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bring tomato cut tomato cook tomato put tomato in plate 

bring new plates serve plates to customers wash plates

if more than 

2 dirty plates
if less than 2 dirty 

plates and no plate ready

if some plate 

is ready

if all plates are clean
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Mutual exclusion Consensus
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Does my algorithm avoid ?
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Does my algorithm avoid ?
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Does my algorithm avoid ?

Objective: mathematically verify distributed algorithm to give guarantees about their safety.
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while true:
do non-critical things ;
flag𝑖 = true ; turn ≔ 1 − 𝑖 ;
wait until (flag1−𝑖 == false 𝑜𝑟 turn == 𝑖)
do critical things; 
flagi = false ; 

Peterson’s mutual exclusion algorithm [Pet81]

For process 𝑖 ∈ {0,1}:

[Pet81] Peterson, G.: Myths about the Mutuel Exclusion Problem. Information Processing Letters, 1981
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while true:
do non-critical things ;
flag𝑖 = true ; turn ≔ 1 − 𝑖 ;
wait until (flag1−𝑖 == false 𝑜𝑟 turn == 𝑖)
do critical things; 
flagi = false ; 

Peterson’s mutual exclusion algorithm [Pet81]

Mutual exclusion  = not 𝑐0 and 𝑐1 simultaneously

For process 𝑖 ∈ {0,1}:

Automata-based model

𝑛𝑖

𝑤𝑖
𝑐𝑖

[Pet81] Peterson, G.: Myths about the Mutuel Exclusion Problem. Information Processing Letters, 1981

𝑛0

𝑤0

𝑐0

flag0 ≔ true
turn ≔ 1

flag1 == true
𝑜𝑟 turn == 0

flag0 ≔ false

𝑛1

𝑤1

𝑐1

flag1 ≔ true
turn ≔ 0

flag0 == true
𝑜𝑟 turn == 1

flag1 ≔ false
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Does

distributed algorithm requirement

?satisfy
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Does

distributed algorithm requirement

?

… ⊨ 𝐆(¬fire)

model model-checking 

algorithm
property

?

satisfy
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… ⊨ 𝐆(¬fire)

model model-checking 

algorithm
property
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… ⊨ 𝐆(¬fire)

model model-checking 

algorithm
property

?

Theoretical approach:

▪ identify relevant models and relevant properties for these models,

▪ study decidability and complexity questions.



Nicolas Waldburger9

Consensus algorithms: designed for any number 𝑛 of participants.
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Consensus algorithms: designed for any number 𝑛 of participants.
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Consensus algorithms: designed for any number 𝑛 of participants.
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Consensus algorithms: designed for any number 𝑛 of participants.

…
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Consensus algorithms: designed for any number 𝑛 of participants.

…

Parameterized verification: is the algorithm correct for every 𝑛?



First part

Shared-memory systems
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Asynchronous Shared-Memory Systems (ASMS) [EGM13] 

𝑟𝑒𝑎𝑑1(a) 𝑟𝑒𝑎𝑑1(a) 𝑟𝑒𝑎𝑑1(a)

…

a b a

1 2 3

Shared memory
▪ Finite number of registers

▪ Finite set of values 

▪ A special initial value

[EGM13] Esparza, J., Ganty, P., Majumdar, R.: 

Parameterized Verification of Asynchronous Shared-Memory Systems. CAV 2013.

Processes = identical finite-state machines, behaving asynchronously

Each transition has either a 

read or a write action
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𝑞0

𝑞2 𝑞3

𝑞1

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑(c)

𝑤𝑟𝑖𝑡𝑒(b)

A single 

register
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𝑞0

𝑞2 𝑞3

𝑞1

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0

Two 

processes

Initial 

value

𝑟𝑒𝑎𝑑(c)

𝑤𝑟𝑖𝑡𝑒(b)

A single 

register
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𝑞0

𝑞2 𝑞3

𝑞1

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c
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𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)

𝑤𝑟𝑖𝑡𝑒(b)

A single 

register
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𝑞0

𝑞2 𝑞3

𝑞1

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c
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𝑞0

𝑞2 𝑞3

𝑞1

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑(c)

𝑤𝑟𝑖𝑡𝑒(b)

A single 

register

a

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0
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𝑞0

𝑞2 𝑞3

𝑞1

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑(c)

𝑤𝑟𝑖𝑡𝑒(b)

A single 

register

a 𝑞𝑓 covered  ✓
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𝑞0

𝑞2 𝑞3

𝑞1

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)
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A single 
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𝑞0

𝑞2 𝑞3

𝑞1

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑(c)

𝑤𝑟𝑖𝑡𝑒(b)

A single 

register

b
All processes can be in

𝑞𝑓 at the same time
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Does there exist a number of participants for which a bad event can happen? 
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Does there exist a number of participants for which a bad event can happen? 

