Checking Presence Reachability Properties on Parameterized Shared-Memory Systems
Aim: automated verification of distributed algorithms.

Parameterized verification: arbitrarily large systems.

Two models in this talk:

- Simple model: shared-memory systems with finite memory
- More complex model: round-based shared-memory systems
A model for shared-memory systems

- Arbitrary number of processes
- Processes are *identical* agents
- No identifiers: processes are *anonymous*
- Modelled by a single, common *finite automaton*

A model for shared-memory systems

Finite number of shared registers, each register has a value from finite set of symbols Σ

1. a
2. b
3. d_0

Registers are initialized to value d_0

No atomic read/write combinations

Semantics

A configuration:

<table>
<thead>
<tr>
<th>$q \times 2$</th>
<th>$p \times 1$</th>
<th>a</th>
<th>b</th>
<th>d_0</th>
</tr>
</thead>
</table>

How many processes are on each state
Content of the registers
Semantics

\[q \times 2 \quad p \times 1 \quad a \quad b \quad d_0 \quad (q, \text{write}_3(a), r) \]

\[p \times 1 \quad r \times 1 \quad a \quad b \quad a \]

\[(p, \text{read}_1(a), r) \]

\[q \times 1 \quad r \times 2 \quad a \quad b \quad a \]
Semantics

Initial configurations:

\[
\begin{array}{ccc}
 q \times 2 & p \times 1 & a \ b \ d_0 \\
\end{array}
\]

\[
(q, \text{write}_3(a), r)
\]

\[
\begin{array}{ccc}
 q \times 1 & p \times 1 & r \times 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
 a & b & a \\
\end{array}
\]

\[
\begin{array}{ccc}
 q \times 1 & r \times 2 & a \ b \ a \\
\end{array}
\]

\[
(p, \text{read}_1(a), r)
\]

Can be arbitrarily large

Registers are initialized to \(d_0\)

Initial configurations:

\[
\begin{array}{ccc}
 q_1 \times n_1 & q_2 \times n_2 & \cdots \\
 d_0 & d_0 & d_0 \\
\end{array}
\]

with \(n_1, n_2, \ldots \geq 0\) and \(q_1, q_2, \ldots\) initial states
A small example

A single register

\[q_0 \rightarrow \text{write}(c) \rightarrow A \rightarrow \text{read}(a) \rightarrow q_f \]

\[B \rightarrow \text{read}(d_0) \rightarrow C \rightarrow \text{read}(b) \rightarrow q_f \]

\[\text{read}(c) \rightarrow A \rightarrow \text{write}(b) \rightarrow q_f \]

\[\text{write}(a) \rightarrow C \rightarrow \text{read}(b) \rightarrow q_f \]
A small example

Two processes

Initial value

Initial value d_0
A small example
A small example

\[d_0\]

\[q_0 \rightarrow \text{write}(c) \rightarrow A\]

\[B \rightarrow \text{read}(d_0) \rightarrow C\]

\[C \rightarrow \text{read}(b) \rightarrow \text{write}(a) \rightarrow q_f\]

\[A \rightarrow \text{read}(a) \rightarrow \text{write}(b) \rightarrow q_f\]
A small example

\[
\begin{align*}
q_0 & \xrightarrow{\text{write}(c)} A \\
B & \xrightarrow{\text{read}(d_0)} C \\
C & \xrightarrow{\text{read}(d_0)} B \\
A & \xrightarrow{\text{read}(c)} q_f \\
q_f & \xrightarrow{\text{write}(b)} A \\
A & \xrightarrow{\text{read}(a)} q_f \\
C & \xrightarrow{\text{read}(b)} C \\
A & \xrightarrow{\text{write}(a)} A
\end{align*}
\]
A small example

\[
\begin{align*}
q_0 & \rightarrow \text{write}(c) \\
A & \rightarrow \text{read}(a) \\
B & \rightarrow \text{read}(d_0) \\
C & \rightarrow \text{read}(d_0) \\
q_f & \rightarrow \text{write}(b)
\end{align*}
\]
A small example

\[q_0 \xrightarrow{\text{write}(c)} A \]
\[B \xrightarrow{\text{read}(d_0)} q_0 \]
\[C \xrightarrow{\text{read}(d_0)} A \]
\[A \xrightarrow{\text{read}(a)} q_f \]
\[q_f \xrightarrow{\text{write}(b)} C \]
\[C \xleftarrow{\text{read}(b)} A \]
\[A \xleftarrow{\text{read}(c)} q_f \]

\(q_f \) is covered ✓
Reachability problems

COVER: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^{*} \gamma, \gamma(q_f) > 0? \]

Parameterized: arbitrarily many processes

An initial configuration

A least one process on q_f: “error state”

Execution
Reachability problems

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0 \) ?

