Average-energy games

Patricia Bouyer Nicolas Markey Mickael Randour Kim G. Larsen Simon Laursen Piotr Hofman Martin Zimmermann

January 27, 2017

- states: $\mathcal{S} = \mathcal{S}_{\odot} \uplus \mathcal{S}_{\blacksquare}$
- weighted transitions: $T \subseteq S \times \mathbb{Z} \times S$

- states: $\mathcal{S} = \mathcal{S}_{\odot} \uplus \mathcal{S}_{\blacksquare}$
- weighted transitions: $T \subseteq S \times \mathbb{Z} \times S$
- run: sequence of consecutive transitions:

- states: $\mathcal{S} = \mathcal{S}_{\odot} \uplus \mathcal{S}_{\blacksquare}$
- weighted transitions: $T \subseteq S \times \mathbb{Z} \times S$
- run: sequence of consecutive transitions:

• strategy: transition to take depending on state/history:

- states: $S = S_{\odot} \uplus S_{\blacksquare}$
- weighted transitions: $T \subseteq S \times \mathbb{Z} \times S$
- run: sequence of consecutive transitions:

strategy: transition to take depending on state/history:
 σ_☉: always go to □ (from ○)

- states: $S = S_{\odot} \uplus S_{\blacksquare}$
- weighted transitions: $T \subseteq S \times \mathbb{Z} \times S$
- run: sequence of consecutive transitions:

strategy: transition to take depending on state/history:
 σ_●: always go to □ (from ○)
 σ'_●: alternate between ○ and □ (from ○)

Relevant quantities to control • energy level: $EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$ [aka. total payoff] • mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n}EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

• energy level:
$$EL(\pi_{\leq n}) = \sum_{i \leq n} w(s_i \to s_{i+1})$$
 [aka. total payoff]
• mean payoff: $MP(\pi_{\leq n}) = \frac{1}{n} EL(\pi_{\leq n})$

Decision problems and known results

Decision problems

- total payoff: is there a strategy to have $\limsup EL \le t$?
- mean payoff: is there a strategy to have $\lim \sup MP \le t$?
- energy constraint: is there a strategy to keep $EL \in [I, u]$?

Decision problems and known results

Known results		
objective	1 player	2 players
Mean Payoff	PTIME [Kar78]	NP ∩ coNP [ZP96]
Total Payoff	PTIME [FV97]	NP ∩ coNP [GS09]
$Energy_{[L,+\infty)}$	PTIME [BFL+08]	$NP \cap coNP \ [CdAHS03, BFL^+08]$
Energy _{[L,U)}	PSPACE-c. [FJ13]	EXPTIME-c [BFL ⁺ 08]

For all except $Energy_{[L,U]}$, memoryless strategies are sufficient.

[Kar78] Karp. A characterization of the minimum cycle mean in a digraph. Discr.Math., 1978.
[ZP06] Zwick, Paterson. The complexity of mean payoff games on graphs. TCS, 1996.
[FV97] Filar, Vrieze. Competitive Markov decision processes. Springer, 1997.
[GS09] Gawlitza, Seidl. Games through nested fixpoints. CAV, 2009
[BFL⁺08] Bouyer *et al.* Infinite runs in weighted timed automata with energy constraints. FORMATS, 2008.
[CdAHS03] Chakrabarti *et al.* Resource interfaces. EMSOFT, 2003.
[FJ13] Fearnley, Jurdziński. Reachability in two-clock timed automata is PSPACE-complete. ICALP, 2013.

