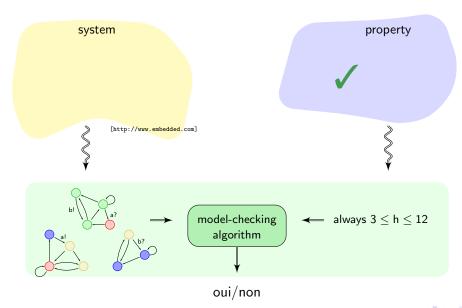
Optimal strategies in weighted timed games: undecidability and approximation

Nicolas Markey
LSV, CNRS & ENS Cachan & U. Paris-Saclay, France

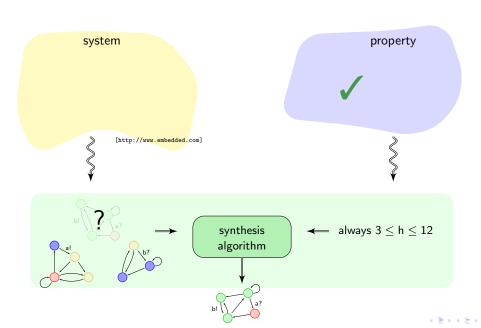
(joint work with Patricia Bouyer and Samy Jaziri)

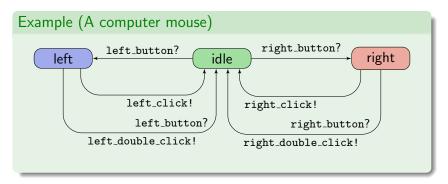
AVeRTS'15 workshop – Bangaluru, India December 19, 2015

Model checking and synthesis



Model checking and synthesis

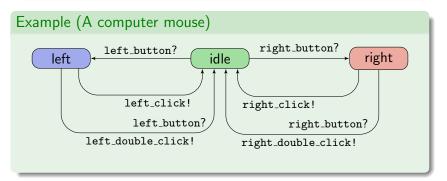




Definition ([AD90])

A timed automaton is made of

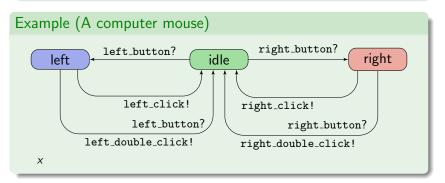
• a transition system,



Definition ([AD90])

A timed automaton is made of

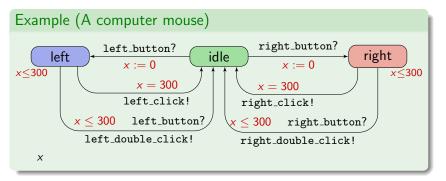
- a transition system,
- a set of clocks,

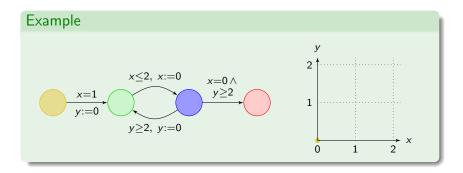


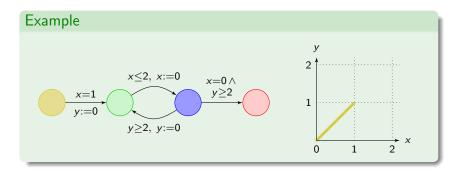
Definition ([AD90])

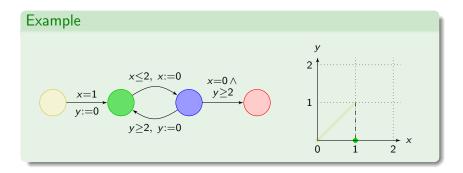
A timed automaton is made of

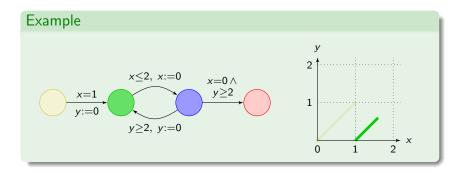
- a transition system,
- a set of clocks,
- timing constraints on states and transitions.

