Checking Presence Reachability Properties on Parameterized Shared-Memory Systems

Nicolas Waldburger
PhD supervisors: Nathalie Bertrand, Nicolas Markey, Ocan Sankur
Séminaire MOVE, 29/07/2023
Parameterized verification

- Arbitrary number of processes
- Processes are identical agents
- No identifiers: processes are anonymous
- Modelled by a single, common finite automaton

Shared-memory systems

Two models in this talk:

- Simple model: shared-memory systems with finite memory
- More complex model: round-based shared-memory systems
A model for shared-memory systems\(^1\)

Finite number of shared registers, each register has a value from finite set of symbols \(\Sigma\)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(d_0)</td>
<td></td>
</tr>
</tbody>
</table>

Registers are initialized to value \(d_0\)

No atomic read/write combinations

A configuration:

| $q \times 2$ | $p \times 1$ | a | b | d_0 |

How many process are on each state
Content of the registers
Semantics

\[
\begin{array}{c}
\begin{array}{c}
q \times 2 \quad p \times 1 \quad a \quad b \quad d_0
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
(q, write_3(a), r)
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
q \times 1 \quad p \times 1 \quad r \times 1 \quad a \quad b \quad a
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
(p, read_1(a), r)
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
q \times 1 \quad r \times 2 \quad a \quad b \quad a
\end{array}
\end{array}
\]
Initial configurations:

\[(q, \text{write}_3(a), r)\]

\[(p, \text{read}_1(a), r)\]

Registers are initialized to \(d_0\)

Can be arbitrarily large

with \(n \geq 1\) and \(q_0\) the initial state
A small example

A single register

A single register

\[
\begin{align*}
q_0 & \xrightarrow{\text{read}(d_0)} B \\
& \quad \xrightarrow{\text{write}(c)} A \\
& \quad \xrightarrow{\text{read}(c)} C \\
& \quad \xrightarrow{\text{write}(b)} q_f \\
& \quad \xrightarrow{\text{read}(b)} C \\
& \quad \xrightarrow{\text{write}(a)} q_f \\
& \xrightarrow{\text{read}(a)} q_f \\
\end{align*}
\]
A small example

Two processes

Initial value

d_0

\(\text{write}(c) \)

\(\text{read}(d_0) \)

\(\text{read}(d_0) \)

\(\text{read}(d_0) \)

\(\text{write}(a) \)

\(\text{write}(b) \)

\(\text{read}(a) \)

\(\text{read}(c) \)

\(\text{read}(c) \)

\(\text{read}(b) \)

\(\text{read}(b) \)

\(\text{write}(b) \)

\(\text{write}(b) \)

\(\text{write}(a) \)

\(\text{write}(a) \)
A small example

\[\begin{array}{c}
\text{\texttt{d}_0} \\
q_0 \quad \text{write}(c) \\
B \quad \text{read}(d_0) \\
\text{\texttt{c}} \\
A \quad \text{read}(a) \\
\text{\texttt{a}} \\
C \quad \text{read}(b) \\
\text{\texttt{b}} \\
q_f \quad \text{write}(b) \\
\end{array} \]
A small example
A small example
A small example

![Diagram of a small example]

- **States:** q_0, A, B, C, q_f
- **Transitions:**
 - q_0 to A: write(c)
 - A to q_f: read(a), write(b)
 - B to A: read(d_0), read(c)
 - A to C: read(a)
 - C to B: read(b), read(d_0)
 - B to C: read(d_0)
 - C to q_f: write(a)
A small example

\[q_0 \rightarrow write(c) \rightarrow A \]

\[B \rightarrow read(d_0) \rightarrow A \]

\[C \rightarrow read(d_0) \rightarrow A \]

\[\text{write}(a) \rightarrow C \rightarrow \text{read}(c) \rightarrow A \]

\[\text{write}(b) \rightarrow A \rightarrow \text{read}(a) \rightarrow q_f \]

\[q_f \text{ is covered} \]

\[a \text{ is covered} \]
Reachability problems

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^{*} \gamma, \gamma(q_f) > 0 \)?
Reachability problems

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0 ? \)

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 ? \)

All processes “synchronize” on \(q_f \)
Reachability problems

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow* \gamma, \gamma(q_f) > 0 \) ?

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow* \gamma, \forall q \neq q_f, \gamma(q) = 0 \) ?

