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Congestion in a communication network
In this talk, we consider network congestion problems.

Definition (Atomic network congestion game (aka. routing games) [Ros73])

An ANCG is a pair (G, n) where
G is a graph decorated with cost
(or latency) functions on edges
n is the number of players.

cost
(x)

=2x

cost(x)=12

cost(x)=x 2
+4

cost
(x)

=x
3+6

cost(x)=0

resources are paths from source to destination;
strategy profiles assign such a path to each player;
the cost of an edge is cost(x) where x is the number of players using that edge;
the cost of a path is the sum of costs of all its edges.

[Ros73] Rosenthal. The network equilibrium problem in integers. Networks 3(1):53-59. John Wiley & Sons, 1973.
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Example of an ANCG

Example

cos
t(x

)=
x

cost(x)=5

cost(x)=5

cos
t(x
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x

cost(x)=1

cost for players: 7 (2+5)

cost for players: 7 (5+2)

total cost for all four players: 28
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total cost for all four players: 29
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Definition
Given an ANCG, a social optimum is a strategy profile minimizing the sum of the costs
of all players.
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Centralized vs. selfish behaviours

Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.
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Definition
Given an ANCG, a Nash equilibrium is a strategy profile in which no player alone can
improve their individual cost.

Example (Braess’ paradox)
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Any ANCG admits Nash equilibria

Theorem ([Ros73])
Any ANCG admits a pure Nash equilibrium.

Proof
For any strategy profile σ, define the potential function:

Φ(σ) =
∑

e∈E

∑loadσ(e)

k=1
coste(k).

Then for any player i and any path ρ, letting σ′ = σ[i 7→ ρ], it holds

Φ(σ′)− Φ(σ) = costi (σ′)− costi (σ).

Any σ minimizing Φ (over the finitely-many possible strategy profiles) is a Nash
equilibrium.

[Ros73] Rosenthal. The network equilibrium problem in integers. Networks 3(1):53-59. John Wiley & Sons, 1973.
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Price of anarchy, price of stability

Definition ([KP99])
The price of anarchy is the ratio between the cost of the worst Nash equilibrium and
the social optimum.

; measures how much can be lost when agents act selfishly.

Definition ([ADK+04])
The price of stability is the ratio between the cost of the best Nash equilibrium and the
social optimum.

[KP99] Koutsoupias, Papadimitriou. Worst-case equilibria. STACS’99, p. 404-413. Springer, 1999.

[ADK+04] Anshelevich et al. The Price of Stability for Network Design with Fair Cost Allocation. FOCS’04, p. 295-304. IEEE, 2004.
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Classical results about ANCG in algorithmic game theory

Theorem ([CK05,CJKU19])
The price of anarchy of any ANCG with affine cost functions is at most 5/2.

[CK05] Christodoulou, Koutsoupias. The price of anarchy of finite congestion games. STOC’05, p. 67-73. ACM Press, 2005.
[CJKU19] J.R. Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.
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Classical results about ANCG in algorithmic game theory

Theorem ([FPT04])
Computing a Nash equilibrium in a symmetric ANCG can be performed in polynomial
time; it is PLS-complete in the non-symmetric case.

Proof
Polynomial-time algorithm:

G
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=x

cost(x)=5

cost(x)=5

cost
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cost(x)=1

W
1 2 3 4

5555

11
1
1

5555

1 2 3 4

minimum flow in W minimizes potential function Φ =
∑

e∈E
∑

i≤loadσ(e) coste(i)

[FTP04] Fabrikant, Papadimitriou, Talwar. The complexity of pure Nash equilibria. STOC’04, p. 604-612. ACM, 2004.
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Computing the price of anarchy

Part I: price of anarchy for arbitrarily many players
we establish a semi-linear representation of Nash equilibria and local social optima;
we show that they extend in a single direction in series-parallel networks.

Related work: [CDS23]

Part II: adding time in network congestion games
we adapt the semantics to better model the congestion effect: synchronized costs,
non-blind strategies;
we develop algorithms to compute Nash equilibria and social optima in this setting;
we extend this approach to timed network congestion games.

Related works: [CJKU19, AGK17]

[CDS23] Cominetti, Dose, Scarsini. The price of anarchy in routing games as a function of the demand. Math. Prog. To appear.

