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Congestion in a communication network

In this talk, we consider network congestion problems.
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Congestion in a communication network

In this talk, we consider network congestion problems.
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DisTRIBUTION OF TRAFFIC OVER ALTERNATIVE ROUTES

‘When the effect of some future improvement of a road system is to be
judged, some estimate must be made of the distribution of traffic on the
various roads affected, including not only new roads but all existing roads
from which traffic may be diverted. This is usually done by making
some rather arbitrary assumption about speeds on the new roads, and,
given the results of an Origin and Destination survey, by assuming that
every vehicle will travel by the quickest route. However, it has been
seen that speed is a function of flow, so that redistribution of traffic upsets
the pattern of speeds. The problem is to discover how traffic may be
expected to distribute itself over alternative routes, and whether the
distribution adopted is the most efficient one. Although there has not
been a sufficiently detailed investigation of a road network to allow this
to be done in practice, it seems worth while to consider the theoretical
aspects of this problem.
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Congestion in a communication network
In this talk, we consider network congestion problems.

Definition (Atomic network congestion game (aka. routing games) [Ros73])

An ANCG is a pair (G, n) where

@ G is a graph decorated with cost
(or latency) functions on edges

@ nis the number of players.

resources are paths from source to destination;

strategy profiles assign such a path to each player;
the cost of an edge is cost(x) where x is the number of players using that edge;

the cost of a path is the sum of costs of all its edges.

[Ros73] Rosenthal. The network equilibrium problem in integers. Networks 3(1):53-59. John Wiley & Sons, 1973.
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Example

o cost for O) players: 7 (2+5)

o cost for () players: 7 (5+2)

@ total cost for all four players: 28




Example of an ANCG

Example

o cost for Q) players: 7 (245) o cost for Q) player: 7 (2+5)

@ cost for () players: 7 (5+2) o cost for ) player: 6 (2+1+3)
@ cost for | players: 8 (5+3)

@ total cost for all four players: 28 @ total cost for all four players: 29
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Centralized vs. selfish behaviours
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Consider two alternative criteria based on these journey times which

can be used to determine the distribution on the routes, as follows :

(1) The journey times on all the routes actually used are equal, and
less than those which would be experienced by a single vehicle
on any unused route.

(2) The average journey time is & minimum.

The first criterion is quite a likely one in practice, since it might be assumed
that traffic will tend to settle down into an equilibrium situation in which
no driver can reduce his journey time by choosing a new route. On the
other hand, the second criterion is the most efficient in the sense that it
minimizes the vehicle-hours spent on the journey. In practice, of course,
drivers will be influenced by other factors, such as the state of the roads,
and the comfort or discomfort of driving in general. However, it is
clearly difficult to allow for these psychological factors.
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Centralized vs. selfish behaviours

Definition
Given an ANCG, a social optimum is a strategy profile minimizing the sum of the costs
of all players.
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Example

o cost for O) players: 7 (2+5)
@ cost for | players: 7 (5+2)
@ total cost for all four players: 28
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Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example

59 €9 39 69




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess' paradox)




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess' paradox)




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess' paradox)




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess' paradox)




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess' paradox)




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess' paradox)




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess' paradox)




Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess' paradox)
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Any ANCG admits Nash equilibria

Theorem ([Ros73])
Any ANCG admits a pure Nash equilibrium.

[Ros73] Rosenthal. The network equilibrium problem in integers. Networks 3(1):53-59. John Wiley & Sons, 1973.



Any ANCG admits Nash equilibria

Theorem ([Ros73])
Any ANCG admits a pure Nash equilibrium.

Proof

For any strategy profile o, define the potential function:

load (€)
®(0) = ZEGE Zk:l coste (k).
Then for any player i/ and any path p, letting o/ = o[i — p], it holds
d(0’) — ®(0) = cost;(0”) — cost;(a).

Any o minimizing ® (over the finitely-many possible strategy profiles) is a Nash
equilibrium.

[Ros73] Rosenthal. The network equilibrium problem in integers. Networks 3(1):53-59. John Wiley & Sons, 1973.



Price of anarchy, price of stability

Definition ([KP99])
The price of anarchy is the ratio between the cost of the worst Nash equilibrium and

the social optimum.

~ measures how much can be lost when agents act selfishly.

[KP99] Koutsoupias, Papadimitriou. Worst-case equilibria. STACS’99, p. 404-413. Springer, 1999.



Price of anarchy, price of stability

Definition ([KP99])
The price of anarchy is the ratio between the cost of the worst Nash equilibrium and
the social optimum.

~ measures how much can be lost when agents act selfishly.

Definition ([ADK*04])
The price of stability is the ratio between the cost of the best Nash equilibrium and the
social optimum.

[KP99] Koutsoupias, Papadimitriou. Worst-case equilibria. STACS’99, p. 404-413. Springer, 1999.
[ADK+O4] Anshelevich et al. The Price of Stability for Network Design with Fair Cost Allocation. FOCS’'04, p. 295-304. IEEE, 2004.