PRP\(^2\): \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow* \gamma, \gamma \models \phi \) ?

with \(\phi \in \mathcal{B}(\{\#q = 0, \#q > 0\}, \{\text{reg}_i = d, \text{reg}_i \neq d\}) \)

\(\#q = \text{number of processes on } q \)
Reachability problems

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \, \gamma(q_f) > 0 \) ?

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \, \forall q \neq q_f, \, \gamma(q) = 0 \) ?

PRP²:

\[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \, \gamma \models \phi \]

with \(\phi \in \mathcal{B}(\{\#q = 0, \#q > 0\}, \{\text{reg}_i = d, \text{reg}_i \neq d\}) \)

Examples:
- \(\phi = "#q_f > 0" \) (COVER),
- \(\phi = "\land q \neq q_f \#q = 0" \) (TARGET)
- \(\phi = "(#q_1 > 0) \lor ([#q_2 = 0] \land [\text{reg}_1 = d_0])" \)

Monotonicity

A process may “copy” the behavior of another process on the same state.

\[\text{write}(b)\]
A process may “copy” the behavior of another process on the same state.
A process may “copy” the behavior of another process on the same state.

write(b)
A process may “copy” the behavior of another process on the same state.
A process may “copy” the behavior of another process on the same state.

Monotonicity

(read(a))
Monotonicity

A process may “copy” the behavior of another process on the same state.

\[\text{read}(a) \]
Monotonicity

Abstraction: remember whether there is at least one process on a given state.

Sound and Complete for PRP because of monotonicity property
NP-completeness of COVER

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \ \gamma(q_f) > 0 \)?

```
1  | \hline
   | d_0 \\
2  | d_0
```

A

```
write_1(T) \quad read_2(d_0)
```

B

```
write_2(T) \quad read_1(d_0)
```
NP-completeness of COVER

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0 \) ?

Reduction from 3-SAT:

\[
\begin{array}{c|c|c}
\hline
x & d_0 \\
\hline
\neg x & d_0 \\
\hline
\end{array}
\]

Check \(x \):

Check \(\neg x \):

\[\text{read}_x(T) \rightarrow \text{read}_{\neg x}(d_0)\]

\[\text{read}_{\neg x}(T) \rightarrow \text{read}_x(d_0)\]
NP-completeness of COVER

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0? \)

Reduction from 3-SAT:

Directly relies on initialization of registers!

COVER drops down to PTIME when the registers are not initialized (applying a simple saturation technique).
TARGET when registers are not initialized

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 \) ?

TARGET is still NP-complete when registers are not initialized. Reduction from 3-SAT:

\[
\forall x \\
\text{write}_x(\text{true})
\]

\[
\forall x \\
\text{write}_x(\text{false})
\]

Check clause 1 \(\cdots \) Check clause \(m \) \(q_f \)
TARGET with a single register

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \ \forall q \neq q_f, \gamma(q) = 0 ? \)

TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols\(^4\).
TARGET: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \quad \forall q \neq q_f, \gamma(q) = 0? \]

TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (\(q_f\) may be reached from some configuration containing the state).
TARGET with a single register

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 ? \)

TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols\(^4\).

Compute \textit{coverable states} (the state can be covered from initial configurations)
and \textit{backwards coverable states} (\(q_f\) may be reached from some configuration containing the state).

\[
\text{= coverable}
\]

\[
\text{= backwards coverable}
\]
TARGET with a single register

TARGET: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 \]

TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (*q_f* may be reached from some configuration containing the state).

Iteratively remove all states that are not coverable.

TARGET with a single register

TARGET: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \ \forall q \neq q_f, \gamma(q) = 0 ? \]

TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (\(q_f\) may be reached from some configuration containing the state).

Iteratively remove all states that are not...
TARGET with a single register

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 ? \)

TARGET is PTIME when only one register. One can reduce the problem to the case when the register is not initialized. Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (*q_f* may be reached from some configuration containing the state).

Iteratively remove all states that are not }

TARGET with a single register

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \ \forall q \neq q_f, \gamma(q) = 0 ? \)

TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations)
and *backwards coverable states* (\(q_f\) may be reached from some configuration containing the state).

The algorithm is generalizable to PRP when the formula is in Disjunctive Normal Form (DNF).