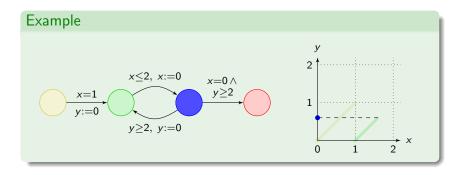


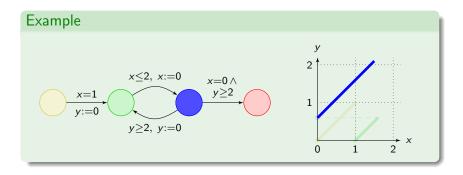


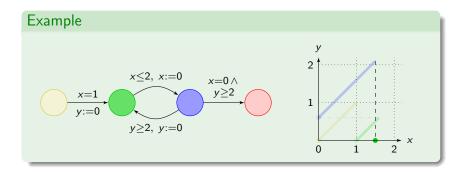


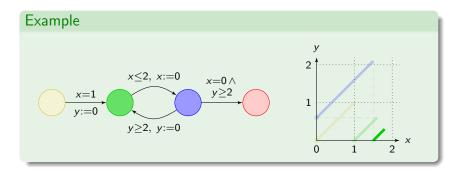


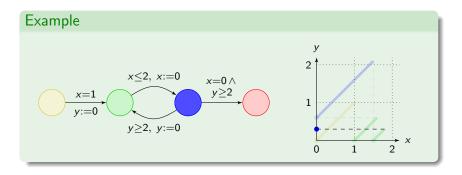


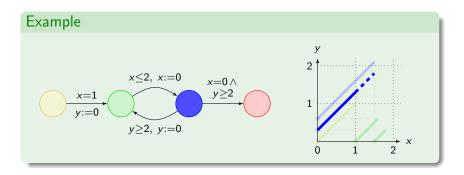


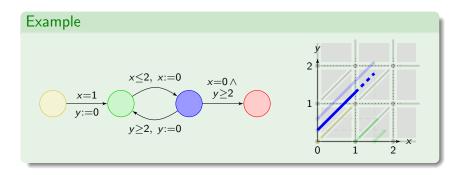


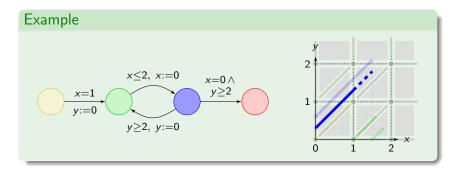








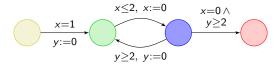




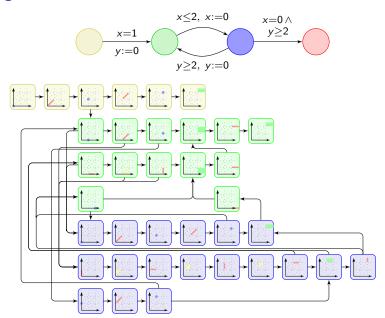
Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other important properties).

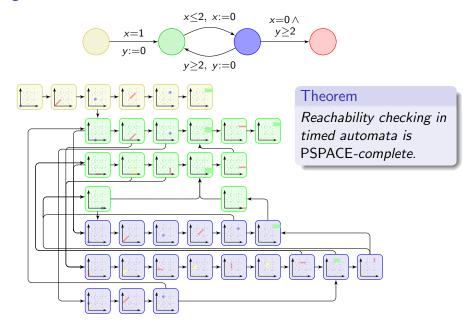
Region automaton



Region automaton



Region automaton

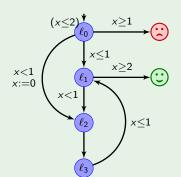


Definition

A timed game is made of

a timed automaton;

Example

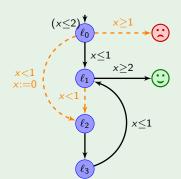


Definition

A timed game is made of

- a timed automaton;
- a partition between controllable and uncontrollable transitions.

Example

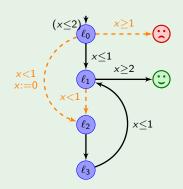


Definition

A timed game is made of

- a timed automaton;
- a partition between controllable and uncontrollable transitions.

Example



a memoryless strategy

in $(\ell_0, x = 0)$: wait 0.5 goto ℓ_1

in (ℓ_1, x) : wait until x = 2

goto 🙂

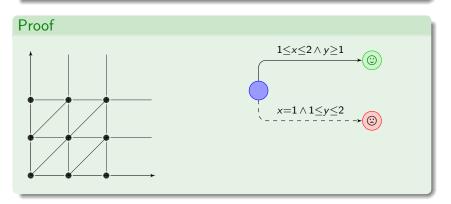
in $(\ell_2, x \le 1)$: wait until x = 1

goto ℓ_3

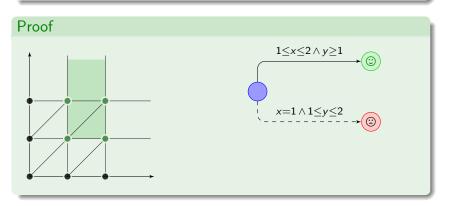
in $(\ell_3, x \le 1)$: wait until x = 1

goto ℓ_1

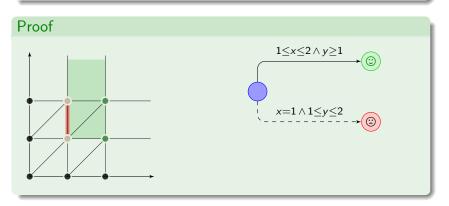
Theorem ([AMPS98])



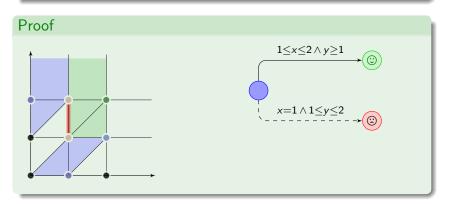
Theorem ([AMPS98])



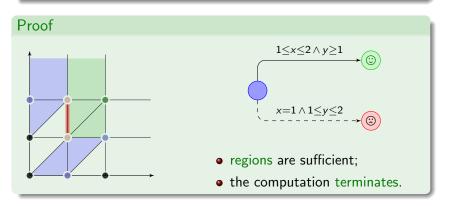
Theorem ([AMPS98])



Theorem ([AMPS98])



Theorem ([AMPS98])



Outline of the talk

Outline of the talk

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

 P_1 (fast):