Classical results about ANCG in algorithmic game theory

Theorem ([CK05,CJKU19])
The price of anarchy of any ANCG with affine cost functions is at most 5/2. J

[CKO05] Christodoulou, Koutsoupias. The price of anarchy of finite congestion games. STOC'05, p. 67-73. ACM Press, 2005.
[CJKU19] J.R. Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.



Classical results about ANCG in algorithmic game theory

Theorem ([CK05,CJKU19])
The price of anarchy of any ANCG with affine cost functions is at most 5/2.

Proof

Let o be a Nash equilibrium, and o be a strategy profile. The total cost of oy is

cost(oy) = Z Z ae - loady, (€) + be

1<i<k ecop(i)

< Z Z ae - (loady, (€) + 1) + be (because o Nash eq.)

1<i<k ecos(i)

= Z Ioadgs(e - (ae - (|OadJN(e) + 1) + be)

ecE

[CKO05] Christodoulou, Koutsoupias. The price of anarchy of finite congestion games. STOC'05, p. 67-73. ACM Press, 2005.
[CJKU19] J.R. Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.
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v
Proof
Let oy be a Nash equilibrium, and os be a strategy profile. The total cost of oy is
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ecE
v

[CKO05] Christodoulou, Koutsoupias. The price of anarchy of finite congestion games. STOC'05, p. 67-73. ACM Press, 2005.
[CJKU19] J.R. Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.



Classical results about ANCG in algorithmic game theory

Theorem ([CK05,CJKU19])
The price of anarchy of any ANCG with affine cost functions is at most 5/2.

Proof
Let oy be a Nash equilibrium, and os be a strategy profile. The total cost of oy is
cost(on) Z loadss(€) - (ae - (loady, (€) + 1) + be)
ecE
1
< Z ae < load,¢(e)? + IoadgN(e)z) + beload,(e)
ecE 3

(because o+ (B+ 1) < 352 + 2a?)

v

[CKO05] Christodoulou, Koutsoupias. The price of anarchy of finite congestion games. STOC'05, p. 67-73. ACM Press, 2005.
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Classical results about ANCG in algorithmic game theory

Theorem ([CK05,CJKU19])
The price of anarchy of any ANCG with affine cost functions is at most 5/2.

Proof
Let oy be a Nash equilibrium, and os be a strategy profile. The total cost of oy is
cost(on) Z loadss(€) - (ae - (loady, (€) + 1) + be)
ecE
1
< Z ae < load,¢(e)? + IoadgN(e)z) + beload,(e)
ecE 3

(because o+ (B+ 1) < 352 + 2a?)

1
< gcost(aN) I gcost(ag).

[CKO05] Christodoulou, Koutsoupias. The price of anarchy of finite congestion games. STOC'05, p. 67-73. ACM Press, 2005.
[CJKU19] J.R. Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.
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Theorem ([CK05,CJKU19])

The price of anarchy of any ANCG with affine cost functions is at most 5/2.
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Classical results about ANCG in algorithmic game theory

Theorem ([CKO05,CJKU19])

The price of anarchy of any ANCG with affine cost functions is at most 5/2. )
Proof
V.

[CKO05] Christodoulou, Koutsoupias. The price of anarchy of finite congestion games. STOC'05, p. 67-73. ACM Press, 2005.
[CJKU19] J.R. Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.



Classical results about ANCG in algorithmic game theory

Theorem ([FPT04])

Computing a Nash equilibrium in a symmetric ANCG can be performed in polynomial
time; it is PLS-complete in the non-symmetric case.

[FTPO4] Fabrikant, Papadimitriou, Talwar. The complexity of pure Nash equilibria. STOC'04, p. 604-612. ACM, 2004.
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Classical results about ANCG in algorithmic game theory

Theorem ([FPT04])

Computing a Nash equilibrium in a symmetric ANCG can be performed in polynomial
time; it is PLS-complete in the non-symmetric case.

Proof

Polynomial-time algorithm:

minimum flow in W minimizes potential function ® = 3" £ >=i<j0aq, (e) COSte (i)

[FTPO4] Fabrikant, Papadimitriou, Talwar. The complexity of pure Nash equilibria. STOC'04, p. 604-612. ACM, 2004.



Computing the price of anarchy

Part I: price of anarchy for arbitrarily many players
@ we establish a semi-linear representation of Nash equilibria and local social optima;

@ we show that they extend in a single direction in series-parallel networks.

Related work: [CDS23]

[CDS23] Cominetti, Dose, Scarsini. The price of anarchy in routing games as a function of the demand. Math. Prog. To appear.



Computing the price of anarchy

Part I: price of anarchy for arbitrarily many players
@ we establish a semi-linear representation of Nash equilibria and local social optima;

@ we show that they extend in a single direction in series-parallel networks.

