Nicolas Markey CNRS – IRISA (Univ. Rennes, France)

based on joint discussions with Uli, Sophie, Dylan, Hervé

Nicolas Markey CNRS – IRISA (Univ. Rennes, France)

```
Nicolas Markey
CNRS – IRISA (Univ. Rennes, France)
```



```
Nicolas Markey
CNRS – IRISA (Univ. Rennes, France)
```


Nicolas Markey CNRS – IRISA (Univ. Rennes, France)


```
Nicolas Markey
CNRS – IRISA (Univ. Rennes, France)
```

based on joint discussions with Uli, Sophie, Dylan, Hervé and on numerous external references.

On Succinctness and Recognisability of

Nicolas Markey CNRS – IRISA (Univ. Rennes, France)

based on joint discussions with Uli, Sophie, Dylan, and on numerous external references.

When a Little Nondeterminism Goes a Long Way: an Introduction to History-Determinism

Udi Boker. Reichman University, Herzliya, Israel

Karoliina Lehtinen. CNRS, Aix-Marseille Université, LIS, Marseille, France

History-deterministic automata are an intermediate automata model, in between deterministic and nondeterministic ones. An automaton is history-deterministic if its nondeterminism can be resolved on-the-fly, by only taking into acount the prefix of the word read so far. This restricted form of nondeterminism vields

Derived language [KSV06]

Given $L \subseteq \Sigma^{\omega}$, we let ΔL be the set of trees all of whose infinite branches are labelled with words in L.

Derived language [KSV06]

Given $L \subseteq \Sigma^{\omega}$, we let ΔL be the set of trees all of whose infinite branches are labelled with words in L.

If L is accepted by \mathcal{B} , is ΔL accepted by some tree automaton \mathcal{C} ?

Derived language [KSV06]

Given $L \subseteq \Sigma^{\omega}$, we let ΔL be the set of trees all of whose infinite branches are labelled with words in L.

If L is accepted by \mathcal{B} , is ΔL accepted by some tree automaton \mathcal{C} ?

Natural construction for deterministic automata If $\delta_{\mathcal{B}}(q, \sigma) = q'$, we let $\delta_{\mathcal{C}}(q, \sigma) = (q', q')$.

Derived language [KSV06]

Given $L \subseteq \Sigma^{\omega}$, we let ΔL be the set of trees all of whose infinite branches are labelled with words in L.

If L is accepted by \mathcal{B} , is ΔL accepted by some tree automaton \mathcal{C} ?

Natural construction for non-deterministic automata We let $\delta_{\mathcal{C}}(q, \sigma) = \{(q', q'') \mid q', q'' \in \delta_{\mathcal{B}}(q, \sigma)\}.$

Derived language [KSV06]

Given $L \subseteq \Sigma^{\omega}$, we let ΔL be the set of trees all of whose infinite branches are labelled with words in L.

If L is accepted by \mathcal{B} , is ΔL accepted by some tree automaton \mathcal{C} ?

Natural construction for non-deterministic automata We let $\delta_C(q, \sigma) = \{(q', q'') \mid q', q'' \in \delta_B(q, \sigma)\}.$

)

Derived language [KSV06]

Given $L \subseteq \Sigma^{\omega}$, we let ΔL be the set of trees all of whose infinite branches are labelled with words in L.

If L is accepted by \mathcal{B} , is ΔL accepted by some tree automaton \mathcal{C} ?

Natural construction for non-deterministic automata We let $\delta_C(q, \sigma) = \{(q', q'') \mid q', q'' \in \delta_B(q, \sigma)\}.$

From word to tree automata

Derived language [KSV06]

Given $L \subseteq \Sigma^{\omega}$, we let ΔL be the set of trees all of whose infinite branches are labelled with words in L.

If L is accepted by \mathcal{B} , is ΔL accepted by some tree automaton \mathcal{C} ?

Natural construction for non-deterministic automata We let $\delta_{\mathcal{C}}(q, \sigma) = \{(q', q'') \mid q', q'' \in \delta_{\mathcal{B}}(q, \sigma)\}.$

Good-for-trees automata [BKKS13]

A word automaton \mathcal{B} accepting some language L is good-for-trees if the associated tree automaton \mathcal{C} accepts ΔL .

[KSV06] Kupferman, Safra, Vardi. Relating word and tree automata. Annals Pure & Applied Logic, 138(1-3):126-146, 2006. [BKKS13] Boker *et al.* Nondeterminism in the Presence of a Diverse or Unknown Future. In ICALP'13, p. 89-100. Springer, 2013.

