Parameterized verification of distributed shared-memory systems

Nathalie Bertrand

Under the supervision of
Nicolas Markey

Ocan Sankur

Nicolas Waldburger

Introduction

Cooking with friends

Distributed algorithms

4 Nicolas Waldburger

Distributed problems

Mutual exclusion

Consensus

Verification of distributed algorithms

?

Does my algorithm avoid

Verification of distributed algorithms

Does my algorithm avoid

Verification of distributed algorithms

Does my algorithm avoid

Objective: mathematically verify distributed algorithm to give guarantees about their safety.

From algorithms to automata-based models

Peterson's mutual exclusion algorithm [Pet81]

For process $i \in \{0,1\}$:

```
while true:
do non-critical things ;
flag<sub>i</sub> = true ; turn \coloneqq 1 - i;
wait until (flag<sub>1-i</sub> == false or turn == i)
do critical things;
flag<sub>i</sub> = false ;
```


[Pet81] Peterson, G.: Myths about the Mutuel Exclusion Problem. Information Processing Letters, 1981

From algorithms to automata-based models

Nicolas Waldburger

Mutual exclusion = not c_0 and c_1 simultaneously

[Pet81] Peterson, G.: Myths about the Mutuel Exclusion Problem. Information Processing Letters, 1981

satisfy

distributed algorithm

?

requirement

Does

Theoretical approach:

- identify relevant models and relevant properties for these models,
- study decidability and complexity questions.

Consensus algorithms: designed for any number n of participants.

Parameterized verification: is the algorithm correct for every *n*?

First part Shared-memory systems

A shared-memory model: ASMS

Asynchronous Shared-Memory Systems (ASMS) [EGM13]

Processes = identical finite-state machines, behaving asynchronously

Nicolas Waldburger

- Finite number of registers
- Finite set of values
- A special initial value

[EGM13] Esparza, J., Ganty, P., Majumdar, R.: Parameterized Verification of Asynchronous Shared-Memory Systems. CAV 2013.

12 Nicolas Waldburger

Does there exist a number of participants for which a bad event can happen?

Does there exist a number of participants for which a bad event can happen?

Does there exist *n* such that, from init_n , there is an execution ρ that reaches a bad configuration? *n* processes, all in q_0 Asynchronicity: registers initialized to d_0 many executions for a given *n*

Does there exist a number of participants for which a bad event can happen?

Does there exist *n* such that, from init_n, there is an execution ρ that reaches a bad configuration?

n processes, all in q_0 Asynchronicity:registers initialized to d_0 many executions for a given n

COVER $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \ \gamma(q_f) \ge 1$? At least one process in *error state* q_f

Does there exist a number of participants for which a bad event can happen?

Does there exist *n* such that, from init_n, there is an execution ρ that reaches a bad configuration?

n processes, all in q_0 Asynchronicity: registers initialized to d_0 many executions for a given n

COVER $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \ \gamma(q_f) \ge 1$? At least one process in *error state* q_f

TARGET $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \forall q \neq q_f, \gamma(q) = 0$? All processes in q_f

Does there exist a number of participants for which a bad event can happen?

Does there exist *n* such that, from init_{*n*}, there is an execution ρ that reaches a bad configuration?

n processes, all in q_0 Asynchronicity:registers initialized to d_0 many executions for a given n

 $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \ \gamma(q_f) \ge 1$? At least one process in *error state* q_f

TARGET

COVER

$$\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \quad \forall q \neq q_f, \quad \gamma(q) = 0 ? \qquad \text{All processes in } q_f$$

Presence Reachability Problem (PRP) inspired by [DSTZ12]

Nicolas Waldburger

 $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \quad \gamma \vDash \phi ?$

Presence constraint = Boolean combination of 'state *q* empty'

[DSTZ12] Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro. *On the Complexity of Parameterized Reachability in Reconfigurable Broadcast Networks*. FSTTCS 2012.

An abstraction for PRP

Copycat: a process can copy another one in same state.

Copycat: a process can copy another one in same state.

0 - 1 abstraction: store whether 0 process or at least 1

Copycat: a process can copy another one in same state.

