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From word to tree automata

Derived language [KSV06]

Given L ⊆ Σω, we let ∆L be the set of trees all of whose infinite branches are labelled
with words in L.

If L is accepted by B, is ∆L accepted by some tree automaton C?

Natural construction for deterministic automata
If δB(q, σ) = q′, we let δC(q, σ) = (q′, q′). ✓

Natural construction for non-deterministic automata
We let δC(q, σ) = {(q′, q′′) | q′, q′′ ∈ δB(q, σ)}. ✗

[KSV06] Kupferman, Safra, Vardi. Relating word and tree automata. Annals Pure & Applied Logic, 138(1-3):126-146, 2006.
[BKKS13] Boker et al. Nondeterminism in the Presence of a Diverse or Unknown Future. In ICALP’13, p. 89-100. Springer, 2013.
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Reactive synthesis
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Controller
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[HP06] Henzinger, Piterman. Solving Games Without Determinization. In CSL 2006, p. 395-410. Springer, 2006.
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Reactive synthesis

Environment
Controller

i1 = a
o1 = α

i2 = b
o2 = α

i3 = b

o3 = β

...

...

G
E C

a, b

α, β

Controller wins if, and only if, i1 o1 i2 o2 i3 o3 . . . ∈ L

Good-for-games automata [HP06]

An automaton A on alphabet Σ is good-for-games if for any two-player zero-sum
game G with Σ-labelled transitions and winning condition L(A), the games G and
G ×A have the same winner.

[HP06] Henzinger, Piterman. Solving Games Without Determinization. In CSL 2006, p. 395-410. Springer, 2006.



History-deterministic automata

Letter game (aka. monitor game)
The letter game ona word automaton A is a 2-player game played as follows:

initially, a token is placed on the (unique, wlog) initial state of A;
iteratively, and ad infinitum:

Adam proposes a letter σ in Σ;
Eve moves the token along a σ-transition in A.

In this process, Adam defines a word w , and Eve builds an run π of A on w .
Adam wins if w is accepted by A and π is not an accepting run; Eve wins othw.

History-deterministic automata [HP06,Col09]

Automaton A is history-deterministic if Eve has a winning strategy (called resolver) in
the letter game.

[HP06] Henzinger, Piterman. Solving Games Without Determinization. In CSL 2006, p. 395-410. Springer, 2006.
[Col09] Colcombet. The Theory of Stabilisation Monoids and Regular Cost Functions. In ICALP’09, p. 139-150. Springer, 2009.
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History-deterministic automata

Example
This co-Büchi automaton accepting {w | |w |b < ∞} is history-deterministic:

q0 q1

a, b

a

b

a

Resolver: always go to q1 when reading a in q0.

Determinizable-by-pruning automata [AKL10]

An automaton A if determinizable-by-pruning if a language-equivalent deterministic
automaton can be obtained from A by removing some transitions.

Obviously, determinizability-by-pruning implies history-determinism.

[AKL10] Aminof, Kupferman, Lampert. Reasoning about online algorithms with weighted automata. ACM Trans. Alg. 6(2):28. ACM, 2010.
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History-deterministic automata

Example
This Büchi automaton accepting {w | |w |b < ∞} is not history-deterministic:

q0 q1

a, b

a

a

Eve does not win the letter game:
Adam plays letter a as long as the token is in q0;
If Eve never move to q1, she looses; otherwise, from q1, Adam propose suffix baω.
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Results for ω-automata

Theorem ([HP06,BKKS13,BL19])
Good-for-treeness, good-for-gameness and history-determinism are equivalent.

Determinizability-by-pruning is stronger.

Proof
history-determinism implies good-for-gameness and game-for-treeness: the resolver
can be used to resolve non-determinism.
The other direction is a bit more involved.
That determinizability-by-pruning is stronger is shown with the next example.

[HP06] Henzinger, Piterman. Solving Games Without Determinization. In CSL 2006, p. 395-410. Springer, 2006.
[BKKS13] Boker et al. Nondeterminism in the Presence of a Diverse or Unknown Future. In ICALP’13, p. 89-100. Springer, 2013.
[BL19] Boker, Lehtinen. Good for Games Automata: From Nondeterminism to Alternation. In CONCUR’19, p 19:1-19:16. LZI, 2019.
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History-deterministic automata

Example
This Büchi automaton accepting [(aaa+ aba)∗ · (aaa aaa+ aba aba)]ω is
history-deterministic, but not determinizable-by-pruning:

q0

q1

q2

p

g

a b

a a

a

a

a
a

b
a

a

b

a

a
a

b

a

Resolver:
In q0, go to q1 if we just read aaa,
otherwise, go to q2.

[BKKS13] Boker et al. Nondeterminism in the Presence of a Diverse or Unknown Future. In ICALP’13, p 89-100. Springer, 2013.
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Deciding history-determinism

Example (Hardness)
If A is deterministic, the automaton below is history-deterministic (and
determinizable-by-pruning) if, and only if, L(B) ⊆ L(A).

q0

q1

q2

A

B

a

a

a

a

b

b

a

a

[LZ22] Lehtinen, Zimmermann. Good-for-games ω-pushdown automata. LMCS 18(1):3. 2022.