Related work: [CDS23]

Part II: adding time in network congestion games

@ we adapt the semantics to better model the congestion effect: synchronized costs,
non-blind strategies;

@ we develop algorithms to compute Nash equilibria and social optima in this setting;

@ we extend this approach to timed network congestion games.

Related works: [CJKU19, AGK17]

4

[CDS23] Cominetti, Dose, Scarsini. The price of anarchy in routing games as a function of the demand. Math. Prog. To appear.
[CJKU19] Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.
[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS'17, p. 37:1-37:16. LZI, 2017.



Computing the price of anarchy

Part I: price of anarchy for arbitrarily many players
@ we establish a semi-linear representation of Nash equilibria and local social optima;

@ we show that they extend in a single direction in series-parallel networks.

Related work: [CDS23]

[CDS23] Cominetti, Dose, Scarsini. The price of anarchy in routing games as a function of the demand. Math. Prog. To appear.



Series-parallel graphs

Definition

Given two graphs

ofado ofEmdo

we define their compositions:

series composition parallel composition




Series-parallel graphs

Definition
The set of series-parallel graphs is the smallest set of graphs containing the single-edge
graph and closed under series and parallel compositions.




Series-parallel graphs

Definition
The set of series-parallel graphs is the smallest set of graphs containing the single-edge
graph and closed under series and parallel compositions.

Theorem ([HM22])
The price of anarchy for series-parallel ANCG with affine cost functions is at most 2.

[HM22] Hao, Michini. Inefficiency of Pure Nash Equilibria in Series-Parallel Network [...]. WINE'22, p. 3-20. Springer, 2022.
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Consider an ANCG (G, n).

strategy profile:
o: [1; n] — Paths(G)




Representation of strategy profiles

Definition

Consider an ANCG (G, n). e

/ o: [1; n] — Paths(G)

po: Paths(G) — N
T —#{i|o(i)=mn}




Representation of strategy profiles

Definition
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Representation of strategy profiles

Definition

Consider an ANCG (G, n). e

/ o: [1; n] — Paths(G) \

po: Paths(G) — N flow,: E — N
m = #{i|o(i)=mn} e — #{i| o(i) contains e}

4

Example (flow of a strategy profile)

@ a single flow may correspond to several

2 1
OCQ strategy profiles;

1 2 @ the total cost of a strategy profile only
depends on its flow.
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Semi-linear sets

Definition

A subset of N¥ is semi-linear if it can be written as a finite union of sets of the form

Lbulr<isp)={b+Y . N-vilOicico €N}

base vector: b= (2,1)
period vectors: v = (3,4), v» = (4,1)}

$-e base vector: b’ = (4,0)

:ﬁ_b_hoﬁﬁﬁﬁﬁﬁ period vector: v; = (1,2)




Semi-linear sets

Definition

A subset of N¥ is semi-linear if it can be written as a finite union of sets of the form

Lb{vi|1<i<p})= {b+zl<,<p: |(A;)1§;§peNP}.

Theorem ([GS66])

A set is semi-linear if, and only if, it is definable in Presburger arithmetic.

[GS66] Ginsburg, Spanier. Semigroups, Presburger formulas, and languages. Pacific Journal Math. 16(2):285-296. 1966.



Expressing Nash equilibria
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A strategy profile o is a Nash equilibrium if, and only if,

Vr, 7' € Paths(G). o~} (n) # & = Z coste(flow,(€)) < Z coste(flow,(e)+1).

ecm\n’ een/\m
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Expressing Nash equilibria

Lemma
A strategy profile o is a Nash equilibrium if, and only if,

v, 7' € Paths(G). o~ (n) £ @ = Y coste(flows(e)) < Y coste(flows(e)+1).

ecm\n’ een/\m
y

Proof

T -~
Z coste, (flow, (&) <

oy M — e
Z COStei’ (ﬂOWO'—ﬂ'3+7r§(el{))

/ /
elem




Expressing Nash equilibria

Corollary

If G is a network with linear cost functions, then the set of (flows of) Nash equilibria
NE(G) is semi-linear.




Expressing Nash equilibria

Corollary

If G is a network with linear cost functions, then the set of (flows of) Nash equilibria
NE(G) is semi-linear.