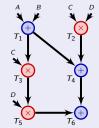
	time
+	2 picoseconds
×	3 picoseconds

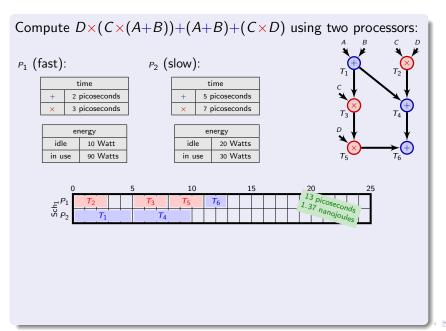
er	energy		
idle	10 Watt		
in use	90 Watts		

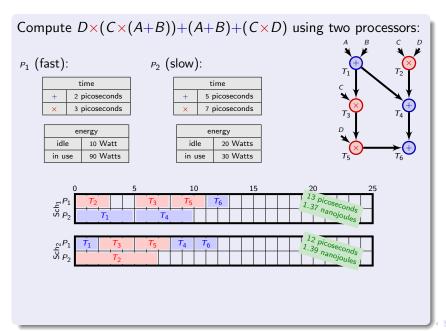
 P_2 (slow):

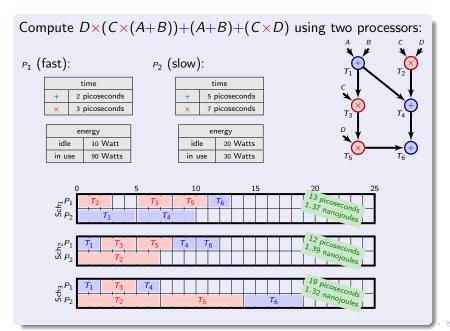
time		
5	+	
5	×	
-	+ ×	

energy		
idle	20 Watts	
in use	30 Watts	







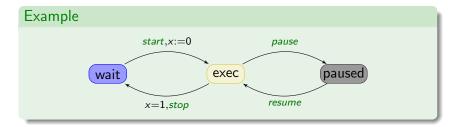


Linear hybrid automata

Definition

A linear hybrid automaton is made of

• a timed automaton;



Linear hybrid automata

Definition

A linear hybrid automaton is made of

- a timed automaton;
- for each location, the rate of each clock.

Theorem ([Čer92])

Reachability in linear hybrid automata is undecidable.

Theorem ([Čer92])

Reachability in linear hybrid automata is undecidable.

Proof

Encode a two-counter machine using four stopwatches:

$$c_1 = a_1 - b_1$$
 $c_2 = a_2 - b_2$

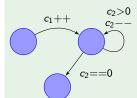
Theorem ([Čer92])

Reachability in linear hybrid automata is undecidable.

Proof

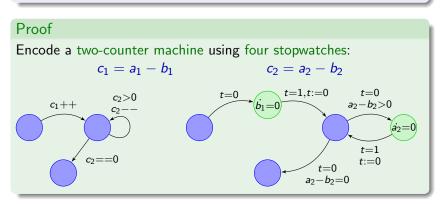
Encode a two-counter machine using four stopwatches:

$$c_1 = a_1 - b_1$$
 $c_2 = a_2 - b_2$



Theorem ([Čer92])

Reachability in linear hybrid automata is undecidable.



Theorem ([Čer92])

Reachability in linear hybrid automata is undecidable.

Proof

Encode a two-counter machine using four stopwatches:

$$c_1 = a_1 - b_1$$

$$c_2 = a_2 - b_2$$

$$c_{1++}$$

$$c_{2>0}$$

$$c_{2--}$$

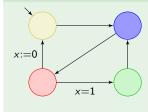
Already undecidable for one stopwatch and no diagonal constraints.

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

a timed automaton;

Example

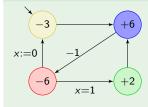


Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

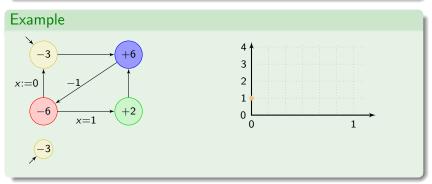
Example



Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

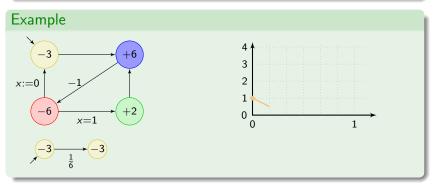
- a timed automaton;
- the price of each transition and location.



Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

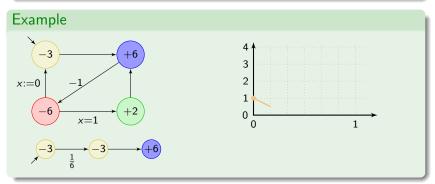
- a timed automaton;
- the price of each transition and location.



Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

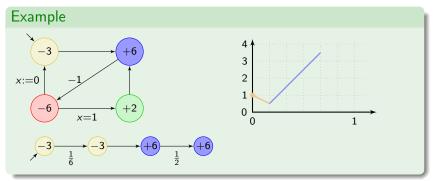
- a timed automaton;
- the price of each transition and location.



Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

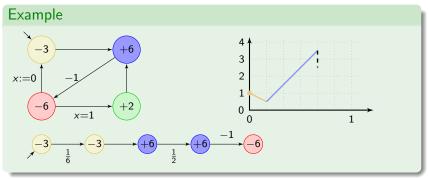
- a timed automaton;
- the price of each transition and location.



Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

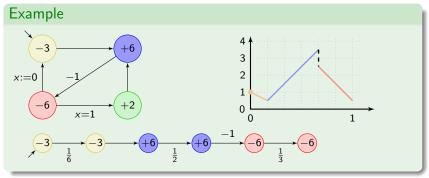
- a timed automaton;
- the price of each transition and location.



Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

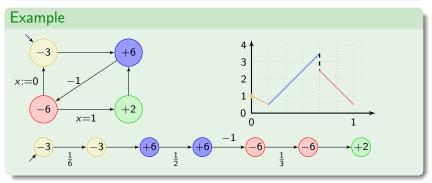
- a timed automaton;
- the price of each transition and location.



Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

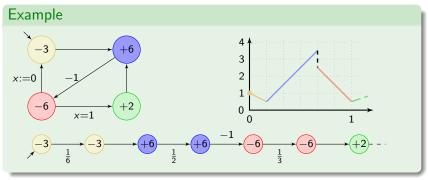
- a timed automaton;
- the price of each transition and location.



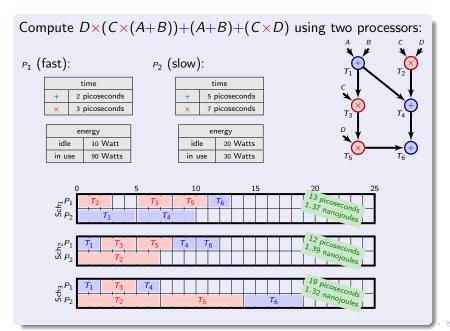
Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

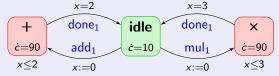


Example: task graph scheduling



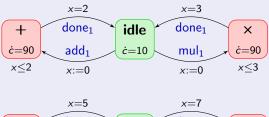
Modelling the task graph scheduling problem

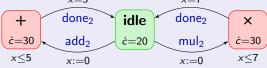
Processors:



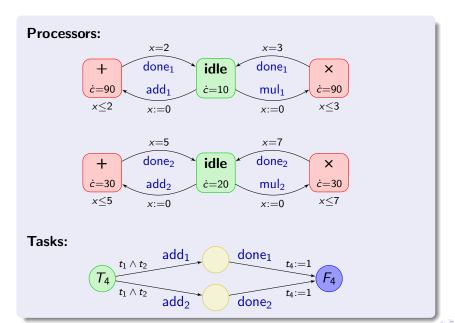
Modelling the task graph scheduling problem

Processors:

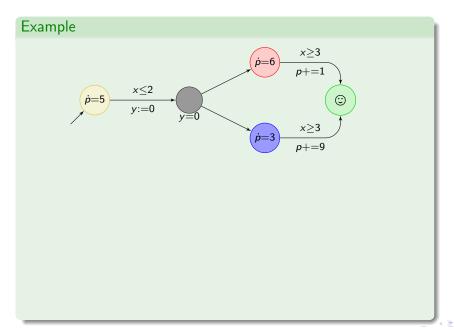




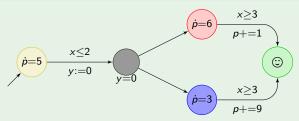
Modelling the task graph scheduling problem



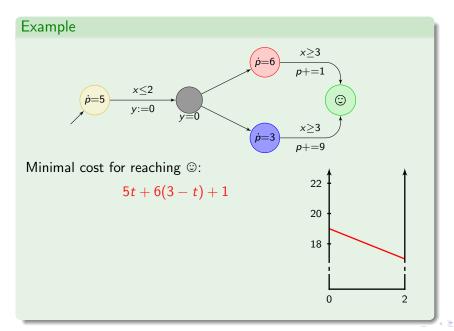
Outline of the talk

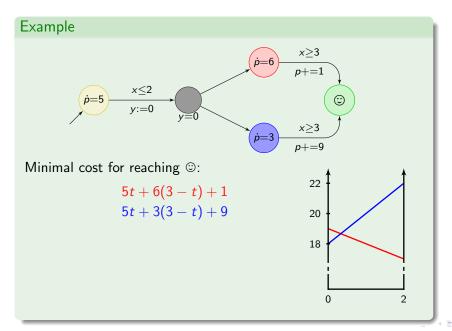


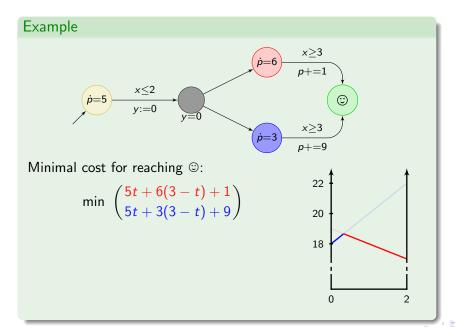
Example

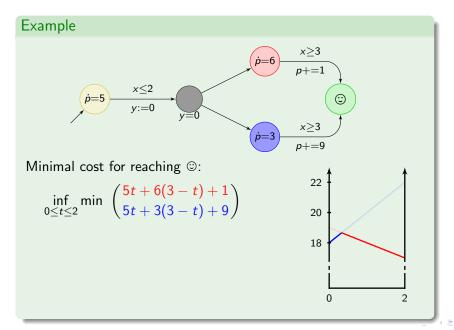


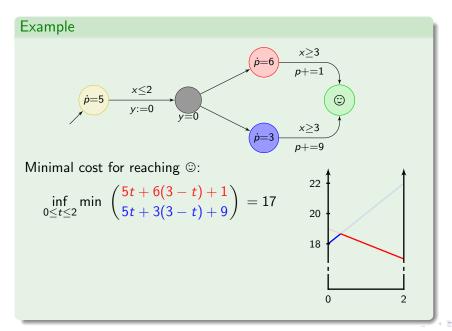
Minimal cost for reaching ©:

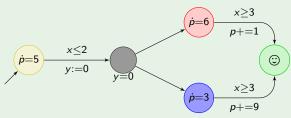












Minimal cost for reaching ©:

$$\inf_{0 \le t \le 2} \min \left(\frac{5t + 6(3 - t) + 1}{5t + 3(3 - t) + 9} \right) = 17$$

The optimal schedule consists in

- waiting 2 time units in ();
- going through O.

