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Abstract. For dynamic languages, using Just-In-Time compilation allows to execute pro-
grams faster compared to interpretation. They rely on speculations that are made, at code
generation time, to specialize the code generated for the most common cases. Verifying a JIT
compiler raises new important challenges which doesn’t appear in verified batch compilers.

For these reasons, verified JIT compilers are still under study. For example, an architecture
of verified JIT compiler has been developed by Aurèle Barrière et al. This work presents two
improvements of the optimization passes previously deployed in this JIT compiler, and formally
verifies their correctness in Coq. The first one consists in the improvement of an inlining pass,
which consists in relaxing a condition that must be true for inlining to trigger at compile
time. As a result, inlining can be applied more often. We have checked on a benchmark
that, with this improvement, inlining can happen more often. The second improvement is
an improvement to the way we introduce speculations, which uses a liveness analysis. When
we introduce a speculation, we must be able to rebuild the environment in case we have to
deoptimize because the speculation doesn’t hold. The liveness analysis allows to reduce the
size of this environment. We have finally shown, with the same benchmark as with inlining,
that this improvement reduced the execution time.
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1 Introduction

1.1 Context

The work presented in the present report is a project that is part of Aurèle Barrière’s PhD
thesis, whose goal is to design a verified Just-In-Time (JIT) compiler with the proof assistant
Coq [1]. This compiler, and especially the libraries it uses, are partially inspired by CompCert,
a C verified compiler which is a main reference in the domain of verified compilation [2]. This
JIT compiler introduces SpecIR, its intermediate representation whose semantics are enhanced
with special instructions that allows speculation, the specific feature of JIT compilers. Then,
our compiler performs several optimization passes on the SpecIR program, such as inlining or
constant propagation, and the resulting program is finally converted to LLVM, a well-known
backend.

1.2 Properties of the semantics of SpecIR

SpecIR features some classical instructions, like assignment, binary operations, memory store/load,
but also two particular instructions: Framestate and Assume. The latter allows the compiler
to make one or more speculations on the current environment. If the speculation is true, we
can execute an optimized version of the program since we have some guarantees on the envi-
ronment, so as to curb the execution time. If the speculation is not true, the compiler gets back
to a base version of the program, and restore a correct environment to pursue the execution of
the program. This is called a deoptimization. For Assume instructions to be inserted, one first
needs to insert a Framestate instruction. It expresses the possibility of a deoptimization. In
later optimization passes, speculation can be inserted next to any Framestate instruction in
the form of an Assume.

1.3 Aim of our project

Our project consisted in improving two optimization passes, firstly the inlining pass provided
by the compiler, and secondly the pass that insert Framestate instructions in order to be able
to insert Assume instructions later. The second optimization is now based on a liveness analysis,
a technique that is frequently used in compilation. Moreover we have proven the correctness
of these improvements by adapting the Coq proofs of these two optimization passes to their
improved implementation.
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2 First improvement : Relaxation of the condition to trig-
ger inlining

2.1 Presentation

Whenever a speculation fails, we must restore a correct environment for the original version of
the function being executed. If a speculation fails in inlined code, we must not only restore
the environment of the inlined function, but also the environment of the function in which the
function was inlined. To know how to reconstruct that environment, the inlining pass checks
that there is a Framestate instruction next to the Call being inlined.

To make this proof easier, a strong condition on the form of the Framestate was introduced.
Therefore, the inlining was not triggering very often in practice. Our improvement consisted
in relaxing this condition to allow inlining more often.

A Framestate is defined by :

• A label pointing to an instruction of the base version, where we must jump to when
deoptimizing

• A mapping of the registers (varmap) and a list of stackframes, to restore the correct
environment.