0 - 1 abstraction: store whether 0 process or at least 1

Sound and complete for PRP:

- copycat property
- number *n* of processes is arbitrary
- presence constraints do not count processes

PRP
$$\exists n, \exists \rho: init_n \to^* \gamma, \gamma \models \phi_{\mathcal{R}}?$$

Boolean combination of 'state *q* empty'

Copycat: a process can copy another one in same state.

0 - 1 abstraction: store whether 0 process or at least 1

Sound and complete for PRP:

- copycat property
- number *n* of processes is arbitrary
- presence constraints do not count processes

PRP
$$\exists n, \exists \rho: init_n \to^* \gamma, \gamma \models \phi_{\mathbb{N}}?$$

Boolean combination of 'state *q* empty'

Theorem [Wal23]: PRP is in NP.

Nicolas Waldburger

[Wal23] Nicolas Waldburger. Checking Presence Reachability Properties on Parameterized Shared-Memory Systems. MFCS 2023.

Contributions on reachability problems [Wal23]

	COVER	TARGET	DNF-PRP	PRP
General case	NP-complete	NP-complete	NP-complete	NP-complete
Not initialized	PTIME	NP-complete	NP-complete	NP-complete
One register	PTIME	PTIME	PTIME	NP-complete

[Wal23] Nicolas Waldburger. Checking Presence Reachability Properties on Parameterized Shared-Memory Systems. MFCS 2023.

Contributions on reachability problems [Wal23]

	COVER	TARGET	DNF-PRP	PRP
General case	NP-complete	NP-complete	NP-complete	NP-complete
Not initialized	PTIME	NP-complete	NP-complete	NP-complete
One register	PTIME [EOWI15]	PTIME	PTIME	NP-complete

previously known result

 [Wal23] Nicolas Waldburger. Checking Presence Reachability Properties on Parameterized Shared-Memory Systems. MFCS 2023.
 [EGM13] Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized Verification of Asynchronous Shared-Memory Systems. CAV 2013.

A more general result

Structural Theorem [Wal24]: In ASMS, the diameter is doubly-exponentially bounded.

If $\gamma \rightarrow^* \gamma'$ then there is

$$\rho: \gamma = \gamma_0 \xrightarrow{t_1 t_1 t_1} \longrightarrow \cdots \xrightarrow{t_1} \gamma_1 \xrightarrow{t_2 t_2} \xrightarrow{t_2} \cdots \xrightarrow{t_2} \gamma_2 \xrightarrow{t_3} \cdots \xrightarrow{t_\ell t_\ell t_\ell} \xrightarrow{t_\ell} \cdots \xrightarrow{t_\ell} \gamma_\ell = \gamma' \quad \ell \leq B \text{ phases, } B \text{ 2-exp}$$

A more general result

Structural Theorem [Wal24]: In ASMS, the diameter is doubly-exponentially bounded.

If $\gamma \rightarrow^* \gamma'$ then there is

$$\rho: \gamma = \gamma_0 \xrightarrow{t_1 \ t_1 \ t_1} \ (t_1 \ t_2 \ t_2 \ t_2 \ t_2 \ (t_2 \ t_2 \ t_3 \ (t_2 \ t_2 \ t_2 \ t_2 \ t_2 \ t_2 \ t_2 \ t_3 \ (t_2 \ t_2 \ t_3 \ t_2 \ t_2$$

Proof using an a Relies on a bour

Nicolas Waldburger 16

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024. [SS24] Sylvain Schmitz, Lia Schütze. On the Length of Strongly Monotone Descending Chains over N^d. ICALP 2024.

A more general result

Structural Theorem [Wal24]: In ASMS, the diameter is doubly-exponentially bounded.

If $\gamma \rightarrow^* \gamma'$ then there is

$$\rho: \ \gamma = \gamma_0 \xrightarrow{t_1 \ t_1 \ t_1} \xrightarrow{t_1} \gamma_1 \xrightarrow{t_2 \ t_2} \xrightarrow{t_2} \cdots \xrightarrow{t_2} \gamma_2 \xrightarrow{t_3} \qquad \dots \qquad \xrightarrow{t_\ell \ t_\ell \ q_l} \xrightarrow{t_\ell \ q_l} = \gamma' \quad \ell \le B \text{ phases, } B \text{ 2-exp}$$
Proof using an abstraction called transfer flows.
Relies on a bound from well-quasi-order theory [SS24].
$$q_1 \qquad q_2 \qquad \longrightarrow q_1$$

Corollary [Wal24]: The following problems for ASMS are decidable:

- emptiness of expressions obtained using presence constraints, Boolean operators and Post^{*} and Pre^{*} operators; Post^{*}(Init) \subseteq Pre^{*}(#q_f \geq 1)
- verification of LTL formulas over transitions, without the next operator.