Outline of the presentation

Outline of the presentation

Average-energy objectives: example

[CJL⁺09] Cassez et al. Automatic Synthesis of Robust and Optimal Controllers [...]. HSCC, 2009. < 喜 > < 🚖 >
Pressure-tank case study [CJL+09]

Objectives:

- keep water level within given bounds
- minimize average level

[CJL⁺09] Cassez *et al.* Automatic Synthesis of Robust and Optimal Controllers [...]. HSCC, 2009. < 🚊 > < 🚊 >

Pressure-tank case study [CJL+09]

Objectives:

- keep water level within given bounds
- minimize average level

[CJL⁺09] Cassez et al. Automatic Synthesis of Robust and Optimal Controllers [...]. HSCC, 2009. 4 \Xi 🕨 4 🚍 >

Pressure-tank case study [CJL+09]

Objectives:

- keep water level within given bounds
- minimize average level

[CJL⁺09] Cassez et al. Automatic Synthesis of Robust and Optimal Controllers [...]. HSCC, 2009. < 喜 > < 🚖 >

Pressure-tank case study [CJL+09]

Objectives:

- keep water level within given bounds
- minimize average level

[CJL⁺09] Cassez et al. Automatic Synthesis of Robust and Optimal Controllers [...]. HSCC, 2009. < 😑 🕨 < 🚍 >

• mean payoff = average of weight on transitions $\overline{MP}(\pi_{\leq n}) = \limsup_{n \to \infty} \frac{1}{n} EL(\pi_{\leq n})$

• mean payoff = average of weight on transitions $\overline{MP}(\pi_{\leq n}) = \limsup_{n \to \infty} \frac{1}{n} EL(\pi_{\leq n})$ • average energy = average of accumulated weight $\overline{AE}(\pi_{\leq n}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} EL(\pi_{\leq i})$

Related works

• AE defined in [TV87];

[TV87] Thuijsman, Vrieze. The bad match; A total reward stochastic game. OR Spektrum, 1987.

Related works

- AE defined in [TV87];
- average debit-sum studied in [CP13];

 $\rightsquigarrow\,$ pseudo-polynomial time algorithm

[TV87] Thuijsman, Vrieze. The bad match; A total reward stochastic game. OR Spektrum, 1987.
[CP13] Chatterjee, Prabhu. Quantitative timed simulation functions and refinement metrics... HSCC, 2013.

< E > < E >

Related works

- AE defined in [TV87];
- average debit-sum studied in [CP13];
 - $\rightsquigarrow\,$ pseudo-polynomial time algorithm
- AE studied for stochastic models in [BEGM15]

[TV87] Thuijsman, Vrieze. The bad match; A total reward stochastic game. OR Spektrum, 1987.
[CP13] Chatterjee, Prabhu. Quantitative timed simulation functions and refinement metrics... HSCC, 2013.
[BEGM15] Boros *et al.* MDPs and Stochastic Games with Total Effective Payoff. STACS, 2015. www.statuation.com

TP refines MP

If $MP \neq 0$ then TP is infinite.

TP refines MP If $MP \neq 0$ then TP is infinite.

AE refines TP

If $\underline{TP} = \overline{TP}$ then AE = TP.

TP refines MP If $MP \neq 0$ then TP is infinite.

AE refines TP If TP = TP then AE = TP. 0 4 4 2 0 MP = 0MP = 0 $\overline{TP} = 3$, TP = -1 $\overline{TP} = 3$, TP = -1

TP refines MP If $MP \neq 0$ then TP is infinite.

AE refines TP If TP = TP then AE = TP. 0 4 4 2 0 MP = 0MP = 0 $\overline{TP} = 3$, TP = -1 $\overline{TP} = 3$, TP = -1AE = 0.5AE = 1.5

Lemma

$$\overline{AE}(\pi_1 \cdot \pi_2) = EL(\pi_1) + \overline{AE}(\pi_2)$$

Lemma

Lemma

Lemma

$$\overline{AE}(\pi_1 \cdot \pi_2) = EL(\pi_1) + \overline{AE}(\pi_2)$$

Lemma

Let $\pi = \pi_1 \cdot \pi_2 \cdots$ be a sequence of bounded-length bounded-weight zero-cycles. Then