Environment Controller

Environment
$$i_1 = a$$

Controller

Environment	$i_1 = a$
Controller	$o_1 = \alpha$

Environment	$i_1 = a$	$i_2 = b$
Controller	$o_1 = \alpha$	

Environment	$i_1 = a$	$i_2 = b$
Controller	$o_1 = \alpha$	$o_2 = \alpha$

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ Controller $o_1 = \alpha$ $o_2 = \alpha$

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$

Environment	$i_1 = a$	$i_2 = b$	i ₃ = b	
Controller	$o_1 = \alpha$	$o_2 = \alpha$	$o_3 = \beta$	

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$...Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$...

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ \cdots Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$ \cdots

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$...Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$...

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Example

if L is defined by a deterministic automaton \mathcal{D} :

 $(\mathbf{G}(b \Rightarrow \mathbf{F} \beta))$

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ \cdots Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$ \cdots

 $\mathcal{G} \xrightarrow[\alpha,\beta]{a,b} \mathcal{C}$

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Example

if L is defined by a deterministic automaton \mathcal{D} :

- \bullet take product of ${\cal D}$ and ${\cal G}$
- solve the resulting game (in polynomial time).

 $(\mathbf{G}(b \Rightarrow \mathbf{F} \beta))$

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ \cdots Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$ \cdots

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Example

if L is defined by a deterministic automaton \mathcal{D} :

 $(\mathsf{G}(b \Rightarrow \mathsf{F} \beta))$

- \bullet take product of ${\cal D}$ and ${\cal G}$
- solve the resulting game (in polynomial time).

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ \cdots Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$ \cdots

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Example

if L is defined by a deterministic automaton \mathcal{D} :

- \bullet take product of ${\cal D}$ and ${\cal G}$
- solve the resulting game (in polynomial time).

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ \cdots Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$ \cdots

 $(\mathbf{G} \mathbf{F} b \iff \mathbf{G} \mathbf{F} \beta)$

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Example

if *L* is defined by non-determinstic automaton \mathcal{N} :

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ \cdots Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$ \cdots

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Example

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$ \cdots Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$ \cdots

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Example

Environment $i_1 = a$ $i_2 = b$ $i_3 = b$...Controller $o_1 = \alpha$ $o_2 = \alpha$ $o_3 = \beta$...

Controller wins if, and only if, $i_1 \ o_1 \ i_2 \ o_2 \ i_3 \ o_3 \ \ldots \in L$

Good-for-games automata [HP06]

An automaton \mathcal{A} on alphabet Σ is good-for-games if for any two-player zero-sum game \mathcal{G} with Σ -labelled transitions and winning condition $\mathcal{L}(\mathcal{A})$, the games \mathcal{G} and $\mathcal{G} \times \mathcal{A}$ have the same winner.

[HP06] Henzinger, Piterman. Solving Games Without Determinization. In CSL 2006, p. 395-410. Springer, 2006.

Letter game (aka. monitor game)

The letter game ona word automaton ${\mathcal A}$ is a 2-player game played as follows:

- initially, a token is placed on the (unique, wlog) initial state of A;
- iteratively, and *ad infinitum*:
 - Adam proposes a letter σ in Σ ;
 - Eve moves the token along a $\sigma\text{-transition}$ in $\mathcal{A}.$

In this process, Adam defines a word w, and Eve builds an run π of ${\cal A}$ on w.

• Adam wins if w is accepted by \mathcal{A} and π is not an accepting run; Eve wins othw.

Letter game (aka. monitor game)

The letter game ona word automaton ${\mathcal A}$ is a 2-player game played as follows:

- initially, a token is placed on the (unique, wlog) initial state of A;
- iteratively, and *ad infinitum*:
 - Adam proposes a letter σ in Σ ;
 - Eve moves the token along a σ -transition in \mathcal{A} .

In this process, Adam defines a word w, and Eve builds an run π of $\mathcal A$ on w.

• Adam wins if w is accepted by \mathcal{A} and π is not an accepting run; Eve wins othw.

History-deterministic automata [HP06,Col09]

Automaton \mathcal{A} is history-deterministic if Eve has a winning strategy (called resolver) in the letter game.

[HP06] Henzinger, Piterman. Solving Games Without Determinization. In CSL 2006, p. 395-410. Springer, 2006.
 [Col09] Colcombet. The Theory of Stabilisation Monoids and Regular Cost Functions. In ICALP'09, p. 139-150. Springer, 2009.

Example

This co-Büchi automaton accepting $\{w \mid |w|_b < \infty\}$ is history-deterministic:

Example

This co-Büchi automaton accepting $\{w \mid |w|_b < \infty\}$ is history-deterministic:

Resolver: always go to q_1 when reading a in q_0 .

Example

This co-Büchi automaton accepting $\{w \mid |w|_b < \infty\}$ is history-deterministic:

Resolver: always go to q_1 when reading a in q_0 .

Determinizable-by-pruning automata [AKL10]

An automaton \mathcal{A} if determinizable-by-pruning if a language-equivalent deterministic automaton can be obtained from \mathcal{A} by removing some transitions.