Previously, the varmap of the inserted Framestate had to map the return register retreg of the
called function to its current value before all the other values. We relaxed the condition so as
to only need that the varmap contains once and only once the assignment (retreg← retreg),
possibly in the middle of the other assignments. To sum up, before the improvement, we had
to have a varmap of the form

[(retreg← retreg), (rx1 ← ex1), . . . , (rxn ← exn)]

whereas in the new version of inlining, a varmap of the form

[(rx1 ← ex1), . . . , (rxk
← exk

), (retreg← retreg), (rxk+1
← exk+1

), . . . (rxn ← exn)]

for some k is accepted, where all the rxi
differs from retreg and none of the exi

use retreg.
To relax this condition, we have to modify, in the Coq implementation of the inlining pass,

the definition of a function named check_vm, which checks the form of the given varmap, and
returns a unit type element if the varmap is well-formed in the sense of the previous criteria,
or returns an error if the varmap does not satisfy these criteria.

Previously, check_vm was checking if the varmap is not empty and if its first element is
indeed (retreg ← retreg). We give below a simplified version of its implementation in Coq
(skipping the additional checks)

Definition check_vm (vm:varmap) (retreg:reg) (abs:def_abs_dr): res unit :=
match vm with
| nil ⇒ Error "the varmap does not capture the return register"
| a:: vm’ ⇒

match (andb (check_reconstructed retreg a) (varmap_no_use retreg vm’)) with
| true ⇒ OK tt
| false ⇒ Error "The varmap doesn’t have the desired form"
end

end.

Our changes include two new functions, check_varmap_capture_retreg and
check_varmap_only_once, which respectively check that
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• the varmap indeed contains the assignment (retreg← retreg)

• the varmap, excepted at most one eventual assignment (retreg ← retreg), never use
retreg.

The new version of check_vm is given below.

Definition check_vm (vm:varmap) (retreg:reg) (abs:def_abs_dr): res unit :=
match check_varmap_capture_retreg vm retreg with
| true ⇒

match check_varmap_only_once vm retreg with
| true ⇒ OK tt
| false ⇒ Error "The varmap doesn’t have the desired form"
end

| false ⇒ Error "the varmap does not capture the return register"
end.

2.2 Verification

2.2.1 Overall principles

First of all, we shall explicit what we mean by "the optimization is correct" when we refer to an
optimization pass from a source SpecIR program to an optimized SpecIR program. It actually
means that for any source program, there is a backward simulation between the source program
and the resulting optimized program. This concept of backward simulation is actually the very
essence of the correctness proof of CompCert.

Briefly, a backward simulation expresses the fact that every possible behavior of the opti-
mized program is a correct behavior of the source program (before the optimization), where
correct means that the behavior is included in the specification of the source program given by
its semantics.

To prove a backward simulation, we have to define a matching relation between states of the
source program and states of the optimized program, that guarantees that a set of invariants
is preserved between these states, then prove that this relation is preserved at each step of the
execution.

Formally, if two states s1 and s2 are matched (≈ in the diagrams below), and s2 steps to
another state s′2, then we must have for the simulation to be true :

• either s1 steps to a state s′1 after a finite non-zero number of steps, and s′1 is matched
with s′2, and both the successive steps from s1 to s′1 and the step from s2 to s′2 have the
same observable behavior (trace t)

s1 s2

s′1 s′2

≈

+ t t

≈

• either, under some condition, s1 is directly matched with s′2, and s2 → s′2 has no obser-
vational behavior

s1 s2

s′2

≈

∅

4



All the challenge lies in defining such a matching relation, which must be strong enough to
guarantee that both programs will have the same behavior, but not too strong in order to be
preserved at each step. Then we must prove that backward simulation holds with this matching
relation.

2.2.2 Invariants

In our JIT compiler, the environments that contain the values of all the registers are represented
by mappings that associate a register number to a value. This structure is called a regmap.
They are internally represented with binary search trees

In the initial proof, it was shown that if we assume that the varmap of the inserted
Framestate is well-formed (initially, with (retreg ← retreg) at the beginning), when we
deoptimize from the inlined code, the final regmap is the same as the initial regmap (before
the call) with retreg receiving the return value of the inlined function, whatever the result of
the inlined function is.