DNF-PRP: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \ \gamma \models \phi, \)

\(\phi \) in DNF: \(\phi = \bigvee_i \left(t_{i,1} \land t_{i,2} \land \cdots \land t_{i,m_i} \right) \),

\(t_{i,j} \in \{\#q = 0, \#q > 0\} \cup \{\text{reg}_i = d, \text{reg}_i \neq d\} \)

Summary of complexity results

<table>
<thead>
<tr>
<th></th>
<th>COVER</th>
<th>TARGET</th>
<th>DNF-PRP</th>
<th>PRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>General case</td>
<td>NP-complete</td>
<td>NP-complete</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Not initialized</td>
<td>PTIME-complete</td>
<td>NP-complete</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
<tr>
<td>One register</td>
<td>PTIME-complete</td>
<td>PTIME-complete</td>
<td>PTIME-complete</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>
Round-based shared-memory systems
A motivating example

Binary consensus problem:
Make all processes agree on a common value, each process starting an initial preference \(p \).

Validity: If a process decided value \(p \), some process started with value \(p \)

Agreement: Two processes that decide decide of the same value

Termination: All processes eventually decide of a value

Aspnes’ consensus algorithm:

\[
\begin{align*}
\text{int } k & := 0, \text{ bool } p \in \{0, 1\}, \text{ (rg}_b[r])_{b \in \{0, 1\}, r \in \mathbb{N}} \text{ all initialized to no}; \\
\text{while } \text{true do} & \\
\quad \text{read from } \text{rg}_0[k] \text{ and } \text{rg}_1[k]; \\
\quad \text{if } \text{rg}_0[k] = \text{yes} \text{ and } \text{rg}_1[k] = \text{no} \text{ then } p := 0; \\
\quad \text{else if } \text{rg}_0[k] = \text{no} \text{ and } \text{rg}_1[k] = \text{yes} \text{ then } p := 1; \\
\quad \text{write yes to } \text{rg}_p[k]; \\
\quad \text{if } k > 0 \text{ then} \\
\quad \quad \text{read from } \text{rg}_{1-p}[k-1]; \\
\quad \quad \text{if } \text{rg}_{1-p}[k-1] = \text{no} \text{ then return } p; \\
\quad k := k+1;
\end{align*}
\]
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

- $\text{reg}_0[k]$
- $\text{reg}_1[k]$
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>Rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg_0[k]</th>
<th>reg_1[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>writes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reg_0[k]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>reg_1[k]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>Rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>\text{yes}</td>
<td>\text{yes}</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>\text{no}</td>
<td>\text{no}</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>\text{no}</td>
<td>\text{no}</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>\text{no}</td>
<td>\text{no}</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>\text{no}</td>
<td>\text{no}</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>Rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg₀[k]</th>
<th>reg₁[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

The numbers 0 and 1 are used to indicate the state of the registers at each round.
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reads</th>
<th>reg₀[k]</th>
<th>reg₁[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Pixels read from the image do not form a table or a clear description of the algorithm. The diagram shows a sequence of rounds from 0 to 4, with states A, B, and C, and flags reg₀[k] and reg₁[k] that change from no to yes.
Example of execution of the algorithm

rounds

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Is ready to write its preference

\(r_e \) \(g \) \(k \) \(r_e \) \(g \) \(k \)
Example of execution of the algorithm

The diagram shows the execution of a three-step algorithm. The x-axis represents rounds, with integers 0 to 4 labeled. The y-axis denotes the states of variables A, B, and C, with states 0 and 1 indicated. The legend includes two columns for `reg_0[k]` and `reg_1[k]`.

At each round:
- **Round 0:**
 - A is 0
 - B is 1
 - C is 0
 - `reg_0[k]` and `reg_1[k]` are both no

- **Round 1:**
 - A is 0
 - B is 0
 - C is 0
 - `reg_0[k]` is no, `reg_1[k]` is yes

- **Round 2:**
 - A is 0
 - B is 1
 - C is no
 - `reg_0[k]` and `reg_1[k]` are both no

- **Round 3:**
 - A is 0
 - B is 0
 - C is no
 - `reg_0[k]` and `reg_1[k]` are both no

- **Round 4:**
 - A is 0
 - B is 0
 - C is no
 - `reg_0[k]` and `reg_1[k]` are both no
Example of execution of the algorithm

