Optimal strategies in weighted timed games: undecidability and approximation

Nicolas Markey
LSV, CNRS \& ENS Cachan, France

(joint work with Patricia Bouyer and Samy Jaziri)

68 NQRT seminar - Rennes, France

October 1, 2015

Model checking and synthesis

Model checking and synthesis

Reasoning about real-time systems

Example (A computer mouse)

Reasoning about real-time systems

Definition ([AD90])

A timed automaton is made of

- a transition system,

Example (A computer mouse)

Reasoning about real-time systems

Definition ([AD90])

A timed automaton is made of

- a transition system,
- a set of clocks,

Example (A computer mouse)

Reasoning about real-time systems

Definition ([AD90])

A timed automaton is made of

- a transition system,
- a set of clocks,
- timing constraints on states and transitions.

Example (A computer mouse)

[AD90] Alur, Dill. Automata For Modeling Real-Time Systems. ICALP, 1990.

Continuous-time semantics

Example

Continuous-time semantics

Example

Continuous-time semantics

Example

Theorem ([AD90,ACD93, ...])
Reachability in timed automata is decidable (as well as many other important properties).
[AD90] Alur, Dill. Automata For Modeling Real-Time Systems. ICALP, 1990.
[ACD93] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time. Inf. \& Comp., 1993.

Region automaton

Region automaton

Region automaton

Timed games

Definition

A timed game is made of

- a timed automaton;

Example

Timed games

Definition

A timed game is made of

- a timed automaton;
- a partition between controllable and uncontrollable transitions.

Example

Timed games

Definition

A timed game is made of

- a timed automaton;
- a partition between controllable and uncontrollable transitions.

Example

$$
\begin{aligned}
& \text { a memoryless strategy } \\
& \text { in }\left(\ell_{0}, x=0\right): \text { wait } 0.5 \\
& \quad \text { goto } \ell_{1} \\
& \text { in }\left(\ell_{1}, x\right): \text { wait until } x=2 \\
& \\
& \text { goto } \odot \\
& \text { in }\left(\ell_{2}, x \leq 1\right): \\
& \text { wait until } x=1 \\
& \text { in }\left(\ell_{3}, x \leq 1\right): \\
& \quad \begin{array}{l}
\text { wait } \ell_{3} \\
\\
\text { goto } \ell_{1}
\end{array}
\end{aligned}
$$

Timed games

Theorem ([AMPS98])

Deciding the winner in a timed game (e.g. for reachability objectives) is EXPTIME-complete.

Timed games

Theorem ([AMPS98])

Deciding the winner in a timed game (e.g. for reachability objectives) is EXPTIME-complete.

Timed games

Theorem ([AMPS98])

Deciding the winner in a timed game (e.g. for reachability objectives) is EXPTIME-complete.

Timed games

Theorem ([AMPS98])

Deciding the winner in a timed game (e.g. for reachability objectives) is EXPTIME-complete.

Timed games

Theorem ([AMPS98])

Deciding the winner in a timed game (e.g. for reachability objectives) is EXPTIME-complete.

- regions are sufficient;
- the computation terminates.

Outline of the talk

(1) Introduction: timed automata and timed games
(2) Measuring extra quantities in timed automata

- Example: task graph scheduling
- Timed automata with observer variables
(3) Cost-optimal strategies
- Optimal reachability in priced timed automata
- Optimal reachability in priced timed games
(4) Conclusions and future works

Outline of the talk

(1) Introduction: timed automata and timed games
(2) Measuring extra quantities in timed automata

- Example: task graph scheduling
- Timed automata with observer variables
(3) Cost-optimal strategies
- Optimal reachability in priced timed automata - Optimal reachability in priced timed games
(4) Conclusions and future works