Does there exist 𝑛 such that, from init𝑛, there is an execution 𝜌 that reaches a bad configuration? 

Asynchronicity: 

many executions for a given 𝑛
𝑛 processes, all in 𝑞0

registers initialized to 𝑑0
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COVER ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , 𝛾 𝑞𝑓 ≥ 1 ?

Does there exist a number of participants for which a bad event can happen? 

Does there exist 𝑛 such that, from init𝑛, there is an execution 𝜌 that reaches a bad configuration? 

Asynchronicity: 

many executions for a given 𝑛

At least one process in error state 𝑞𝑓

𝑛 processes, all in 𝑞0
registers initialized to 𝑑0
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COVER

TARGET ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , 𝛾 𝑞𝑓 ≥ 1 ?

Does there exist a number of participants for which a bad event can happen? 

Does there exist 𝑛 such that, from init𝑛, there is an execution 𝜌 that reaches a bad configuration? 

Asynchronicity: 

many executions for a given 𝑛

All processes in 𝑞𝑓

At least one process in error state 𝑞𝑓

𝑛 processes, all in 𝑞0
registers initialized to 𝑑0
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COVER

TARGET ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , 𝛾 𝑞𝑓 ≥ 1 ?

Presence Reachability 

Problem (PRP)
∃𝑛, ∃𝜌: init𝑛 →

∗ 𝛾 , 𝛾 ⊨ 𝜙 ? 

[DSTZ12] Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro. 

On the Complexity of Parameterized Reachability in Reconfigurable Broadcast Networks. FSTTCS 2012.

Does there exist a number of participants for which a bad event can happen? 

Does there exist 𝑛 such that, from init𝑛, there is an execution 𝜌 that reaches a bad configuration? 

Asynchronicity: 

many executions for a given 𝑛

All processes in 𝑞𝑓

At least one process in error state 𝑞𝑓

Presence constraint = Boolean combination of ‘state 𝑞 empty’inspired by [DSTZ12]

𝑛 processes, all in 𝑞0
registers initialized to 𝑑0
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Copycat:  a process can copy another one in same state.

𝑤𝑟𝑖𝑡𝑒𝑖 b a🐱
🐱
🐱🐱

𝑟𝑒𝑎𝑑𝑖 a a🐱
🐱
🐱
🐱

register 𝑖 register 𝑖
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Copycat:  a process can copy another one in same state.

𝑤𝑟𝑖𝑡𝑒𝑖 b
🐱
🐱

😺

🐱

b 𝑟𝑒𝑎𝑑𝑖 a a🐱
🐱
🐱
🐱

register 𝑖 register 𝑖
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Copycat:  a process can copy another one in same state.

𝑤𝑟𝑖𝑡𝑒𝑖 b 😺
😺

😺
😺

b 𝑟𝑒𝑎𝑑𝑖 a a🐱
🐱
🐱
🐱

register 𝑖 register 𝑖
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Copycat:  a process can copy another one in same state.

𝑤𝑟𝑖𝑡𝑒𝑖 b 😺
😺

😺
😺

b 𝑟𝑒𝑎𝑑𝑖 a a
🐱
🐱

😺

🐱
register 𝑖 register 𝑖
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Copycat:  a process can copy another one in same state.

𝑤𝑟𝑖𝑡𝑒𝑖 b 😺
😺

😺
😺

b 𝑟𝑒𝑎𝑑𝑖 a a😺

🐱

😺
😺

register 𝑖 register 𝑖
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Copycat:  a process can copy another one in same state.

𝑤𝑟𝑖𝑡𝑒𝑖 b 😺
😺

😺
😺

b 𝑟𝑒𝑎𝑑𝑖 a a😺

🐱

😺
😺

register 𝑖 register 𝑖

0 − 1 abstraction: store whether 0 process or at least 1
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Copycat:  a process can copy another one in same state.

𝑤𝑟𝑖𝑡𝑒𝑖 b 😺
😺

😺
😺

b 𝑟𝑒𝑎𝑑𝑖 a a😺

🐱

😺
😺

register 𝑖 register 𝑖

0 − 1 abstraction: store whether 0 process or at least 1

Sound and complete for PRP:

• copycat property

• number 𝑛 of processes is arbitrary

• presence constraints do not count processes

PRP ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , 𝛾 ⊨ 𝜙 ? 