Is ready to write its preference

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg_0[k]</th>
<th>reg_1[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

reads
Example of execution of the algorithm

A
B
C

\[\text{reg}_0[k] \]

\[\text{reg}_1[k] \]
Example of execution of the algorithm

No winner on this round
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg₀[k]</th>
<th>reg₁[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

The diagram illustrates the execution of the algorithm with states for rounds 0 to 4, showing transitions and conditions for registers reg₀[k] and reg₁[k].
Example of execution of the algorithm

```
rere \[k\]
reg\(_0\)[k]
reg\(_1\)[k]
reads
```
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg₀[k]</th>
<th>reg₁[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

writes

\[r_{\text{g}}(k) \]
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

\(r_e g \)
Example of execution of the algorithm
Example of execution of the algorithm

```
<table>
<thead>
<tr>
<th>reads</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
```

- **A**: reg0[k]
- **B**: reg1[k]
Example of execution of the algorithm

- **Round 0**: A reads reg$_0[k]$, B reads reg$_0[k]$, C reads reg$_0[k]$
- **Round 1**: A reads reg$_1[k]$, B reads reg$_1[k]$, C reads reg$_1[k]$
- **Round 2**: A reads reg$_0[k]$, B reads reg$_0[k]$, C reads reg$_0[k]$
- **Round 3**: A reads reg$_1[k]$, B reads reg$_1[k]$, C reads reg$_1[k]$
- **Round 4**: A reads reg$_0[k]$, B reads reg$_0[k]$, C reads reg$_0[k]$

The execution follows the algorithm's rules, and no conflicts occur.
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg₀[k]</th>
<th>reg₁[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

- **rounds**: 0, 1, 2, 3, 4
- **reads**: 0, 1
- **A, B, C**
- **reg₀[k]**, **reg₁[k]**
Example of execution of the algorithm

A process getting to this round will convert to preference 1
Round-based shared-memory systems

Model inspired by round-based algorithms from the literature678.

Process progress in asynchronous rounds, each round having its own finite set of registers.

The round-based model

- Read transitions now mention from which round they are reading, relatively to the current round of the process
- A new type of transitions: *round increments*, which send the process to the next round

Example with one register per round:

```
write(b)

read^{-1}(a)  read^{-1}(d_0)  write(a)  read^{-1}(b)  read^0(d_0)  read^0(b)
```

- Write to register of the current round of the process
- Read from register of current round of the process
- Read from register one round below the round of the process
- Increment round
Semantics

\[p \times 1 \quad : \quad d_0 \]
\[\begin{array}{ccc}
3 & q \times 3 & 1 \\
2 & b & a \\
1 & a & d_0 \\
0 & d_0 & \\
\end{array} \]

\[(p, \text{read}^{-1}(b), r), 3 \]

\[\begin{array}{ccc}
3 & r \times 1 & 1 \\
2 & b & a \\
1 & a & d_0 \\
0 & d_0 & \\
\end{array} \]

here with one register per round
Semantics

\[(q, \text{write}(b), r), 1 \]

here with one register per round
Semantics

Initial configurations:

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>b</td>
<td>a</td>
<td>d₀</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(q, write(b), r), 1

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₀</td>
<td>d₀</td>
<td>d₀</td>
</tr>
</tbody>
</table>

Nicolas Waldburger
Abstraction

Initial configurations:

\[
\begin{align*}
&\vdots \\
&3 \\
&2 \\
&1 \\
&0
\end{align*}
\]

\[
\begin{align*}
&d_0 \\
&b \\
&a \\
&d_0
\end{align*}
\]

\[
\begin{align*}
&\vdots \\
&3 \\
&2 \\
&1 \\
&0
\end{align*}
\]

\[
\begin{align*}
&d_0 \\
&b \\
&d_0
\end{align*}
\]

\[
\begin{align*}
&\vdots \\
&2 \\
&1 \\
&0 \\
&\vdots \\
&d_0 \\
&d_0 \\
&d_0
\end{align*}
\]

\[
\begin{align*}
&d_0 \\
&b \\
&d_0
\end{align*}
\]

\[
\begin{align*}
&d_0 \\
&d_0 \\
&d_0
\end{align*}
\]

\[
\begin{align*}
&d_0 \\
&d_0 \\
&d_0
\end{align*}
\]

\[
\begin{align*}
&d_0 \\
&d_0 \\
&d_0
\end{align*}
\]

\[
\begin{align*}
&d_0 \\
&d_0 \\
&d_0
\end{align*}
\]
An example of round-based register protocol

```
write(b)

read^{-1}(a)  read^{-1}(d_0)  write(a)  read^{-1}(b)  read^{0}(d_0)  read^{0}(b)  q_f

Increment round

0 1 2  \vdots

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= round 0
= round 1
= round 2
```
An example of round-based register protocol

