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Games on weighted graphs

Example
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states: S = S ]S
weighted transitions: T ⊆ S × Z× S

run: sequence of consecutive transitions:

−2 1 −4 5 2

strategy: transition to take depending on state/history:

σ : always go to (from )

σ′ : alternate between and (from )
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Quantitative objectives

Relevant quantities to control

energy level: EL(π≤n) =
∑
i≤n

w(si → si+1) [aka. total payoff]

mean payoff: MP(π≤n) =
1
n
EL(π≤n)
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Decision problems and known results

Decision problems
total payoff: is there a strategy to have lim sup EL ≤ t?
mean payoff: is there a strategy to have lim supMP ≤ t?
energy constraint: is there a strategy to keep EL ∈ [l , u)?

Known results

objective 1 player 2 players
Mean Payoff PTIME [Kar78] NP ∩ coNP [ZP96]
Total Payoff PTIME [FV97] NP ∩ coNP [GS09]
Energy[L,+∞) PTIME [BFL+08] NP ∩ coNP [CdAHS03,BFL+08]
Energy[L,U) PSPACE-c. [FJ13] EXPTIME-c [BFL+08]

For all except Energy[L,U), memoryless strategies are sufficient.
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Average-energy objectives: example

Pressure-tank case study [CJL+09]

Objectives:
keep water level within given bounds
minimize average level

in out in out

in out in out

0 −2

1 −1

out out out out out out

[CJL+09] Cassez et al. Automatic Synthesis of Robust and Optimal Controllers [...]. HSCC, 2009.
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Average energy level vs mean payoff

mean payoff = average of weight on transitions

MP(π≤n) = lim sup
n→∞

1
n
EL(π≤n)

average energy = average of accumulated weight

AE (π≤n) = lim sup
n→∞

1
n

n∑
i=1

EL(π≤i )

Example
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[TV87] Thuijsman, Vrieze. The bad match; A total reward stochastic game. OR Spektrum, 1987.
[CP13] Chatterjee, Prabhu. Quantitative timed simulation functions and refinement metrics... HSCC, 2013.
[BEGM15] Boros et al. MDPs and Stochastic Games with Total Effective Payoff. STACS, 2015.
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Relationships between AE, TP and MP

TP refines MP
If MP 6= 0 then TP is infinite.
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1-player case: memoryless optimal strategy

Lemma
Memoryless strategies are sufficient for 1-player AE games.

Theorem
1-player AE games can be solved in PTIME.
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Proof
for each pair (s, k), can be solved in PTIME via a linear
programming (see next slide).
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Lemma
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Proof
optimal positional strategy in the one-player games
result follows from [GZ05].

Corollary
AE-games can be solved in NP ∩ coNP.

Proposition
AE-games are at least as hard as MP-games.

[GZ05] Gimbert, Zielonka. Games Where You Can Play Optimally Without Any Memory. CONCUR, 2004.
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2-player case: memoryless determinacy

Lemma
AE-games are memoryless determined.

Corollary
AE-games can be solved in NP ∩ coNP.

Proposition
AE-games are at least as hard as MP-games.

Proof

3

−2
6
−6

−4

4

MP(π) = AE (π′)



Average-energy games: summary

objective 1 player 2 players
Mean Payoff PTIME [Kar78] NP ∩ coNP [ZP06]
Total Payoff PTIME [FV97] NP ∩ coNP [GZ09]
Energy[L,+∞) PTIME [BFL+08] NP ∩ coNP [CdAHS03,BFL+08]
Energy[L,U) PSPACE-c. [FJ13] EXPTIME-c [BFL+08]
AvgEnergy PTIME NP ∩ coNP

For all except Energy[L,U), memoryless strategies are sufficient.



Outline of the presentation
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1-player AEL games

U

; reduction to AELU, with U = t + O(W 3 · |S |3).

Theorem
The AEL-problem is in PSPACE, and NP-hard, for 1-player games.
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Expanded game (with MP objective) has infinite state space
; classical results/techniques for MP games fail.

Two intermediary lemmas:

reachability requires 2-exponential peak height;
any infinite path π with MP(π) ≤ t contains a short
(pseudo-polynomial) cycle ρ with MP(ρ) ≤ t.

Then modify strategy tree to bound global peak height.
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Solving 2-player AEL games

Expanded game (with MP objective) has infinite state space
; classical results/techniques for MP games fail.
Two intermediary lemmas:

reachability requires 2-exponential peak height;
any infinite path π with MP(π) ≤ t contains a short
(pseudo-polynomial) cycle ρ with MP(ρ) ≤ t.

Then modify strategy tree to bound global peak height.

Theorem
2-player AEL games are in 2-EXPTIME, and EXPSPACE-hard.



Conclusions and future works

objective 1 player 2 players
Mean Payoff PTIME [Kar78] NP ∩ coNP [ZP06]
Total Payoff PTIME [FV97] NP ∩ coNP [GZ09]
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AvgEnergy PTIME NP ∩ coNP
AE+E[L,∞) EXPTIME, NP-h. 2-EXPTIME, EXPSPACE-h.
AE+E[L,U) EXPTIME, PSPACE-h. EXPTIME-c.

Future work
close complexity gaps;
extend to stochastic setting;
extend to timed setting.
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