With the new condition on the inserted Framestate, however, this is no longer guaranteed.
Indeed, the regmaps are not exactly the same in the sense of Coq equality, but they are
equivalent i.e. they have the same values on all registers, despite being internally represented
differently. Therefore, we have to change the previous set of invariants so as to only require for
regmaps in two matched states to be equivalent, and to adapt the proof in order to prove that
this new set of invariants is sufficient to have the backward simulation.

In Coq, the equivalence between two regmaps is denoted by the following property, where
rm # r is the value of the register r in the regmap rm :

Definition regmap_eq (rm1 rm2:reg_map): Prop :=
∀ r:reg, rm1 # r = rm2 # r.

Before introducing the match relation between states, first of all, we have an inductive
property match_stack expressing the fact that two stacks are similar. The definition of this
property is composed of 5 cases, only the 2 cases that are different from the original definition
are given below for the sake of simplicity.

Inductive match_stack (p:program) (caller:version) (callee:version) (call_lbl:label)
(args:list expr) (retreg:reg) (next:label) (tgt:deopt_target) (vm:varmap)
(sl:list synth_frame) (params:list reg) (abs:def_abs_state): stack → stack → Prop :=
| ms_same: ∀ s1 s2 r v lbl rm rm’

(MS: (match_stack p caller callee call_lbl args retreg next tgt vm sl params abs) s1 s2)
(EQ: (regmap_eq rm rm’)),

(match_stack p caller callee call_lbl args retreg next tgt vm sl params abs)
((Stackframe r v lbl rm)::s1) ((Stackframe r v lbl rm’)::s2)

| ms_deopt: ∀ s1 s2 tgtver rm rmdeopt synth
(MS: (match_stack p caller callee call_lbl args retreg next tgt vm sl params abs) s1 s2)
(UPDATE: ∀ retval, ∃ rmdeopt’,

update_regmap vm (rm # retreg← retval) rmdeopt’ ∧
regmap_eq rmdeopt’ (rmdeopt # retreg← retval))

(SYNTH: ∀ retval, synthesize_frame p (rm # retreg← retval) sl synth)
(FINDBASE: find_base_version (fst tgt) p = Some tgtver),

(match_stack p caller callee call_lbl args retreg next tgt vm sl params abs)
((Stackframe retreg caller next rm)::s1)
((Stackframe retreg tgtver (snd tgt) rmdeopt)::synth ++ s2).

The interesting changes to notice are indeed in the two cases susmentioned : in ms_same,
instead of having the same regmap on both stackframes at the top of the two stacks, we
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have equivalent regmaps. In the ms_deopt inductive case, it is the UPDATE hypothesis which
is different. This is due to the fact that if (retreg ← retreg) appears in the middle of
the varmap, the registers are not assigned in the same order. Since regmaps are represented
as binary search trees, if we assign keys in a different order, we obtain a different internal
representation, even if each key holds the same value.

Finally, we have the definition of our fundamental property match_states that matches
two similar states. For this definition, only one case differs. Below is given the concerned case.
It previously required to have the same regmap in both states, now it only requires equivalent
regmaps.

Inductive match_states (p:program) (caller:version) (callee:version) (call_lbl:label)
(args:list expr) (retreg:reg) (next:label) (tgt:deopt_target) (vm:varmap)
(sl:list synth_frame) (params:list reg) (abs:def_abs_state): unit → state → state → Prop :=
| refl_match: ∀ stk stk’ v l rm rm’ ms

(MS: (match_stack p caller callee call_lbl args retreg next tgt vm sl params abs) stk stk’)
(EQ : regmap_eq rm rm’),

(match_states p caller callee call_lbl args retreg next tgt vm sl params abs) tt
(State stk v l rm ms)
(State stk’ v l rm’ ms)

2.2.3 Main steps of the proof

First of all, the new proof consists in showing that if the new hypotheses on the inserted
Framestate are true, the varmap associated is always as we want, namely of the form vm1 ++
(retreg← retreg)::vm2 where vm1 and vm2 never refer to retreg.