Example: task graph scheduling

Compute $D \times(C \times(A+B))+(A+B)+(C \times D)$ using two processors:

$$
P_{2} \text { (slow): }
$$

Example: task graph scheduling

Compute $D \times(C \times(A+B))+(A+B)+(C \times D)$ using two processors:

$$
P_{2} \text { (slow): }
$$

Example: task graph scheduling

Compute $D \times(C \times(A+B))+(A+B)+(C \times D)$ using two processors:

time	
$+$	2 picoseconds
\times	3 picoseconds
energy	
idle	10 Watt
in use	90 Watts

$$
P_{2} \text { (slow): }
$$

Example: task graph scheduling

Compute $D \times(C \times(A+B))+(A+B)+(C \times D)$ using two processors:

$$
P_{2} \text { (slow): }
$$

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;

Example

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999.
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

Example

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999.
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.
Example

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.
Example

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Priced timed automata

Definition ([KPSY99,ALP01,BFH $\left.{ }^{+} 01\right]$)

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. \& Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. $\left[\mathrm{BFH}^{+} 01\right]$ Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.

Example: task graph scheduling

Compute $D \times(C \times(A+B))+(A+B)+(C \times D)$ using two processors:

$$
P_{2} \text { (slow): }
$$

Modelling the task graph scheduling problem

Processors:

Modelling the task graph scheduling problem

Processors:

Modelling the task graph scheduling problem

Processors:

Tasks:

Outline of the talk

(1) Introduction: timed automata and timed games
(2) Measuring extra quantities in timed automata

- Example: task graph scheduling
- Timed automata with observer variables
(3) Cost-optimal strategies
- Optimal reachability in priced timed automata
- Optimal reachability in priced timed games

4. Conclusions and future works

Cost-optimal reachability in priced timed automata

Example

Cost-optimal reachability in priced timed automata

Example

Minimal cost for reaching © :

Cost-optimal reachability in priced timed automata

Example

Minimal cost for reaching ©:

$$
5 t+6(3-t)+1
$$

Cost-optimal reachability in priced timed automata

Example

Minimal cost for reaching ©:

$$
\begin{aligned}
& 5 t+6(3-t)+1 \\
& 5 t+3(3-t)+9
\end{aligned}
$$

Cost-optimal reachability in priced timed automata

Example

Minimal cost for reaching ©:

$$
\min \binom{5 t+6(3-t)+1}{5 t+3(3-t)+9}
$$

Cost-optimal reachability in priced timed automata

Example

Minimal cost for reaching ©:

$$
\inf _{0 \leq t \leq 2} \min \binom{5 t+6(3-t)+1}{5 t+3(3-t)+9}
$$

Cost-optimal reachability in priced timed automata

Example

Minimal cost for reaching ©:

$$
\inf _{0 \leq t \leq 2} \min \binom{5 t+6(3-t)+1}{5 t+3(3-t)+9}=17
$$

Cost-optimal reachability in priced timed automata

Example

Minimal cost for reaching © :

$$
\inf _{0 \leq t \leq 2} \min \binom{5 t+6(3-t)+1}{5 t+3(3-t)+9}=17
$$

The optimal schedule consists in

- waiting 2 time units in ;
- going through

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- Regions are not precise enough;

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- Regions are not precise enough;
- Use regions with corner-points:

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- Regions are not precise enough;
- Use regions with corner-points:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007.

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- Regions are not precise enough;
- Use regions with corner-points:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007.

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- Regions are not precise enough;
- Use regions with corner-points:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007.

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- optimal schedule as a linear programming problem:

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- optimal schedule as a linear programming problem:

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- optimal schedule as a linear programming problem:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007.

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- optimal schedule as a linear programming problem:

Minimize

$$
\sum_{i} c_{i} \cdot t_{i}+C_{\mathrm{disc}}
$$

$$
\begin{aligned}
& t_{1}+t_{2} \leq 2 \\
& t_{2}+t_{3}+t_{4} \geq 3
\end{aligned}
$$

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- optimal schedule as a linear programming problem:

Minimize

$$
\begin{aligned}
& \sum_{i} c_{i} \cdot t_{i}+C_{\text {disc }} \\
& t_{1}+t_{2} \leq 2 \\
& t_{2}+t_{3}+t_{4} \geq 3
\end{aligned}
$$

\sim infimum over bounded zone reached at a point on the frontier, with integer coordinates.