Increment round

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_0</td>
<td>q_0</td>
</tr>
<tr>
<td>d_0</td>
<td>d_0</td>
<td>d_0</td>
</tr>
</tbody>
</table>
An example of round-based register protocol

\[
\begin{align*}
\text{write}(b) & : \quad \text{write}(a) \\
read^{-1}(a) & : \quad \text{write}(a) \\
read^{-1}(d_0) & : \quad \text{write}(a) \\
\text{round}^{-1}(b) & : \quad \text{write}(a) \\
\end{align*}
\]
An example of round-based register protocol

\[\text{write}(b)\]

\[\begin{array}{cccccc}
\text{C} & \text{B} & \text{A} & \text{q}_0 & \text{D} & \text{E} \\
\text{read}^{-1}(a) & \text{read}^{-1}(d_0) & \text{write}(a) & \text{read}^{-1}(b) & \text{read}^0(d_0) & \text{read}^0(b)
\end{array}\]

Increment round:

\[\begin{array}{c|c|c}
0 & d_0 & a \\
1 & q_0 & A \quad B \\
2 & q_0 & d_0
\end{array}\]

- \(q_f\)

= round 0

= round 1

= round 2
An example of round-based register protocol

![Diagram of round-based register protocol]

- \(q_0 \) is the initial state.
- Increment round: 1, 2, 3
- \(q_f \) is the final state.

<table>
<thead>
<tr>
<th>Round</th>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(q_0)</td>
<td>(q_0)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>1</td>
<td>(q_0)</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(a \) is the input symbol.
- \(d_0 \) is the data symbol.

- Green circles represent round 0.
- Blue circles represent round 1.
- Yellow circles represent round 2.

Nicolas Waldburger
An example of round-based register protocol

![Diagram](image)

<table>
<thead>
<tr>
<th>Round</th>
<th>States</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(q_0)</td>
<td>(a)</td>
</tr>
<tr>
<td>1</td>
<td>(A), (B), (C)</td>
<td>(d_0)</td>
</tr>
<tr>
<td>2</td>
<td>(q_0), (A)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

- \(\text{write}(b)\)
- \(\text{write}(a)\)
- \(\text{read}^{-1}(a)\)
- \(\text{read}^{-1}(d_0)\)
- \(\text{read}^{-1}(b)\)
- \(\text{read}^0(d_0)\)
- \(\text{read}^0(b)\)

- \(\text{Increment round}\)

= round 0
= round 1
= round 2
An example of round-based register protocol

\begin{itemize}
\item $\text{write}(b)$
\item $\text{read}^{-1}(a)$
\item $\text{read}^{-1}(d_0)$
\item $\text{write}(a)$
\item $\text{read}^{-1}(b)$
\item $\text{read}^0(d_0)$
\item $\text{read}^0(b)$
\end{itemize}

Increment round

\vdots

2

1 q_0 A B C

0 q_0 A

\vdots

d_0

b

\vdots

$\text{round } 0$

$\text{round } 1$

$\text{round } 2$
An example of round-based register protocol

\[
\begin{align*}
\text{write}(b) & \quad \xrightarrow{\text{read}^{-1}(b)} A \\
\text{write}(a) & \quad \xrightarrow{\text{read}^{-1}(a)} B \\
\end{align*}
\]

Increment round

\[
\begin{array}{c|c|c}
\vdots & \vdots & \vdots \\
2 & q_0 & d_0 \\
1 & q_0 & b \\
0 & q_0 & a \\
\end{array}
\]

= round 0
= round 1
= round 2

Nicolas Waldburger
An example of round-based register protocol

Increment round

<table>
<thead>
<tr>
<th>:</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>q_0 D</td>
</tr>
<tr>
<td>1</td>
<td>q_0 A B C</td>
</tr>
<tr>
<td>0</td>
<td>q_0 A</td>
</tr>
</tbody>
</table>