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 \) ?

All processes “synchronize” on \(q_f \)
Reachability problems

COVER: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0 ? \]

TARGET: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 ? \]

PRP²: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma \models \phi ? \]

 Presence Reachability Problem

with \(\phi \in B(\{\#q = 0, \#q > 0\}, \{\text{reg}_i = d, \text{reg}_i \neq d\}) \)

\#q = \text{number of processes on } q

Reachability problems

COVER: \(\exists n, \gamma_0, \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0 ? \)

TARGET: \(\exists n, \gamma_0, \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 ? \)

PRP\(^2\): \(\exists n, \gamma_0, \rho: \gamma_0 \rightarrow^* \gamma, \gamma \vdash \phi ? \)

with \(\phi \in \mathcal{B}(\{\#q = 0, \#q > 0\}, \{\text{reg}_i = d, \text{reg}_i \neq d\}) \)

Examples:
- \(\phi = \``\#q_f > 0'' \) (COVER), \(\phi = \``\bigvee_{q \neq q_f} \#q = 0'' \) (TARGET)
- \(\phi = \``(\#q_1 > 0) \lor ([\#q_2 = 0] \land [\text{reg}_1 = d_0])'' \)

A process may “copy” the behavior of another process on the same state.
A process may “copy” the behavior of another process on the same state.

Monotonicity

\textit{write(b)}
Monotonicity

A process may “copy” the behavior of another process on the same state.

write(b)
Monotonicity

A process may “copy” the behavior of another process on the same state.

Diagram:
- A state represented by a red circle labeled "read(a)"
- An action symbol represented by a black circle labeled "a"
A process may “copy” the behavior of another process on the same state.
Monotonicity

A process may “copy” the behavior of another process on the same state.

\[\text{read}(a) \]
Monotonicity

Abstraction: remember whether there is at least one process on a given state.

Sound and complete for PRP because:
- Monotonicity property (thanks to non-atomicity)
- Arbitrarily many properties in initial configurations
- Interested in parameterized properties (does there exists n such that…?)
- ϕ cannot count processes
Some processes

Initial value d_0

q_0 → write(c) → A

A → read(a) → q_f

B → read(d_0) → C

C → read(c) → A

C → read(b) → q_f

B → read(d_0) → C

C → write(a) → C

C → write(b) → q_f
Back to the example

\[d_0 \]

\[q_0 \quad \text{write}(c) \quad A \quad \text{read}(a) \quad q_f \]

\[B \quad \text{read}(d_0) \quad C \quad \text{read}(b) \quad \text{write}(b) \]

\[\text{read}(d_0) \quad \text{write}(a) \]
Back to the example

q_0 -> A (write(c))

B -> C (read(d_0))

C -> q_f (write(b))

q_f -> A (read(a))

B -> q_f (read(b))

C -> q_f (read(b))

d_0 -> q_0 (read(d_0))
Back to the example

Graph:
- State q_0 transitions to A with $write(c)$.
- State A transitions to q_f with $read(a)$.
- State B transitions to C with $read(d_0)$.
- State C transitions to B with $write(b)$.
- State C transitions to q_f with $read(b)$.
- State q_f transitions to A with $write(b)$.

Symbols:
- c
- d_0
- a
- b
- f
Back to the example

$q_0 \xrightarrow{\text{write}(c)} A \xrightarrow{\text{read}(a)} q_f$

$B \xrightarrow{\text{read}(d_0)} C \xrightarrow{\text{read}(b)} q_f$

$\text{read}(c) \xrightarrow{\text{write}(b)} q_f$

$\text{read}(b) \xrightarrow{\text{write}(a)} q_f$

a
Positive instance of COVER

Back to the example
Back to the example

Negative instance of TARGET

\[q_0 \xrightarrow{\text{write}(c)} A \]

\[B \xrightarrow{\text{read}(d_0)} C \]