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- optimal schedule as a linear programming problem:

$$
\forall \pi . \exists \pi_{c p} . \operatorname{cost}\left(\pi_{c p}\right) \leq \operatorname{cost}(\pi)
$$

Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])
Optimal reachability in priced timed automata is PSPACE-complete.

Proof

- optimal schedule as a linear programming problem:

$$
\forall \pi . \exists \pi_{c p} \cdot \operatorname{cost}\left(\pi_{c p}\right) \leq \operatorname{cost}(\pi)
$$

- approximate path in corner-point abstraction by a real run:

$$
\forall \pi_{c p} . \exists \pi . \operatorname{cost}(\pi) \leq \operatorname{cost}\left(\pi_{c p}\right)+\epsilon
$$

Outline of the talk

(1) Introduction: timed automata and timed games
(2) Measuring extra quantities in timed automata

- Example: task graph scheduling
- Timed automata with observer variables
(3) Cost-optimal strategies
- Optimal reachability in priced timed automata
- Optimal reachability in priced timed games

4. Conclusions and future works

Example: task graph scheduling

Compute $D \times(C \times(A+B))+(A+B)+(C \times D)$ using two processors:

$$
P_{2} \text { (slow): }
$$

Cost-optimal reachability in priced timed games

Using games to model uncertainty over delays
Processors with exact delays:

Cost-optimal reachability in priced timed games

Using games to model uncertainty over delays

Processors with exact delays:

Processors with approximate delays:

Cost-optimal reachability in priced timed games

Example

Cost-optimal reachability in priced timed games

Example

Minimal cost for reaching © :

Cost-optimal reachability in priced timed games

Example

Minimal cost for reaching ©:

$$
5 t+6(3-t)+1
$$

Cost-optimal reachability in priced timed games

Example

Minimal cost for reaching ©:

$$
\begin{aligned}
& 5 t+6(3-t)+1 \\
& 5 t+3(3-t)+9
\end{aligned}
$$

Cost-optimal reachability in priced timed games

Example

Minimal cost for reaching ©:

$$
\max \binom{5 t+6(3-t)+1}{5 t+3(3-t)+9}
$$

Cost-optimal reachability in priced timed games

Example

Minimal cost for reaching © :

$$
\inf _{0 \leq t \leq 2} \max \binom{5 t+6(3-t)+1}{5 t+3(3-t)+9}
$$

Cost-optimal reachability in priced timed games

Example

Minimal cost for reaching ©:

$$
\inf _{0 \leq t \leq 2} \max \binom{5 t+6(3-t)+1}{5 t+3(3-t)+9}=18.66
$$

Cost-optimal reachability in priced timed games

Example

Minimal cost for reaching ©:

$$
\begin{aligned}
\inf _{0 \leq t \leq 2} \max \binom{5 t+6(3-t)+1}{5 t+3(3-t)+9} & =18.66 \\
\left(\text { with } t_{\mathrm{opt}}\right. & \left.=\frac{1}{3}\right)
\end{aligned}
$$

Looking for optimal strategies...

Optimal strategies need not exist...

Looking for optimal strategies...

Optimal strategies need not exist...

Optimal strategies may need memory...

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005.
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006.

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])
Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005.
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006.