Proof
Membership of (pr)rcpaths(g) in NE(G) can be expressed as

3(qe)ecE- /\ (Pﬂ— >0 = Z We e < Z Wer - (Ger + 1)) A
m,m’ EPaths(G) eem\n’ e’'en’\m
/\ <qe = Z p7r> .

ecE Toe




Period vectors of flows of Nash equilibria

Lemma
Let S and P be the series- and parallel compositions of G, and G,.
@ A strategy profile o is a Nash equilibrium in S if, and only if, its projections in Gy

and G are.
o If a strategy profile o is a Nash equilibrium in P, then its projections in Gy
and Gy are.
Remark
The converse direction fails for parallel 5% g1

composition, as can be seen on the small
example opposite. %2




Period vectors of flows of Nash equilibria

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(NE(G)) have the same cost along all paths:

for all period vector q of flow(NE(G)). k. Vrr € Paths(G). Z coste(ge) = K.

ecm




Period vectors of flows of Nash equilibria

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(NE(G)) have the same cost along all paths:

for all period vector q of flow(NE(G)). k. Vrr € Paths(G). Z coste(ge) = K.

ecm

Proof
By induction:
e for single-edge graphs: trivial;




Period vectors of flows of Nash equilibria

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(NE(G)) have the same cost along all paths:

for all period vector q of flow(NE(G)). k. Vr € Paths(G). Z coste(ge) = K.

ecm

Proof
By induction:
@ for series compositions G = G1 ® G»:

o if v is a period vector of NE(G), then vg, is a period vector of NE(G;);
e by induction, we get constants «; for each G;;
0 K= K1+ Kp.




Period vectors of flows of Nash equilibria

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(NE(G)) have the same cost along all paths:

for all period vector q of flow(NE(G)). k. Vr € Paths(G). Z coste(ge) = K.

ecm

Proof
By induction:
e for parallel compositions G = G1||Go:

e we again get constants x; for each G;;
e we prove that k1 = kp;
o we let kK = k1.




Expressing Nash equilibria

Proposition (see also [CDS23])
If G is a series-parallel network, the following system of equations (E) has a unique
solution:

{ Vi € Paths(G). Y ecr We * Ge = K

(€x)
Vv e V\{src tgt}. 3 ecin(v)9e = 2ercout(v) 9e =0

4

[CDS23] Cominetti et al. The price of anarchy in routing games as a function of the demand. Math. Prog. To appear.



Expressing Nash equilibria

Proposition (see also [CDS23])
If G is a series-parallel network, the following system of equations (E) has a unique
solution:

Vr € Paths(G). D .crWe Qe =K

VeV \ {src, tgt}' Zeeln(v) Ge — Ze’GOut(v) Ge =0

(€x)

V.

Corollary

If G is a series-parallel network with linear cost functions, then the period vectors of
flow(NE(G)) are multiples of a single vector dg.

[CDS23] Cominetti et al. The price of anarchy in routing games as a function of the demand. Math. Prog. To appear.



Expressing (local) social optimality

Expressing social optimality for linear cost functions gives rise to a quadratic expression
with universal quantification over profiles:

2
v(q;)eeE' Z We - (q; - qe2) > 0.
ecE



Expressing (local) social optimality

Expressing social optimality for linear cost functions gives rise to a quadratic expression
with universal quantification over profiles:

2
V(42 )eck- Z We - (q" — qe2) > 0.
ecE
~» we relax optimality to local optimality:
Definition

A strategy profile o is a local social optimum if, and only if, no player alone can
improve the total cost of o.




Expressing (local) social optimality

Theorem
A strategy profile o is a local social optimum if, and only if,

Vr, ' € Paths(G). (Ve € w. flow,(e) > 0) =
> we (2qe—1)< D we-(2ge+1).

ecm\n’ ecn/\m




Expressing (local) social optimality

Theorem
A strategy profile o is a local social optimum if, and only if,

Vr, ' € Paths(G). (Ve € w. flow,(e) > 0) =
> we (2qe—1)< D we-(2ge+1).

eem\n’ een/\m

Proof

1 \/\/
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Theorem
A strategy profile o is a local social optimum if, and only if,
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Theorem
A strategy profile o is a local social optimum if, and only if,

Vr, ' € Paths(G). (Ve € w. flow,(e) > 0) =
> we (2qe—1)< D we-(2ge+1).
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Expressing (local) social optimality

Theorem
A strategy profile o is a local social optimum if, and only if,

Vr, ' € Paths(G). (Ve € w. flow,(e) > 0) =
> we (2qe—1)< D we-(2ge+1).

ecm\n’ ecn/\m

Proof

\/\/ E Weqe S § We * qe
(o} M ecm3Un} eem3Nm}

Z We”(qe’+1)2+ Z We'(qe_]-)2

e’'emt\m3 ecms\m}




Expressing (local) social optimality

Theorem
A strategy profile o is a local social optimum if, and only if,

Vr, ' € Paths(G). (Ve € w. flow,(e) > 0) =
> we (2qe—1)< D we-(2ge+1).

ecm\n’ ecn/\m

Corollary

If G is a network with linear cost functions, then the set of (flows of) local social
optima is semi-linear.




Expressing (local) social optimality

Proposition

In series-parallel networks, with sufficiently many players, any local social optimum
involves all edges.




Expressing (local) social optimality

Proposition
In series-parallel networks, with sufficiently many players, any local social optimum
involves all edges.