\[C \xrightarrow{\text{read}(d_0)} B \]

\[A \xrightarrow{\text{read}(a)} B \]

\[A \xrightarrow{\text{read}(b)} C \]

\[A \xrightarrow{\text{write}(b)} A \]

\[A \xrightarrow{\text{read}(a)} A \]

\[A \xrightarrow{\text{write}(a)} A \]

\[A \xrightarrow{\text{read}(c)} A \]

\[A \xrightarrow{\text{write}(c)} A \]

\[q_f \]

\[a \text{ cannot be the final register value} \]

\[b \text{ cannot be the final register value} \]
Positive instance of PRP with
\[\phi = (\text{reg} = c \lor \text{reg} = d_0) \land (\#A > 0 \land \#q_f > 0 \land \#C = 0) \lor (\#A = 0 \land \#q_f > 0 \land \#C = 0) \]
Positive instance of PRP with

\[\phi = (\text{reg} = c \lor \text{reg} = d_0) \land \left([\#A > 0 \land \#q_f > 0 \land \#C = 0] \lor [\#A = 0 \land \#q_f > 0 \land \#C = 0] \right) \]
Positive instance of PRP with
\[\phi = (\text{reg} = c \lor \text{reg} = d_0) \land ([\#A > 0 \land \#q_f > 0 \land \#C = 0] \lor [\#A = 0 \land \#q_f > 0 \land \#C = 0]) \]
Back to the example

Positive instance of PRP with
\[\phi = (\text{reg} = c \lor \text{reg} = d_0) \land \left([\#A > 0 \land \#q_f > 0 \land \#C = 0] \lor [\#A = 0 \land \#q_f > 0 \land \#C = 0] \right) \]
Positive instance of PRP with

\[\phi = (\text{reg} = c \lor \text{reg} = d_0) \land \left(\#A > 0 \land \#q_f > 0 \land \#C = 0\right) \lor \left(\#A = 0 \land \#q_f > 0 \land \#C = 0\right) \]
Positive instance of PRP with
\[\phi = (\text{reg} = c \lor \text{reg} = d_0) \land ([\#A > 0 \land \#q_f > 0 \land \#C = 0] \lor [\#A = 0 \land \#q_f > 0 \land \#C = 0]) \]
Positive instance of PRP with
\[
\phi = (\text{reg} = c \lor \text{reg} = d_0) \land \left([\#A > 0 \land \#q_f > 0 \land \#C = 0] \lor \left[\#A = 0 \land \#q_f > 0 \land \#C = 0 \right] \right)
\]
Positive instance of PRP with

\[\phi = (\text{reg} = c \lor \text{reg} = d_0) \land (\#A > 0 \land \#q_f > 0 \land \#C = 0) \lor (\#A = 0 \land \#q_f > 0 \land \#C = 0) \]
Positive instance of PRP with

$$\phi = (\text{reg} = c \lor \text{reg} = d_0) \land \left([\#A > 0 \land \#q_f > 0 \land \#C = 0] \lor [\#A = 0 \land \#q_f > 0 \land \#C = 0] \right)$$
NP-completeness of COVER

COVER: $\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0$?
NP-completeness of COVER

COVER: $\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^{*} \gamma, \gamma(q_f) > 0$?

Reduction from 3-SAT:

<table>
<thead>
<tr>
<th>x</th>
<th>d_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg x$</td>
<td>d_0</td>
</tr>
</tbody>
</table>

Check x: \rightarrow write$_x(T)$ \rightarrow read$_{\neg x}(d_0)$

Check $\neg x$: \rightarrow write$_{\neg x}(T)$ \rightarrow read$_x(d_0)$
NP-completeness of COVER

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^\ast \gamma, \gamma(q_f) > 0 \) ?

Reduction from 3-SAT:

\[
\begin{array}{c|c}
\hline
x & d_0 \\
\hline
\neg x & d_0 \\
\hline
\end{array}
\]

Check \(x \):
\[
\rightarrow \text{write}_x(T) \rightarrow \text{read}_{\neg x}(d_0)
\]

Check \(\neg x \):
\[
\rightarrow \text{write}_{\neg x}(T) \rightarrow \text{read}_x(d_0)
\]

\[
\begin{array}{c}
\text{write}_{\neg x}(T)\\
\rightarrow
\end{array}
\quad
\begin{array}{c}
\text{Check clause 1} \\
\rightarrow \ldots \rightarrow \text{Check clause } m \\
\rightarrow q_f
\end{array}
\]

Directly relies on initialization of registers!
COVER when registers are uninitialized

COVER: $\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \to^* \gamma, \gamma(q_f) > 0$?