Boolean combination of ‘state 𝑞 empty’



Nicolas Waldburger14

Copycat:  a process can copy another one in same state.

𝑤𝑟𝑖𝑡𝑒𝑖 b 😺
😺

😺
😺

b 𝑟𝑒𝑎𝑑𝑖 a a😺

🐱

😺
😺

register 𝑖 register 𝑖

Theorem [Wal23]: PRP is in NP. 

0 − 1 abstraction: store whether 0 process or at least 1

Sound and complete for PRP:

• copycat property

• number 𝑛 of processes is arbitrary

• presence constraints do not count processes

PRP ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , 𝛾 ⊨ 𝜙 ? 

Boolean combination of ‘state 𝑞 empty’

[Wal23] Nicolas Waldburger. Checking Presence Reachability Properties 

on Parameterized Shared-Memory Systems. MFCS 2023. 
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COVER TARGET DNF-PRP PRP

General case NP-complete NP-complete NP-complete NP-complete

Not initialized PTIME NP-complete NP-complete NP-complete

One register PTIME PTIME PTIME NP-complete

[Wal23] Nicolas Waldburger. Checking Presence Reachability Properties 

on Parameterized Shared-Memory Systems. MFCS 2023. 
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COVER TARGET DNF-PRP PRP

General case NP-complete NP-complete NP-complete NP-complete

Not initialized PTIME NP-complete NP-complete NP-complete

One register PTIME PTIME PTIME NP-complete

[Wal23] Nicolas Waldburger. Checking Presence Reachability Properties 

on Parameterized Shared-Memory Systems. MFCS 2023. 

[EGM13] Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized 

Verification of Asynchronous Shared-Memory Systems. CAV 2013.

PTIME [EGM13]

previously known result 
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Structural Theorem [Wal24]: In ASMS, the diameter is doubly-exponentially bounded. 

𝜌: 𝛾 = 𝛾0→
𝑡1
→
𝑡1
→
𝑡1

… →
𝑡1
𝛾1→

𝑡2
→
𝑡2
→
𝑡2

… →
𝑡2
𝛾2→

𝑡3
…       →

𝑡ℓ
→
𝑡ℓ
→
𝑡ℓ
→
𝑡ℓ

… →
𝑡ℓ
𝛾ℓ = 𝛾′ ℓ ≤ 𝐵 phases, 𝐵 2-exp 

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024. 

If 𝛾 →∗ 𝛾′ then there is
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Structural Theorem [Wal24]: In ASMS, the diameter is doubly-exponentially bounded. 

𝜌: 𝛾 = 𝛾0→
𝑡1
→
𝑡1
→
𝑡1

… →
𝑡1
𝛾1→

𝑡2
→
𝑡2
→
𝑡2

… →
𝑡2
𝛾2→

𝑡3
…       →

𝑡ℓ
→
𝑡ℓ
→
𝑡ℓ
→
𝑡ℓ

… →
𝑡ℓ
𝛾ℓ = 𝛾′ ℓ ≤ 𝐵 phases, 𝐵 2-exp 

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024. 

𝑞1 𝑞2

read(a) 𝑞1

𝑞2

𝑞3

𝑞1

𝑞2

𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

a a

Proof using an abstraction called transfer flows.

Relies on a bound from well-quasi-order theory [SS24]. 

[SS24] Sylvain Schmitz, Lia Schütze. On the Length of Strongly Monotone Descending Chains over ℕ𝑑. ICALP 2024.

If 𝛾 →∗ 𝛾′ then there is
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Structural Theorem [Wal24]: In ASMS, the diameter is doubly-exponentially bounded. 

𝜌: 𝛾 = 𝛾0→
𝑡1
→
𝑡1
→
𝑡1

… →
𝑡1
𝛾1→

𝑡2
→
𝑡2
→
𝑡2

… →
𝑡2
𝛾2→

𝑡3
…       →

𝑡ℓ
→
𝑡ℓ
→
𝑡ℓ
→
𝑡ℓ

… →
𝑡ℓ
𝛾ℓ = 𝛾′ ℓ ≤ 𝐵 phases, 𝐵 2-exp 

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024. 

𝑞1 𝑞2

read(a) 𝑞1

𝑞2

𝑞3

𝑞1

𝑞2

𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

a a

Proof using an abstraction called transfer flows.

Relies on a bound from well-quasi-order theory [SS24]. 

Corollary [Wal24]: The following problems for ASMS are decidable:

• emptiness of expressions obtained using presence constraints, Boolean operators and Post∗ and Pre∗ operators;

• verification of LTL formulas over transitions, without the next operator. 

