B
[BFM15] Patricia Bouyer, Erwin Fang et Nicolas Markey. Permissive strategies in timed automata and games. In AVOCS'15, Electronic Communications of the EASST 72. European Association of Software Science and Technology, septembre 2015.
Résumé

Timed automata are a convenient framework for modelling and reasoning about real-time systems. While these models are now very well-understood, they do not offer a convenient way of taking timing imprecisions into account. Several solutions (e.g. parametric guard enlargement) have recently been proposed over the last ten years to take such imprecisions into account. In this paper, we propose a new approach for handling robust reachability, based on permissive strategies. While classical strategies propose to play an action at an exact point in time, permissive strategies return an interval of possible dates when to play the selected action. With such a permissive strategy, we associate a penalty, which is the inverse of the length of the proposed interval, and accumulates along the run. We show that in that setting, optimal strategies can be computed in polynomial time for one-clock timed automata.

@inproceedings{avocs2015-BFM,
  author =              {Bouyer, Patricia and Fang, Erwin and Markey,
                         Nicolas},
  title =               {Permissive strategies in timed automata and games},
  editor =              {Grov, Gudmund and Ireland, Andrew},
  booktitle =           {{P}roceedings of the 15th {I}nternational {W}orkshop
                         on {A}utomated {V}erification of {C}ritical
                         {S}ystems ({AVOCS}'15)},
  acronym =             {{AVOCS}'15},
  publisher =           {European Association of Software Science and
                         Technology},
  series =              {Electronic Communications of the EASST},
  volume =              {72},
  year =                {2015},
  month =               sep,
  doi =                 {10.14279/tuj.eceasst.72.1015},
  abstract =            {Timed automata are a convenient framework for
                         modelling and reasoning about real-time systems.
                         While these models are now very well-understood,
                         they do not offer a convenient way of taking timing
                         imprecisions into account. Several solutions (e.g.
                         parametric guard enlargement) have recently been
                         proposed over the last ten years to take such
                         imprecisions into account. In this paper, we propose
                         a new approach for handling robust reachability,
                         based on permissive strategies. While classical
                         strategies propose to play an action at an exact
                         point in time, permissive strategies return an
                         interval of possible dates when to play the selected
                         action. With such a permissive strategy, we
                         associate a penalty, which is the inverse of the
                         length of the proposed interval, and accumulates
                         along the run. We show that in that setting, optimal
                         strategies can be computed in polynomial time for
                         one-clock timed automata.},
}
Liste des auteurs