Synchronizing automata with LTL constraints

Nicolas Markey
IRISA, CNRS & Inria & Univ. Rennes, France

joint work with Nathalie Bertrand and Hugo Francon.
Coffee machine
Coffee machine

sugar? yes/no

always ends in the sugar state
Coffee machine

- sugar?
- more sugar?

[Green checkmark] Always ends in the sugar state.
Coffee machine

sugar?

more sugar?

milk?
Coffee machine

- sugar?
 - yes
 - no

- more sugar?
 - yes
 - no

- milk?
 - yes
 - no

"yes" always ends in the sugar state.
Coffee machine

Insert coin

“yes” always ends in the sugar state
Coffee machine

insert coin → sugar
 yes → more sugar
 no → milk
 yes/no → sugar
 yes/no → milk

always ends in the sugar state
Coffee machine

insert coin

sugar

yes

more sugar

no

yes/no

milk

yes/no

“no · yes · no · yes” always ends in the sugar state
Synchronizing words

Definition

A finite-state automaton $\mathcal{A} = (S, \Sigma, \delta)$ is synchronizable if there exists $w \in \Sigma^*$ such that $\delta(s, w) = \delta(s', w)$ for all $s, s' \in S$.

In (most of) the sequel, automata are deterministic and complete.
Synchronizing words

Definition
A finite-state automaton \(\mathcal{A} = (S, \Sigma, \delta) \) is **synchronizable** if there exists \(w \in \Sigma^* \) such that \(\delta(s, w) = \delta(s', w) \) for all \(s, s' \in S \).

In (most of) the sequel, automata are **deterministic** and **complete**.

Proposition

Synchronizability can be decided in polynomial space.
Synchronizing words

Definition
A finite-state automaton \(\mathcal{A} = (S, \Sigma, \delta) \) is **synchronizable** if there exists \(w \in \Sigma^* \) such that \(\delta(s, w) = \delta(s', w) \) for all \(s, s' \in S \).

In (most of) the sequel, automata are deterministic and complete.

Proposition
Synchronizability can be decided in **polynomial space**.

Proof
Consider the **power automaton** \(\mathcal{P}(\mathcal{A}) = (S', \Sigma, \delta') \):
- \(S' = 2^S \);
- \(\delta'(P, \sigma) = \{ \delta(s, \sigma) \mid s \in P \} \).

Non-deterministically look for a path from \(S \) to a singleton state.
Deciding the existence of a synchronizing word

Theorem (Čer64)

Synchronizability can be decided in non-deterministic log. space.

Deciding the existence of a synchronizing word

Theorem (Čer64)

Synchronizability can be decided in non-deterministic log. space.

Proof

Lemma

A is synchronizable iff

for all s_i, s_j, there exists w_{ij} such that $\delta(s_i, w_{ij}) = \delta(s_j, w_{ij})$.

Deciding the existence of a synchronizing word

Theorem (Čer64)

Synchronizability can be decided in *non-deterministic log. space*.

Proof

Lemma

A is synchronizable iff

\[
\text{for all } s_i, s_j, \text{ there exists } w_{ij} \text{ such that } \delta(s_i, w_{ij}) = \delta(s_j, w_{ij}).
\]

Deciding the existence of a synchronizing word

Theorem (Čer64)

Synchronizability can be decided in non-deterministic log. space.

Proof

Lemma

A is synchronizable iff

for all \(s_i, s_j \), there exists \(w_{ij} \) such that \(\delta(s_i, w_{ij}) = \delta(s_j, w_{ij}) \).

\[\begin{array}{c}
S_0 \\
S_1 \\
S_2 \\
S_3 \\
\end{array} \rightarrow \begin{array}{c}
S_1 \\
S_2 \\
S_3 \\
\end{array} \]

\[w_{01} \]

Deciding the existence of a synchronizing word

Theorem (Čer64)

Synchronizability can be decided in non-deterministic log. space.

Proof

Lemma

\(A \) is synchronizable iff

for all \(s_i, s_j \), there exists \(w_{ij} \) such that \(\delta(s_i, w_{ij}) = \delta(s_j, w_{ij}) \).

Deciding the existence of a synchronizing word

Theorem (Čer64)

Synchronizability can be decided in non-deterministic log. space.

Proof

Lemma

A is synchronizable iff

for all \(s_i, s_j \), there exists \(w_{ij} \) such that \(\delta(s_i, w_{ij}) = \delta(s_j, w_{ij}) \).

Deciding the existence of a synchronizing word

Theorem (Čer64)

Synchronizability can be decided in non-deterministic log. space.

Proof

Lemma

A is synchronizable iff

for all \(s_i, s_j \), there exists \(w_{ij} \) such that \(\delta(s_i, w_{ij}) = \delta(s_j, w_{ij}) \).