Post∗ Init ⊆ Pre∗(#𝑞𝑓 ≥ 1)

∃𝑛 ∃𝜌 infinite from init𝑛 , 𝜌 ⊨ t1 U G t2

[SS24] Sylvain Schmitz, Lia Schütze. On the Length of Strongly Monotone Descending Chains over ℕ𝑑. ICALP 2024.

If 𝛾 →∗ 𝛾′ then there is



Second part

Round-based shared-memory systems

0

1

2

3
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bool 𝑝 ∈ 0,1 %preference of the process

for 𝑘 = 0 to ∞:
read from rg0[𝑘] and rg1[𝑘];
if rg0 𝑘 = ⊤ and rg1 𝑘 = ⊥ then 𝑝 ≔ 0;
else if rg0 𝑘 =⊥ and rg1 𝑘 = ⊤ then 𝑝 ≔ 1;
write ⊤ to rg𝑝 𝑘 ;

if 𝑘 > 0:
read from rg1−𝑝 𝑘 − 1 ;

if rg1−𝑝 𝑘 − 1 = ⊥:

return 𝑝;

Aspnes’ consensus algorithm [Asp02]

Shared registers: rg𝑏 𝑟 𝑏∈ 0,1 ,𝑟∈ℕ all initialized to ⊥;

Unboundedly many shared 

registers: 2 per round
Variable 𝑘 is private 

= asynchronous rounds

Read and write to registers 

of nearby rounds

[Asp02] James Aspnes. Fast deterministic consensus in a noisy environment. Journal of Algorithms 2002.
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round 𝑘
…

3

2

1

0

… …

⊥ ⊤

⊥ ⊤

⊥ ⊤

⊤ ⊤

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]

1

Processes and 

their preferences

This process has won the race

▪ Race between the processes.

▪ Stochastic scheduler that models a noisy environment.

▪ Almost-surely terminates but does not always terminate (workaround for an impossibility result [FLP85]).

▪ Unboundedly many rounds are needed.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility 

of Distributed Consensus with One Faulty Process. JACM 1985.

0

1
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round 𝑘
…

3

2

1

0

… …

⊥ ⊤

⊥ ⊤

⊥ ⊤

⊤ ⊤

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]

1

Processes and 

their preferences

This process has won the race

▪ Race between the processes.

▪ Stochastic scheduler that models a noisy environment.

▪ Almost-surely terminates but does not always terminate (workaround for an impossibility result [FLP85]).

▪ Unboundedly many rounds are needed.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility 

of Distributed Consensus with One Faulty Process. JACM 1985.

0

1

(not modelled for now, topic of third part)
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𝑤𝑟𝑖𝑡𝑒(a)

Write to register of round 𝑘

Read from register 𝑘 − 1

𝑟𝑒𝑎𝑑−1(b)

𝑞0

round++

𝑤𝑟𝑖𝑡𝑒(b)

𝑟𝑒𝑎𝑑(𝑑0)

𝑟𝑒𝑎𝑑(𝑑0)

𝑟𝑒𝑎𝑑(a)
𝑞𝑓

Read from register of round 𝑘

Send process to round 𝑘 + 1

round++

round++

New model for round-based algorithms [BMSW22]

[BMSW22] Nathalie Bertrand, Nicolas Markey, Ocan Sankur, Nicolas Waldburger: 

Parameterized safety verification of round-based shared-memory systems. ICALP 2022. 
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

𝑞0

round++

𝑤𝑟𝑖𝑡𝑒(b)

round++

𝑟𝑒𝑎𝑑(𝑑0)

round++

𝑟𝑒𝑎𝑑(𝑑0)

𝑟𝑒𝑎𝑑(a)
𝑞𝑓

Two processes,

both at round 0

⋮ ⋮

2

1

0

0
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COVER ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , ∃𝑘, 𝛾 𝑞𝑓, 𝑘 ≥ 1 ?

for some round 𝑘, some process in state 𝑞𝑓 and at round 𝑘
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TARGET ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , ∀𝑘, ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞, 𝑘 = 0 ?

COVER ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , ∃𝑘, 𝛾 𝑞𝑓, 𝑘 ≥ 1 ?

for some round 𝑘, some process in state 𝑞𝑓 and at round 𝑘

∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , 𝛾 ⊨ 𝜓 ?  

presence constraint = first-order formula on rounds with no nested quantifiers

Example:      ∃𝑘 𝛾 𝑞1, 𝑘 + 1 ≥ 1 ∧ 𝛾(𝑞1, 𝑘 = 0) ∨ ∀𝑘 𝛾 𝑞0, 𝑘 = 0

Presence Reachability Problem

(PRP)

For some 𝑘, (𝑞1, 𝑘 + 1) not empty 

but (𝑞1, 𝑘) empty
no process is in 𝑞0
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Theorem [BMSW22]: In round-based ASMS, COVER is PSPACE-complete. 