 $\exists i. AE(\pi_i) \leq \overline{AE}(\pi).$

Lemma

$$\overline{AE}(\pi_1 \cdot \pi_2) = EL(\pi_1) + \overline{AE}(\pi_2)$$

Lemma

Let $\pi = \pi_1 \cdot \pi_2 \cdots$ be a sequence of bounded-length bounded-weight zero-cycles. Then

 $\exists i. AE(\pi_i) \leq \overline{AE}(\pi).$

Lemma

$$\overline{AE}(\pi_1 \cdot \pi_2) = EL(\pi_1) + \overline{AE}(\pi_2)$$

Lemma

Let $\pi = \pi_1 \cdot \pi_2 \cdots$ be a sequence of bounded-length bounded-weight zero-cycles. Then

 $\exists i. AE(\pi_i) \leq \overline{AE}(\pi).$

1-player case: memoryless optimal strategy

Lemma

Memoryless strategies are sufficient for 1-player AE games.

Theorem

1-player AE games can be solved in PTIME.

1-player case: memoryless optimal strategy

Lemma

Memoryless strategies are sufficient for 1-player AE games.

Theorem 1-player AE games can be solved in PTIME.

Algorithm

- compute $\overline{AE}(\mathcal{C}_{k,s})$ for all simple cycles of length k on s;
- minimize $EL(\rho_{s_0 \to s}) + \overline{AE}(C_s)$.

1-player case: memoryless optimal strategy

Lemma

Memoryless strategies are sufficient for 1-player AE games.

Theorem 1-player AE games can be solved in PTIME.

Algorithm

- compute $\overline{AE}(\mathcal{C}_{k,s})$ for all simple cycles of length k on s;
- minimize $EL(\rho_{s_0 \to s}) + \overline{AE}(C_s)$.

Proof

• for each pair (*s*, *k*), can be solved in PTIME via a linear programming (see next slide).
1-player case: memoryless optimal strategy

Lemma

Memoryless strategies are sufficient for 1-player AE games.

Theorem 1-player AE games can be solved in PTIME.

Algorithm

- compute $\overline{AE}(C_{k,s})$ for all simple cycles of length k on s;
- minimize $EL(\rho_{s_0 \to s}) + \overline{AE}(C_s)$.

Proof

- for each pair (*s*, *k*), can be solved in PTIME via a linear programming (see next slide).
- optimal reachability; solvable in PTIME.

Lemma

AE-games are memoryless determined.

Lemma

AE-games are memoryless determined.

Proof

Lemma

AE-games are memoryless determined.

Proof

• optimal positional strategy in the one-player games

Lemma

AE-games are memoryless determined.

Proof

- optimal positional strategy in the one-player games
- result follows from [GZ05].

Lemma

AE-games are memoryless determined.

Corollary

AE-games can be solved in NP \cap coNP.

Lemma

AE-games are memoryless determined.

Corollary

AE-games can be solved in NP \cap coNP.

Proposition

AE-games are at least as hard as MP-games.

Lemma

AE-games are memoryless determined.

Corollary *AE-games can be solved in* NP \cap coNP.

Proposition

AE-games are at least as hard as MP-games.

Average-energy games: summary

objective	1 player	2 players
Mean Payoff	PTIME [Kar78]	$NP \cap coNP \ [ZP06]$
Total Payoff	PTIME [FV97]	$NP \cap coNP \ [GZ09]$
$Energy_{[L,+\infty)}$	PTIME [BFL+08]	$NP \cap coNP \ [CdAHS03, BFL^+08]$
Energy _{[L,U)}	PSPACE-c. [FJ13]	EXPTIME-c [BFL ⁺ 08]
AvgEnergy	PTIME	$NP\capcoNP$

For all except $Energy_{[L,U]}$, memoryless strategies are sufficient.

Outline of the presentation

Example

Example

Minimize AE (in the long run) while keeping EL between 0 and 3:

Lemma

Memory is needed to win AE+LU games.