In the previous version of inlining, the following lemma was part of the proof:

Lemma update_deopt_regmap_first:
∀ vm rm_r rm_deopt r v,

update_regmap ((r, Unexpr Assign (Reg r))::vm) rm_r rm_deopt →
varmap_no_use r vm = true →
update_regmap ((r, Unexpr Assign (Reg r))::vm)

(rm_r # r ← v) (rm_deopt # r ← v).

The main challenge when relaxing the needed condition to inline lies in this particular point
of the proof. Indeed, we would like to prove instead:

Lemma update_deopt_regmap_middle:
∀ vm1 vm2 rm_r rm_deopt r v,

update_regmap (vm1 ++ (r, (Unexpr Assign (Reg r)))::vm2) rm_r rm_deopt →
varmap_no_use r vm1 && varmap_no_use r vm2 = true →
update_regmap (vm1 ++ (r, (Unexpr Assign (Reg r)))::vm2)

(rm_r # r ← v) (rm_deopt # r ← v).

but this theorem is not true. Actually, as we mentioned in the previous section, the resulting
regmap is equivalent but not equal, therefore we had to prove the following lemma:

Lemma update_deopt_regmap_middle:
∀ vm1 vm2 rm_r rm_deopt r v,

update_regmap (vm1 ++ (r, (Unexpr Assign (Reg r)))::vm2) rm_r rm_deopt →
varmap_no_use r vm1 = true →
varmap_no_use r vm2 = true →
∃ rm_deopt’,

update_regmap (vm1 ++ (r, (Unexpr Assign (Reg r)))::vm2) (rm_r # r ← v) rm_deopt’ ∧
regmap_eq rm_deopt’ (rm_deopt # r ← v).
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To prove this lemma, we actually transform our varmap with (retreg ← retreg) in the
middle to a varmap with (retreg ← retreg) first, in order to be able to apply the lemma
update_deopt_regmap_first. We get then back to our original varmap, nonetheless without
preserving the strict equality but rather an equivalence.

Finally, in the proof of the backward simulation, we had to show that regmap equivalence
is sufficient for basic properties to hold, such as the fact that evaluating the same expression in
equivalent regmaps returns the same value.

3 Second improvement: Introduction of a liveness analysis
for Framestate insertion

3.1 Presentation

Each Framestate comes with data that allows the compiler to restore a correct environment
if deoptimization occurs, and among others, a varmap to restore the contents of the registers.
When inserting a Framestate, the just-in-time compiler used to perform a definition analysis,
and to restore all the registers that are defined in the program including useless ones, thus
making the environment carried by the Framestate very big. Having as few registers as possible
to restore intuitively reduce register pressure, therefore it might be interesting to try to only
assign the registers whose value is significant for the rest of the execution of the program.

A liveness analysis allows us to know, at code generation time, which registers are actually
important to restore. Therefore, we can improve our way of inserting Framestate instructions.
Our second improvement consisted in adding a liveness analysis to our definition analysis, in
order to only assign the live registers (holding a significant value) in the varmap.

The implementation of our liveness analysis is based on the one of CompCert, which we
adapted so as to be able to use it in our JIT compiler. This liveness analysis consists in a
backward data-flow analysis that gives for each label of the program, the set of the registers
that are live after this label. This data-flow analysis is performed using the implementation of
Kildall’s algorithm provided by CompCert.

In order to apply Kildall’s algorithm, we had to define a transfer function, live_dr_transf,
which computes the set of live registers before an instruction at a given label in a function,
provided the set of live registers after the instruction. For instance, if r1 and r2 are live after an
instruction r2 <- r1 + r3, then r1 will still be live before (since it is used by the instruction,
its value is significant), r3 will be live too, but r2 will no longer be live because its value is
erased when processing the instruction. In conclusion, if a code c has the instruction r2 <- r1
+ r3 at label l, with after being a set containing exactly r1 and r2, then live_dr_transf c
l after will be a set containing exactly r1 and r3.