Theorem ([BBBR07])

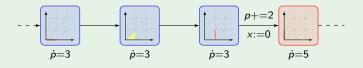
Optimal reachability in priced timed automata is PSPACE-complete.

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-complete.

Proof

Regions are not precise enough;



Theorem ([BBBR07])

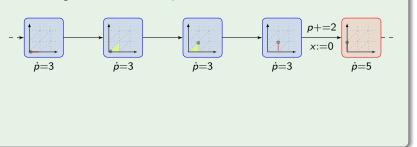
Optimal reachability in priced timed automata is PSPACE-complete.

- Regions are not precise enough;
- Use regions with corner-points:

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-complete.

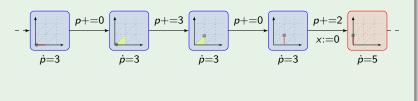
- Regions are not precise enough;
- Use regions with corner-points:



Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-complete.

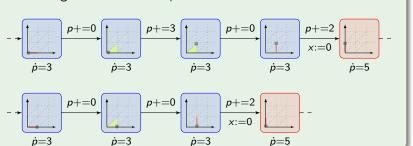
- Regions are not precise enough;
- Use regions with corner-points:



Theorem ([BBBR07])

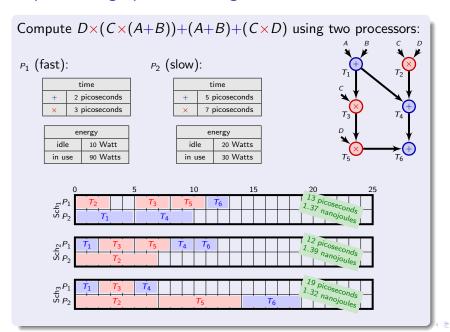
Optimal reachability in priced timed automata is PSPACE-complete.

- Regions are not precise enough;
- Use regions with corner-points:



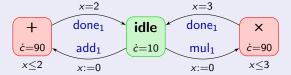
Outline of the talk

Example: task graph scheduling



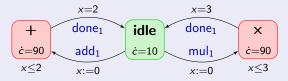
Using games to model uncertainty over delays

Processors with exact delays:

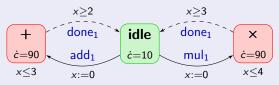


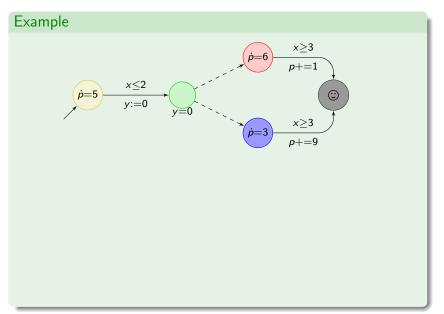
Using games to model uncertainty over delays

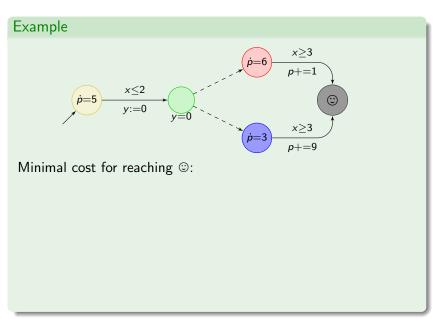
Processors with exact delays:

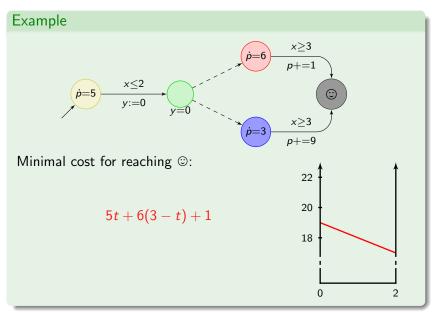


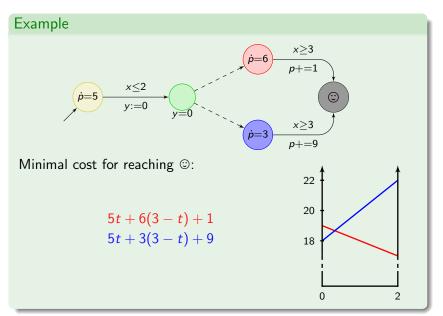
Processors with approximate delays:

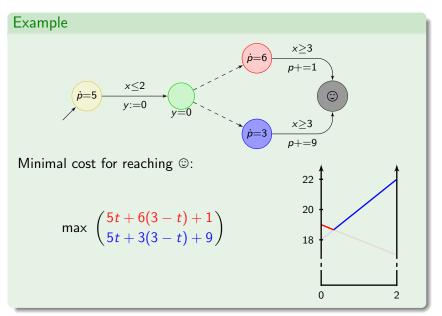


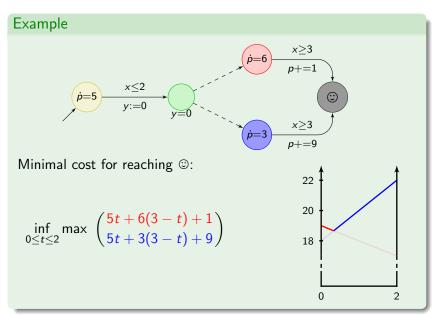


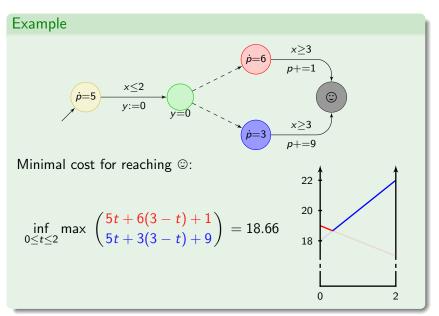


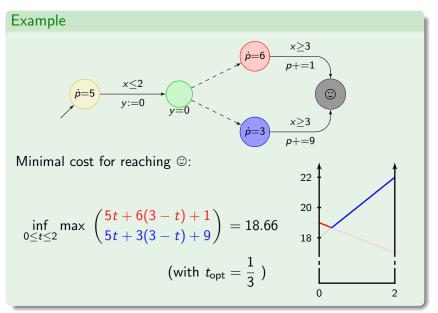












Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

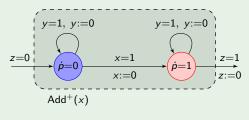
Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

• add the value of clock x to the accumulated cost

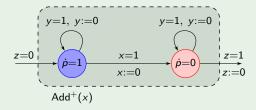


Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

- add the value of clock x to the accumulated cost
- add 1-x to the accumulated cost

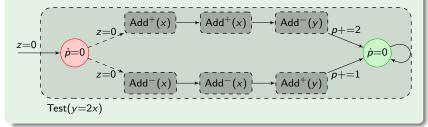


Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost
- check that y = 2x

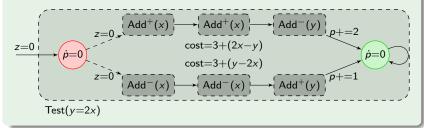


Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost
- check that y = 2x

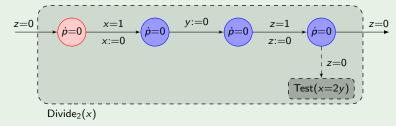


Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost
- check that y = 2x
- divide clock x by 2



Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost
- check that y = 2x
- divide clock x by 2

 \sim We can use the following encoding:

$$x_1 = \frac{1}{2^{c_1}} \qquad \qquad x_2 = \frac{1}{2^{c_2}}$$

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof Encode a two-counter machine as a priced timed game. q_{halt}

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

Lemma

The halting state is reachable if, and only if, there is an optimal strategy in the priced timed game.

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof Encode a two-counter machine as a priced timed game. Lemma The halting state is reachable if, and only if, there is an optimal strategy in the priced timed game. reach terminal location with total weight at most 3

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof Encode a two-counter machine as a priced timed game. Lemma The halting state is reachable if, and only if, there is an optimal strategy in the priced timed game. reach terminal location with total weight at most 3

Wouldn't almost-optimal strategies be sufficient?

Definition

Cost of a path:

 $cost(\pi) = sum of costs of all transitions until target location$

Definition

Cost of a path:

 $cost(\pi) = sum of costs of all transitions until target location$

Cost of a strategy:

```
cost(\sigma) = sup\{cost(\pi) \mid \pi \text{ outcome of } \sigma\}
```


Definition

Cost of a path:

 $cost(\pi) = sum of costs of all transitions until target location$

Cost of a strategy:

```
cost(\sigma) = sup\{cost(\pi) \mid \pi \text{ outcome of } \sigma\}
```

Optimal cost in a priced timed game:

```
\mathsf{optcost}_{\mathcal{G}} = \mathsf{inf}\{\mathsf{cost}(\sigma) \mid \sigma \mathsf{ winning strategy in } \mathcal{G}\}
```


Definition

Cost of a path:

 $cost(\pi) = sum of costs of all transitions until target location$

Cost of a strategy:

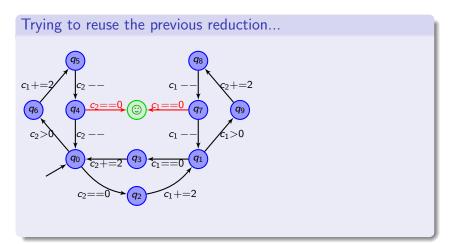
$$cost(\sigma) = sup\{cost(\pi) \mid \pi \text{ outcome of } \sigma\}$$

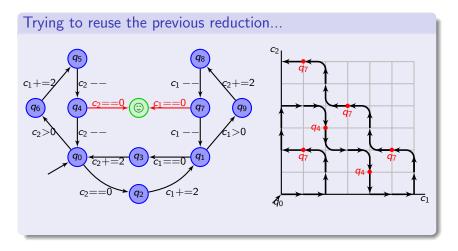
Optimal cost in a priced timed game:

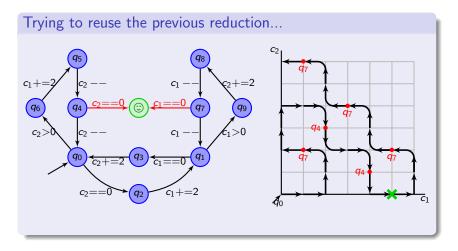
```
\mathsf{optcost}_{\mathcal{G}} = \mathsf{inf}\{\mathsf{cost}(\sigma) \mid \sigma \mathsf{ winning strategy in } \mathcal{G}\}
```

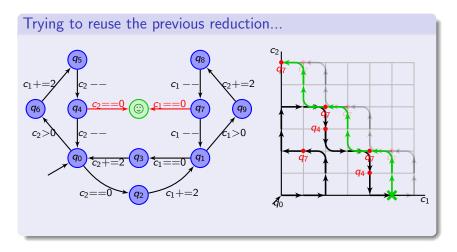
The existence of a strategy with cost less than k is undecidable.