Remark
This fails to hold in non-series-parallel networks, such as

3x X
x| 0
Q\{Q{




Expressing (local) social optimality

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(LSO>,(G)) have the same cost along all paths:

for all period vector q of flow(LSO>4,(G)). 3k. Vr € Paths(G). Z coste(ge) = K.

ecm




Expressing (local) social optimality

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(LSO>,(G)) have the same cost along all paths:

for all period vector q of flow(LSO>4,(G)). 3k. Vr € Paths(G). Z coste(ge) = K.

ecT

Proof
Assume L(b, v) C flow(LSO>,,(G)), and take two paths 7 and 7’. For any k > 0:

> wer(2betkove)—1)< Y we(2ber + k- ver) +1).

eem\n’ e'en’\m




Expressing (local) social optimality

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(LSO>,(G)) have the same cost along all paths:

for all period vector q of flow(LSO>4,(G)). 3k. Vr € Paths(G). Z coste(ge) = K.

ecT

Proof
Assume L(b, v) C flow(LSO>,,(G)), and take two paths 7 and 7’. For any k > 0:

Z We - (2be — 1) — Z We/-(2be/+1)—|-2k(z We - Ve — Z We,-ve,)go.

eem\’ e'en’\m eem\n’ e’'en’\m




Expressing (local) social optimality

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(LSO>,(G)) have the same cost along all paths:

for all period vector q of flow(LSO>4,(G)). 3k. Vr € Paths(G). Z coste(ge) = K.

ecT

Proof
Assume L(b, v) C flow(LSO>,,(G)), and take two paths 7 and 7’. For any k > 0:

Z We - (2be — 1) — Z We/-(2be/—|—1)+2k(ZWe-ve—Zwe/-ve/)go.

ecm\n’ e’'en’\m eem e'en’




Expressing (local) social optimality

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(LSO>,(G)) have the same cost along all paths:

for all period vector q of flow(LSO>4,(G)). 3k. Vr € Paths(G). Z coste(ge) = K.

ecT

Corollary

If G is a series-parallel network with linear cost functions, then the semi-linear set
flow(LSO(G)) admits a single period vector dg.




Expressing (local) social optimality

Theorem

In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(LSO>,(G)) have the same cost along all paths:

for all period vector q of flow(LSO>4,(G)). 3k. Vr € Paths(G). Z coste(ge) = K.

ecT

Corollary

If G is a series-parallel network with linear cost functions, then the semi-linear set
flow(LSO(G)) admits a single period vector dg.

Corollary (see also [WMRX23])

In series-parallel networks, PoA and PoS tend to 1 when the number of players grows.

[WMRX23] Wu et al. A convergence analysis of the price of anarchy in atomic congestion games. Math. Prog 199(1):937-993. 2023.




Computing the price of anarchy in series-parallel networks

Python prototype using sympy and Z3
@ compute (symbolic representation of) period vector dg;
@ compute base points for flows of LSO(G) and NE(G).

@ for each n, compute optimal cost and costs of worst and best Nash equilibria.




Computing the price of anarchy in series-parallel networks

Python prototype using sympy and Z3

@ compute (symbolic representation of) period vector dg;
@ compute base points for flows of LSO(G) and NE(G).

@ for each n, compute optimal cost and costs of worst and best Nash equilibria.

Example

1.35

13
1.25
1.2

115 | ]

11
1.05

4 8 12 16 20 24 28
Players




Computing the price of anarchy

Part II: adding time in network congestion games

@ we adapt the semantics to better model the congestion effect: synchronized costs,
non-blind strategies;

@ we develop algorithms to compute Nash equilibria and social optima in this setting;

@ we extend this approach to timed network congestion games.

Related works: [CJKU19, AGK17]

y

[CJKU19] Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.
[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS'17, p. 37:1-37:16. LZI, 2017.



Changing the semantics



Changing the semantics

Synchronizing cost computation
@ more natural semantics for dealing with network congestion;

o first step towards considering timed network congestion games [AGK17].

[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS'17, p. 37:1-37:16. LZI, 2017.



Changing the semantics

Synchronizing cost computation
@ more natural semantics for dealing with network congestion;

o first step towards considering timed network congestion games [AGK17].

Allowing non-blind strategies

@ richer setting, also more natural for dealing with congestion;

@ extends recent works on sequential congestion games [RST12,CJKU19].

[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS'17, p. 37:1-37:16. LZI, 2017.
[PST12] Paes Leme, Syrgkanis, Tardos. The curse of simultaneity. ITCS'12, p. 60-67. ACM Press, 2012.
[CJKU19] Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...]. Math. Op. Res. 44(4):1286-1303. Informs, 2019.



Synchronizing cost computation

Example

Classical semantics
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Synchronizing cost computation

Example

Classical semantics Synchronized semantics




Synchronizing cost computation

Example

Classical semantics Synchronized semantics




Non-blind strategies

Example

(@) if at most 2 players in ©
() if more than 2 players in ©




Non-blind strategies

Example

(@) if at most 2 players in ©
() if more than 2 players in ©

Remark

In the sequel, blind Nash equilibria are blind strategy profiles that are Nash equilibria
w.r.t. blind strategies.