Next, our contribution also consisted in integrating this liveness analysis to the previously
implemented Framestate insertion. Before our improvement, the varmap carried by the in-
serted Framestate was the identity varmap on the set of the defined registers at the label
of the Framestate, where the identity varmap on a set S = {ri1 , . . . , rin} is the varmap
[(ri1 ← ri1), . . . , (rin ← rin)]. The key difference with our improvement is that instead of
taking the identity varmap on defined registers, we take the identity varmap on the intersec-
tion between defined and live registers. Actually, we cannot simply take the identity varmap
on live registers, because there can be live registers that are not defined in ill-formed programs.
For instance, let us consider the following program:

r1 <- 1
r3 <- r1 + r2
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After the second instruction, no registers are live. Therefore, before the second instruction, r1
and r2 are live. However, r2 is not defined at the second instruction.

We must not assign such registers in the varmap of the Framestate in order to preserve the
backward simulation, since in case of failure, the program needs to fail at matching states of
the base and the optimized version (when using the value of these registers).

In the example, r2 will also be live before the first instruction. As a consequence, if we insert
a Framestate before the first instruction which assigns all the live registers, it will contain the
assignment r2 <- r2, and at deoptimization, it will directly result in a failure (since r2 <- r2
will need the value of r2 which is undefined), while it will only fail at the second instruction
in the base version (because the second instruction references r2). The optimized version must
also fail at the instruction r3 <- r1 + r2 in order to keep the backward simulation.

3.2 Verification

To verify the new Framestate insertion pass, we followed the same process as with inlining:
we had to find a set of invariants preserved at each execution step.

Once we performed the liveness analysis, one of the invariants must express the fact that
when we deoptimize back to the base version of the program, the two resulting states are such
that live registers have the same value in both states. Other registers aren’t significant.

Therefore, we have first to define a property, named agree, which states that two regmaps
agree on a set of registers, which means that they have the same value on all the registers of
this set. In Coq, we gave this definition:

Definition agree (rm1 rm2:reg_map) (adr:live_abs_dr) :=
∀ r:reg, PositiveSet.In r adr → rm1 # r = rm2 # r.

The new match_states function is similar to the previously implemented one for Framestate
insertion, excepted that there is an additional case. Indeed, the values on dead registers may
be different when we deoptimize from an inserted Framestate since we don’t restore them.

This case of the matching relation is used after a deoptimization from an inserted Framestate.
In this new case, we only require that rmo (the environment obtained after deoptimization to
the original version) agrees with rms (the environment if we had simply executed directly the
original version) on the set of live registers at the current instruction. This new case is given
below:

| deopt_match:
∀ s s’ pc rms rmo ms

(MATCHSTACK: (match_stack v fid lbllist live def) s s’)
(AGREE: agree rms rmo (live_dr_transf (ver_code v) pc (live_absstate_get pc live))),

(match_states p v fid lbllist live def) Zero (State s v pc rms ms) (State s’ v pc rmo ms)

In the proof of the Framestate insertion, a property, match_stackframe, expresses the fact
that two stackframes are similar. A stack is basically a list of stackframes. match_stack then
states that the stackframes of two stacks are side-by-side matched by match_stackframe.

When doing a Call from such states matched with deopt_match, the environments that are
saved in the execution stack may be different. However, after returning from the call, they
should still agree on the live registers. In our new proof, we had to add the following case in
the definition of match_stackframe, used in the invariants to relate the execution stacks of the
source and optimized program.

| frame_deopt:
∀ r lbl rms rmo

(AGREE: ∀ retval, agree (rms # r ← retval) (rmo # r ← retval)
(live_dr_transf (ver_code v) lbl (live_absstate_get lbl live))),
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(match_stackframe v fid l live def) (Stackframe r v lbl rms) (Stackframe r v lbl rmo)

In addition, we had to prove the following theorems, whose statements were different in the
previous version:

Theorem defined_deopt_subset_agree:
∀ rm rs rs’,

defined rm (DefFlatRegset.Inj rs) →
PositiveSet.Subset rs’ rs →
∃ rmdeopt,

update_regmap (identity_varmap rs’) rm rmdeopt ∧
agree rm rmdeopt rs’.