COVER drops down to PTIME when registers are uninitialized\(^3\).

Saturation algorithm:

COVER when registers are uninitialized

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0 \) ?

COVER drops down to PTIME when registers are uninitialized\(^3\).

Saturation algorithm:

COVER when registers are uninitialized

COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0 \) ?

COVER drops down to PTIME when registers are uninitialized\(^3\).

Saturation algorithm:

COVER when registers are uninitialized

COVER: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0?\]

COVER drops down to PTIME when registers are uninitialized\(^3\).

Saturation algorithm:

TARGET when registers are uninitialized

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 \) ?

TARGET is still NP-complete when registers are uninitialized. Reduction from 3-SAT:

∀x
\(\text{write}_x(\text{true}) \)

\(\text{write}_x(\text{false}) \)
∀x

Check clause 1

\(\cdots \)

Check clause m

\(q_f \)
TARGET with a single register

TARGET: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 \]

TARGET is PTIME when only one register.
For simplicity: the register is uninitialized. Algorithm inspired from broadcast protocols\(^4\).

TARGET with a single register

TARGET: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 \? \]

TARGET is PTIME when only one register.
For simplicity: the register is uninitialized. Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations)
and *backwards coverable states* (\(q_f\) may be reached from some configuration containing the state).

TARGET with a single register

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 \) ?

TARGET is PTIME when only one register.
For simplicity: the register is uninitialized. Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (\(q_f \) may be reached from some configuration containing the state).

\[\text{\textbullet} \quad \text{= coverable} \]
\[\text{\textbullet} \quad \text{= backwards coverable} \]

TARGET with a single register

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 \) ?

TARGET is PTIME when only one register.
For simplicity: the register is uninitialized. Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations)
and *backwards coverable states* (\(q_f\) may be reached from some configuration containing the state).

![Diagram showing coverable and backwards coverable states]

Iteratively remove all states that are not
TARGET with a single register

TARGET: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0 ? \]

TARGET is PTIME when only one register.
For simplicity: the register is uninitialized. Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations)
and *backwards coverable states* (*q_f* may be reached from some configuration containing the state).

Iteratively remove all states that are not \(= \text{backwards coverable}\)

\[= \text{coverable}\]

TARGET with a single register

TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 \) ?

TARGET is PTIME when only one register.
For simplicity: the register is uninitialized. Algorithm inspired from broadcast protocols\(^4\).

Compute *coverable states* (the state can be covered from initial configurations)
and *backwards coverable states* (\(q_f\) may be reached from some configuration containing the state).

Iteratively remove all states that are not

\(\checkmark\) = coverable

\(\checkmark\) = backwards coverable

TARGET with a single register

TARGET: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0? \]

TARGET is PTIME when only one register. For simplicity: the register is uninitialized. Algorithm inspired from broadcast protocols4.

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (\(q_f\) may be reached from some configuration containing the state).

The algorithm is generalizable to PRP when the formula is in Disjunctive Normal Form (DNF).

DNF-PRP: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma \models \phi, \]

\(\phi\) in DNF: \[\phi = \bigvee_i (t_{i,1} \land t_{i,2} \land \cdots \land t_{i,m_i}), \]
\[t_{i,j} \in \{\#q = 0, \#q > 0\} \cup \{\text{reg}_i = d, \text{reg}_i \neq d\} \]

Summary of complexity results

<table>
<thead>
<tr>
<th></th>
<th>COVER</th>
<th>TARGET</th>
<th>DNF-PRP</th>
<th>PRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>General case</td>
<td>NP-complete</td>
<td>NP-complete</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Uninitialized</td>
<td>PTIME-complete</td>
<td>NP-complete</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
<tr>
<td>One register</td>
<td>PTIME-complete</td>
<td>PTIME-complete</td>
<td>PTIME-complete</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>

Round-based shared-memory systems
Round-based shared-memory systems

Model inspired by round-based algorithms from the literature678.

Process progress in asynchronous rounds, each round having its own finite set of registers.