Semantics as a concurrent game

Concurrent game on a multi-weighted graph

e states are configurations (elements of V"),

Wi i<n
o there is a transition (v;)1<i<n (Wi)1<i< (

(ei)i<i<n s.t. forall 1 <j <n,
o ¢ = (v;,j,v/) is an edge of the network,
o w; = f;(load(ej, (e/)1<i<n)) Where load(ej, (e))1<i<n) = #{L < i < n| e = ¢}).

v/)1<i<n Whenever there exist edges




Semantics as a concurrent game

Example
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Semantics as a concurrent game

Example

51272)




Semantics as a concurrent game

Example




Semantics as a concurrent game

Example

~

X (1737373)
The game has size |V/|", which is doubly-exponential .
(assuming number of players given in binary).




Computing social optima

Theorem
The social optimum can be computed in PSPACE.
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The social optimum can be computed in PSPACE.

Proof

For social optimum, no need to keep track of each individual player.
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Computing social optima

Theorem
The social optimum can be computed in PSPACE.

Proof

For social optimum, no need to keep track of each individual player.

(1,3,3,3)




Computing social optima

Theorem
The social optimum can be computed in PSPACE.

Proof

For social optimum, no need to keep track of each individual player.

This graph has size n!Y!l, which is exponential.

~> non-deterministically build a good path.




Pure Nash equilibria still always exist!

Modelling synchronous costs with classical ones
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Pure Nash equilibria still always exist!

Modelling synchronous costs with classical ones

/step 2 step 3
X

)

/) o U

Lemma

If an ANCG with synchronous costs has a blind Nash equilibrium, then it has one whose
paths have length at most )" _ g coste(n) (assuming all costs are positive integers).




Pure Nash equilibria still always exist!

Modelling synchronous costs with classical ones

step 0 step 1 step 2

step 3

X

0 Q

Lemma

If an ANCG with synchronous costs has a blind Nash equilibrium, then it has one whose
paths have length at most ). coste(n) (assuming all costs are positive integers).

Corollary

Any ANCG with synchronous costs admits a pure blind Nash equilibrium.
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Theorem
Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).




Pure Nash equilibria still always exist!

Theorem
Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Proof

If some player has a profitable deviation, they have a blind one.
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Theorem
Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Theorem

There are Nash equilibria whose total cost is less than the total cost of any blind Nash
equilibrium.




Pure Nash equilibria still always exist!

Theorem

Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Theorem

There are Nash equilibria whose total cost is less than the total cost of any blind Nash
equilibrium.

Proof

h
70)

3
+,\)3* Q
X=X




Pure Nash equilibria still always exist!

Theorem

Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Theorem
There are Nash equilibria whose total cost is less than the total cost of any blind Nash
equilibrium.
Proof
3 3
h Q —_ Q o O e @ red players take dashed
+5 A . =+ edge if the other red
ARH b /Q player deviated from plain
N A red path at previous state.
Poes R . o P previou

cost =14+ 14 + 8




Pure Nash equilibria still always exist!

Theorem
Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Theorem
There are Nash equilibria whose total cost is less than the total cost of any blind Nash
equilibrium.
Proof
x—3 x+—3
o Q Q O T, @ any blind strategy profile
\fg,+ NG, O has cost Iarger. tha.n 36,
. " v except one which is not a
gy A \ %@’D‘ blind Nash equilibrium.




Characterizing outcomes of Nash equilibria

Theorem ([KLST12])

A path p is the outcome of a Nash equilibrium ff,
and only if, for any player i and any position n
along p:

V' deviation by player i from p, — pni1,
costi(p>n) < costi(py — ') + vali(c')

where vali(c') = sup,_, inf,, costi(c’,o) is the
minimum cost for Player i from ¢’ against other
players.

[KL§T12] Klimos et al. Nash Equilibria in Concurrent Priced Games. LATA'12, p. 363-376. Springer, 2012.



Computing Nash equilibria

Algorithm

Build tree of outcomes, propagating constraints on the cost of the rest of the path:

m); = min{m; — cost;(pn — pn+1), nli/n(val,-(c’) + costj(pn — ¢’) — costi(pn —> pnt1))}-




Computing Nash equilibria

Algorithm
m); = min{m; — costi(pp — pn+1), nrli/n(val,-(c’) + costi(pn — ¢’) — costi(pn = pnt1))}-

v

Example

X=X

X=X

‘o
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Computing Nash equilibria

Algorithm

m’; = min{m; — cost;(pn — pnt1), min(val;(c’) + costi(pn — ) — costi(pn — pnt1))}-

v

Example

xox (5500); (s<o0)s (5<400)
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Computing Nash equilibria

Algorithm

mj; = min{m; — cost;(pn — pn+1), min(vali(c') + costi(pn — ¢’) — costi(pn — pnt1))}-
C

v

Example

xox ((55r00); (st0)s (5400)