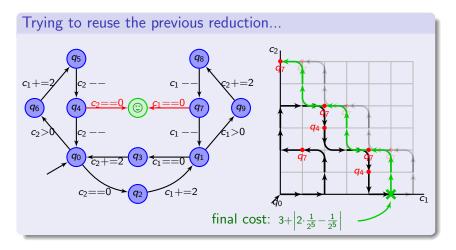
What about deciding if optcost_G $\leq k$?

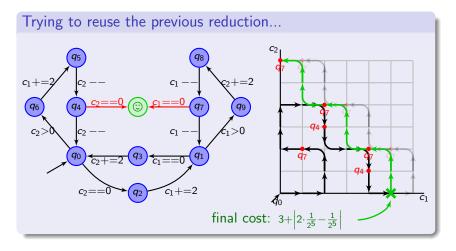




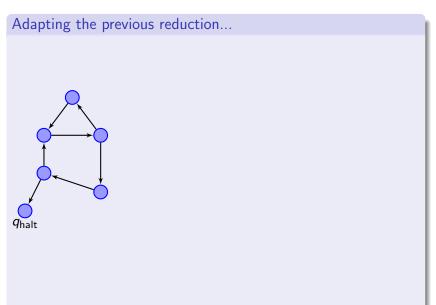


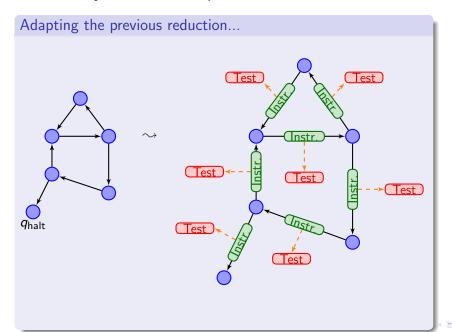


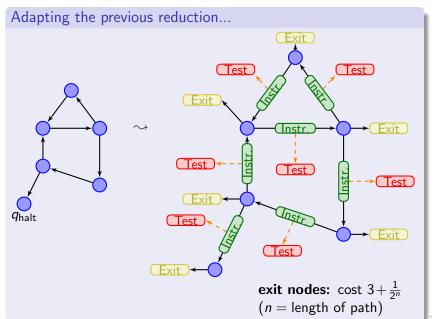


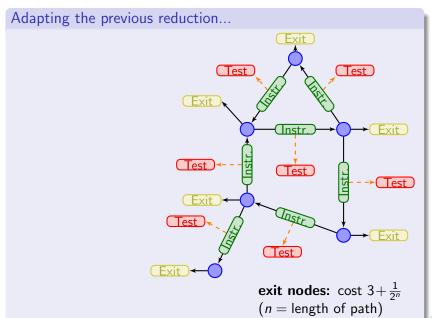


The value of the game is 3, but there is no optimal strategy...







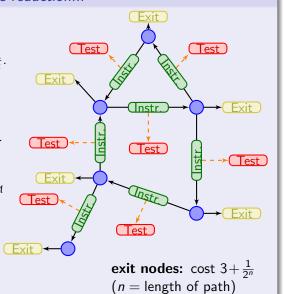


Adapting the previous reduction... • if \mathcal{M} does not halt: Player 1 simulates Test Test) correctly until $2^n > \frac{1}{\epsilon}$. $\sim \cot(\sigma) \leq 3 + \epsilon$ (Test) Test) Test) exit nodes: cost $3 + \frac{1}{2^n}$

(n = length of path)

Adapting the previous reduction...

- if \mathcal{M} does not halt: Player 1 simulates correctly until $2^n > \frac{1}{\epsilon}$.
 - $\sim \cot(\sigma) \le 3 + \epsilon$
- if M halts: correct simulation for finite duration.
 - $\sim \cot(\sigma) \ge 3 + \alpha_{\mathcal{M}}$ for all σ



Theorem ([BJM15])

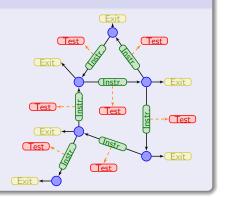
The value problem is undecidable in priced timed games.

Theorem ([BJM15])

The value problem is undecidable in priced timed games.

Remark

- blue nodes and intermediary instruction modules have cost zero everywhere;
- positive weights only occur in acyclic parts.



Definition

A priced timed game $\mathcal G$ is almost-strongly non-Zeno if there exists $\kappa>0$ for any run ρ that starts and ends in the same region:

$$cost(\rho) \ge \kappa$$

or

$$cost(\rho) = 0$$

Definition

A priced timed game $\mathcal G$ is almost-strongly non-Zeno if there exists $\kappa>0$ for any run ρ that starts and ends in the same region:

$$cost(\rho) \ge \kappa$$

$$\mathsf{cost}(\rho) = 0$$

Theorem ([BJM15])

The optimal cost of almost-strongly non-Zeno priced timed automata can be approximated.

