3 

RTL language 
RTL.v  (a.k.a. 3-address code)

Each function is represented by its CFG

Elementary instructions only

Unlimited supply of pseudo-registers
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Iop(int(5), args, dest, succ): instruction

list of 
pseudo-regs

register to 
store the result

successor 
node

0 x := 1

1 i := 1

4 

x<9

5 x := x+2

7 

x>50

8 

x := x+1 x := 2*x

return x

i := i+1

2 i<n

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
   if (x < 9) x = x + 2;
   else if (x > 50) x = x + 1;
   else x = 2 * x;
 return x;  }

https://compcert.org/doc/html/compcert.backend.RTL.html


Assembly languages

A lot of lost information, including expressions, control flow, types, variable 
identifiers
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exec_instr (f:function) (i: instruction) (rs:regset) (m:mem): outcome

Next(rs’,m’) or 
Stuck



CompCert compiler: 10 languages, 18 passes

Clight C#minor

CminorCminorSelRTL

type elimination


stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

CFG construction

expr. decomp.

Optimizations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 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no side-effect

determinization


CompCertC

LTL

branch tunneling

shortens sequences of 
branches

incl. live-range splitting, 
spilling, reloading

non @able scalar local var 
are pulled out of memory

Linear Mach
linearisation

of the CFG

layout of

stack frames

ASM code

generation

ASM

Recognition of operators 
and addressing modes 

Ex. x*4 becomes rolm(x, 2, -4)



Verification patterns 

Verified validator


• Less to prove (if validator simpler than transformation)


• Validator reusable for several variants of an optimization


• Can be efficient (cheap enough to be invoked on every compiler run)


Example: register allocation with advanced spilling and splitting
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Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified



Part 6: summary

Proving a compiler pass mainly amounts to proving a simulation diagram


Many reusable libraries: 


• simulations, memory model, C semantics, Clight and RTL languages

• machine integers, dataflow solver


Some useful compilation options


• using the CompCert C interpreter: -interp (-trace, -all, -random)


• tracing options: -dc, -dclight, -drtl, …

• show the time spent in compiler passes: -timing

88



Part 7: Compiling critical embedded 
software with CompCert

89



Fly-by-wire softwareExecute pilot's commands


Flight assistance: keep aircraft within safe flight envelope 
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The qualification 
process (DO-178)

Rigorous validation: review (qualitative), analysis 
(quantitative), testing (huge amounts)


Conducted at multiple levels, from design to final product


Meticulous development process; extensive documentation



From block diagrams 
to assembly 

code 
generator compiler

output
outputinput

observation 
point

variable stored 
in RAM

delay symbol

delay macro

delay symbol

delay symbol
delay 
macro



; annotation: Begin of a loop  
...                                                                                    
addi r3, 0, 1  
; annotation: Here x is at r3  
...    
; annotation: End of a loop

Program annotations

A mechanism to attach annotations to program points

• Mark specific program points

• Provide information about the location of C variables

• Ensure that some variables are preserved (e.g. x must be kept in a register)


Annotations are preserved during compilation.

• Each annotation generates an observable event

• The correctness theorem ensures preservation of the sequencing of 1) 

symbols, and 2) of accesses to hardware devices (volatile variables)

_annot("Begin of a loop");  
...                                                                                
x = 1;                                                              
_annot("Here x is at %1",x);  
...    
_annot("End of a loop");      

compiler

 Conformance to the qualification process:

CompCert gives traceability guarantees



How good is the 
compiled code ?

Trade-off between

• traceability guarantees

• and efficiency of the generated 
code


Low-level verifications

• reviews of the assembly 

• computation of a WCET 
estimation 
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Compiling critical embedded software 
[Kästner et al., CompCert: Practical experience on integrating and qualifying a formally verified 
optimizing compiler, ERTS’18]

WCET and stack use improvements on a real-time application  
while providing proven traceability guarantees thanks to annotations
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Overall assessment

The improvement mainly comes from the register allocation pass.