- $= \text{round 0}$
- $= \text{round 1}$
- $= \text{round 2}$

Nicolas Waldburger
An example of round-based register protocol

\[\begin{align*}
\text{read}^{-1}(a) &\quad \text{read}^{-1}(d_0) &\quad \text{write}(a) &\quad \text{read}^{-1}(b) &\quad \text{read}^0(d_0) &\quad \text{read}^0(b) \\
C &\quad B &\quad A &\quad q_0 &\quad D &\quad E \\
\text{write}(b) &\quad &\quad &\quad &\quad &\quad \text{q}_f
\end{align*} \]

Increment round

<table>
<thead>
<tr>
<th>Round</th>
<th>State</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>q_0</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>q_0</td>
<td>yellow</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\text{write}(a) &\quad \text{read}^{-1}(b) &\quad \text{read}^0(d_0) \\
A &\quad B &\quad C &\quad D &\quad E
\end{align*} \]

= round 0
= round 1
= round 2

\[\begin{align*}
\text{write}(b) &\quad \text{read}^{-1}(a) \\
A &\quad B &\quad C &\quad D &\quad E
\end{align*} \]

Increment round

<table>
<thead>
<tr>
<th>Round</th>
<th>State</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>q_0</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>q_0</td>
<td>yellow</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\text{write}(b) &\quad \text{read}^{-1}(a) \\
A &\quad B &\quad C &\quad D &\quad E
\end{align*} \]

Increment round

<table>
<thead>
<tr>
<th>Round</th>
<th>State</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>q_0</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>q_0</td>
<td>yellow</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\text{write}(a) &\quad \text{read}^{-1}(b) &\quad \text{read}^0(d_0) \\
A &\quad B &\quad C &\quad D &\quad E
\end{align*} \]

Increment round

<table>
<thead>
<tr>
<th>Round</th>
<th>State</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>q_0</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>q_0</td>
<td>yellow</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\text{write}(b) &\quad \text{read}^{-1}(a) \\
A &\quad B &\quad C &\quad D &\quad E
\end{align*} \]

Increment round

<table>
<thead>
<tr>
<th>Round</th>
<th>State</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>q_0</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>q_0</td>
<td>yellow</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\text{write}(a) &\quad \text{read}^{-1}(b) &\quad \text{read}^0(d_0) \\
A &\quad B &\quad C &\quad D &\quad E
\end{align*} \]

Increment round

<table>
<thead>
<tr>
<th>Round</th>
<th>State</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>q_0</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>q_0</td>
<td>yellow</td>
</tr>
</tbody>
</table>
An example of round-based register protocol

To write b to $\text{reg}[k]$, one must write to $\text{reg}[k]$ while $\text{reg}[k-1]$ still has value d_0

To cover q_f at round k, one must have written b to $\text{reg}[k-1]$ while $\text{reg}[k]$ still has value d_0

q_f cannot be covered!
Reachability problems in round-based setting

Round-based COVER: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \exists k \gamma(q_f, k) > 0 \]

There exists a round \(k \) such that some process is at round \(k \) and on state \(q_f \)
Reachability problems in round-based setting

Round-based COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \exists k \gamma(q_f, k) > 0 \) ?

Round-based TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall k, \forall q \neq q_f, \gamma(q, k) = 0 \) ?

Every process is on state \(q_f \) regardless of its round
Reachability problems in round-based setting

Round-based COVER:

\[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \exists k \gamma(q_f,k) > 0 ? \]

Round-based TARGET:

\[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall k, \forall q \neq q_f, \gamma(q,k) = 0 ? \]

Round-based PRP:

\[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma \models \psi ? \]

with \(\psi \) a first-order formula on rounds with no nested quantifiers

Examples:

\[\psi = \left(\exists k \left(\#(q_1, k + 1) > 0 \land \text{reg}_i[k] = d \right) \right) \lor \left(\forall k \#(q_0, k) = 0 \right) \]

- At some round, there is a process on state \(q_1 \) while register \(i \) of previous round has value \(d \)
- no process is on \(q_0 \)
A challenge: exponential lower bounds

Exponential lower bounds on the number of rounds:
A challenge: exponential lower bounds

Exponential lower bounds on the number of rounds:

Similar lower bounds for the number of processes and of active rounds
Complexity results

Theorem\(^9\): Round-based COVER is PSPACE-hard.
Complexity results

Theorem9: Round-based COVER is PSPACE-hard.