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost
- add $1-x$ to the accumulated cost

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005.
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006=

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost
- add $1-x$ to the accumulated cost
- check that $y=2 x$

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost
- add $1-x$ to the accumulated cost
- check that $y=2 x$

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost
- add $1-x$ to the accumulated cost
- check that $y=2 x$
- divide clock x by 2

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost
- add $1-x$ to the accumulated cost
- check that $y=2 x$
- divide clock x by 2
\sim We can use the following encoding:

$$
x_{1}=\frac{1}{2^{c_{1}}} \quad x_{2}=\frac{1}{2^{c_{2}}}
$$

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

Lemma

The halting state is reachable if, and only if, there is an optimal strategy in the priced timed game.
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005.
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006.

Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

Lemma

The halting state is reachable if, and only if, there is an eptimal strategy in the priced timed game.
reach terminal location with total weight at most 3
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005.
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006.

The value of a game
Definition

The value of a game

Definition

Cost of a path:
$\operatorname{cost}(\pi)=$ sum of costs of all transitions until target location

The value of a game

Definition

Cost of a path:
$\operatorname{cost}(\pi)=$ sum of costs of all transitions until target location
Cost of a strategy:

$$
\operatorname{cost}(\sigma)=\sup \{\operatorname{cost}(\pi) \mid \pi \text { outcome of } \sigma\}
$$

The value of a game

Definition

Cost of a path:
$\operatorname{cost}(\pi)=$ sum of costs of all transitions until target location
Cost of a strategy:

$$
\operatorname{cost}(\sigma)=\sup \{\operatorname{cost}(\pi) \mid \pi \text { outcome of } \sigma\}
$$

Optimal cost in a priced timed game:

$$
\text { optcost }_{\mathcal{G}}=\inf \{\operatorname{cost}(\sigma) \mid \sigma \text { winning strategy in } \mathcal{G}\}
$$

The value of a game

Definition

Cost of a path:
$\operatorname{cost}(\pi)=$ sum of costs of all transitions until target location
Cost of a strategy:

$$
\operatorname{cost}(\sigma)=\sup \{\operatorname{cost}(\pi) \mid \pi \text { outcome of } \sigma\}
$$

Optimal cost in a priced timed game:

$$
\operatorname{optcost}_{\mathcal{G}}=\inf \{\operatorname{cost}(\sigma) \mid \sigma \text { winning strategy in } \mathcal{G}\}
$$

The existence of a strategy with cost less than k is undecidable.
What about deciding if optcost $\mathcal{G}_{\mathcal{G}} \leq k$?

Undecidability of the value problem

Trying to reuse the previous reduction...

Undecidability of the value problem

Trying to reuse the previous reduction...

Undecidability of the value problem

Trying to reuse the previous reduction...

Undecidability of the value problem

Trying to reuse the previous reduction...

Undecidability of the value problem

Trying to reuse the previous reduction...

The value of the game is 3 , but there is no optimal strategy...

Undecidability of the value problem

Adapting the previous reduction...

Undecidability of the value problem

Adapting the previous reduction...

Undecidability of the value problem

Adapting the previous reduction...

exit nodes: cost $3+\frac{1}{2^{n}}$
($n=$ length of path)

Undecidability of the value problem

Adapting the previous reduction...

exit nodes: cost $3+\frac{1}{2^{n}}$
($n=$ length of path)

Undecidability of the value problem

Adapting the previous reduction...

- if \mathcal{M} does not halt:

Player 1 simulates correctly until $2^{n}>\frac{1}{\epsilon}$.
$\sim \operatorname{cost}(\sigma) \leq 3+\epsilon$

exit nodes: cost $3+\frac{1}{2^{n}}$ ($n=$ length of path $)$

Undecidability of the value problem

Adapting the previous reduction...

- if \mathcal{M} does not halt:

Player 1 simulates correctly until $2^{n}>\frac{1}{\epsilon}$. $\sim \operatorname{cost}(\sigma) \leq 3+\epsilon$

- if \mathcal{M} halts:
correct simulation for finite duration.
$\leadsto \operatorname{cost}(\sigma) \geq 3+\alpha_{\mathcal{M}}$ for all σ

exit nodes: cost $3+\frac{1}{2^{n}}$ ($n=$ length of path $)$

Undecidability of the value problem

Theorem ([BJM15])
The value problem is undecidable in priced timed games.

