M
[MS04] Nicolas Markey and Philippe Schnoebelen. Symbolic Model Checking for Simply Timed Systems. In FORMATS-FTRTFT'04, Lecture Notes in Computer Science 3253, pages 102-117. Springer-Verlag, September 2004.
Abstract

We describe OBDD-based symbolic model checking algorithms for simply-timed systems, i.e. finite state graphs where transitions carry a duration. These durations can be arbitrary natural numbers. A simple and natural semantics for these systems opens the way for improved efficiency. Our algorithms have been implemented in NuSMV and perform well in practice (on standard case studies).

@inproceedings{formats2004-MS,
  author =              {Markey, Nicolas and Schnoebelen, {\relax Ph}ilippe},
  title =               {Symbolic Model Checking for Simply Timed Systems},
  editor =              {Lakhnech, Yassine and Yovine, Sergio},
  booktitle =           {{P}roceedings of the {J}oint {I}nternational
                         {C}onferences on {F}ormal {M}odelling and {A}nalysis
                         of {T}imed {S}ystems ({FORMATS}'04) and {F}ormal
                         {T}echniques in {R}eal-Time and {F}ault-Tolerant
                         {S}ystems ({FTRTFT}'04)},
  acronym =             {{FORMATS-FTRTFT}'04},
  publisher =           {Springer-Verlag},
  series =              {Lecture Notes in Computer Science},
  volume =              {3253},
  pages =               {102-117},
  year =                {2004},
  month =               sep,
  doi =                 {10.1007/978-3-540-30206-3_9},
  abstract =            {We describe OBDD-based symbolic model checking
                         algorithms for simply-timed systems, i.e. finite
                         state graphs where transitions carry a duration.
                         These durations can be arbitrary natural numbers.
                         A~simple and natural semantics for these systems
                         opens the way for improved efficiency. Our
                         algorithms have been implemented in NuSMV and
                         perform well in practice (on standard case
                         studies).},
}
List of authors