The round-based model

- Read transitions now mention from which round they are reading, relatively to the current round of the process
- A new type of transitions: *round increments*, which send the process to the next round

Example with one register per round:
A limited visibility range

- The process may write to these registers:
 - \(\text{reg}_1[k+1] \) to \(\text{reg}_{\text{dim}}[k+1] \)
 - \(\text{reg}_1[k] \) to \(\text{reg}_{\text{dim}}[k] \)
 - \(\text{reg}_1[k-1] \) to \(\text{reg}_{\text{dim}}[k-1] \)
 - \(\text{reg}_1[k-v-1] \) to \(\text{reg}_{\text{dim}}[k-v-1] \)
 - \(\text{reg}_1[k-v] \) to \(\text{reg}_{\text{dim}}[k-v] \)

- The process may read from these registers:
 - \(\text{reg}_1[k+1] \) to \(\text{reg}_{\text{dim}}[k+1] \)
 - \(\text{reg}_1[k] \) to \(\text{reg}_{\text{dim}}[k] \)
 - \(\text{reg}_1[k-1] \) to \(\text{reg}_{\text{dim}}[k-1] \)
 - \(\text{reg}_1[k-v-1] \) to \(\text{reg}_{\text{dim}}[k-v-1] \)
 - \(\text{reg}_1[k-v] \) to \(\text{reg}_{\text{dim}}[k-v] \)
Semantics

<table>
<thead>
<tr>
<th></th>
<th>(p \times 1)</th>
<th></th>
<th>(q \times 3)</th>
<th></th>
<th>(r \times 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(d_0)</td>
<td>2</td>
<td>(b)</td>
<td>1</td>
<td>(a)</td>
</tr>
<tr>
<td>1</td>
<td>(a)</td>
<td>2</td>
<td>(b)</td>
<td>0</td>
<td>(d_0)</td>
</tr>
<tr>
<td>3</td>
<td>(d_0)</td>
<td></td>
<td>(p \times 1)</td>
<td></td>
<td>(r \times 1)</td>
</tr>
</tbody>
</table>

\((p, \text{read}^{-1}(b), r), 3\)

here with one register per round
here with one register per round

\[(q, \text{write}(b), r), 1 \]
Initial configurations:

\[n_1, n_2, \ldots \geq 0 \text{ and } q_1, q_2, \ldots \text{ initial states} \]
Abstraction

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>a</td>
<td>b</td>
<td>d_0</td>
</tr>
</tbody>
</table>

Initial configurations:

- $(q, \text{write}(b), r), 1$

- with $n_1, n_2, ... \geq 0$ and $q_1, q_2, ...$ initial states
An example of round-based register protocol

Increment round

A

write(a)

write(b)

read\(^{-1}\)(a)

read\(^{-1}\)(d_0)

read\(^{-1}\)(b)

read\(^0\)(d_0)

read\(^0\)(b)

C

B

A

q_0

D

E

q_f

\[\text{write}(b) \]

\[\text{read}^{-1}(a) \]

\[\text{read}^{-1}(d_0) \]

\[\text{write}(a) \]

\[\text{read}^{-1}(b) \]

\[\text{read}^0(d_0) \]

\[\text{read}^0(b) \]

<table>
<thead>
<tr>
<th>[0]</th>
<th>[q_0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>[d_0]</td>
</tr>
<tr>
<td>[2]</td>
<td>[d_0]</td>
</tr>
</tbody>
</table>

\[\vdots \]

\[\vdots \]

\[\vdots \]

\[d_0 \]

\[d_0 \]

\[d_0 \]

\[= \text{round 0} \]

\[= \text{round 1} \]

\[= \text{round 2} \]
An example of round-based register protocol

Increment round

\[\begin{array}{c|c|c}
\text{Round} & \text{Register State} & \text{Value} \\
\hline
0 & q_0 & d_0 \\
1 & q_0 & d_0 \\
2 & q_0 & d_0 \\
\end{array} \]

= round 0

= round 1

= round 2
An example of round-based register protocol

\[\begin{align*}
q_0 & \xrightarrow{\text{write}(a)} A \\
& \xleftarrow{\text{read}^{-1}(a)} B \\
& \xleftarrow{\text{read}^{-1}(d_0)} A \\
& \xrightarrow{\text{write}(b)} C
\end{align*} \]