Lemma deopt_subset_agree:
∀ rm rs rs’ newrm,

defined rm (DefFlatRegset.Inj rs) →
PositiveSet.Subset rs’ rs →
update_regmap (identity_varmap rs’) rm newrm →
agree rm newrm rs’.

These new theorems are actually weaker versions of the previous ones. They state respec-
tively that:

• if we deoptimize from a given regmap with an identity varmap on a subset of its defined
registers (not necessarily all of them), then the resulting regmap will agree on this subset
with the given regmap (instead of being equivalent). Previously, rs’ was exactly rs and
rm and rmdeopt were equivalent.

• if two regmaps are such that deoptimizing from the first with an identity varmap on
a subset of its defined registers result in the second, then they agree on this subset.
Previously, rs’ was exactly rs and rm and newrm were equivalent.

The proof of the first one follows the same ideas as in the previous Framestate insertion.
The second one is a direct consequence of the first one.

Finally we had to consider the new deopt_match case in the main proof of the backward
simulation. Therefore we had to prove some basic properties on agree, which expresses the
fact that agreeing on live registers is always sufficient : we couldn’t use what was proved for
regmap_eq since regmaps were supposed to agree on live registers instead of being equivalent
in this case. For instance, we had to prove the following lemma, where expr_live is a function
that add the registers used by an expression to a set of registers :

(* If two regmaps agree on the registers used for the evaluation of e,
then e evaluates to the same value in both regmaps *)
Lemma agree_eval_expr:
∀ e v rs rms rmo ,

agree rms rmo (expr_live e rs) →
eval_expr e rms v →
eval_expr e rmo v.

This lemma states that only the value of the registers used by an expression matters to
evaluate correctly this expression. For example, only the value of r1 and r2 matters to evaluate
r1 + r2.
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4 Performance analysis
To assess the impact of our improvements on the performance of the JIT compiler, we used a
previously implemented Bash script, which runs the JIT with a Lua frontend on a benchmark
of various Lua programs, such as bubble sort, or various ways of computing the beginning of
the Fibonacci sequence. One execution of this script lasts for a few seconds, therefore in order
to have more reliable results we ran multiples times this script in a row.

4.1 With improved inlining

Unfortunately, for this improvement, we couldn’t see any significant gain on the overall exe-
cution time with our script. Nonetheless, there is still a positive point to highlight. Indeed,
we added a counter in the extracted (in OCaml) version of the Coq inlining function, and
we noticed that inlining was triggered significantly more often: on one execution of our Bash
script, inlining happened 21 times with our improvement while it happened only 7 times with
the previous version of inlining.

4.2 With liveness analysis

However, the good news is that liveness analysis cut the execution time by nearly 8% over 30
executions of our benchmark. This confirms our intuition that reducing register pressure at
speculative instructions benefits the execution time. A liveness analysis could also be useful for
other works on the JIT, such as implementing a backend for SpecIR.

5 Conclusion
As a matter of conclusion, we have improved an existing JIT compiler using some popular
techniques in the domain of optimization, such as a liveness analysis. Inlining is particularly
difficult with speculative instructions since we have to synthesize stackframes to cope with
eventual deoptimizations. Inlining is only possible under some restrictive conditions, and it
is important to know when we are able to inline. Our project relaxed these conditions so as
to inline more often. Furthermore, the speculative instructions that we encounter with JIT
compilers allows the specialization of functions for a better efficiency. Therefore they must be
compiled themselves as efficiently as possible. Our previous version of insertion of speculative
instructions had an unnecessary register pressure. Thanks to our project we managed to capture
an environment as minimal as possible for a correct deoptimization.
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