Lemma

AELU reduces to AE in expanded game.

Lemma

AELU reduces to MP in expanded game.

Theorem

1-player AELU-games are in **EXPTIME**, *and* **PSPACE**-*hard*. *2-player AELU-games are* **EXPTIME**-*complete*.

• Assume there is a winning path;

- Assume there is a winning path;
- There is a repeated configuration;

- Assume there is a winning path;
- There is a repeated configuration;
- One of the resulting cycle has low average energy;

- Assume there is a winning path;
- There is a repeated configuration;
- One of the resulting cycle has low average energy;
- Reachability requires pseudo-polynomial peak height;

Theorem

The AEL-problem is in PSPACE, and NP-hard, for 1-player games.

• Expanded game (with MP objective) has infinite state space → classical results/techniques for MP games fail.

- Expanded game (with MP objective) has infinite state space → classical results/techniques for MP games fail.
- Two intermediary lemmas:

- Expanded game (with MP objective) has infinite state space → classical results/techniques for MP games fail.
- Two intermediary lemmas:
 - reachability requires 2-exponential peak height;

- Expanded game (with MP objective) has infinite state space
 → classical results/techniques for MP games fail.
- Two intermediary lemmas:
 - reachability requires 2-exponential peak height;
 - any infinite path π with $MP(\pi) \le t$ contains a short (pseudo-polynomial) cycle ρ with $MP(\rho) \le t$.

- Expanded game (with MP objective) has infinite state space → classical results/techniques for MP games fail.
- Two intermediary lemmas:
 - reachability requires 2-exponential peak height;
 - any infinite path π with $MP(\pi) \le t$ contains a short (pseudo-polynomial) cycle ρ with $MP(\rho) \le t$.
- Then modify strategy tree to bound global peak height.

- Expanded game (with MP objective) has infinite state space
 → classical results/techniques for MP games fail.
- Two intermediary lemmas:
 - reachability requires 2-exponential peak height;
 - any infinite path π with $MP(\pi) \le t$ contains a short (pseudo-polynomial) cycle ρ with $MP(\rho) \le t$.
- Then modify strategy tree to bound global peak height.

Theorem

2-player AEL games are in 2-EXPTIME, and EXPSPACE-hard.

Conclusions and future works

objective	1 player	2 players
Mean Payoff	PTIME [Kar78]	NP ∩ coNP [ZP06]
Total Payoff	PTIME [FV97]	$NP \cap coNP \ [GZ09]$
$Energy_{[L,+\infty)}$	PTIME [BFL+08]	$NP \cap coNP$ [CdAHS03,BFL+08]
Energy _{[L,U)}	PSPACE-c. [FJ13]	EXPTIME-c [BFL ⁺ 08]
AvgEnergy	PTIME	$NP\capcoNP$
$AE+E_{[L,\infty)}$	EXPTIME, NP-h.	2-EXPTIME, EXPSPACE-h.
$AE + E_{[L,U)}$	EXPTIME, PSPACE-h.	EXPTIME-c.

Conclusions and future works

objective	1 player	2 players
Mean Payoff	PTIME [Kar78]	NP ∩ coNP [ZP06]
Total Payoff	PTIME [FV97]	NP ∩ coNP [GZ09]
$Energy_{[L,+\infty)}$	PTIME [BFL+08]	$NP \cap coNP$ [CdAHS03,BFL+08]
Energy _{[L,U)}	PSPACE-c. [FJ13]	EXPTIME-c [BFL ⁺ 08]
AvgEnergy	PTIME	$NP\capcoNP$
$AE+E_{[L,\infty)}$	EXPTIME, NP-h.	2-EXPTIME, EXPSPACE-h.
$AE + E_{[L,U)}$	EXPTIME, PSPACE-h.	EXPTIME-c.

Future work

- close complexity gaps;
- extend to stochastic setting;
- extend to timed setting.