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Reasoning about multi-agent systems

Games on graphs
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Reasonning about strategic behaviours

Strategy logic [CHP07,MMV10]

LTL + explicit quantification and assignment of strategies:

∃σA. ∀σB . assign(A→ σA,B → σB).ϕA

Quantification
over strategies

Assignment
of strategies

to players

LTL
property

[CHP07] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.
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LTL + explicit quantification and assignment of strategies:

∃σA. ∀σB . assign(A→ σA,B → σB).ϕA

Quantification
over strategies

Assignment
of strategies

to players

LTL
property

Example (Client-server interaction)

∃σS . ∃σc . assign(S → σS).

(Gmutual exclusion ∧
G
∧
C

assign(C → σc). F accessC )
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LTL + explicit quantification and assignment of strategies:

∃σA. ∀σB . assign(A→ σA,B → σB).ϕA

Quantification
over strategies

Assignment
of strategies

to players

LTL
property

Example (Characterisation of Nash equilibria)
(σ1, ..., σn) is a Nash equilibrium iff

assign(Agt→ (σ1, ...σn)).
∧

Ai∈Agt

((∃σ′i .assign(Ai → σ′i ). ϕi ) ⇒ ϕi .)

[CHP07] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.



Reasonning about strategic behaviours

Strategy logic [CHP07,MMV10]

LTL + explicit quantification and assignment of strategies:

∃σA. ∀σB . assign(A→ σA,B → σB).ϕA

Quantification
over strategies

Assignment
of strategies

to players

LTL
property

Theorem ([DLM10])
SL model-checking is decidable (TOWER-complete).

[CHP07] Chatterjee, Henzinger, Piterman. Strategy Logic. CONCUR, 2007.
[MMV10] Mogavero, Murano, Vardi. Reasoning about strategies. FSTTCS, 2010.
[DLM10] Da Costa, Laroussinie, Markey. ATL with Strategy Contexts: Expressiveness and model checking. FSTTCS, 2010.



Quantified CTL [ES84,Kup95,Fre01,DLM12]

QCTL extends CTL with propositional quantifiers
∃p. ϕ means that there exists a labelling of the model

with p under which ϕ holds.

E F ∧ ¬
(
∃p.

[
E F( ∧ p) ∧ E F( ∧ ¬ p)

])

≡ uniq( )

; true if we label the Kripke structure;
; false if we label the computation tree;

[ES84] Emerson and Sistla. Deciding Full Branching Time Logic. Information & Control, 1984.
[Kup95] Kupferman. Augmenting Branching Temporal Logics with Existential... CAV, 1995.
[Fre01] French. Decidability of Quantifed Propositional Branching Time Logics. AJCAI, 2001.
[DLM12] Da Costa, Laroussinie, Markey. Quantified CTL: ... CONCUR, 2012.
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Model checking Strategy Logic

Theorem
Strategy logic can be translated into QCTL∗.

players has moves m1, ..., mn ;
from the transition table, we can compute the
set Next( ,A,mi ) of states that can be
reached from when player A plays mi .

SL can be translated as follows:

encoding of ∃σ. ψ:

∃mσ
1 ∃mσ

2 . . . ∃mσ
k . AG(mσ

i ⇔
∧
¬mσ

j ) ∧ ψ̂

encoding of assign(α). ϕ (for full binding α : Agt→ Strat):

A
[
G(q ∧ m

α(A)
i ⇒ X Next(q,A,m

α(A)
i )) ⇒ ϕ̂

]
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QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree
semantics is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree
semantics is (k+1)-EXPTIME-complete.



QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree
semantics is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree
semantics is (k+1)-EXPTIME-complete.

Proof
Using (alternating) parity tree automata:

q0

q1q0

q1 q0 q1 q1

q1 q1 q1 q1q1 q1 q1 q1

This automaton corresponds to E U

δ(q0, ) = (q0, q1) ∨ (q1, q0)

δ(q0, ) = (q1, q1)

δ(q0, ) = (q2, q2)

δ(q1, ? ) = (q1, q1)

δ(q2, ? ) = (q2, q2)



QCTL with tree semantics

Theorem
Model checking QCTL with k quantifiers in the tree
semantics is k-EXPTIME-complete.
Satisfiability of QCTL with k quantifiers in the tree
semantics is (k+1)-EXPTIME-complete.

Proof
polynomial-size automata for CTL;
quantification is handled by projection, which first requires
removing alternation (exponential blowup);

an automaton equivalent to a QCTL formula can be built
inductively;

emptiness of an alternating parity tree automaton can be
decided in exponential time.



A fuzzy extension of Strategy Logic

Quantitative models
In our models, atomic propositions take values in [0; 1]:

quality of satisfaction of a proposition
(discretised, normalised) quantities, e.g. energy, distance, ...