9
s 333
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Computing Nash equilibria

Algorithm

m’; = min{m; — cost;(pn — pnt1), min(val;(c’) + costi(pn — ) — costi(pn — pnt1))}-

v

Example
xox ((55r00); (st0)s (5400)
S 3,3,3
(t<-1)s (<), (t<1))

‘o
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Computing Nash equilibria

Algorithm

mj; = min{m; — cost;(pn — pn+1), min(vali(c') + costi(pn — ¢’) — costi(pn — pnt1))}-
C

v

Example
xox (5500); (s<o0)s (5<400)
9
S 3,3,3
(t<—1), (t<-1), (t<-1)

‘o

x—0




Computing Nash equilibria

Algorithm

m}; = min{m; — cost;(pn — pn+1), min(vali(c’) + costi(pn — ) — costi(pn = pn+1))}-
C

v

Example
XX [(5§+oo)a (S<t00)s (s§+oo)]
9
s 333 m :
(t<71) (t<71) (t<7l) (S )’( )7(t )

‘o

x—0




Computing Nash equilibria

Algorithm

m}; = min{m; — cost;(pn — pn+1), min(vali(c’) + costi(pn — ) — costi(pn = pn+1))}-
C

v

Example
Sa [(5§+oo)a (S<+400)s (s§+oo)]
9
s 333 m
(t<—1), (t<-1), (t<—1) (s<2),(t ). (t )
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Computing Nash equilibria

Algorithm

mj; = min{m; — cost;(pn — pn+1), min(vali(c') + costi(pn — ¢’) — costi(pn — pnt1))}-
C

v

Example
xox ((5500); (s<o0)s (5<400)
9
s ) 3,3,3 m‘
(te_1). (t<1). (t<_1) (s<2), (t<2), (t<2)
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Computing Nash equilibria

Algorithm

m); = min{m; — costi(pp — pn+1), min(val;(c’) + costi(pp — c’) — cost;(pn — Pri1)) }-
C

v

Example
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Computing Nash equilibria

Algorithm

m); = min{m; — costi(pp — pn+1), min(val;(c’) + costi(pp — c’) — cost;(pn — Pri1)) }-
C

v

Example
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Computing Nash equilibria

Algorithm

m = min{m,- — costi(pn = pn+1), nrli/n(val,-(c’) + cost(pn — ¢) — cost;(pn — p,,+1))}.
y

Example
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Computing Nash equilibria

Algorithm

m = min{m,- — costi(pn = pn+1), nrli/n(val,-(c’) + cost(pn — ¢) — cost;(pn — p,,+1))}.
y

Example
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Computing Nash equilibria

Algorithm
m = min{m,- — costi(pn = pn+1), mi/n(val,-(c’) + cost(pn — ¢) — cost;(pn — p,,+1))}.
C .

Example
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Algorithm
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Algorithm

m = min{m,- — costi(pn = pn+1), nrli/n(val,-(c’) + cost(pn — ¢) — cost;(pn — p,,+1))}.
y

Example
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Computing Nash equilibria

Algorithm

m = min{m,- — costi(pn = pn+1), nrli/n(val,-(c’) + cost(pn — ¢) — cost;(pn — p,,+1))}.
y

Example
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Computing Nash equilibria

Algorithm

m = min{m,- — costi(pn = pn+1), nrli/n(val,-(c’) + cost(pn — ¢) — cost;(pn — p,,+1))}.
y

Example
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Computing Nash equilibria

Algorithm

m); = min{m; — costi(pp — pn+1), min(val;(c’) + costi(pp — c’) — cost;(pn — Pri1)) }-
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Example
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Computing Nash equilibria

Algorithm

m); = min{m; — costi(pp — pn+1), min(val;(c’) + costi(pn — ¢') — costi(pn — Pr+1))}-
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Example
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Algorithm

mj; = min{m; — cost;(pn = pn+1), ”li,n(V3|i(C') + costi(pn — ¢’) — costi(pn = pnt1))}-

Example
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Algorithm

m', = min{m,- — costi(pn = pn+1), mi/n(val,-(c’) + costi(pn — ¢’) — costi(pn — p,,+1))}.
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Example
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Computing Nash equilibria

Algorithm
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Computing Nash equilibria

Algorithm

m = min{m,- — costi(pn = pn+1), nrli/n(val,-(c’) + cost(pn — ¢) — cost;(pn — p,,+1))}.
V.

Theorem

In ANCG with synchronous costs and non-blind strategies, the constrained
Nash-equilibrium problem is in EXPSPACE.

Proof
Non-deterministically build a path in this graph:
@ each val;(c) can be computed in exponential time,

@ storing a vertex of the graph requires exponential space;

@ propagating constraints uses exponential time.