 $\exists n \exists \rho \text{ infinite from init}_n, \rho \vDash t_1 \cup (G t_2)$

16 Nicolas Waldburger

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024. [SS24] Sylvain Schmitz, Lia Schütze. On the Length of Strongly Monotone Descending Chains over \mathbb{N}^d . ICALP 2024.

Second part Round-based shared-memory systems

A round-based consensus algorithm

Aspnes' consensus algorithm [Asp02] Shared registers: $(rg_b[r])_{b \in \{0,1\}, r \in \mathbb{N}}$ all initialized to \bot ; Unboundedly many shared Variable *k* is private **bool** $p \in \{0,1\}$ %preference of the process registers: 2 per round = asynchronous rounds for k = 0 to ∞ : read from $rg_0[k]$ and $rg_1[k]$; if $rg_0[k] = \top$ and $rg_1[k] = \bot$ then p := 0; Read and write to registers else if $rg_0[k] = \bot$ and $rg_1[k] = \top$ then p := 1; of nearby rounds write T to $rg_p[k]$; **if** k > 0: read from $rg_{1-p}[k-1]$; **if** $rg_{1-p}[k-1] = \bot$: return p;

Nicolas Waldburger

More about Aspnes' algorithm

• Race between the processes.

Nicolas Waldburger

- Stochastic scheduler that models a noisy environment.
- Almost-surely terminates but does not always terminate (workaround for an impossibility result [FLP85]).
- Unboundedly many rounds are needed.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. *Impossibility* of Distributed Consensus with One Faulty Process. JACM 1985.

More about Aspnes' algorithm

- Race between the processes.
- Stochastic scheduler that models a noisy environment.
- Almost-surely terminates but does not always terminate (workaround for an impossibility result [FLP85]).
- Unboundedly many rounds are needed.

(not modelled for now, topic of third part)

9 Nicolas Waldburger

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. *Impossibility* of Distributed Consensus with One Faulty Process. JACM 1985.

Round-based ASMS

New model for round-based algorithms [BMSW22]

20 Nicolas Waldburger

[BMSW22] Nathalie Bertrand, Nicolas Markey, Ocan Sankur, Nicolas Waldburger: *Parameterized safety verification of round-based shared-memory systems*. ICALP 2022.

21 Nicolas Waldburger

21 Nicolas Waldburger

21 Nicolas Waldburger

Reachability problems in round-based ASMS

COVER
$$\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \exists k, \gamma(q_f, k) \ge 1$$
?

for some round k, some process in state q_f and at round k

Reachability problems in round-based ASMS

COVER $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \exists k, \gamma(q_f, k) \ge 1$?

for some round k, some process in state q_f and at round k

TARGET $\exists n, \exists \rho: init_n \to^* \gamma, \forall k, \forall q \neq q_f, \gamma(q, k) = 0 ?$

Reachability problems in round-based ASMS

COVER $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \exists k, \gamma(q_f, k) \ge 1$?

for some round k, some process in state q_f and at round k

TARGET $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \forall k, \forall q \neq q_f, \gamma(q, k) = 0 ?$

Presence Reachability Problem $\exists n, \exists \rho: init_n \to^* \gamma, \gamma \models \psi?$ (PRP)

presence constraint = first-order formula on rounds with no nested quantifiers

Example: $\exists k (\gamma(q_1, k+1) \ge 1 \land \gamma(q_1, k) = 0) \lor \forall k \gamma(q_0, k) = 0$

For some k, $(q_1, k + 1)$ not empty but (q_1, k) empty

no process is in q_0

Complexity results

Theorem [BMSW22]: In round-based ASMS, COVER is PSPACE-complete.