[CJKU19] Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.
[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS’17, p. 37:1-37:16. LZI, 2017.
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Series-parallel graphs

Definition
Given two graphs

G1 G2

we define their compositions:

G1 G2

series composition

G1

G2

parallel composition

[HM22] Hao, Michini. Inefficiency of Pure Nash Equilibria in Series-Parallel Network [...]. WINE’22, p. 3-20. Springer, 2022.
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Definition
The set of series-parallel graphs is the smallest set of graphs containing the single-edge
graph and closed under series and parallel compositions.
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Series-parallel graphs

Definition
The set of series-parallel graphs is the smallest set of graphs containing the single-edge
graph and closed under series and parallel compositions.

Theorem ([HM22])
The price of anarchy for series-parallel ANCG with affine cost functions is at most 2.

[HM22] Hao, Michini. Inefficiency of Pure Nash Equilibria in Series-Parallel Network [...]. WINE’22, p. 3-20. Springer, 2022.



Representation of strategy profiles

Definition
Consider an ANCG (G, n). strategy profile:

σ : [1; n] → Paths(G)

pσ : Paths(G) → N
π 7→ #{i | σ(i) = π}

flowσ : E → N
e 7→ #{i | σ(i) contains e}

Example (flow of a strategy profile)

2

1

1

2

a single flow may correspond to several
strategy profiles;
the total cost of a strategy profile only
depends on its flow.
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a single flow may correspond to several
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the total cost of a strategy profile only
depends on its flow.



Semi-linear sets

Definition
A subset of Nd is semi-linear if it can be written as a finite union of sets of the form

L(b, {vi | 1 ≤ i ≤ p}) =
{
b +

∑
1≤i≤p

λi · vi | (λi )1≤i≤p ∈ Np
}
.

base vector: b = (2, 1)
period vectors: v1 = (3, 4), v2 = (4, 1)}

b

base vector: b′ = (4, 0)
period vector: v ′1 = (1, 2)

b′

[GS66] Ginsburg, Spanier. Semigroups, Presburger formulas, and languages. Pacific Journal Math. 16(2):285-296. 1966.
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Semi-linear sets

Definition
A subset of Nd is semi-linear if it can be written as a finite union of sets of the form

L(b, {vi | 1 ≤ i ≤ p}) =
{
b +

∑
1≤i≤p

λi · vi | (λi )1≤i≤p ∈ Np
}
.

Theorem ([GS66])
A set is semi-linear if, and only if, it is definable in Presburger arithmetic.

[GS66] Ginsburg, Spanier. Semigroups, Presburger formulas, and languages. Pacific Journal Math. 16(2):285-296. 1966.



Expressing Nash equilibria

Lemma
A strategy profile σ is a Nash equilibrium if, and only if,

∀π, π′ ∈ Paths(G). σ−1(π) ̸= ∅ ⇒
∑

e∈π\π′

coste(flowσ(e)) ≤
∑

e∈π′\π

coste(flowσ(e)+1).

Proof

σ

π1

π2

π3

e1
e2 e3 e4

π′
3

e ′1
e ′2

e ′3 e ′4

∑
ei∈π3

costei (flowσ(ei )) ≤∑
e′i ∈π

′
3

coste′i (flowσ−π3+π′
3
(e ′i ))
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Expressing Nash equilibria

Corollary
If G is a network with linear cost functions, then the set of (flows of) Nash equilibria
NE(G) is semi-linear.

Proof
Membership of (pπ)π∈Paths(G) in NE(G) can be expressed as

∃(qe)e∈E .
∧

π,π′∈Paths(G)

pπ > 0 ⇒
∑

e∈π\π′

we · qe ≤
∑

e′∈π′\π

we′ · (qe′ + 1)

 ∧

∧
e∈E

(
qe =

∑
π∋e

pπ

)
.
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Period vectors of flows of Nash equilibria

Lemma
Let S and P be the series- and parallel compositions of G! and G2.

A strategy profile σ is a Nash equilibrium in S if, and only if, its projections in G1
and G2 are.
If a strategy profile σ is a Nash equilibrium in P, then its projections in G1
and G2 are.

Remark

The converse direction fails for parallel
composition, as can be seen on the small
example opposite.

