Temporal logic with forgettable past

Nicolas Markey

CNRS - IRISA (Univ. Rennes, France)
joint work with my former PhD advisors
François Laroussinie and Philippe Schnoebelen

Temporal logic with forgettable past

Nicolas Markey
CNRS - IRISA (Univ. Rennes, France)
joint work with my former PhD advisors
François Laroussinie and Philippe Schnoebelen

(Linear-time) temporal logic with forgettable past

(Linear-time) temporal logic with forgettable past

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$
- temporal modalities:

"next $\varphi^{\prime \prime}$
" φ until $\psi "$

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$
- temporal modalities:

" φ until ψ "

$\mathbf{F} \varphi \equiv \operatorname{true} \mathbf{U} \varphi$

$\mathbf{G} \varphi \equiv \neg \mathbf{F} \neg \varphi$

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$
- temporal modalities:

"next $\varphi^{\prime \prime}$
" φ until $\psi "$

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$
- temporal modalities:

"next φ "
$" \varphi$ until $\psi "$

$\varphi \mathbf{S} \psi$
"previously φ "
" φ since ψ "

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$
- temporal modalities:

Example

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$
- temporal modalities:

Example

$\mathbf{G}(\neg$ submit $) \Rightarrow \mathbf{G}(\neg$ accepted $)$

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$
- temporal modalities:

Example

$\neg \mathbf{F}\left(\right.$ accepted $\wedge \mathbf{X}^{-1} \mathrm{G}^{-1} \neg$ submit $)$

(Linear-time) temporal logic with forgettable past

- atomic propositions: $\bigcirc, \bigcirc, \ldots$
- Boolean combinators: $\neg \varphi, \varphi \vee \psi, \varphi \wedge \psi, \ldots$
- temporal modalities:

Example

$\neg \mathbf{F}\left(\right.$ accepted $\wedge \mathbf{X}^{-1} \mathbf{G}^{-1} \neg$ submit $) \equiv_{i} \neg((\neg$ submit $) \mathbf{U}$ accepted $)$

(Linear-time) temporal logic with forgettable past

Theorem (Sistla, Clarke (1982) + Vardi, Wolper (1986))

Model checking PastLTL and LTL is PSPACE-complete.

PastLTL and LTL formulas can be compiled into equivalent exponential-size Büchi automata.

(Linear-time) temporal logic with forgettable past

- operator Now:

(Linear-time) temporal logic with forgettable past

- operator Now:


```
Example
\neg F F(accepted }\wedge\mp@subsup{\mathbf{X}}{}{-1}\mp@subsup{\mathbf{G}}{}{-1}\neg\mathrm{ submit )})\equiv\neg((\neg\mathrm{ submit) U accepted)
```


(Linear-time) temporal logic with forgettable past

- operator Now:

> Example
> $\neg \mathbf{N}\left(\right.$ accepted $\wedge \mathbf{X}^{-1} \mathrm{G}^{-1} \neg$ submit $\left.)\right) \equiv \neg((\neg$ submit $) \mathbf{U}$ accepted $)$

Theorem

Any formula in PastLTL+Now can be compiled into an equivalent exponential-size alternating Büchi automaton.
Model checking PastLTL+Now is EXPSPACE-complete.

(Linear-time) temporal logic with forgettable past

Theorem (Kamp (1968) + Gabbay, Pnueli, Shellah, Stavi (1980))

PastLTL and LTL are equally expressive.

 10s anger

johan mithons $4223 e^{12}$ kamp

(Linear-time) temporal logic with forgettable past

Theorem

PastLTL can be exponentially more succinct than LTL.

(Linear-time) temporal logic with forgettable past

Theorem

PastLTL can be exponentially more succinct than LTL.

Proof

R_{n} : "any state that agrees with the initial state on propositions p_{1} to p_{n} also agrees on $p_{0}{ }^{\prime \prime}$

(Linear-time) temporal logic with forgettable past

Theorem

PastLTL can be exponentially more succinct than LTL.

Proof

R_{n} : "any state that agrees with the initial state on propositions p_{1} to p_{n} also agrees on $p_{0}{ }^{\prime \prime}$

- property R_{n} can be expressed as a "small" PastLTL formula;

(Linear-time) temporal logic with forgettable past

Theorem

PastLTL can be exponentially more succinct than LTL.

Proof

R_{n} : "any state that agrees with the initial state on propositions p_{1} to p_{n} also agrees on $p_{0}{ }^{\prime \prime}$

- property R_{n} can be expressed as a "small" PastLTL formula;
R_{n}^{\prime} : "any two states that agree on propositions p_{1} to p_{n} also agree on $p_{0}{ }^{\prime \prime}$
- property R_{n}^{\prime} cannot be expressed as a "small" (Past)LTL formula.

