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Example

o states: S = Sg ¥ Sm
o weighted transitions: TC SXZ x S

@ run: sequence of consecutive transitions:

2 1 —4 5

®—O 0@ --

o strategy: transition to take depending on state/history:
o@: always go to (from ©)

0y alternate between O and (from O)
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Decision problems and known results

Decision problems
o total payoff: is there a strategy to have limsup EL < t?
@ mean payoff: is there a strategy to have limsup MP < t7
@ energy constraint: is there a strategy to keep EL € [/, u)?




Decision problems and known results

Known results

objective 1 player 2 players
Mean Payoff  PTIME [Kar78] NP N coNP [ZP96]
Total Payoff  PTIME [FV97] NP N coNP [GS09]
Energy[. +o) PTIME [BFL*08] NP N coNP [CdAHS03,BFL*08]
Energy[; yy  PSPACE-c. [FJ13] EXPTIME-c [BFL*08]

For all except Energy(; i), memoryless strategies are sufficient.

[Kar78] Karp. A characterization of the minimum cycle mean in a digraph. Discr.Math., 1978.

[ZP06] Zwick, Paterson. The complexity of mean payoff games on graphs. TCS, 1996.

[FV97] Filar, Vrieze. Competitive Markov decision processes. Springer, 1997.

[GS09] Gawlitza, Seidl. Games through nested fixpoints. CAV, 2009

[BFL*08] Bouyer et al. Infinite runs in weighted timed automata with energy constraints. FORMATS, 2008.
[CdAHSO03] Chakrabarti et al. Resource interfaces. EMSOFT, 2003.

[FJ13] Fearnley, Jurdzinski. Reachability in two-clock timed automata is PSPACE-complete. ICALP, 2013.
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Average-energy objectives: example

Pressure-tank case study [CJL*09]
Objectives:

Air-Over-Water
Pressure Tank

o keep water level within given bounds

AIR VALVE

@ minimize average level
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[CILF09] Cassez et al. Automatic Synthesis of Robust and Optimal Controllers [...]. HSCC, 2009.
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1
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Average energy level vs mean payoff

e mean payoff = average of weight on transitions
1
MP(T‘-SH) = ;EL(T('S,;)

@ average energy = average of accumulated weight

1 n
AE(m<p,) = - > El(r<))
i=1

Related works
o AE defined in [TV87];

@ average debit-sum studied in [CP13];
~» pseudo-polynomial time algorithm

@ AE studied for stochastic models in [BEGM15]

[TV87] Thuijsman, Vrieze. The bad match; A total reward stochastic game. OR Spektrum, 1987.
[CP13] Chatterjee, Prabhu. Quantitative timed simulation functions and refinement metrics... HSCC, 2013.
[BEGM15] Boros et al. MDPs and Stochastic Games with Total Effective Payoff. STACS, 2015.



Relationships between AE, TP and MP

TP refines MP
If MP # 0 then TP is infinite.




Relationships between AE, TP and MP

TP refines MP
If MP # 0 then TP is infinite.

O—@0o

MP =0




Relationships between AE, TP and MP

TP refines MP
If MP # 0 then TP is infinite.

MP =0
TP=1




Relationships between AE, TP and MP

TP refines MP
If MP # 0 then TP is infinite.

AE refines TP
If TP = TP then AE = TP.




Relationships between AE, TP and MP

TP refines MP
If MP # 0 then TP is infinite.

AE refines TP
If TP = TP then AE = TP.




Relationships between AE, TP and MP

TP refines MP
If MP # 0 then TP is infinite.

AE refines TP
If TP = TP then AE = TP.




Some properties of average-energy objectives

Lemma

E(7T1 -71'2) = EL(7T1) -i-ﬁ(?‘rz)




Some properties of average-energy objectives

Lemma

AE(7T1 . 71'2) = EL(7T1) -I-E(Trz)

Example




Some properties of average-energy objectives

Lemma

E(7T1 . 71'2) = EL(7T1) -i-ﬁ(?‘rz)

Example




Some properties of average-energy objectives

Lemma

AE(7T1 . 7'('2) = EL(?T]_) —i—ﬁ(ﬂg)

Lemma

Let m = m - - -- be a sequence of bounded-length
bounded-weight zero-cycles. Then

Ji. AE(m;) < AE(7).




Some properties of average-energy objectives

Lemma

AE(7T1 . 7'('2) = EL(7T1) —i—ﬁ(ﬂg)

Lemma

Let m = m - - -- be a sequence of bounded-length
bounded-weight zero-cycles. Then

di. AE(m;) < AE(m).

Example




Some properties of average-energy objectives

Lemma

AE(7T1 . 7'('2) = EL(?T]_) —i—ﬁ(ﬂg)

Lemma

Let m = m - - -- be a sequence of bounded-length
bounded-weight zero-cycles. Then

Ji. AE(m;) < AE(7).

Example




1-player case: memoryless optimal strategy

Lemma
Memoryless strategies are sufficient for 1-player AE games.

Theorem
1-player AE games can be solved in PTIME.




1-player case: memoryless optimal strategy

Lemma
Memoryless strategies are sufficient for 1-player AE games.

Theorem
I-player AE games can be solved in PTIME.

Algorithm
o compute AE(Cy s) for all simple cycles of length k on s;
o minimize EL(ps—s) + AE(Cs).