G1

G2

x
2x

3x



Period vectors of flows of Nash equilibria

Theorem
In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(NE(G)) have the same cost along all paths:

for all period vector q of flow(NE(G)). ∃κ. ∀π ∈ Paths(G).
∑
e∈π

coste(qe) = κ.

Proof
By induction:

for single-edge graphs: trivial;

f
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Period vectors of flows of Nash equilibria

Theorem
In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(NE(G)) have the same cost along all paths:

for all period vector q of flow(NE(G)). ∃κ. ∀π ∈ Paths(G).
∑
e∈π

coste(qe) = κ.

Proof
By induction:

for series compositions G = G1 ⊙ G2:
if v is a period vector of NE(G), then vGi is a period vector of NE(Gi );
by induction, we get constants κi for each Gi ;
κ = κ1 + κ2.



Period vectors of flows of Nash equilibria

Theorem
In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(NE(G)) have the same cost along all paths:

for all period vector q of flow(NE(G)). ∃κ. ∀π ∈ Paths(G).
∑
e∈π

coste(qe) = κ.

Proof
By induction:

for parallel compositions G = G1||G2:
we again get constants κi for each Gi ;
we prove that κ1 = κ2;
we let κ = κ1.



Expressing Nash equilibria

Proposition (see also [CDS23])
If G is a series-parallel network, the following system of equations (Eκ) has a unique
solution: {

∀π ∈ Paths(G).
∑

e∈π we · qe = κ

∀v ∈ V \ {src, tgt}.
∑

e∈In(v) qe −
∑

e′∈Out(v) qe = 0
(Eκ)

Corollary
If G is a series-parallel network with linear cost functions, then the period vectors of
flow(NE(G)) are multiples of a single vector δG .

[CDS23] Cominetti et al. The price of anarchy in routing games as a function of the demand. Math. Prog. To appear.
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Expressing (local) social optimality
Expressing social optimality for linear cost functions gives rise to a quadratic expression
with universal quantification over profiles:

∀(q′e)e∈E .
∑
e∈E

we · (q′e
2 − qe

2) ≥ 0.

; we relax optimality to local optimality:

Definition
A strategy profile σ is a local social optimum if, and only if, no player alone can
improve the total cost of σ.
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Expressing (local) social optimality

Theorem
A strategy profile σ is a local social optimum if, and only if,

∀π, π′ ∈ Paths(G). (∀e ∈ π. flowσ(e) > 0) ⇒∑
e∈π\π′

we · (2qe − 1) ≤
∑

e∈π′\π

we · (2qe + 1).
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e2 e3 e4
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e ′3 e ′4
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e∈π3∪π′

3

weq
2
e ≤

∑
e∈π3∩π′

3

we · q2
e+∑

e′∈π′
3\π3

we′ · (qe′ + 1)2 +
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we · (qe − 1)2
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Expressing (local) social optimality

Theorem
A strategy profile σ is a local social optimum if, and only if,

∀π, π′ ∈ Paths(G). (∀e ∈ π. flowσ(e) > 0) ⇒∑
e∈π\π′

we · (2qe − 1) ≤
∑

e∈π′\π

we · (2qe + 1).

Corollary
If G is a network with linear cost functions, then the set of (flows of) local social
optima is semi-linear.



Expressing (local) social optimality

Proposition
In series-parallel networks, with sufficiently many players, any local social optimum
involves all edges.



Expressing (local) social optimality

Proposition
In series-parallel networks, with sufficiently many players, any local social optimum
involves all edges.

Remark
This fails to hold in non-series-parallel networks, such as

3x

x

x

x

3x



Expressing (local) social optimality

Theorem
In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(LSO≥n0(G)) have the same cost along all paths:

for all period vector q of flow(LSO≥n0(G)). ∃κ. ∀π ∈ Paths(G).
∑
e∈π

coste(qe) = κ.

Proof
Assume L(b, v) ⊆ flow(LSO≥n0(G)), and take two paths π and π′. For any k ≥ 0:

.