Undecidability of the value problem

Theorem ([BJM15])

The value problem is undecidable in priced timed games.

Remark

- blue nodes and intermediary instruction modules have cost zero everywhere;
- positive weights only occur in acyclic parts.

[BJM15] Bouyer, Jaziri, Markey. On the Value Problem in Weighted Timed Games. CONCUR, 2015.

Approximation of the optimal cost

Definition

A priced timed game \mathcal{G} is almost-strongly non-Zeno if there exists $\kappa>0$ for any run ρ that starts and ends in the same region:

$$
\operatorname{cost}(\rho) \geq \kappa \quad \text { or } \quad \operatorname{cost}(\rho)=0
$$

Approximation of the optimal cost

Definition

A priced timed game \mathcal{G} is almost-strongly non-Zeno if there exists $\kappa>0$ for any run ρ that starts and ends in the same region:

$$
\operatorname{cost}(\rho) \geq \kappa \quad \text { or } \quad \operatorname{cost}(\rho)=0
$$

Theorem ([BJM15])
The optimal cost of almost-strongly non-Zeno priced timed automata can be approximated.

Approximation of the optimal cost

Definition

A priced timed game \mathcal{G} is almost-strongly non-Zeno if there exists $\kappa>0$ for any run ρ that starts and ends in the same region:

$$
\operatorname{cost}(\rho) \geq \kappa \quad \text { or } \quad \operatorname{cost}(\rho)=0
$$

Theorem ([BJM15])

The optimal cost of almost-strongly non-Zeno priced timed automata can be approximated: for every $\epsilon>0$, we can compute

- values v_{ϵ}^{+}and v_{ϵ}^{-}such that

$$
\left|v_{\epsilon}^{+}-v_{\epsilon}^{-}\right|<\epsilon \quad v_{\epsilon}^{-} \leq o p t \cos t_{\mathcal{G}} \leq v_{\epsilon}^{+}
$$

- a strategy σ_{ϵ} such that

$$
\operatorname{optcost}_{\mathcal{G}} \leq \operatorname{cost}\left(\sigma_{\epsilon}\right) \leq \text { optcost }_{\mathcal{G}}+\epsilon
$$

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)

Hypothesis:

$$
\begin{gathered}
\text { cost }>0 \\
\downarrow \\
\operatorname{cost} \geq \kappa
\end{gathered}
$$

\sim bounded depth

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts
- compute approximate optimal cost in kernels

Output cost functions f

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts
- compute approximate optimal cost in kernels

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

Output cost functions f

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts
- compute approximate optimal cost in kernels

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

Output cost functions f

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts
- compute approximate optimal cost in kernels

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

$~$ reachability timed game in small regions

Approximation of the optimal cost

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts
- compute approximate optimal cost in kernels

Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

\sim reachability timed game in small regions

Outline of the talk

(1) Introduction: timed automata and timed games
(2) Measuring extra quantities in timed automata

- Example: task graph scheduling
- Timed automata with observer variables

3 Cost-optimal strategies

- Optimal reachability in priced timed automata
- Optimal reachability in priced timed games
(4) Conclusions and future works

Conclusions and future directions

Priced timed automata and games

- convenient for modelling resources;
- 1-player setting remains tractable (sort of);
- 2-player setting undecidable, but approximable.
- approximation algorithms are a convenient trade-off.

Conclusions and future directions

Priced timed automata and games

- convenient for modelling resources;
- 1-player setting remains tractable (sort of);
- 2-player setting undecidable, but approximable.
- approximation algorithms are a convenient trade-off.

Future work

- improve approximation technique (in terms of complexity);
- extend results to whole class of priced timed games;
- average energy and energy constraints;
- robust analysis of priced timed games;
- develop a tool.