• From: no register allocation

• To: sharing of local variables among available registers


Traceability guarantees

• From: tracking of all program variables

• To: tracking of meaningful variables (used in block diagrams)
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From early intuitions to fundamental formalisms … 
                                    verification tools that automate these ideas … 
                                    actual use in the critical software industry 
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Operational 
semantics for 

terminating IMP 
programs

Compiler 
correctness 

theorem


Operational 
semantics for 
diverging IMP 

programs

Simulation proof 
technique with 
anti-stuttering 

measure

Generalization to 
C-like semantics 

(non-determ., 
trace, memory)

Experimental 
evaluation of the 
generated code


 

CompCert C compiler



Part 8: 
CompCert, a shared infrastructure 
for ongoing research



Turning CompCert into a secure compiler  
CT-CompCert     [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline
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unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT: 
  ∀ S C, 
  compiler S = OK C →  
  isCCT S → 
  isCCT C.

Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execCompCertC S b →  
  execASM C b.

How to turn CompCert into a formally-verified secure compiler?



Which proof technique for the isCCT policy? 
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Difficulty: tricky proofs!

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

Theorem compiler-preserves-CCT: 
  ∀ S C, 
  compiler S = OK C →  
  isCCT S → 
  isCCT C.

S1
ℓ S2

S′ 1
ℓ′ S′ 2

with φ(S1, S′ 1) implies ℓ = ℓ′ 

isCCT S

Observational non-interference: observing program leakage (boolean guards and memory 
accesses) during execution does not reveal any information about secrets

Indistinguishability property : share public values, but may differ on secret valuesφ(Si, S′ i)



Proving CCT preservation:  
back to simulation diagrams
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must predict the 
number of steps 

at target level

Proof-engineering: leverage the existing proof scripts as much as possible


t’=t

or (t’  and t is leak only)= ε

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

S1
≈n C1

C2
≈n’S2

t’t
n



Verifying just-in-time (JIT) compilation [Barrière’s PhD 12/2022] 
[Barrière, Blazy, Flückiger, Pichardie, Vitek, POPL’21] and  [Barrière, Blazy, Pichardie, POPL’23]

A JIT compiler interleaves the execution of a program with its optimizations


Dynamic speculation: specializes functions, requires deoptimization


 
Non-deterministic semantics: either deoptimize to the source program or 
continue to the next instruction in the optimized program

103

IR interpreter native exec.optimization

speculation

backend

monitor

profilerprofiler

source 
program

… 
f( );  
… 

g( );

new 
program

interpretation
interpretation

com
pilation
of f()

com
pilation
of g()

dynamic 
optim.

dynamic 
optim.



Proving semantics preservation:  
the simulation approach
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C4≈S4

JIT 
program 

P0

source 
program


P0

S1
≈ C1

C2≈S2

Both the program and the execution 
state are evolving

C3≈S3

JIT 
program 

P2

JIT 
program 

P1

dynamic 
optim.

dynamic 
optim.



Nested simulations for JIT verification
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C4≈JIT
S4

JIT 
program 

P0

source 
program


P0

S1
≈JIT C1

C2≈JIT
S2

Invariant ≈JIT: at any point during JIT 
execution


• the current state Ci corresponds 
to a source state Si


• the curent JIT program Pi is 
equivalent to the source 
program P0 


Nested simulation: this equivalence 
is expressed with another simulation

C3

≈JIT

S3

JIT 
program 

P2

JIT 
program 

P1

dynamic 
optim.

dynamic 
optim.

C2

C3 P2

P0

P0

P1

P1

P2

≈JIT

≈JIT

Both the program and the execution 
state are evolving



Work in progress    🏗 
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Clight C#minor Cminor CminorSel RTL

LTLLTLinLinearMach

CompCertC

ASM

Catala

FPGA

SSA

GSA

new
 font-end

new
 back-end

new optimizations

new target



Conclusion and perspectives

CompCert is a shared infrastructure for ongoing research 

•compilation : ProbCompCert (Boston College, USA), L2C (Tsinghua, China), 
Velus (DIENS, Fr), CompCertO (Yale, USA), VeriCert (Imperial College, GB), 
CompCert-KVX (Verimag, Fr)

•program logics: VST (Princeton, USA), Gillian (Imperial College, GB),  
VeriFast (KUL, Be)

•static analysis : Verasco (Inria, Fr) 


Opens the way to the trust of development tools 
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