[BMSW22] Nathalie Bertrand, Nicolas Markey, Ocan Sankur, Nicolas Waldburger: 

Parameterized safety verification of round-based shared-memory systems. ICALP 2022. 
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Theorem [Wal23]: In round-based ASMS, PRP is PSPACE-complete.

Theorem [BMSW22]: In round-based ASMS, COVER is PSPACE-complete. 

[BMSW22] Nathalie Bertrand, Nicolas Markey, Ocan Sankur, Nicolas Waldburger: 

Parameterized safety verification of round-based shared-memory systems. ICALP 2022. 

[Wal23] Nicolas Waldburger. Checking Presence Reachability 

Properties on Parameterized Shared-Memory Systems. MFCS 2023. 
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Witness execution: 𝜌: 𝛾0→
𝜃1
𝛾1→

𝜃2
𝛾2 →

𝜃3
𝛾3 →

𝜃4
𝛾4 →

𝜃5
𝛾5 →

𝜃6
𝛾6 →

𝜃7
𝛾7 →

𝜃8
𝛾8 →

𝜃9
𝛾9

𝜃10
𝛾10 ⊨ 𝜓
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Witness execution:

Actions:

Rounds:

𝜌: 𝛾0→
𝜃1
𝛾1→

𝜃2
𝛾2 →

𝜃3
𝛾3 →

𝜃4
𝛾4 →

𝜃5
𝛾5 →

𝜃6
𝛾6 →

𝜃7
𝛾7 →

𝜃8
𝛾8 →

𝜃9
𝛾9

𝜃10
𝛾10 ⊨ 𝜓

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8 𝜃9 𝜃10

0 1 1 0 0 2 3 4 1 2

𝜃𝑖 ∈ Δ × ℕ:

transition and round
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Witness execution:

Actions:

Rounds:

𝜌: 𝛾0→
𝜃1
𝛾1→
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𝛾2 →
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𝛾6 →
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𝛾7 →
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𝜃1

4

3

2

1

0

𝜃2 𝜃3

𝜃4 𝜃5

𝜃6

𝜃7

𝜃8

𝜃9

𝜃10

rounds

steps

𝜃𝑖 ∈ Δ × ℕ:

transition and round
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𝜃1

4

3

2

1

0

𝜃2 𝜃3

𝜃4 𝜃5

𝜃6

𝜃7

𝜃8

𝜃9

𝜃10

rounds

steps

configurations may stretch across 

exponentially many rounds 
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𝜃1

4

3

2

1

0

𝜃2 𝜃3

𝜃4 𝜃5

𝜃6

𝜃7

𝜃8

𝜃9

𝜃10

rounds

steps

larger than all 𝑖 such that 𝑟𝑒𝑎𝑑−𝑖 𝑑 in Δ
(unary encoding for 𝑖)

storable in polynomial space with 0 − 1 abstraction
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𝜃1

4

3

2

1

0

𝜃2 𝜃3

𝜃4 𝜃5

𝜃6

𝜃7

𝜃8

𝜃9

𝜃10

rounds

steps

storable in polynomial space with 0 − 1 abstraction

forget about round 0
guess actions of round 2
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𝜃1

4

3

2

1

0

𝜃2 𝜃3

𝜃4 𝜃5

𝜃6

𝜃7

𝜃8

𝜃9

𝜃10

rounds

steps

storable in polynomial space with 0 − 1 abstraction
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𝜃1

4

3

2

1

0

𝜃2 𝜃3

𝜃4 𝜃5

𝜃6

𝜃7

𝜃8

𝜃9

𝜃10

rounds

steps

storable in polynomial space with 0 − 1 abstraction

stop when 𝜓 satisfied
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Third part 

Round-based ASMS under 

stochastic schedulers

0

1

2

3
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Needed for almost-sure termination in Aspnes’ consensus algorithm.
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Needed for almost-sure termination in Aspnes’ consensus algorithm.

Qualitative probabilistic model-checking: does 𝜌 satisfy the property with probability 1? 

almost-sure coverability: one process in 𝑞𝑓
almost-sure termination: all processes in 𝑞𝑓
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Needed for almost-sure termination in Aspnes’ consensus algorithm.

select which process plays uniformly at random select the transition uniformly at random among possible transitions 

2 20

1

then

1

Memoryless and uniform stochastic scheduler:

Qualitative probabilistic model-checking: does 𝜌 satisfy the property with probability 1? 

almost-sure coverability: one process in 𝑞𝑓
almost-sure termination: all processes in 𝑞𝑓



Nicolas Waldburger28 [Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. 