Subgame-perfect equilibria
In dynamic games, subgame perfect equilibria better reflect behaviours of rational players:
Definition
A strategy profile is a subgame perfect equilibrium if it is a Nash equilibrium in any
subgame of G.
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Subgame-perfect equilibria
In dynamic games, subgame perfect equilibria better reflect behaviours of rational players:
Definition

A strategy profile is a subgame perfect equilibrium if it is a Nash equilibrium in any
subgame of G.

Theorem
In an ANCG with synchronous costs, the constrained SPE problem is in 2EXPSPACE.

Proof
We adapt the PSPACE algorithm of [BBG*19] to (doubly-exp) concurrent games:
@ use equivalent notion of very-weak SPEs (restricted deviations);

@ define functions that bound the cost of outcomes of SPEs;

@ compute those functions as fixpoints.

[BBG*19] Brihaye et al. The complexity of subgame perfect equilibria [...]. CONCUR’19, p. 13:1-13:16. LZI, 2019.
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Timed network congestion games

Assigning time-dependent costs to states
@ costs are now assigned to states; transitions are guarded by timing constraints;
@ the cost for a player depends on the amount of time spent in a state;

@ load of a state only affects cost, not time.

[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS'17, p. 37:1-37:16. LZI, 2017.
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Timed network congestion games

Assigning time-dependent costs to states
@ costs are now assigned to states; transitions are guarded by timing constraints;
@ the cost for a player depends on the amount of time spent in a state;

@ load of a state only affects cost, not time.

Example
[1,2] 4, 5]
O 3
5k 2k
0 1 2 3 4 5
P 14 0.8 10
P> 14 2 10

[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS'17, p. 37:1-37:16. LZI, 2017.



Some results on timed network congestion games

For blind strategies:

@ any timed ANCG can be transformed into an isomorphic ANCG (with asynchronous
cost computation); a converse transformation exists for acyclic ANCG
(for some relevant notion of isomorphic);

@ the price of anarchy in timed ANCG with linear cost functions is at most 5/2;

@ computing a Nash equilibrium can be performed in polynomial time for symmetric
timed ANCG; it is PLS-complete in the asymmetric case;

@ all timed ANCG admit boundary social optima and Nash equilibria
(boundary means that transitions are taken at bounds of timing intervals);

@ there are timed ANCG in which worst Nash equilibria are not boundary;

[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS'17, p. 37:1-37:16. LZI, 2017.



Non-blind strategies in discrete-time timed network congestion games

Lemma

For any timed ANCG (G, n), in any Nash equilibrium, all players can reach their target
state with cost at most kp, - (M + |V|), where k, is the maximal cost that can appear
in (G, n) and M is the maximal time bound appearing in clock constraints.
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Non-blind strategies in discrete-time timed network congestion games

Lemma

For any timed ANCG (G, n), in any Nash equilibrium, all players can reach their target
state with cost at most kp, - (M + |V|), where k, is the maximal cost that can appear
in (G, n) and M is the maximal time bound appearing in clock constraints.

Theorem

In discrete-time timed ANCG, the constrained Nash-equilibrium problem is in
EXPSPACE.

Remark

@ we hope we can extend this result to continuous time:

o compute val;(c’) in 1-clock timed game (piecewise-affine functions);
e propagate constraints using characterization of outcomes.

o little chance to extend this to timed network games with clocks [AGK18].

[AGK18] Avni, Guha, Kupferman. Timed Network Games with Clocks. MFCS'18, p. 23:1-23:18. LZI, 2018.
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Future works

Congestion impacting travel times  (with Stéphane Le Roux and Ocan Sankur)

“water-dispenser’ semantics (aka. “conveyor-belt" semantics [KP12])

@ social optimum: fill the

< > n—n Q bottle one after the other: Player 1

@ Nash equilibria: one starts

now, one during first t.u. E

Nash equilibria need not exist in this setting.

. 5n—1 Q

[KP12] Koutsoupias, Papakonstantinopoulou. Contention Issues in Congestion Games. ICALP’12, p. 623-635. Springer, 2012.




Future works

Congestion impacting travel times  (with Stéphane Le Roux and Ocan Sankur)J

Partial-observation strategies (with Arthur Dumas and Ocan Sankur)
Preliminary results:
@ Nash equilibria always exist;

@ the constrained Nash-equilibrium problem is decidable.




Future works

Congestion impacting travel times  (with Stéphane Le Roux and Ocan Sankur)J

Partial-observation strategies (with Arthur Dumas and Ocan Sankur)

Preliminary results:
@ Nash equilibria always exist;
@ the constrained Nash-equilibrium problem is decidable.

Conjecture
There exists a unique symmetric mixed Nash equilibrium in series-parallel

networks.
4




Future works

Congestion impacting travel times  (with Stéphane Le Roux and Ocan Sankur)J

Partial-observation strategies (with Arthur Dumas and Ocan Sankur)J

i



	Introduction
	Computing PoA in series-parallel networks
	Computing PoA for non-blind strategies
	Towards timed atomic network congestion games
	Conclusion