Definition

A priced timed game $\mathcal G$ is almost-strongly non-Zeno if there exists $\kappa>0$ for any run ρ that starts and ends in the same region:

$$cost(\rho) \ge \kappa$$

$$cost(\rho) = 0$$

Theorem ([BJM15])

The optimal cost of almost-strongly non-Zeno priced timed automata can be approximated: for every $\epsilon > 0$, we can compute

• values v_{ϵ}^+ and v_{ϵ}^- such that

$$|v_{\epsilon}^{+} - v_{\epsilon}^{-}| < \epsilon$$
 $v_{\epsilon}^{-} \le optcost_{\mathcal{G}} \le v_{\epsilon}^{+}$

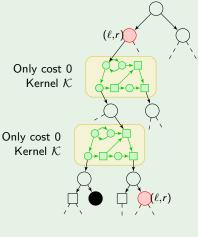
• a strategy σ_{ϵ} such that

$$optcost_G \leq cost(\sigma_{\epsilon}) \leq optcost_G + \epsilon$$
.

Proof • semi-unfolding of region automaton (seen as a timed game) Only cost 0 Kernel \mathcal{K} Only cost 0 Kernel K

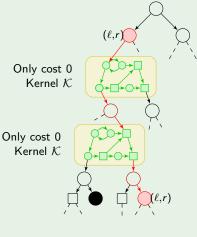
Proof

• semi-unfolding of region automaton (seen as a timed game)



Proof

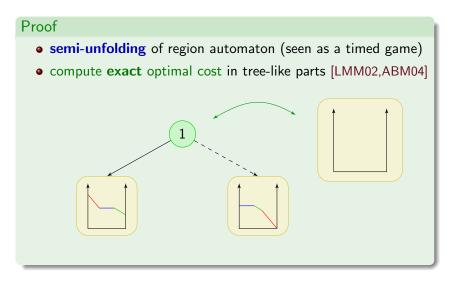
• semi-unfolding of region automaton (seen as a timed game)

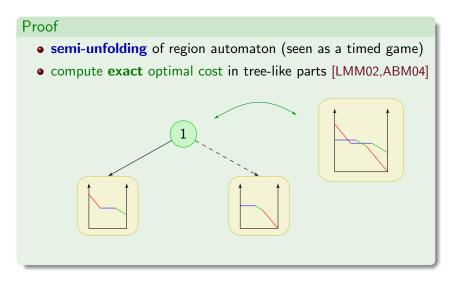


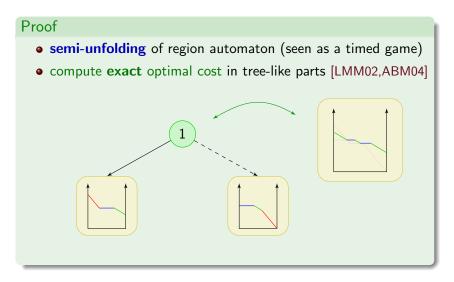
Proof • semi-unfolding of region automaton (seen as a timed game) (ℓ,r) Hypothesis: Only cost 0 cost > 0Kernel \mathcal{K} $cost > \kappa$ Only cost 0 Kernel K

Proof • semi-unfolding of region automaton (seen as a timed game) (ℓ,r) Hypothesis: Only cost 0 cost > 0Kernel K $cost > \kappa$ Only cost 0 Kernel K→ bounded depth

Proof • semi-unfolding of region automaton (seen as a timed game) • compute **exact** optimal cost in tree-like parts [LMM02,ABM04]

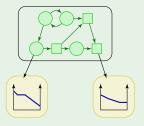






Proof

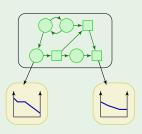
- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels



Output cost functions f

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels

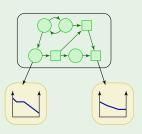


Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^- and f_{ϵ}^+

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels

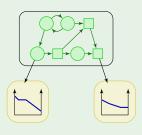


Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels

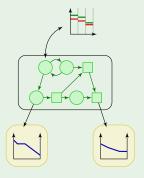


Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^- and f_{ϵ}^+

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels



Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

Outline of the talk

Conclusions and future directions

Priced timed automata and games

- convenient for modelling resources;
- 1-player setting remains tractable (sort of);
- 2-player setting undecidable, but approximable.
- approximation algorithms are a convenient trade-off.

Conclusions and future directions

Priced timed automata and games

- convenient for modelling resources;
- 1-player setting remains tractable (sort of);
- 2-player setting undecidable, but approximable.
- approximation algorithms are a convenient trade-off.

Future work

- improve approximation technique (in terms of complexity);
- extend results to whole class of priced timed games;
- average energy and energy constraints;
- robust analysis of priced timed games;
- develop a tool.

Advertisements

MOVEP 2016

- 12th Summer School MOVEP
- Genoa, Italy
- 27 June 1 July

genoa.jpg

Advertisements

MOVEP 2016

- 12th Summer School MOVEP
- Genoa, Italy
- 27 June 1 July

genoa.jpg

FORMATS 2016

quebec.jpg

- 14th Int. Conf. FORMATS
- colocated with CONCUR and QEST
- Quebec City, Canada