PhD thesis (submitted), 2024. 

𝑞𝑓 covered with probability 1

Proposition [BMRSS16]: In ASMS without rounds, for all 𝑛 ≥ 1: 

ℙ𝑛 𝐅(#𝑞𝑓 ≥ 1) = 1 ⇔ Post∗ init𝑛 ⊆ Pre∗(#𝑞𝑓 ≥ 1).

from every reachable 

configuration, 𝑞𝑓 can be covered 
⇔

[BMRSS16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.

Reachability in Networks of Shared-memory Protocols under Stochastic Schedulers. ICALP 2016.
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Proposition [Wal24]: There are round-based ASMS where, for all 𝑛 large enough:

• Post∗ init𝑛 ⊆ Pre∗ #𝑞𝑓 ≥ 1 but

• ℙ𝑛 𝐅(#𝑞𝑓 ≥ 1) < 1.

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. 

PhD thesis (submitted), 2024. 

𝑞𝑓 covered with probability 1

Proposition [BMRSS16]: In ASMS without rounds, for all 𝑛 ≥ 1: 

ℙ𝑛 𝐅(#𝑞𝑓 ≥ 1) = 1 ⇔ Post∗ init𝑛 ⊆ Pre∗(#𝑞𝑓 ≥ 1).

from every reachable 

configuration, 𝑞𝑓 can be covered 
⇔

[BMRSS16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.

Reachability in Networks of Shared-memory Protocols under Stochastic Schedulers. ICALP 2016.

Because of random-walk behaviors (next slide).
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round++

read(⊥)

read(⊤) 𝑞𝑓

round++

write(⊤)

1 0

must read ⊤ to get to 𝑞𝑓 only can write ⊤

…

3

2

1

0

⊥

⊥

⊥

⊥
𝛿

𝛾
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read(⊤) 𝑞𝑓

round++
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1 0

must read ⊤ to get to 𝑞𝑓 only can write ⊤

has probability 
1

2
to increment round

…

3

2

1

0

⊥

⊥

⊥

⊥
𝛿

has probability 
1

3
to increment round

always 2 possible transitions, 

selected uniformly at random
always 3 possible transitions

𝛾
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round++

read(⊥)

read(⊤) 𝑞𝑓

round++
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must read ⊤ to get to 𝑞𝑓 only can write ⊤

has probability 
1

2
to increment round

…

3
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⊥

⊥

⊥

⊥

one-dimensional biased random walk

⇒ probability > 0 that         always above

𝛿

non-zero probability that 𝑞𝑓 never covered from 

𝛾, but Post∗ 𝛾 ⊆ Pre∗ #𝑞𝑓 ≥ 1

has probability 
1

3
to increment round

always 2 possible transitions, 

selected uniformly at random
always 3 possible transitions

𝛾
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round++

read(⊥)

read(⊤) 𝑞𝑓

round++

write(⊤)

1 0

must read ⊤ to get to 𝑞𝑓 only can write ⊤

has probability 
1

2
to increment round

Some examples involve multi-dimensional random walk behaviors 🙁

…
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⊥

⊥

⊥

one-dimensional biased random walk

⇒ probability > 0 that         always above

𝛿

non-zero probability that 𝑞𝑓 never covered from 

𝛾, but Post∗ 𝛾 ⊆ Pre∗ #𝑞𝑓 ≥ 1

has probability 
1

3
to increment round

always 2 possible transitions, 

selected uniformly at random
always 3 possible transitions

𝛾
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In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all 𝑛, for every reachable 

configuration, if all processes crash except one then this process ends in 𝑞𝑓 with probability one. 

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. 

PhD thesis (submitted), 2024. 
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Theorem [Wal24]: Deciding whether a round-based ASMS is ASOF is PSPACE-complete. 

In Aspnes’ consensus algorithm:
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• PRP with quantification over round values
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Third part: Round-based ASMS under a stochastic scheduler
• Random walk behaviors
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▪ On broadcast networks where processes have identifiers and private registers:
Lucie Guillou, Corto Mascle and Nicolas Waldburger. Parameterized Broadcast Networks with Registers: from NP to the 

Frontiers of Decidability. FoSSaCS 2024.

▪ On population protocols where processes have unchangeable data that can be tested for equality:
Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas Waldburger and Chana Weil-Kennedy. 