[AKL10] Aminof, Kupferman, Lampert. Reasoning about online algorithms with weighted automata. ACM Trans. Alg. 6(2):28. ACM, 2010

Example

This co-Büchi automaton accepting $\{w \mid |w|_b < \infty\}$ is history-deterministic:

Resolver: always go to q_1 when reading a in q_0 .

Determinizable-by-pruning automata [AKL10]

An automaton \mathcal{A} if determinizable-by-pruning if a language-equivalent deterministic automaton can be obtained from \mathcal{A} by removing some transitions.

Obviously, determinizability-by-pruning implies history-determinism.

[AKL10] Aminof, Kupferman, Lampert. Reasoning about online algorithms with weighted automata. ACM Trans. Alg. 6(2):28. ACM, 2010

Example

This Büchi automaton accepting $\{w \mid |w|_b < \infty\}$ is not history-deterministic:

Example

This Büchi automaton accepting $\{w \mid |w|_b < \infty\}$ is not history-deterministic:

Eve does not win the letter game:

- Adam plays letter a as long as the token is in q_0 ;
- If Eve never move to q_1 , she looses; otherwise, from q_1 , Adam propose suffix ba^{ω} .

Results for ω -automata

Theorem ([HP06,BKKS13,BL19])

Good-for-treeness, good-for-gameness and history-determinism are equivalent.

Determinizability-by-pruning is stronger.

[HP06] Henzinger, Piterman. Solving Games Without Determinization. In CSL 2006, p. 395-410. Springer, 2006.
 [BKKS13] Boker *et al.* Nondeterminism in the Presence of a Diverse or Unknown Future. In ICALP'13, p. 89-100. Springer, 2013.
 [BL19] Boker, Lehtinen. Good for Games Automata: From Nondeterminism to Alternation. In CONCUR'19, p 19:1-19:16. LZI, 2019.

Results for ω -automata

Theorem ([HP06,BKKS13,BL19])

Good-for-treeness, good-for-gameness and history-determinism are equivalent.

Determinizability-by-pruning is stronger.

Proof

- history-determinism implies good-for-gameness and game-for-treeness: the resolver can be used to resolve non-determinism.
- The other direction is a bit more involved.
- That determinizability-by-pruning is stronger is shown with the next example.

[HP06] Henzinger, Piterman. Solving Games Without Determinization. In CSL 2006, p. 395-410. Springer, 2006.
 [BKKS13] Boker *et al.* Nondeterminism in the Presence of a Diverse or Unknown Future. In ICALP'13, p. 89-100. Springer, 2013.
 [BL19] Boker, Lehtinen. Good for Games Automata: From Nondeterminism to Alternation. In CONCUR'19, p 19:1-19:16. LZI, 2019.

Example

This Büchi automaton accepting $[(aaa + aba)^* \cdot (aaa aaa + aba aba)]^{\omega}$ is history-deterministic, but not determinizable-by-pruning:

[BKKS13] Boker et al. Nondeterminism in the Presence of a Diverse or Unknown Future. In ICALP'13, p 89-100. Springer, 2013.

Example

This Büchi automaton accepting $[(aaa + aba)^* \cdot (aaa aaa + aba aba)]^{\omega}$ is history-deterministic, but not determinizable-by-pruning:

[BKKS13] Boker et al. Nondeterminism in the Presence of a Diverse or Unknown Future. In ICALP'13, p 89-100. Springer, 2013.

Deciding history-determinism

Example (Hardness)

If \mathcal{A} is deterministic, the automaton below is history-deterministic (and determinizable-by-pruning) if, and only if, $\mathcal{L}(\mathcal{B}) \subseteq \mathcal{L}(\mathcal{A})$.

[LZ22] Lehtinen, Zimmermann. Good-for-games ω -pushdown automata. LMCS 18(1):3. 2022.

k-token games

Given an automaton \mathcal{A} , the *k*-token game $\mathcal{G}_k(\mathcal{A})$ on \mathcal{A} runs as follows:

- initially, k tokens of Adam and one token of Eve are on the initial state of A;
- repeatedly, ad infinitum:
 - Adam proposes a letter $\sigma \in \Sigma$;
 - Eve moves her token along a σ -transition;
 - Adam moves his k tokens along σ -transitions.
- Eve wins if either Adam fails to produce an accepting run, or if she produces an accepting run.

Lemma

If \mathcal{A} is history-deterministic, then Eve wins $\mathcal{G}_k(\mathcal{A})$.

Lemma

If \mathcal{A} is history-deterministic, then Eve wins $\mathcal{G}_k(\mathcal{A})$.

Lemma

There exists a non-history-deterministic automaton \mathcal{B} for which Eve wins $\mathcal{G}_1(\mathcal{B})$.