Increment round

\[
\begin{array}{c|c|c|c}
\text{Round} & q_0 & A & d_0 \\
\hline
0 & q_0 & & d_0 \\
1 & q_0 & A & a \\
2 & & & \\
\end{array}
\]

- \(\text{red}^{-1} \) = round 0
- \(\text{red}^0 \) = round 1
- \(\text{red}^{-1} \) = round 2

\(\text{write}(b) \)
An example of round-based register protocol

Increment round

<table>
<thead>
<tr>
<th>:</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(d_0)</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>(d_0)</td>
</tr>
</tbody>
</table>

\(d_0\) = round 0
\(d_0\) = round 1
\(d_0\) = round 2
An example of round-based register protocol

Increment round

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>q₀</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

write(b)

write(a)

$q₀ \leftarrow \text{read}^{-1}(a)$

$q₀ \leftarrow \text{read}^{-1}(d₀)$

$q₀ \leftarrow \text{write}(a)$

$q₀ \leftarrow \text{read}^{-1}(b)$

$q₀ \leftarrow \text{read}^0(d₀)$

$q₀ \leftarrow \text{read}^0(b)$

q_f

= round 0

= round 1

= round 2
An example of round-based register protocol

Increment round

\[\text{write}(b) \]

\[\text{read}^{-1}(a) \quad \text{read}^{-1}(d_0) \quad \text{write}(a) \quad \text{read}^{-1}(b) \quad \text{read}^{0}(d_0) \quad \text{read}^{0}(b) \quad q_f \]

<table>
<thead>
<tr>
<th>Round</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A, q_0</td>
</tr>
<tr>
<td>1</td>
<td>q_0, A, B, C</td>
</tr>
<tr>
<td>2</td>
<td>q_0, A</td>
</tr>
</tbody>
</table>

- Red = round 0
- Blue = round 1
- Yellow = round 2
An example of round-based register protocol

\[\text{increment round} \]

\[\text{write}(b) \]

\[\text{read}^{-1}(a) \] \[\text{read}^{-1}(d_0) \]

\[\text{write}(a) \]

\[\text{read}^{-1}(b) \]

\[\text{read}^0(d_0) \] \[\text{read}^0(b) \]

\[q_f \]

\[A \] = round 0

\[B \] = round 1

\[C \] = round 2

\(\vdots \)

\(2 \)

\(1 \)

\(0 \)

\(d_0 \)

\(b \)

\(a \)
An example of round-based register protocol

\[
\begin{align*}
C & \xrightarrow{\text{read}^{-1}(a)} B \xleftarrow{\text{read}^{-1}(d_0)} A \xrightarrow{\text{write}(a)} q_0 \xrightarrow{\text{read}^{-1}(b)} D \xleftarrow{\text{read}^0(d_0)} E \xrightarrow{\text{read}^0(b)} q_f
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
\text{Round} & A & B & C \\
0 & q_0 & A & a \\
1 & q_0 & A & B \\
2 & q_0 & & \\
\end{array}
\]

- \(\text{red} = \text{round } 0\)
- \(\text{blue} = \text{round } 1\)
- \(\text{yellow} = \text{round } 2\)

Increment round
An example of round-based register protocol

\[\text{write}(b)\]

\[\text{read}^{-1}(a)\]
\[\text{read}^{-1}(d_0)\]
\[\text{write}(a)\]
\[\text{read}^{-1}(b)\]
\[\text{read}^0(d_0)\]
\[\text{read}^0(b)\]
\[q_f\]

Increment round

<table>
<thead>
<tr>
<th>Round</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(q_0) A</td>
</tr>
<tr>
<td>1</td>
<td>(q_0) A, B, C</td>
</tr>
<tr>
<td>2</td>
<td>(q_0) A, D</td>
</tr>
</tbody>
</table>

- \(=\) round 0
- \(=\) round 1
- \(=\) round 2
An example of round-based register protocol

\[\text{write}(b) \]

\[\text{read}^{-1}(a) \quad \text{read}^{-1}(d_0) \quad \text{write}(a) \quad \text{read}^{-1}(b) \]

\[\text{read}^0(d_0) \quad \text{read}^0(b) \]

\[q_f \]

Increment round

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>q_0</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>q_0</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

\[\cdot \]

\[d_0 \]

\[\cdot \]

\[a \]

\[b \]

= round 0

= round 1

= round 2
An example of round-based register protocol

To write b to $\text{reg}[k]$, one must write to $\text{reg}[k]$ while $\text{reg}[k-1]$ still has value d_0.