[BMSW22] Nathalie Bertrand, Nicolas Markey, Ocan Sankur, Nicolas Waldburger: *Parameterized safety verification of round-based shared-memory systems*. ICALP 2022.

Complexity results

Theorem [BMSW22]: In round-based ASMS, COVER is PSPACE-complete.

Theorem [Wal23]: In round-based ASMS, PRP is PSPACE-complete.

[BMSW22] Nathalie Bertrand, Nicolas Markey, Ocan Sankur, Nicolas Waldburger: Parameterized safety verification of round-based shared-memory systems. ICALP 2022. [Wal23] Nicolas Waldburger. Checking Presence Reachability

Properties on Parameterized Shared-Memory Systems. MFCS 2023.

A representation for executions

Witness execution:

 $\rho: \gamma_0 \xrightarrow{\theta_1} \gamma_1 \xrightarrow{\theta_2} \gamma_2 \xrightarrow{\theta_3} \gamma_3 \xrightarrow{\theta_4} \gamma_4 \xrightarrow{\theta_5} \gamma_5 \xrightarrow{\theta_6} \gamma_6 \xrightarrow{\theta_7} \gamma_7 \xrightarrow{\theta_8} \gamma_8 \xrightarrow{\theta_9} \gamma_9 \xrightarrow{\theta_{10}} \gamma_{10} \vDash \psi$
A representation for executions

Witness execution:

A representation for executions

Witness execution:

configurations may stretch across exponentially many rounds

storable in polynomial space with 0 - 1 abstraction

Third part Round-based ASMS under stochastic schedulers

Needed for almost-sure termination in Aspnes' consensus algorithm.

Needed for almost-sure termination in Aspnes' consensus algorithm.

Qualitative probabilistic model-checking: does ρ satisfy the property with probability 1?

Needed for almost-sure termination in Aspnes' consensus algorithm.

Qualitative probabilistic model-checking: does ρ satisfy the property with probability 1?

almost-sure coverability: one process in q_f almost-sure termination: all processes in q_f

Needed for almost-sure termination in Aspnes' consensus algorithm.

Qualitative probabilistic model-checking: does ρ satisfy the property with probability 1?

Memoryless and uniform stochastic scheduler:

select which process plays uniformly at random

almost-sure coverability: one process in q_f almost-sure termination: all processes in q_f

then select the transition uniformly at random among possible transitions

Is almost-sure COVER really probabilistic?

Nicolas Waldburger

 [BMRSS16] Patricia Bouyer, Nicolas Markey, Mick<u>a</u>el Randour, Arnaud Sangnier, and Daniel Stan. *Reachability in Networks of Shared-memory Protocols under Stochastic Schedulers*. ICALP 2016.
[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024.

Is almost-sure COVER really probabilistic?

Proposition **[Wal24]**: There are round-based ASMS where, for all *n* large enough:

- $\operatorname{Post}^*(\operatorname{init}_n) \subseteq \operatorname{Pre}^*(\#q_f \ge 1)$ but
- $\mathbb{P}_n(\mathbf{F}(\#q_f \ge 1)) < 1.$

Nicolas Waldburger

Because of random-walk behaviors (next slide).

 [BMRSS16] Patricia Bouyer, Nicolas Markey, Mick<u>a</u>el Randour, Arnaud Sangnier, and Daniel Stan. Reachability in Networks of Shared-memory Protocols under Stochastic Schedulers. ICALP 2016.
[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024.

In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all n, for every reachable configuration, if all processes crash except one then this process ends in q_f with probability one.

In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all n, for every reachable configuration, if all processes crash except one then this process ends in q_f with probability one.

In Aspnes' consensus algorithm:

In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all n, for every reachable configuration, if all processes crash except one then this process ends in q_f with probability one.

In Aspnes' consensus algorithm:

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024.

In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all n, for every reachable configuration, if all processes crash except one then this process ends in q_f with probability one.

In Aspnes' consensus algorithm:

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024.

In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all n, for every reachable configuration, if all processes crash except one then this process ends in q_f with probability one.

In Aspnes' consensus algorithm:

In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all n, for every reachable configuration, if all processes crash except one then this process ends in q_f with probability one.