Deciding history-determinism: k-token games

k-token games
Given an automaton A, the k-token game Gk(A) on A runs as follows:

initially, k tokens of Adam and one token of Eve are on the initial state of A;
repeatedly, ad infinitum:

Adam proposes a letter σ ∈ Σ;
Eve moves her token along a σ-transition;
Adam moves his k tokens along σ-transitions.

Eve wins if either Adam fails to produce an accepting run, or if she produces an
accepting run.

[BK18] Bagnol and Kuperberg. Büchi Good-for-game Automata are Efficiently Recognizable. In FSTTCS’18, p. 16:1-16:14. LZI, 2018.
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Lemma
If A is history-deterministic, then Eve wins Gk(A).

Lemma
There exists a non-history-deterministic automaton B for which Eve wins G1(B).

Proof

p q r

a, b a a, b

a, b b

Adam wins the letter game: play a until Eve moves to q; then play baω;
Eve wins the 1-token game: follow Adam’s token.

[BK18] Bagnol and Kuperberg. Büchi Good-for-game Automata are Efficiently Recognizable. In FSTTCS’18, p. 16:1-16:14. LZI, 2018.
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Deciding history-determinism: k-token games

Lemma
Eve wins G2(A) if, and only if, she wins Gk(A) for all k ≥ 2.

Proof
By induction on k :

a1 a2 a3 a4 a5 a6 a7 e

Gk(A)

a1 a2 a3 a4 a5 a6 e

τk

G2(A)

e a7 e

τ2

Gk+1(A)

[BK18] Bagnol and Kuperberg. Büchi Good-for-game Automata are Efficiently Recognizable. In FSTTCS’18, p. 16:1-16:14. LZI, 2018.

[BKLS20] Boker et al. On Succinctness and Recognisability of Alternating Good-for-Games Automata. arXiv preprint 2002.07278.
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Deciding history-determinism: k-token games

Lemma
Eve wins G2(A) if, and only if, she wins Gk(A) for all k ≥ 2.

Theorem (BK19,BKLS20)
For Büchi and co-Büchi acceptance conditions, A is history-deterministic if, and only if,
Eve wins the 2-token game.

Corollary
History-determinism is decidable in polynomial time for Büchi and co-Büchi automata.

[BK18] Bagnol and Kuperberg. Büchi Good-for-game Automata are Efficiently Recognizable. In FSTTCS’18, p. 16:1-16:14. LZI, 2018.
[BKLS20] Boker et al. On Succinctness and Recognisability of Alternating Good-for-Games Automata. arXiv preprint 2002.07278.
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More results and open problems on history-determinism

Deciding history-determinism
does the 2-token game characterize history-determinism for parity automata?

Expressiveness [KS15]

ω-automata can be determinized, so on expressiveness gap;
co-Büchi history-deterministic automata can be exponentially more succinct than
deterministic ones.
is there an equivalent gap for Büchi automata?

Extensions of automata [LZ20,BHL+22]

history-determinism is undecidable for pushdown automata;
history-deterministic timed automata are not determinizable.

[KS15] Kuperberg and Skrzypczak. On determinisation of good-for-games automata. In ICALP’15, p. 299-310. Springer, 2015.
[LZ20] Lehtinen and Zimmermann. Good-for-games ω-pushdown automata. In LICS’20, p. 689-702. IEEE, 2020.
[BHL+22] Bose et al. History-deterministic timed automata are not determinizable. In RP’22, p. 67-76. Springer, 2022.



More results and open problems on history-determinism

Deciding history-determinism
does the 2-token game characterize history-determinism for parity automata?

Expressiveness [KS15]

ω-automata can be determinized, so on expressiveness gap;
co-Büchi history-deterministic automata can be exponentially more succinct than
deterministic ones.
is there an equivalent gap for Büchi automata?

Extensions of automata [LZ20,BHL+22]

history-determinism is undecidable for pushdown automata;
history-deterministic timed automata are not determinizable.

[KS15] Kuperberg and Skrzypczak. On determinisation of good-for-games automata. In ICALP’15, p. 299-310. Springer, 2015.

[LZ20] Lehtinen and Zimmermann. Good-for-games ω-pushdown automata. In LICS’20, p. 689-702. IEEE, 2020.
[BHL+22] Bose et al. History-deterministic timed automata are not determinizable. In RP’22, p. 67-76. Springer, 2022.



More results and open problems on history-determinism

Deciding history-determinism
does the 2-token game characterize history-determinism for parity automata?

Expressiveness [KS15]

ω-automata can be determinized, so on expressiveness gap;
co-Büchi history-deterministic automata can be exponentially more succinct than
deterministic ones.
is there an equivalent gap for Büchi automata?

Extensions of automata [LZ20,BHL+22]

history-determinism is undecidable for pushdown automata;
history-deterministic timed automata are not determinizable.

[KS15] Kuperberg and Skrzypczak. On determinisation of good-for-games automata. In ICALP’15, p. 299-310. Springer, 2015.
[LZ20] Lehtinen and Zimmermann. Good-for-games ω-pushdown automata. In LICS’20, p. 689-702. IEEE, 2020.
[BHL+22] Bose et al. History-deterministic timed automata are not determinizable. In RP’22, p. 67-76. Springer, 2022.


	Introduction