Verification of Population Protocols with Unordered Data. ICALP 2024.

▪ On one-counter automata with disequality test on the counter:
Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks and Nicolas Waldburger. Invariants for One-Counter Automata with 

Disequality Tests. CONCUR 2024.

▪ On hyperLTL for population protocols (uses transfer flow techniques):
Nicolas Waldburger, Chana Weil-Kennedy, Pierre Ganty and César Sánchez. Temporal Hyperproperties for Population 

Protocols. In preparation (unpublished). 

Work performed during a stay at IMDEA Madrid (funded by Rennes Métropole)  
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The structural theorem can be phrased in a more general fashion and for more general systems.

This makes it a generalized phrasing of preexisting open problems [BMRSS16][BGW22].

[BMRSS16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.

Reachability in Networks of Shared-memory Protocols under Stochastic Schedulers. ICALP 2016.

[BGW22] A. R. Balasubramanian, Lucie Guillou, and Chana Weil-Kennedy. Parameterized 

Analysis of Reconfigurable Broadcast Networks, FoSSaCS 2022.

Open problem: Can the bound of the diameter from the structural theorem be improved to simply-exponential?

Open problem: Complexity and decidability of almost-sure reachability problems for round-based ASMS?

Mathematically very challenging.

Future work: Find models that retain decidability of (at least) COVER while capturing more round-based algorithms.
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Theorem [Wal23]: COVER is NP-complete. 

COVER ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , 𝛾 𝑞𝑓 ≥ 1 ?

Reduction from 3-SAT

𝑟𝑒𝑎𝑑¬x 𝑑0

𝐱

¬𝐱

𝑑0

⊤ 𝑟𝑒𝑎𝑑x 𝑑0
Check ¬𝑥:

Check 𝑥:
𝑟𝑒𝑎𝑑x ⊤

𝑟𝑒𝑎𝑑¬x(⊤)

For each variable 𝑥 in the SAT formula:

𝑥 true when x written before ¬x

𝑥 false when ¬x written before x

Directly relies on initialization of the registers !

Proposition [Wal23]: COVER is PTIME when registers are not initialized, or when the number of registers is fixed. 

[Wal23] Nicolas Waldburger. Checking Presence Reachability 

Properties on Parameterized Shared-Memory Systems. MFCS 2023. 
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Theorem [Wal23]: TARGET is NP-complete, and NP-hard already with uninitialized registers. 

TARGET ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0?

Again, reduction from 3-SAT.

[Wal23] Nicolas Waldburger. Checking Presence Reachability 

Properties on Parameterized Shared-Memory Systems. MFCS 2023. 

𝑤𝑟𝑖𝑡𝑒x1 false

𝑤𝑟𝑖𝑡𝑒x1 true

… 𝑞𝑓Check clause 1 Check clause 𝑚

…
𝑤𝑟𝑖𝑡𝑒x𝑛 true

… 𝑤𝑟𝑖𝑡𝑒x𝑛 false

one register x𝑖 for each variable 𝑥𝑖

last process to leave this state fixes the valuation

two values: true and false
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Theorem [Wal23]: TARGET is in PTIME when one register only. 

TARGET ∃𝑛, ∃𝜌: init𝑛 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0?

[Wal23] Nicolas Waldburger. Checking Presence Reachability 

Properties on Parameterized Shared-Memory Systems. MFCS 2023. 
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Algorithm inspired by broadcast protocols [Fou15].

[Fou15] Paulin Fournier.  Parameterized verification of networks  of many identical processes. PhD thesis, 2015

𝑞𝑓

= state 𝑞 is coverable

= there are 𝑛, 𝛾 and 𝜌: init𝑛 →
∗ 𝛾 such that 𝛾(𝑞)>0

= state 𝑞 is backwards coverable

= there are 𝑛, 𝛾, 𝛾′ and 𝜌: 𝛾 →∗ 𝛾′ (starting with a write 

action) such that 𝛾(𝑞)>0 and 𝛾′ 𝑞′ = 0 for all 𝑞′ ≠ 𝑞𝑓

= both coverable and backwards coverable
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Corollary [Wal23]: PRP is in PTIME when one register only and the formula is in DNF. 
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COVER TARGET DNF-PRP PRP

General case NP-complete NP-complete NP-complete NP-complete

Not initialized PTIME-complete NP-complete NP-complete NP-complete

One register PTIME-complete PTIME-complete PTIME-complete NP-complete

Number of registers 

as parameter
FPT W[2]-hard W[2]-hard W[2]-hard
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Copycat property: if

Each transition is represented by a set of transfer flows. 