In Aspnes' consensus algorithm:

In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all n, for every reachable configuration, if all processes crash except one then this process ends in q_f with probability one.

In Aspnes' consensus algorithm:

Proposition [Wal24]: ASOF implies that, for all n, all processes almost-surely terminate.

30 Nicolas Waldburger

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024.

In fault-tolerant consensus algorithms, one process left in isolation must terminate.

Definition: A round-based ASMS is ASOF (almost-surely obstruction-free) when, for all n, for every reachable configuration, if all processes crash except one then this process ends in q_f with probability one.

In Aspnes' consensus algorithm:

Proposition [Wal24]: ASOF implies that, for all n, all processes almost-surely terminate.

Theorem [Wal24]: Deciding whether a round-based ASMS is ASOF is PSPACE-complete.

30 Nicolas Waldburger

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis (submitted), 2024.

Conclusion

Summary

First part: Shared-memory systems

- A parameterized model: asynchronous shared-memory systems (ASMS)
- Problems: reachability problems, presence reachability problem (PRP)
- Between PTIME and NP-complete
- A doubly-exponential bound on the diameter.

Summary

First part: Shared-memory systems

- A parameterized model: asynchronous shared-memory systems (ASMS)
- Problems: reachability problems, presence reachability problem (PRP)
- Between PTIME and NP-complete
- A doubly-exponential bound on the diameter.

Second part: Round-based shared-memory systems

- Captures round-based algorithms such as Aspnes' consensus algorithm
- PRP with quantification over round values
- PRP is decidable and PSPACE-complete

Summary

First part: Shared-memory systems

- A parameterized model: asynchronous shared-memory systems (ASMS)
- Problems: reachability problems, presence reachability problem (PRP)
- Between PTIME and NP-complete
- A doubly-exponential bound on the diameter.

Second part: Round-based shared-memory systems

- Captures round-based algorithms such as Aspnes' consensus algorithm
- PRP with quantification over round values
- PRP is decidable and PSPACE-complete

Third part: Round-based ASMS under a stochastic scheduler

- Random walk behaviors
- ASOF property, related to fault-tolerant algorithms
- ASOF implies almost-sure termination and can be decided in PSPACE

Other contributions

• On broadcast networks where processes have identifiers and private registers:

Lucie Guillou, Corto Mascle and Nicolas Waldburger. Parameterized Broadcast Networks with Registers: from NP to the Frontiers of Decidability. FoSSaCS 2024.

• On population protocols where processes have unchangeable data that can be tested for equality:

Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, **Nicolas Waldburger** and Chana Weil-Kennedy. *Verification of Population Protocols with Unordered Data*. ICALP 2024.

• On one-counter automata with disequality test on the counter:

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. CONCUR 2024.

• On hyperLTL for population protocols (uses transfer flow techniques):

Nicolas Waldburger, Chana Weil-Kennedy, Pierre Ganty and César Sánchez. *Temporal Hyperproperties for Population Protocols*. In preparation (unpublished).

Work performed during a stay at IMDEA Madrid (funded by Rennes Métropole)

Perspectives

Open problem: Can the bound of the diameter from the structural theorem be improved to simply-exponential?

The structural theorem can be phrased in a more general fashion and for more general systems. This makes it a generalized phrasing of preexisting open problems [BMRSS16][BGW22].

Open problem: Complexity and decidability of almost-sure reachability problems for round-based ASMS? Mathematically very challenging.

Future work: Find models that retain decidability of (at least) COVER while capturing more round-based algorithms.

[BMRSS16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan. *Reachability in Networks of Shared-memory Protocols under Stochastic Schedulers*. ICALP 2016. [BGW22] A. R. Balasubramanian, Lucie Guillou, and Chana Weil-Kennedy. *Parameterized*

34 Nicolas Waldburger

Analysis of Reconfigurable Broadcast Networks, FoSSaCS 2022.

Perspectives

Open problem: Can the bound of the diameter from the structural theorem be improved to simply-exponential?

The structural theorem can be phrased in a more general fashion and for more general systems. This makes it a generalized phrasing of preexisting open problems [BMRSS16][BGW22].

Nicolas Waldburger

Open problem: Complexity and decidability of almost-sure reachability problems for round-based ASMS? Mathematically very challenging.