[WMRX23] Wu et al. A convergence analysis of the price of anarchy in atomic congestion games. Math. Prog 199(1):937-993. 2023.
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Proof
Assume L(b, v) ⊆ flow(LSO≥n0(G)), and take two paths π and π′. For any k ≥ 0:∑

e∈π\π′

we · (2(be + k · ve)− 1) ≤
∑

e′∈π′\π

we · (2(be′ + k · ve′) + 1).

[WMRX23] Wu et al. A convergence analysis of the price of anarchy in atomic congestion games. Math. Prog 199(1):937-993. 2023.
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Proof
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we′ · (2be′ + 1) + 2k
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≤ 0.

[WMRX23] Wu et al. A convergence analysis of the price of anarchy in atomic congestion games. Math. Prog 199(1):937-993. 2023.
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Expressing (local) social optimality

Theorem
In any series-parallel ANCG (G, n) with linear cost functions, all period vectors of
flow(LSO≥n0(G)) have the same cost along all paths:

for all period vector q of flow(LSO≥n0(G)). ∃κ. ∀π ∈ Paths(G).
∑
e∈π

coste(qe) = κ.

Corollary
If G is a series-parallel network with linear cost functions, then the semi-linear set
flow(LSO(G)) admits a single period vector δG .

Corollary (see also [WMRX23])
In series-parallel networks, PoA and PoS tend to 1 when the number of players grows.

[WMRX23] Wu et al. A convergence analysis of the price of anarchy in atomic congestion games. Math. Prog 199(1):937-993. 2023.



Computing the price of anarchy in series-parallel networks

Python prototype using sympy and Z3
compute (symbolic representation of) period vector δG ;
compute base points for flows of LSO(G) and NE(G).
for each n, compute optimal cost and costs of worst and best Nash equilibria.

Example
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Computing the price of anarchy

Part I: price of anarchy for arbitrarily many players
we establish a semi-linear representation of Nash equilibria and local social optima;
we show that they extend in a single direction in series-parallel networks.

Related work: [CDS23]

Part II: adding time in network congestion games
we adapt the semantics to better model the congestion effect: synchronized costs,
non-blind strategies;
we develop algorithms to compute Nash equilibria and social optima in this setting;
we extend this approach to timed network congestion games.

Related works: [CJKU19, AGK17]

[CDS23] Cominetti, Dose, Scarsini. The price of anarchy in routing games as a function of the demand. Math. Prog. To appear.
[CJKU19] Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...] Math. Op. Res. 44(4):1286-1303. Informs, 2019.
[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS’17, p. 37:1-37:16. LZI, 2017.



Changing the semantics

Synchronizing cost computation
more natural semantics for dealing with network congestion;
first step towards considering timed network congestion games [AGK17].

Allowing non-blind strategies
richer setting, also more natural for dealing with congestion;
extends recent works on sequential congestion games [RST12,CJKU19].

[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS’17, p. 37:1-37:16. LZI, 2017.
[PST12] Paes Leme, Syrgkanis, Tardos. The curse of simultaneity. ITCS’12, p. 60-67. ACM Press, 2012.
[CJKU19] Correa et al. The inefficiency of Nash and subgame-perfect equilibria [...]. Math. Op. Res. 44(4):1286-1303. Informs, 2019.
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Synchronizing cost computation

Example

Classical semantics

cost
(x)

=x

cost(x)=5
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(x)
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cost(x)=1

NE: : 8 : 7 : 7 : 8
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NE: : 7 : 7 : 7 : 6
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Non-blind strategies

Example

1○
2○

cost
(x)

=x

cost(x)=5

cost(x)=5

cost
(x)

=x

cost(x)=1
1○ if at most 2 players in
2○ if more than 2 players in

Remark
In the sequel, blind Nash equilibria are blind strategy profiles that are Nash equilibria
w.r.t. blind strategies.



Non-blind strategies
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Semantics as a concurrent game

Concurrent game on a multi-weighted graph
states are configurations (elements of V n);

there is a transition (vi )1≤i≤n
(wi )1≤i≤n−−−−−−→ (v ′i )1≤i≤n whenever there exist edges

(ei )1≤i≤n s.t. for all 1 ≤ j ≤ n,
ej = (vj , fj , v

′
j ) is an edge of the network,

wj = fj(load(ej , (ei )1≤i≤n)) where load(ej , (ei )1≤i≤n) = #{1 ≤ i ≤ n | ei = ej}).