To cover q_f at round k, one must have written b to $\text{reg}[k-1]$ while $\text{reg}[k]$ still has value d_0.

q_f cannot be covered at any round!
Reachability problems in round-based setting

Round-based COVER: \[\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \exists k \gamma(q_f, k) > 0? \]

There exists a round \(k \) such that some process is at round \(k \) and on state \(q_f \)
Reachability problems in round-based setting

Round-based COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \exists k \gamma(q_f, k) > 0 ? \)

Round-based TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall k, \forall q \neq q_f, \gamma(q) = 0 ? \)

Every process is on state \(q_f \) regardless of its round
Reachability problems in round-based setting

Round-based COVER: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \exists k \gamma(q_f, k) > 0 ? \)

Round-based TARGET: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \forall k, \forall q \neq q_f, \gamma(q) = 0 ? \)

Round-based PRP: \(\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma \vdash \psi ? \)

with \(\psi \) a first-order formula on rounds with no nested quantifiers, whose terms are in
\(\{\#(q, k + c) = 0, \#(q, k + c) > 0\} \cup \{\text{reg}_i[k + c] = d, \text{reg}_i[k + c] \neq d\} \)

Examples: \(\psi = \exists k (\#(q_1, k + 1) > 0 \land \text{reg}_i[k] = d) \lor \forall k \#(q_0, k) = 0'' \)

At some round, there is a process on state \(q_1 \) while register \(i \) of previous round has value \(d \)

no process is on \(q_0 \)
Complexity results

*Theorem*9: Round-based PRP is PSPACE-hard.

This is already true when:

- the reachability objective is a coverability objective,
- the visibility range is equal to 0 (processes cannot see previous rounds),
- there is only one register per round,
- the registers are uninitialized.

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022
Theorem9: Round-based PRP is PSPACE-hard.
This is already true when:
• the reachability objective is a coverability objective,
• the visibility range is equal to 0 (processes cannot see previous rounds),
• there is only one register per round,
• the registers are uninitialized.

Theorem9,10: Round-based PRP is PSPACE-complete.
A challenge: exponential lower bounds

Exponential lower bounds on the number of rounds:
A challenge: exponential lower bounds

Exponential lower bounds on the number *active* rounds:
A non-deterministic polynomial-space algorithm

Witness execution: \(\sigma_0 \xrightarrow{\theta_0} \sigma_1 \xrightarrow{\theta_1} \sigma_2 \xrightarrow{\theta_2} \sigma_3 \xrightarrow{\theta_3} \sigma_4 \xrightarrow{\theta_4} \sigma_5 \xrightarrow{\theta_5} \sigma_6 \xrightarrow{\theta_6} \sigma_7 \models \psi \)
A non-deterministic polynomial-space algorithm

Witness execution: \(\sigma_0 \xrightarrow{\theta_0} \sigma_1 \xrightarrow{\theta_1} \sigma_2 \xrightarrow{\theta_2} \sigma_3 \xrightarrow{\theta_3} \sigma_4 \xrightarrow{\theta_4} \sigma_5 \xrightarrow{\theta_5} \sigma_6 \xrightarrow{\theta_6} \sigma_7 \models \psi \)

Actions: \(\theta_0 \theta_1 \theta_2 \theta_3 \theta_4 \theta_5 \theta_6 \)

Rounds: 1 4 3 2 0 1 4
A non-deterministic polynomial-space algorithm

Witness execution:

\[\sigma_0 \xrightarrow{\theta_0} \sigma_1 \xrightarrow{\theta_1} \sigma_2 \xrightarrow{\theta_2} \sigma_3 \xrightarrow{\theta_3} \sigma_4 \xrightarrow{\theta_4} \sigma_5 \xrightarrow{\theta_5} \sigma_6 \xrightarrow{\theta_6} \sigma_7 \models \psi \]

Actions: \[\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6 \]

Rounds: \[1, 4, 3, 2, 0, 1, 4 \]
A non-deterministic polynomial-space algorithm
A non-deterministic polynomial-space algorithm

The number of relevant rounds may be large…

Storable in polynomial space?
A non-deterministic polynomial-space algorithm

storable in polynomial space using abstract representation

sliding window on \(v + 1 \) rounds

(here \(v = 1 \))
A non-deterministic polynomial-space algorithm
A non-deterministic polynomial-space algorithm
A non-deterministic polynomial-space algorithm

As the execution is guessed, we progressively guess why the configuration reached will satisfy ψ.
From this algorithm, we obtain exponential upper bounds on the number of processes and rounds needed.

