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Reasonning about strategic behaviours

Strategy logic [CHPo7,MMV10]

LTL + explicit quantification and assignment of strategies:

doa. Vopg.assign(A — oa, B — 0B).%A

[CHPo7] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.
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Joa. Vop.assign(A — g4, B — 0p).%A

/ / \

. : Assignment
Quantification 'S : LTL
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Example (Client-server interaction)
= Jdos. doc. assign(S — os).

5;\7 ’_g (G mutual exclusion A
m v G A assign(C — o). Faccessc)
— c
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Example (Characterisation of Nash equilibria)
(01, ...,0n) is a Nash equilibrium iff

assign(Agt — (o1, ...0,)). /\ ((3o'.assign(A; — 0l). pi) = ¢i.)
A,'EAgt
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Reasonning about strategic behaviours

Strategy logic [CHPo7,MMV10]

LTL + explicit quantification and assignment of strategies:

Joa. Vop.assign(A — g4, B — 0p).%A

/ / \

. : Assignment
Quantification 'S : LTL
ver strategies o S ropert
overs g to players property

Theorem ([DLM10])
SL model-checking is decidable (TOWER-complete).

[CHPo7] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.
[DLM10] Da Costa, Laroussinie, Markey. ATL with Strategy Contexts: Expressiveness and model checking. FSTTCS, 2010.



Q uantified CTL [ES84,Kupgs,Freo1,DLM12]

QCTL extends CTL with propositional quantifiers

Jp. ¢ meansthat there exists a labelling of the model
with p under which ¢ holds.

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kupgs] Kupferman. Augmenting Branching Temporal Logics with Existential... CAV, 1995.
[Freo1] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.
[DLM12] Da Costa, Laroussinie, Markey. Quantified CTL:... CONCUR, 2012.
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Q uantified CTL [ES84,Kupgs,Freo1,DLM12]

QCTL extends CTL with propositional quantifiers

Jp. ¢ meansthat there exists a labelling of the model
with p under which ¢ holds.

EFO A - (Elp [EFO A p) AEFO A ﬁp)]) = uniq(O)
/Q\ ~ true if we label the Kripke structure;
A\Jd ~ false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kupgs] Kupferman. Augmenting Branching Temporal Logics with Existential... CAV, 1995.
[Freo1] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.
[DLM12] Da Costa, Laroussinie, Markey. Quantified CTL: ... CONCUR, 2012.
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Model checking Strategy Logic

Theorem
Strategy logic can be translated into QCTL". J

Q @ players has moves my, .., mp;

@ from the transition table, we can compute the
Q set Next(©, A, m;) of states that can be
reached from © when player A plays m;.

SL can be translated as follows:
@ encoding of Jo. ¥

Imf 3ms ... ImT. AG(mf < [\ =m?) A
@ encoding of assign(«). ¢ (for full binding «:: Agt — Strat):

A[G(g A m?™ = XNext(q, A mi™)) = ¢]
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QCTL with tree semantics

Theorem
@ Model checking QCTL with k quantifiers in the tree
semantics is k-EXPTIME-complete.

@ Satisfiability of QCTL with k quantifiers in the tree
semantics is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

8(90,0) = (g0, 91) V (a1, 90)

(g0, ) = (g1, q1)

8(q0,9) = (a2, 32) W ; .
8(q1,®) = (g1, 1) /\ g{\
(5(q2,®) = (qz, qz) g g 9 9 91 qi

This automaton corresponds to EO U




QCTL with tree semantics

Theorem
@ Model checking QCTL with k quantifiers in the tree
semantics is k-EXPTIME-complete.

@ Satisfiability of QCTL with k quantifiers in the tree
semantics is (k+1)-EXPTIME-complete.

Proof
@ polynomial-size automata for CTL;

@ quantification is handled by projection, which first requires
removing alternation (exponential blowup);

@ an automaton equivalent to a QCTL formula can be built
inductively;

@ emptiness of an alternating parity tree automaton can be
decided in exponential time.
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A fuzzy extension of Strategy Logic

Quantitative models
In our models, atomic propositions take values in [0; 1]:
@ quality of satisfaction of a proposition
@ (discretised, normalised) quantities, e.g. energy, distance, ...

v

Example
How to reach B while staying as far as possible from opponent?
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A fuzzy extension of Strategy Logic

LTL[F]: formally reasoning about quality [ABK16]

@ quantitative semantics for LTL [FPS14]):

[, U 4] = sup(min((rw, v1, min(min([r;, 2]) ).