Future work: Find models that retain decidability of (at least) COVER while capturing more round-based algorithms.

Thank you for your attention!

[BMRSS16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan. Reachability in Networks of Shared-memory Protocols under Stochastic Schedulers. ICALP 2016.

[BGW22] A. R. Balasubramanian, Lucie Guillou, and Chana Weil-Kennedy. *Parameterized* Analysis of Reconfigurable Broadcast Networks, FoSSaCS 2022.

Complexity of COVER in ASMS

 $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \ \gamma(q_f) \ge 1 ?$

Theorem [Wal23]: COVER is NP-complete.

COVER

Reduction from 3-SAT

For each variable *x* in the SAT formula:

Directly relies on initialization of the registers !

Proposition [Wal23]: COVER is PTIME when registers are not initialized, or when the number of registers is fixed.

[Wal23] Nicolas Waldburger. Checking Presence Reachability Properties on Parameterized Shared-Memory Systems. MFCS 2023.
Complexity of TARGET in ASMS

 $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$ TARGET

Theorem [Wal23]: TARGET is NP-complete, and NP-hard already with uninitialized registers.

Properties on Parameterized Shared-Memory Systems. MFCS 2023.

TARGET $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Nicolas Waldburger

[Wal23] Nicolas Waldburger. Checking Presence Reachability Properties on Parameterized Shared-Memory Systems. MFCS 2023.

TARGET $\exists n, \exists \rho: init_n \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Algorithm inspired by broadcast protocols [Fou15].

Nicolas Waldburger

= state q is *coverable*
= there are n, y and
$$\rho$$
: init_n $\rightarrow^* \gamma$ such that $\gamma(q) > 0$

= state *q* is *backwards coverable*

= there are n, γ, γ' and $\rho: \gamma \to^* \gamma'$ (starting with a write action) such that $\gamma(q) > 0$ and $\gamma'(q') = 0$ for all $q' \neq q_f$

= both coverable and backwards coverable

TARGET $\exists n, \exists \rho: init_n \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Algorithm inspired by broadcast protocols [Fou15].

Nicolas Waldburger

= state q is *coverable*
= there are n, y and
$$\rho$$
: init_n $\rightarrow^* \gamma$ such that $\gamma(q) > 0$

= state *q* is *backwards coverable*

= there are n, γ, γ' and $\rho: \gamma \to^* \gamma'$ (starting with a write action) such that $\gamma(q) > 0$ and $\gamma'(q') = 0$ for all $q' \neq q_f$

= both coverable and backwards coverable

TARGET $\exists n, \exists \rho: init_n \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Algorithm inspired by broadcast protocols [Fou15].

Nicolas Waldburger

= state *q* is *backwards coverable*

= there are n, γ, γ' and $\rho: \gamma \to^* \gamma'$ (starting with a write action) such that $\gamma(q) > 0$ and $\gamma'(q') = 0$ for all $q' \neq q_f$

= both coverable and backwards coverable

TARGET $\exists n, \exists \rho: init_n \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Algorithm inspired by broadcast protocols [Fou15].

Nicolas Waldburger

= state *q* is *backwards coverable*

= there are n, γ, γ' and $\rho: \gamma \to^* \gamma'$ (starting with a write action) such that $\gamma(q) > 0$ and $\gamma'(q') = 0$ for all $q' \neq q_f$

= both coverable and backwards coverable

TARGET $\exists n, \exists \rho: init_n \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Algorithm inspired by broadcast protocols [Fou15].

Nicolas Waldburger

= state *q* is *backwards coverable*

= there are n, γ, γ' and $\rho: \gamma \to^* \gamma'$ (starting with a write action) such that $\gamma(q) > 0$ and $\gamma'(q') = 0$ for all $q' \neq q_f$

= both coverable and backwards coverable

TARGET $\exists n, \exists \rho: init_n \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Algorithm inspired by broadcast protocols [Fou15].