Example
How to reach B while staying as far as possible from opponent?

A B

(0, 4) (5, 6)

d = 0.35 B = 0

(1, 4) (5, 6)

d = 0.31 B = 0

(0, 5) (5, 5)

d = 0.27 B = 0
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A fuzzy extension of Strategy Logic

LTL[F]: formally reasoning about quality [ABK16]

quantitative semantics for LTL [FPS14]:

Jπ, ϕ U ψK = sup
i

(
min(Jπi , ψK,min

j<i

(
min(Jπj , ϕK

))
.

p = 0.5

q = 0.2

p = 0.3

q = 0.4

p = 0.7

q = 0.6

p = 0.8

q = 0.2
Jp U qK = 0.4

p = 0.5

q = 0

p = 0.3

q = 0

p = 0.7

q = 1

p = 0.8

q = 1
Jp U qK = 0.3

extension with functions:
max (disjunction), min (conjunction);
any other function f : [0; 1]m → [0; 1].

[ABK16] Almagor, Boker, Kupferman. Formally reasoning about quality. JACM 63(3), 2016.
[FPS14] Frigeri, Pasquale, Spoletini. Fuzzy time in Linear Temporal Logic. ACM TOCL 15(4), 2014.
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outcome ρ

Jρ, ϕKχ[σ 7→s].
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SL[F]: a fuzzy extension of Strategy Logic
SL[F] extends LTL[F] with quantification over strategies:

Js,∃σ.ϕKχ = sup
strategy s

inf
outcome ρ

Jρ, ϕKχ[σ 7→s].

Example (Robot example)
How to reach B while staying as far as possible from opponent?

A B (0, 4) (5, 6)

d = 0.35 B = 0

(1, 4) (5, 6)

d = 0.31 B = 0

(0, 5) (5, 5)

d = 0.27 B = 0

∃σ. assign( → σ). d U B



A fuzzy extension of Strategy Logic

SL[F]: a fuzzy extension of Strategy Logic
SL[F] extends LTL[F] with quantification over strategies:

Js,∃σ.ϕKχ = sup
strategy s

inf
outcome ρ

Jρ, ϕKχ[σ 7→s].

Example (Characterisation of Nash equilibria)
Formula ΦNE expresses the fact that (σ1, ..., σn) is a NE:

ΦNE = assign(Agt→(σ1, ...σn)).
∧

Ai∈Agt

[
(∃d .assign(Ai→d).ϕi )

]
� ϕi

where the function� : [0; 1]2 → {0, 1} is such that

� (α, β) = 1 whenever α ≤ β.



A fuzzy extension of Strategy Logic

SL[F]: a fuzzy extension of Strategy Logic
SL[F] extends LTL[F] with quantification over strategies:

Js,∃σ.ϕKχ = sup
strategy s

inf
outcome ρ

Jρ, ϕKχ[σ 7→s].

Example (Characterisation of ε-Nash equilibria)
Formula ΦNE measures how far (σ1, ..., σn) is from being a NE:

ΦNE = assign(Agt→(σ1, ...σn)).
∨

Ai∈Agt

[
(∃d .assign(Ai→d).ϕi )− ϕi

]

Proposition
(σ1, ..., σn) is an ε-Nash equilibrium iff JΦNE K ≤ ε.



Model checking SL[F]

Theorem
Model checking SL[F ] is decidable (and TOWER-complete).

Sketch of proof
Li� the classical approach for SL to SL[F], using QCTL∗.

Definition (Booleanly-Quantified CTL (BQCTL∗[F ]))
ϕ ::= p | ∃p. ϕ | Eψ | f (ϕ, ..., ϕ)
ψ ::= ϕ | X ψ | ψ U ψ | f (ψ, ..., ψ)

Remark
BQCTL∗ [F ] is interpreted over quantitative trees, but

quantification is boolean!
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Model checking SL[F]

Theorem
Model checking SL[F ] is decidable (and TOWER-complete).

Sketch of proof
Key lemma:

Lemma
For any ϕ ∈ BQCTL∗[F ] and any finite V ⊆ [0; 1], the set

Vϕ = {Jt, ϕK | t quantitative tree with values in V }

is finite.

; For any ϕ and P ⊆ [0; 1], we can build tree automata
characterizing V -trees t for which Jt, ϕK ∈ P .
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Conclusions and future works

Contributions
quantitative extension of Strategy Logic;
(semi-)quantitative extension of QCTL∗;
model checking remains decidable.

Future works
more applications, analysis of expressive power;
specialized efficient algorithms for fragments of SL[F ];
fully-quantitative extension of QCTL∗.