𝑞1 𝑞2

read(a)

𝑞1

𝑞2

𝑞3

𝑞1

𝑞2

𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

{ }
write(b)

𝑞1

𝑞2

𝑞3

𝑞1

𝑞2

𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

𝑞1

𝑞2

𝑞3

𝑞1

𝑞2

𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

{ },

🐱
🐱

😺

🐱
🐱

😺
😺

😺then

𝑞1 𝑞2

1 𝑘 ≥ 1

a a a b b b
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𝑞1

𝑞2

𝑞3 𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

𝑞1

𝑞2

Given transfer flows tf1, tf2, set tf1 ⊗ tf2 = transfer flows possible with tf1 then tf2.

⊗
𝑞1

𝑞2

𝑞3 𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

𝑞1

𝑞2

= { },↑
𝑞1

𝑞2

𝑞3 𝑞3

≥ 1

≥ 0

≥ 0

𝑞1

𝑞2

𝑞1

𝑞2

𝑞3 𝑞3

≥ 0

≥ 0

𝑞1

𝑞2

≥ 0

≥ 1

≥ 1

a b b a

a a a a
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𝑞1

𝑞2

𝑞3 𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

𝑞1

𝑞2
⊗

= { }↑

a a b a

𝑞1

𝑞2

𝑞3 𝑞3

≥ 1

≥ 0

≥ 0

≥ 0

𝑞1

𝑞2

b a b b

𝑞1

𝑞2

𝑞3 𝑞3

≥ 2

≥ 0

≥ 0

≥ 0

𝑞1

𝑞2

a a b b
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𝒯1 ≔ transfer flows of single transitions
𝒯𝑘 ≔ 𝒯𝑘−1 ⊗𝒯1 ∼ executions of less than 𝑘 transitions

𝒯∗ ≔ ڂ 𝑘∈ℕ𝒯𝑘 ∼ all possible executions 

[SS24] Sylvain Schmitz, Lia Schütze. On the Length of Strongly Monotone Descending Chains over ℕ𝑑. ICALP 2024.

Structural Theorem [Wal24]: 𝒯∗ = 𝒯𝐵 for 𝐵 doubly-exponential in the size of the system. 

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis, 2024. 

Proof with:

• well-quasi-order theory,

• a transformation of transfer flows into vectors,

• a bound on the length of descending chains of ℕ𝑑 that generalizes Rackoff’s bound [SS24].
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Binary consensus problem: 

Each process starts with an initial preference 𝑝 ∈ {0,1}.
Validity: If a process decided value 𝑝, some process started with preference 𝑝.

Agreement: Two processes that decide decide of the same value.

Termination: All processes eventually decide of a value.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 

Impossibility of Distributed Consensus with One Faulty Process. JACM 1985.
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𝑘

𝑘 − 1

Theorem [Wal24]: Deciding whether a round-based ASMS is ASOF is a PSPACE-complete problem. 

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis 

(submitted), 2024. 

Graph of local views 𝒢:

larger than all 𝑖 such 

that 𝑟𝑒𝑎𝑑−𝑖 𝑑 in Δ

𝑞1

𝑘

𝑘 − 1

a b a

a a b

𝑞2

b b a

a a b

𝑤𝑟𝑖𝑡𝑒1(𝑏)𝑞1 𝑞2

𝑘

𝑘 − 1

𝑞3

𝑑0 𝑑0 𝑑0

b b a

round

increment
𝑞2 𝑞3

𝑘

𝑘 − 1

𝑞4

𝑑0 𝑑0 𝑑0

b b a

𝑟𝑒𝑎𝑑1
−1(𝑎)𝑞3 𝑞4

Lemma [Wal24]: not ASOF ⇔ there is ℓ ∈ 𝒢 reachable whose SCC is bottom and does not have vertices with 𝑞𝑓.

reachable =there is 𝛾 ∈ Post∗ Γ0 such that some process in 𝛾 has local view ℓ
can be reduced to PRP ∎
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Lemma [Wal24]: The round-based ASMS is not ASOF if and only if there is a local view ℓ such that:

• there are 𝑛, 𝛾 reachable from 𝛾0 𝑛 such that some process in 𝛾 has local view ℓ, 

• the strongly connected component 𝑆 of ℓ in 𝒢 is bottom,

• 𝑆 does not have any vertex with state 𝑞𝑓. 

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis, 2024. 

Non-deterministic polynomial-space algorithm to decide whether a protocol is not ASOF: 

• Guess ℓ,

• Check the existence of 𝛾 (reduces to round-based PRP),

• explore 𝒢 to check the conditions on 𝑆. ∎