This gives a synchronizing word (if any) of size \(O(n^3) \).

Černý's Conjecture

The shortest synchronizing word (if any) has size at most \((n - 1)^2\).

Synchronizing words in different contexts

- Subset-synchronization;

Theorem (Rys83, Mar10)

Subset-synchronizability in complete DFAs is \textit{PSPACE-complete}.
Synchronizability in NFAs is \textit{PSPACE-complete}.
Careful-synchronizability in incomplete DFAs is \textit{PSPACE-complete}.

Synchronizing words in different contexts

- Subset-synchronization;
- Synchronization in MDPs and probabilistic automata;

Theorem (Shi14)

Almost-sure synchronizability in MDPs is PSPACE-complete. Almost-sure synchronizability in PAs is undecidable.

Synchronizing words in different contexts

- Subset-synchronization;
- Synchronization in MDPs and probabilistic automata;
- Synchronization in timed automata;

Theorem (Shi14)

*Synchronizability in timed automata is **PSPACE-complete**.*

Synchronizing words in different contexts

- Subset-synchronization;
- Synchronization in MDPs and probabilistic automata;
- Synchronization in timed automata;
- Synchronization with energy constraints;

Theorem (Shi14)

Synchronizability under energy constraints is PSPACE-complete.

Synchronizing words in different contexts

- Subset-synchronization;
- Synchronization in MDPs and probabilistic automata;
- Synchronization in timed automata;
- Synchronization with energy constraints;
- Synchronization with dynamic constraints;
- Synchronization with conditions on the order of states (e.g. last occurrence of s must precede first occurrence of s').

Theorem (Wol20)

Synchronizability with constraint \(\text{last}(s) < \text{last}(s') \) is in NP.
Synchronizability with constraint \(\text{last}(s) < \text{first}(s') \) is PSPACE-complete.

Linear-time Temporal Logic

- atomic propositions: ●, ●, ...
- Boolean combinators: ¬φ, φ ∨ ψ, φ ∧ ψ, ...
- temporal modalities:
 - Xφ
 - φ U ψ
 - true U φ ≡ F φ
 - ¬F ¬φ ≡ G φ

“next φ”
“φ until ψ”
“eventually φ”
“always φ”

Linear-time Temporal Logic

- atomic propositions: ○, ○, ...
- Boolean combinators: \(\neg \varphi, \varphi \lor \psi, \varphi \land \psi \), ...
- temporal modalities:
 - \(X \varphi \) → next \(\varphi \)
 - \(\varphi U \psi \) → \(\varphi \) until \(\psi \)
 - true \(U \varphi \equiv F \varphi \) → eventually \(\varphi \)
 - \(\neg F \neg \varphi \equiv G \varphi \) → always \(\varphi \)

Example

\text{last}(s) < \text{first}(s') \) can be expressed (roughly) as

\[
(\neg s') U (s \land X G \neg s)
\]

Synchronizing words with LTL constraints

Theorem (VW86,DV13)

For any LTL formula φ, there exists an exponential-size NFA F_φ (with a single accepting state q_f) accepting exactly the finite traces satisfying φ.

--

Synchronizing words with LTL constraints

Theorem (VW86,DV13)

For any LTL formula φ, there exists an exponential-size NFA F_φ (with a single accepting state q_f) accepting exactly the finite traces satisfying φ.

Theorem

Synchronizability with LTL constraints is PSPACE-complete.

Synchronizing words with LTL constraints

Theorem (VW86,DV13)

For any LTL formula \(\varphi \), there exists an exponential-size NFA \(F_\varphi \) (with a single accepting state \(q_f \)) accepting exactly the finite traces satisfying \(\varphi \).

Theorem

Synchronizability with LTL constraints is \textit{PSPACE-complete}.

Proof

- (Non-deterministically) look for a path in the powerset automaton \(\mathcal{P}(\mathcal{A} \otimes F_\varphi) \) to a singleton-state \(\{s, q_f\} \).
- Hardness follows from [Wol20].

Conclusion and future work

Conclusion

- synchronizability with LTL constraints
- **PSPACE-complete** in the general case;
- remains **PSPACE-complete** for
 - subset-synchronizability;
 - fixed LTL formulas;
 - small fragments of LTL (such as \(L^+(G) \)).

Possible directions for future work

- suitable restrictions of LTL with lower complexity;
 (little hope...)
- synchronization with branching-time logics \([CD16,Wol20]\)

Conclusion and future work

Conclusion
- synchronizability with LTL constraints
- **PSPACE-complete** in the general case;
- remains **PSPACE-complete** for
 - subset-synchronizability;
 - fixed LTL formulas;
 - small fragments of LTL (such as $L^+(G)$).

Possible directions for future work
- suitable restrictions of LTL with lower complexity;
 - (little hope...)
- synchronization with branching-time logics [CD16,Wol20]