Theorem9,10: Round-based PRP is PSPACE-complete.

Complexity results

Theorem\(^9\): Round-based COVER is PSPACE-hard.

Theorem\(^{9,10}\): Round-based PRP is PSPACE-complete.

Challenge: the number of rounds relevant at the same time may need to be exponential.

A non-deterministic polynomial-space algorithm

Witness execution: \(\sigma_0 \xrightarrow{\theta_0} \sigma_1 \xrightarrow{\theta_1} \sigma_2 \xrightarrow{\theta_2} \sigma_3 \xrightarrow{\theta_3} \sigma_4 \xrightarrow{\theta_4} \sigma_5 \xrightarrow{\theta_5} \sigma_6 \xrightarrow{\theta_6} \sigma_7 \models \psi \)
A non-deterministic polynomial-space algorithm

Witness execution: $\sigma_0 \xrightarrow{\theta_0} \sigma_1 \xrightarrow{\theta_1} \sigma_2 \xrightarrow{\theta_2} \sigma_3 \xrightarrow{\theta_3} \sigma_4 \xrightarrow{\theta_4} \sigma_5 \xrightarrow{\theta_5} \sigma_6 \xrightarrow{\theta_6} \sigma_7 \models \psi$

Actions: $\theta_0 \quad \theta_1 \quad \theta_2 \quad \theta_3 \quad \theta_4 \quad \theta_5 \quad \theta_6$

Rounds: 1 4 3 2 0 1 4
A non-deterministic polynomial-space algorithm

Witness execution: $\sigma_0 \xrightarrow{\theta_0} \sigma_1 \xrightarrow{\theta_1} \sigma_2 \xrightarrow{\theta_2} \sigma_3 \xrightarrow{\theta_3} \sigma_4 \xrightarrow{\theta_4} \sigma_5 \xrightarrow{\theta_5} \sigma_6 \xrightarrow{\theta_6} \sigma_7 \models \psi$

Actions: $\theta_0 \ \theta_1 \ \theta_2 \ \theta_3 \ \theta_4 \ \theta_5 \ \theta_6$

Rounds: $1 \ 4 \ 3 \ 2 \ 0 \ 1 \ 4$

![Diagram showing the execution steps and actions]
A non-deterministic polynomial-space algorithm
A non-deterministic polynomial-space algorithm

number of relevant rounds may be large…

storable in polynomial space?
A non-deterministic polynomial-space algorithm

sliding window on \(\nu + 1 \) rounds where \(\nu \) is the highest \(i \) such that some \(\text{read}^{-i}(x) \) appears in the protocol.

\(\nu \) is assumed to be given in unary (here \(\nu = 1 \))

storable in polynomial space using abstract representation
A non-deterministic polynomial-space algorithm

- Insert actions taking place at round 2
- Forget about round 0
A non-deterministic polynomial-space algorithm
As the execution is guessed, we progressively guess why the configuration reached will satisfy ψ.

A non-deterministic polynomial-space algorithm
A non-deterministic polynomial-space algorithm

As the execution is guessed, we progressively guess why the configuration reached will satisfy ψ.

From this algorithm, we obtain exponential upper bounds on the number of processes and rounds needed.
Round-based shared-memory systems with stochastic schedulers
Many consensus algorithms rely on good luck for termination.

First idea: considering *fair* executions.
Many consensus algorithms rely on good luck for termination.

First idea: considering *fair* executions.

Definition 1: For a given k, any transition that is available infinitely often at round k is taken infinitely often.
Many consensus algorithms rely on good luck for termination.

First idea: considering *fair* executions.

Definition 1: For a given k, any transition that is available infinitely often at round k is taken infinitely often.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.
Many consensus algorithms rely on good luck for termination.

First idea: considering *fair* executions.

Definition 1: For a given k, any transition that is available infinitely often at round k is taken infinitely often.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 3: Processes tend to perform similar number of steps.

For Aspnes’ algorithm, a process must win the race!
Many consensus algorithms rely on good luck for termination.

First idea: considering *fair* executions.

Definition 1: For a given k, any transition that is available infinitely often at round k is taken infinitely often.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 3: Processes tend to perform similar number of steps.

For Aspnes’ algorithm, a process must win the race!

Definition 4: For every m, every process eventually performs m steps in a row.