05| | O3| | 07| | 0.8
p=0. p=0. p=0. p=0.
I | I | I | == [pUq]=04
q-:: 02 =04 g=06 g=02

[ABK16] Almagor, Boker, Kupferman. Formally reasoning about quality. JACM 63(3), 2016.
[FPS14] Frigeri, Pasquale, Spoletini. Fuzzy time in Linear Temporal Logic. ACM TOCL 15(4), 2014.
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A fuzzy extension of Strategy Logic

LTL[F]: formally reasoning about quality [ABK16]

@ quantitative semantics for LTL [FPS14]):

[, U 4] = sup(min((rw, v1, min(min([r;, 2]) ).

= P02 = pm0s
- - — 7 - [pUq]=04
a=102 a=04 a=106 =
p=rx P=oa G b
— — — — [[puq]]:03
q=0 q=0 q=1 q=1

@ extension with functions:
e max (disjunction), min (conjunction);
e any other function : [0; 1]™ — [0; 1].

[ABK16] Almagor, Boker, Kupferman. Formally reasoning about quality. JACM 63(3), 2016.
[FPS14] Frigeri, Pasquale, Spoletini. Fuzzy time in Linear Temporal Logic. ACM TOCL 15(4), 2014.
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SL[F]: a fuzzy extension of Strategy Logic
SL[F] extends LTL[F] with quantification over strategies:

[s,30.0lx = sup  inf  [p, Oly[orss)-

strategy s outcome p

Example (Robot example)
How to reach B while staying as far as possible from opponent?
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A fuzzy extension of Strategy Logic

SL[F]: a fuzzy extension of Strategy Logic
SL[F] extends LTL[F] with quantification over strategies:

[s,30.0lx = sup  inf  [p, Oly[orss)-

strategy s outcome p

Example (Characterisation of Nash equilibria)
Formula ® e expresses the fact that (oy, ...,0,) is a NE:

P = assign(Agt— (o1, ...0n)). /\ [(3d.assign(Ai—d).¢i)] < i
A;jcAgt

where the function <: [0; 1]> — {0, 1} is such that

= (e, B) = 1 whenever a < .




A fuzzy extension of Strategy Logic
SL[F]: a fuzzy extension of Strategy Logic
SL[F] extends LTL[F] with quantification over strategies:

[s,30.0lx = sup  inf  [p, Oly[orss)-

strategy s outcome p

Example (Characterisation of e-Nash equilibria)
Formula ¢z measures how far (o1, ..., 0,) is from being a NE:

g = assign(Agt— (o1, ...0n)). \/ [(3d.assign(Aj—d).¢;) — il
A;cAgt

Proposition J

(01,...,00) is an e-Nash equilibrium iff [oz] < e.
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Model checking SLLF]

Theorem
Model checking SL[F] is decidable (and TOWER-complete).

Sketch of proof
Lift the classical approach for SL to SL[F], using QCTL".
Definition (Booleanly-Quantified CTL (BQCTL*[F]))

pu=p|3p.0|EY|f(p,...,0)
Y=g | XYY U] f(Y,.., 1))

Remark
BQCTL* [F ]is interpreted over quantitative trees, but

quantification is boolean!
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Model checking SLLF]

Theorem
Model checking SL[F] is decidable (and TOWER-complete).

Sketch of proof
Key lemma:

Lemma
For any ¢ € BQCTL*[F] and any finite V C [0; 1], the set

Vi, = {[t, ¢] | t quantitative tree with values in V'}

is finite.

~» Forany ¢ and P C [0; 1], we can build tree automata
characterizing V-trees t for which [t, ¢] € P.




Conclusions and future works

Contributions
@ quantitative extension of Strategy Logic;
@ (semi-)quantitative extension of QCTL*;
@ model checking remains decidable.

Future works
@ more applications, analysis of expressive power;
@ specialized efficient algorithms for fragments of SL[.F];
o fully-quantitative extension of QCTL".