1-player case: memoryless optimal strategy

Lemma
Memoryless strategies are sufficient for 1-player AE games.

Theorem
I-player AE games can be solved in PTIME.

Algorithm

» compute AE(Cx s) for all simple cycles of length k on s;
o minimize EL(ps—s) + AE(Cs).

Proof

e for each pair (s, k), can be solved in PTIME via a linear
programming (see next slide).




1-player case: memoryless optimal strategy

Lemma
Memoryless strategies are sufficient for 1-player AE games.

Theorem
I-player AE games can be solved in PTIME.

Algorithm
o compute AE(Cy s) for all simple cycles of length k on s;
» minimize EL(ps,_ss) + AE(Cs).

Proof

e for each pair (s, k), can be solved in PTIME via a linear
programming (see next slide).

@ optimal reachability; solvable in PTIME.
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1-player case: computing AE(Cy.s)

Linear program: minimize
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1-player case: computing AE(Cy.s)

Linear program: minimize

s, k zk:Z

X{( Xé( =1 J
sp,k—1 sp,k—1 .

B, N subject to:

Xy /Xy Xa TN\ X, .

1 /2 \ /3 4 ° 0 SXJ, <1
Sy,k—2 sh,k—2 s/ k—2 ;

7 N 7 AN o H
N | AN >xi >0

\ ‘ @ incoming flow = outgoing flow

X ¥ X ¥ \2
S 11 sl s o flow from (s, k)=1

\xli lleﬂ o flow to (s,0)=1

@ total weight is zero
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2-player case: memoryless determinacy

Lemma
AE-games are memoryless determined.

Proof

@ optimal positional strategy in the one-player games
o result follows from [GZ05].

[GZ05] Gimbert, Zielonka. Games Where You Can Play Optimally Without Any Memory. CONCUR, 2004.
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Average-energy games: summary

objective 1 player 2 players
Mean Payoff  PTIME [Kar78] NP N coNP [ZP06]
Total Payoff PTIME [FV97] NP N coNP [GZ09]
Energy[. +o) PTIME [BFL*08] NP N coNP [CdAHS03,BFL*08]
Energy|; yy  PSPACE-c. [FJ13] EXPTIME-c [BFLT08]
AvgEnergy PTIME NP N coNP

For all except Energyy, ¢y, memoryless strategies are sufficient.
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Example

Minimize AE (in the long run) while keeping EL between 0 and 3:

0 1
-3 0
2
Lemma

Memory is needed to win AE+LU games.
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Game expanded with energy level
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Lemma
AELU reduces to AE in expanded game.
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Solving AELU games

Game expanded with energy level

3
2 2
a,2 c,2
@ [
2 a7 C7
&
0
0 0
a,0 c,0
N

Theorem

I-player AELU-games are in EXPTIME, and PSPACE-hard.
2-player AELU-games are EXPTIME-complete.




Solving 1-player AEL games

1-player AEL games

@ Assume there is a winning path;




Solving 1-player AEL games

1-player AEL games

@ Assume there is a winning path;

@ There is a repeated configuration;




Solving 1-player AEL games

1-player AEL games

@ Assume there is a winning path;
@ There is a repeated configuration;

@ One of the resulting cycle has low average energy;




Solving 1-player AEL games

1-player AEL games

@ Assume there is a winning path;
@ There is a repeated configuration;
@ One of the resulting cycle has low average energy;

@ Reachability requires pseudo-polynomial peak height;
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Solving 1-player AEL games

1-player AEL games

~> reduction to AELU, with U = t + O(W?3 - |S]?).

Theorem
The AEL-problem is in PSPACE, and NP-hard, for 1-player games.
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Solving 2-player AEL games

e Expanded game (with MP objective) has infinite state space
~» classical results/techniques for MP games fail.
@ Two intermediary lemmas:

e reachability requires 2-exponential peak height;
e any infinite path = with MP(7) < t contains a short
(pseudo-polynomial) cycle p with MP(p) < t.

@ Then modify strategy tree to bound global peak height.

Theorem
2-player AEL games are in 2-EXPTIME, and EXPSPACE-hard.




Conclusions and future works

objective 1 player 2 players

Mean Payoff PTIME [Kar78] NP N coNP [ZP06]

Total Payoff PTIME [FV97] NP N coNP [GZ09]

Energy ;) PTIME [BFL*T08] NP N coNP [CdAHS03,BFL*08]

Energy[; ) PSPACE-c. [FJ13] EXPTIME-c [BFLT08]

AvgEnergy PTIME NP N coNP

AE+E[ EXPTIME, NP-h. 2-EXPTIME, EXPSPACE-h.
EXPTIME, PSPACE-h. EXPTIME-c.

AE+E[ y)




Conclusions and future works

objective 1 player 2 players

Mean Payoff PTIME [Kar78] NP N coNP [ZP06]

Total Payoff PTIME [FV97] NP N coNP [GZ09]

Energy ;) PTIME [BFL*T08] NP N coNP [CdAHS03,BFL*08]

Energy[; ) PSPACE-c. [FJ13] EXPTIME-c [BFLT08]

AvgEnergy PTIME NP N coNP

AE+E[ EXPTIME, NP-h. 2-EXPTIME, EXPSPACE-h.
EXPTIME-c.

AE+E[ y) EXPTIME, PSPACE-h.

Future work
@ close complexity gaps;
@ extend to stochastic setting;

@ extend to timed setting.