Semantics as a concurrent game
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cost(x)=11
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3
4
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(1,5,5,5)
(5,1,2,2)

(1,3,3,3)

The game has size |V |n, which is doubly-exponential
(assuming number of players given in binary).
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Computing social optima

Theorem
The social optimum can be computed in PSPACE.

Proof
For social optimum, no need to keep track of each individual player.

(2,2,5,5)

(1,5,5,5)
(5,1,2,2)

(1,3,3,3)

This graph has size n|V |, which is exponential.

; non-deterministically build a good path.
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16
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Pure Nash equilibria still always exist!

Modelling synchronous costs with classical ones

cost(
x)=

x

cost(x)=5

cost(x)=5

cost(
x)=

x

cost(x)=1

step 0 step 1 step 2 step 3
x

5

1
5

x

x

0

Lemma
If an ANCG with synchronous costs has a blind Nash equilibrium, then it has one whose
paths have length at most

∑
e∈E coste(n) (assuming all costs are positive integers).

Corollary
Any ANCG with synchronous costs admits a pure blind Nash equilibrium.
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Pure Nash equilibria still always exist!

Theorem
Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Proof
If some player has a profitable deviation, they have a blind one.
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Theorem
Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Theorem
There are Nash equilibria whose total cost is less than the total cost of any blind Nash
equilibrium.

Proof

x 7→
2x

x 7→3x

x 7→3

x 7→
x

x 7→x

x 7→3

x 7→
3

x 7→2x

x 7→2x

x 7→
2x



Pure Nash equilibria still always exist!

Theorem
Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Theorem
There are Nash equilibria whose total cost is less than the total cost of any blind Nash
equilibrium.

Proof

x 7→
2x

x 7→3x

x 7→3

x 7→
x

x 7→x

x 7→3

x 7→
3

x 7→2x

x 7→2x

x 7→
2x

red players take dashed
edge if the other red
player deviated from plain
red path at previous state.
cost = 14 + 14 + 8



Pure Nash equilibria still always exist!

Theorem
Blind Nash equilibria are Nash equilibria (w.r.t. non-blind strategies).

Theorem
There are Nash equilibria whose total cost is less than the total cost of any blind Nash
equilibrium.

Proof

x 7→
2x

x 7→3x

x 7→3

x 7→
x

x 7→x

x 7→3

x 7→
3

x 7→2x

x 7→2x

x 7→
2x

any blind strategy profile
has cost larger than 36,
except one which is not a
blind Nash equilibrium.



Characterizing outcomes of Nash equilibria

Theorem ([KLŠT12])
A path ρ is the outcome of a Nash equilibrium if,
and only if, for any player i and any position n
along ρ:

∀c ′ deviation by player i from ρn → ρn+1,
costi (ρ≥n) ≤ costi (ρn → c ′) + vali (c ′)

where vali (c ′) = supσ−i
infσi costi (c ′, σ) is the

minimum cost for Player i from c ′ against other
players.

ρ0

ρn

ρn+1c ′

ρ

c ′

[KLŠT12] Klimoš et al. Nash Equilibria in Concurrent Priced Games. LATA’12, p. 363-376. Springer, 2012.



Computing Nash equilibria

Algorithm
Build tree of outcomes, propagating constraints on the cost of the rest of the path:

m′
i = min

{
mi − costi (ρn → ρn+1),min

c ′
(vali (c ′) + costi (ρn → c ′)− costi (ρn → ρn+1))

}
.
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Theorem
In ANCG with synchronous costs and non-blind strategies, the constrained
Nash-equilibrium problem is in EXPSPACE.

Proof
Non-deterministically build a path in this graph:

each vali (c) can be computed in exponential time,
storing a vertex of the graph requires exponential space;
propagating constraints uses exponential time.



Subgame-perfect equilibria
In dynamic games, subgame perfect equilibria better reflect behaviours of rational players:

Definition
A strategy profile is a subgame perfect equilibrium if it is a Nash equilibrium in any
subgame of G.

Theorem
In an ANCG with synchronous costs, the constrained SPE problem is in 2EXPSPACE.

Proof
We adapt the PSPACE algorithm of [BBG+19] to (doubly-exp) concurrent games:

use equivalent notion of very-weak SPEs (restricted deviations);
define functions that bound the cost of outcomes of SPEs;
compute those functions as fixpoints.