As the execution is guessed, we progressively guess why the configuration reached will satisfy ψ.
Conclusion

Summary

• Two models in this talk: roundless register protocols and round-based register protocols.
• Properties studied are reachability properties which do not “count” processes. Two classical such problems are COVER and TARGET; PRP is a general class which encompasses these two problems.
• In the first model, despite its simplicity, PRP is NP-complete, but some restrictions make it PTIME.
• In the second model, PRP is PSPACE-complete, and similar restrictions do not decreases the complexity. The polynomial-space algorithm relies, among others, on a sliding window along the rounds.

Future work

• Almost-sure reachability in round-based register protocols with stochastic schedulers
• Cube reachability (= initial and final constraints may “count” processes), link with almost-sure reachability
• Weak memory
Binary consensus problem:
Make all processes agree on a common value, each process starting an initial preference \(p \).

Validity: If a process decided value \(p \), some process started with value \(p \)
Agreement: Two processes that decide decide of the same value
Termination: All processes eventually decide of a value

Aspnes’ consensus algorithm:\(^3\):
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg_0[k]</th>
<th>reg_1[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

\(\text{reg}_0[k] \)
Example of execution of the algorithm

A
B
C
reg_0[k]
reg_1[k]

rounds
0
1
2
3
4

writes

no
no
no
no
yes

\(\text{reg}_0[k] \)
\(\text{reg}_1[k] \)
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>writes</th>
<th>0</th>
<th>1</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>reg₀[k]</td>
<td>reg₁[k]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

no no no no no no yes yes
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$\text{reg}_0[k]$</th>
<th>$\text{reg}_1[k]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>Rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg$_0$[k]</th>
<th>reg$_1$[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Is ready to write its preference

\[\text{reads} \]
Example of execution of the algorithm

\[\text{reads} \]

\begin{align*}
\text{reg}_0[k] & \\
\text{reg}_1[k] & \\
\end{align*}

\begin{tabular}{cccc}
A & B & C & \text{reads} \\
0 & 1 & 1 & yes \\
\end{tabular}

\begin{tabular}{cccc}
0 & 1 & 1 & yes \\
\end{tabular}
Example of execution of the algorithm

\[\text{reads} \]

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

No winner on this round
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg₀[k]</th>
<th>reg₁[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

reads

<table>
<thead>
<tr>
<th>rounds</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>...</td>
</tr>
</tbody>
</table>

A | B | C | \(\text{reg}_0[k] \) | \(\text{reg}_1[k] \)
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

\[\text{writes} \]
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg_0[k]</th>
<th>reg_1[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>yes</td>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

reads

\[
\text{reg}_0[k] = \begin{cases}
 \text{true} & \text{if reads at round } k \text{ is yes} \\
 \text{false} & \text{otherwise}
\end{cases}
\]

\[
\text{reg}_1[k] = \begin{cases}
 \text{true} & \text{if reads at round } k \text{ is yes} \\
 \text{false} & \text{otherwise}
\end{cases}
\]
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>Rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg₀[k]</th>
<th>reg₁[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

\[\text{r} \left[k \right] \quad \text{g} \]
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>\text{reads}</th>
<th>\text{reg}_0[k]</th>
<th>\text{reg}_1[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

reads

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{reg}_0[k])</th>
<th>(\text{reg}_1[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

A B C \text{reg}_0[k] \text{reg}_1[k]

\begin{array}{c|c|c}
\text{rounds} & \text{writes} & \text{...}
\hline
0 & \text{no} & \text{no}
\hline
1 & \text{yes} & \text{yes}
\hline
2 & \text{no} & \text{yes}
\hline
3 & \text{no} & \text{yes}
\hline
4 & \text{no} & \text{yes}
\end{array}
Example of execution of the algorithm

<table>
<thead>
<tr>
<th>rounds</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>reg₀[k]</th>
<th>reg₁[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example of execution of the algorithm

A process getting to this round will convert to preference 1