[BK18] Bagnol and Kuperberg. Büchi Good-for-game Automata are Efficiently Recognizable. In FSTTCS'18, p. 16:1-16:14. LZI, 2018.

Lemma

If \mathcal{A} is history-deterministic, then Eve wins $\mathcal{G}_k(\mathcal{A})$.

Lemma

There exists a non-history-deterministic automaton \mathcal{B} for which Eve wins $\mathcal{G}_1(\mathcal{B})$.

[BK18] Bagnol and Kuperberg. Büchi Good-for-game Automata are Efficiently Recognizable. In FSTTCS'18, p. 16:1-16:14. LZI, 2018.

Lemma

Eve wins $\mathcal{G}_2(\mathcal{A})$ if, and only if, she wins $\mathcal{G}_k(\mathcal{A})$ for all $k \geq 2$.

Lemma

Eve wins $\mathcal{G}_2(\mathcal{A})$ if, and only if, she wins $\mathcal{G}_k(\mathcal{A})$ for all $k \geq 2$.

Lemma

Eve wins $\mathcal{G}_2(\mathcal{A})$ if, and only if, she wins $\mathcal{G}_k(\mathcal{A})$ for all $k \geq 2$.

Lemma

Eve wins $\mathcal{G}_2(\mathcal{A})$ if, and only if, she wins $\mathcal{G}_k(\mathcal{A})$ for all $k \geq 2$.

Lemma

Eve wins $\mathcal{G}_2(\mathcal{A})$ if, and only if, she wins $\mathcal{G}_k(\mathcal{A})$ for all $k \geq 2$.

Lemma

Eve wins $\mathcal{G}_2(\mathcal{A})$ if, and only if, she wins $\mathcal{G}_k(\mathcal{A})$ for all $k \geq 2$.

Lemma

Eve wins $\mathcal{G}_2(\mathcal{A})$ if, and only if, she wins $\mathcal{G}_k(\mathcal{A})$ for all $k \geq 2$.

Theorem (BK19, BKLS20)

For Büchi and co-Büchi acceptance conditions, A is history-deterministic if, and only if, Eve wins the 2-token game.

[BK18] Bagnol and Kuperberg. Büchi Good-for-game Automata are Efficiently Recognizable. In FSTTCS'18, p. 16:1-16:14. LZI, 2018. [BKLS20] Boker *et al.* On Succinctness and Recognisability of Alternating Good-for-Games Automata. arXiv preprint 2002.07278.

Lemma

Eve wins $\mathcal{G}_2(\mathcal{A})$ if, and only if, she wins $\mathcal{G}_k(\mathcal{A})$ for all $k \geq 2$.

Theorem (BK19,BKLS20)

For Büchi and co-Büchi acceptance conditions, A is history-deterministic if, and only if, Eve wins the 2-token game.

Corollary

History-determinism is decidable in polynomial time for Büchi and co-Büchi automata.

[BK18] Bagnol and Kuperberg. Büchi Good-for-game Automata are Efficiently Recognizable. In FSTTCS'18, p. 16:1-16:14. LZI, 2018. [BKLS20] Boker *et al.* On Succinctness and Recognisability of Alternating Good-for-Games Automata. arXiv preprint 2002.07278.

More results and open problems on history-determinism

Deciding history-determinism

• does the 2-token game characterize history-determinism for parity automata?

More results and open problems on history-determinism

Deciding history-determinism

• does the 2-token game characterize history-determinism for parity automata?

Expressiveness [KS15]

- ω -automata can be determinized, so on expressiveness gap;
- co-Büchi history-deterministic automata can be exponentially more succinct than deterministic ones.
- is there an equivalent gap for Büchi automata?

[KS15] Kuperberg and Skrzypczak. On determinisation of good-for-games automata. In ICALP'15, p. 299-310. Springer, 2015.

More results and open problems on history-determinism

Deciding history-determinism

• does the 2-token game characterize history-determinism for parity automata?

Expressiveness [KS15]

- ω -automata can be determinized, so on expressiveness gap;
- co-Büchi history-deterministic automata can be exponentially more succinct than deterministic ones.
- is there an equivalent gap for Büchi automata?

Extensions of automata [LZ20,BHL+22]

- history-determinism is undecidable for pushdown automata;
- history-deterministic timed automata are not determinizable.

[KS15] Kuperberg and Skrzypczak. On determinisation of good-for-games automata. In ICALP'15, p. 299-310. Springer, 2015. [LZ20] Lehtinen and Zimmermann. Good-for-games ω -pushdown automata. In LICS'20, p. 689-702. IEEE, 2020. [BHL⁺22] Bose *et al.* History-deterministic timed automata are not determinizable. In RP'22, p. 67-76. Springer, 2022.