[BBG+19] Brihaye et al. The complexity of subgame perfect equilibria [...]. CONCUR’19, p. 13:1-13:16. LZI, 2019.
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Timed network congestion games

Assigning time-dependent costs to states
costs are now assigned to states; transitions are guarded by timing constraints;
the cost for a player depends on the amount of time spent in a state;
load of a state only affects cost, not time.

Example

5k 2k

[1, 2] [4, 5]
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[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS’17, p. 37:1-37:16. LZI, 2017.
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Some results on timed network congestion games

For blind strategies:
any timed ANCG can be transformed into an isomorphic ANCG (with asynchronous
cost computation); a converse transformation exists for acyclic ANCG
(for some relevant notion of isomorphic);

the price of anarchy in timed ANCG with linear cost functions is at most 5/2;

computing a Nash equilibrium can be performed in polynomial time for symmetric
timed ANCG; it is PLS-complete in the asymmetric case;

all timed ANCG admit boundary social optima and Nash equilibria
(boundary means that transitions are taken at bounds of timing intervals);

there are timed ANCG in which worst Nash equilibria are not boundary;

[AGK17] Avni, Guha, Kupferman. Timed Network Games. MFCS’17, p. 37:1-37:16. LZI, 2017.



Non-blind strategies in discrete-time timed network congestion games

Lemma
For any timed ANCG (G, n), in any Nash equilibrium, all players can reach their target
state with cost at most κn · (M + |V |), where κn is the maximal cost that can appear
in (G, n) and M is the maximal time bound appearing in clock constraints.

Theorem
In discrete-time timed ANCG, the constrained Nash-equilibrium problem is in
EXPSPACE.

Remark
we hope we can extend this result to continuous time:

compute vali (c ′) in 1-clock timed game (piecewise-affine functions);
propagate constraints using characterization of outcomes.

little chance to extend this to timed network games with clocks [AGK18].

[AGK18] Avni, Guha, Kupferman. Timed Network Games with Clocks. MFCS’18, p. 23:1-23:18. LZI, 2018.
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Future works

Congestion impacting travel times (with Stéphane Le Roux and Ocan Sankur)

“water-dispenser” semantics (aka. “conveyor-belt” semantics [KP12])

n 7→ ℓ(n)

n 7→ n

if n players are using this edge,
they progress at speed 1/ℓ(n).social optimum: fill the

bottle one after the other;

Nash equilibria: one starts
now, one during first t.u.

Player 1
Player 2

Nash equilibria need not exist in this setting.

5n − 1

[KP12] Koutsoupias, Papakonstantinopoulou. Contention Issues in Congestion Games. ICALP’12, p. 623-635. Springer, 2012.
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Partial-observation strategies (with Arthur Dumas and Ocan Sankur)
Preliminary results:

Nash equilibria always exist;
the constrained Nash-equilibrium problem is decidable.

Conjecture
There exists a unique symmetric mixed Nash equilibrium in series-parallel
networks.

[KP12] Koutsoupias, Papakonstantinopoulou. Contention Issues in Congestion Games. ICALP’12, p. 623-635. Springer, 2012.



Future works

Congestion impacting travel times (with Stéphane Le Roux and Ocan Sankur)

Partial-observation strategies (with Arthur Dumas and Ocan Sankur)
Preliminary results:

Nash equilibria always exist;
the constrained Nash-equilibrium problem is decidable.

Conjecture
There exists a unique symmetric mixed Nash equilibrium in series-parallel
networks.

[KP12] Koutsoupias, Papakonstantinopoulou. Contention Issues in Congestion Games. ICALP’12, p. 623-635. Springer, 2012.



Future works

Congestion impacting travel times (with Stéphane Le Roux and Ocan Sankur)

Partial-observation strategies (with Arthur Dumas and Ocan Sankur)

[KP12] Koutsoupias, Papakonstantinopoulou. Contention Issues in Congestion Games. ICALP’12, p. 623-635. Springer, 2012.


	Introduction
	Computing PoA in series-parallel networks
	Computing PoA for non-blind strategies
	Towards timed atomic network congestion games
	Conclusion