For Aspnes’ algorithm, a process that is far behind could perform many steps in a row and not decide...

→ We need stochastic schedulers!
At every step:
- the next process to move is picked uniformly at random among all processes,
- its action is picked uniformly at random among all its available actions.

Almost-sure coverability: Is it the case that, for n large enough, $\mathbb{P}_n(\text{eventually somebody on } q_f) = 1$?

Almost-sure target: Is it the case that, for n large enough, $\mathbb{P}_n(\text{eventually everybody on } q_f) = 1$?
At every step:
- the next process to move is picked uniformly at random among all processes,
- its action is picked uniformly at random among all its available actions.

Almost-sure coverability: Is it the case that, for n large enough, $\mathbb{P}_n(\text{eventually somebody on } q_f) = 1$?

Almost-sure target: Is it the case that, for n large enough, $\mathbb{P}_n(\text{eventually everybody on } q_f) = 1$?

In the roundless case, almost-sure coverability can be stated as a deterministic property:
q_f is covered with probability 1 iff, from every reachable configuration, some process can cover q_f.

Not true for round-based systems…
An annoying example

An example where, from any reachable configuration, q_f can still be covered, but q_f is not covered with probability 1.

(gadget to ensure that at least one process goes on U and one goes on D)
An annoying example

An example where, from any reachable configuration, q_f can still be covered, but q_f is not covered with probability 1.
First idea: Forbid processes to move up at different rates.

Balanced condition: there exists m s.t., on every path of length m of the automaton, there is exactly one increment.
First idea: Forbid processes to move up at different rates.

Balanced condition: there exists m s.t., on every path of length m of the automaton, there is exactly one increment.

Not enough!
« m processes synchronize on some round » ~ return to zero of a balanced $(m - 1)$ - dimensional random walk

If m is large, non-zero probability of never occurring after some point (proven for $m \geq 6$, conjectured for $m \geq 4$)
We can build a protocol where:

- the balanced condition is met
- \(q_f \) can be reached from all reachable configurations (for \(n \) large enough)
- \(\mathbb{P}(q_f \text{ covered}) < 1 \) for every \(n \)

First idea: Forbid processes to move up at different rates.

Balanced condition: there exists \(m \) s.t., on every path of length \(m \) of the automaton, there is exactly one increment.

Not enough!

\(< m \) processes synchronize on some round \(\sim \) return to zero of a balanced \((m - 1)\) - dimensional random walk

If \(m \) is large, non-zero probability of never occurring after some point (proved for \(m \geq 6 \), conjectured for \(m \geq 4 \))
A stronger restriction

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation (all other processes are left idle) reaches q_f with probability 1.
Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation (all other processes are left idle) reaches q_f with probability 1.

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.
Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation (all other processes are left idle) reaches q_f with probability 1.

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.

Proposition: Deciding whether a given protocol is ASOF is a PSPACE-complete problem.
Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation (all other processes are left idle) reaches q_f with probability 1.

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.

Proposition: Deciding whether a given protocol is ASOF is a PSPACE-complete problem.

Proposition: If a protocol is ASOF, then for every n, all agents end up in q_f with probability 1 (almost-sure TARGET).

q_f is a deadlocked state
Thanks for your attention!
Any questions?
A challenge: exponential lower bounds

Exponential lower bounds on the number of *active* rounds:
Several negative results

Post* included in Pre*
There exists N s.t., for all \(n \geq N \), one can cover \(q_f \) from every reachable configuration of size \(n \)

ALMOST-SURE
There exists N s.t., for all \(n \geq N \), \(\mathbb{P}_n(\text{covering } q_f) = 1 \)

every other property implies COVER

COVER
There exists N s.t., for all \(n \geq N \), one can cover \(q_f \)

LIMIT-SURE
\(\mathbb{P}_n(\text{covering } q_f) \to_{n \to \infty} 1 \)

Conjecture
But the implication holds if no initialization of registers!

implication holds

implication \textbf{does not} hold
The conjecture

Conjecture: In the following example, $P_n(\text{covering } q_f) \not\rightarrow_{n \to \infty} 1.$

Asymptotic probability that a process in the D region catches up with the highest process in the U region?
Simulations

Evolution de la probabilité (limite = 1 000 000, sample size = 1 000, p= 0,55)

Probabilité d’atteindre q_f