Nicolas Waldburger

= state q is *coverable*
= there are n, y and
$$\rho$$
: init_n $\rightarrow^* \gamma$ such that $\gamma(q) > 0$

= state *q* is *backwards coverable*

= there are n, γ, γ' and $\rho: \gamma \to^* \gamma'$ (starting with a write action) such that $\gamma(q) > 0$ and $\gamma'(q') = 0$ for all $q' \neq q_f$

= both coverable and backwards coverable

TARGET $\exists n, \exists \rho: init_n \rightarrow^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Algorithm inspired by broadcast protocols [Fou15].

Nicolas Waldburger

= there are n, γ, γ' and $\rho: \gamma \to^* \gamma'$ (starting with a write action) such that $\gamma(q) > 0$ and $\gamma'(q') = 0$ for all $q' \neq q_f$

= both coverable and backwards coverable

TARGET $\exists n, \exists \rho: \operatorname{init}_n \to^* \gamma, \forall q \neq q_f, \gamma(q) = 0?$

Theorem [Wal23]: TARGET is in PTIME when one register only.

Algorithm inspired by broadcast protocols [Fou15].

Nicolas Waldburger

Corollary [Wal23]: PRP is in PTIME when one register only and the formula is in DNF.

Complexity results for ASMS

	COVER	TARGET	DNF-PRP	PRP
General case	NP-complete	NP-complete	NP-complete	NP-complete
Not initialized	PTIME-complete	NP-complete	NP-complete	NP-complete
One register	PTIME-complete	PTIME-complete	PTIME-complete	NP-complete
Number of registers as parameter	FPT	W[2]-hard	W[2]-hard	W[2]-hard

Transfer flows

Each transition is represented by a set of *transfer flows*.

Composition of transfer flows

Given transfer flows tf_1 , tf_2 , set $tf_1 \otimes tf_2 = transfer$ flows possible with tf_1 then tf_2 .

Composition of transfer flows 2

= 1

The structural theorem on transfer flows

 $\begin{array}{l} \mathcal{T}_{1} \coloneqq \text{transfer flows of single transitions} \\ \mathcal{T}_{k} \coloneqq \mathcal{T}_{k-1} \otimes \mathcal{T}_{1} & \sim \text{executions of less than } k \text{ transitions} \\ \mathcal{T}^{*} \coloneqq \bigcup_{k \in \mathbb{N}} \mathcal{T}_{k} & \sim \text{all possible executions} \end{array}$

Structural Theorem [Wal24]: $\mathcal{T}^* = \mathcal{T}_B$ for B doubly-exponential in the size of the system.

Proof with:

• well-quasi-order theory,

Nicolas Waldburger

- a transformation of transfer flows into vectors,
- a bound on the length of descending chains of \mathbb{N}^d that generalizes Rackoff's bound [SS24].

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis, 2024. [SS24] Sylvain Schmitz, Lia Schütze. On the Length of Strongly Monotone Descending Chains over \mathbb{N}^d . ICALP 2024.

The consensus problem

Binary consensus problem:

Each process starts with an initial preference $p \in \{0,1\}$. *Validity*: If a process decided value p, some process started with preference p. *Agreement*: Two processes that decide decide of the same value. *Termination*: All processes eventually decide of a value.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of Distributed Consensus with One Faulty Process. JACM 1985.

Deciding ASOF

Theorem [Wal24]: Deciding whether a round-based ASMS is ASOF is a PSPACE-complete problem.

Lemma [Wal24]: not ASOF \Leftrightarrow there is $\ell \in \mathcal{G}$ reachable whose SCC is bottom and does not have vertices with q_f .

reachable =there is $\gamma \in \text{Post}^*(\Gamma_0)$ such that some process in γ has local view ℓ can be reduced to PRP

15 Nicolas Waldburger

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis

Deciding ASOF with the local view graph

Lemma [Wal24]: The round-based ASMS is not ASOF if and only if there is a local view ℓ such that:

- there are n, γ reachable from $\gamma_0(n)$ such that some process in γ has local view ℓ ,
- the strongly connected component S of ℓ in G is bottom,
- *S* does not have any vertex with state q_f .

Non-deterministic polynomial-space algorithm to decide whether a protocol is not ASOF:

- Guess ℓ ,
- Check the existence of γ (reduces to round-based PRP),
- explore *G* to check the conditions on *S*.

[Wal24] Nicolas Waldburger. Parameterized verification of distributed shared-memory systems. PhD thesis, 2024.