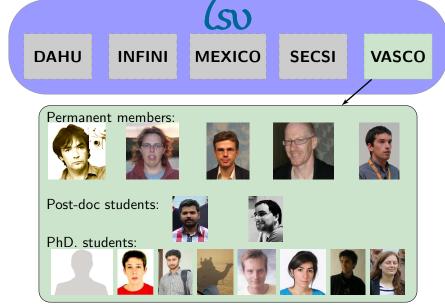
Robustness issues in timed models

Nicolas Markey

LSV, CNRS & ENS Cachan, France

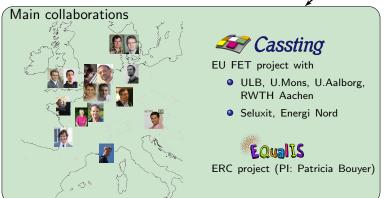
(based on joint works with Patricia Bouyer, Erwin Fang, Pierre-Alain Reynier, Ocan Sankur) (also starring Martin De Wulf, Laurent Doyen, Jean-François Raskin)

SASEFOR days – Gif-sur-Yvette, France



Research topics:

- model checking: temporal logics, measures of correctness, ...
- timed systems: timed automata and extensions, robustness, ...
- hybrid systems: switched systems, control, ...
- games for synthesis: quantitative games, imperfect information, equilibria, ...
- ...



Robustness issues in timed models

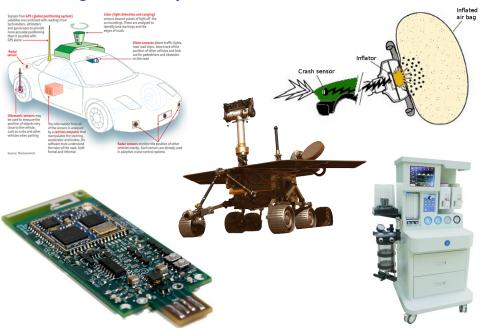
Nicolas Markey

LSV, CNRS & ENS Cachan, France

(based on joint works with Patricia Bouyer, Erwin Fang, Pierre-Alain Reynier, Ocan Sankur) (also starring Martin De Wulf, Laurent Doyen, Jean-François Raskin)

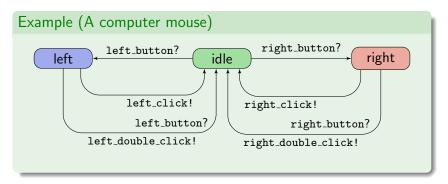
SASEFOR days – Gif-sur-Yvette, France

Modelling real-time systems



Modelling real-time systems

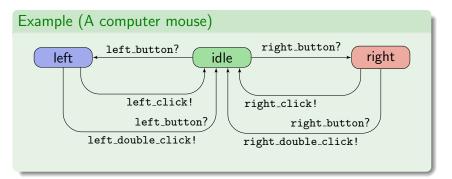




Timed automata [AD90]

A timed automaton is made of

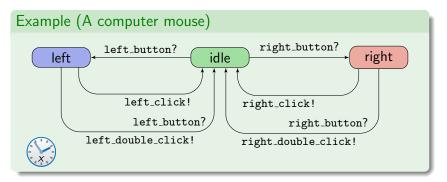
• a transition system,



Timed automata [AD90]

A timed automaton is made of

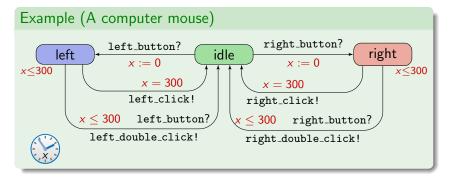
- a transition system,
- a set of clocks,

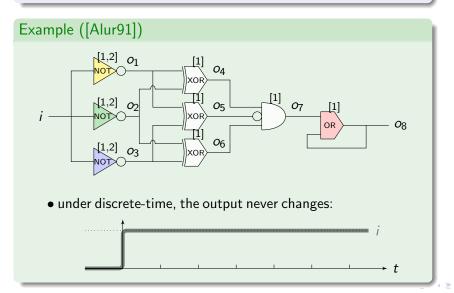


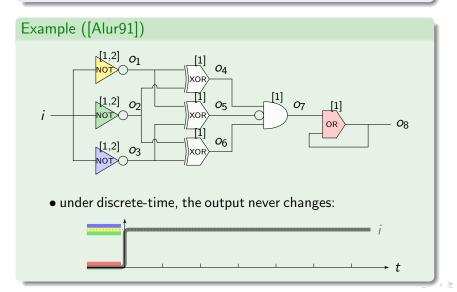
Timed automata [AD90]

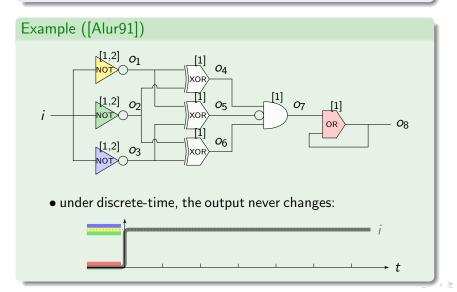
A timed automaton is made of

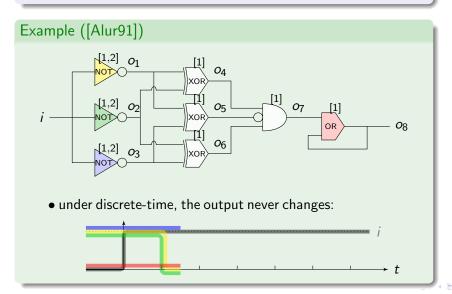
- a transition system,
- a set of clocks,
- timing constraints on states and transitions.

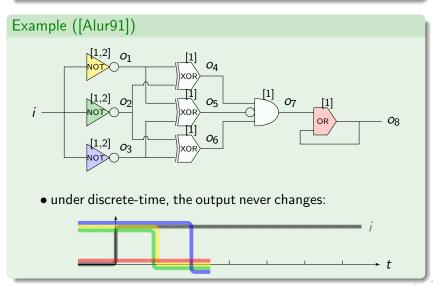


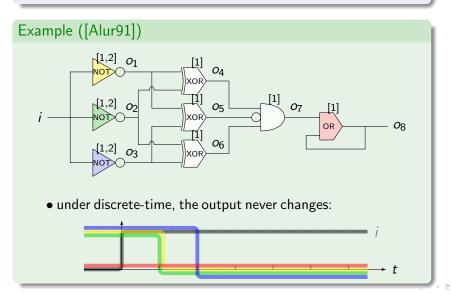


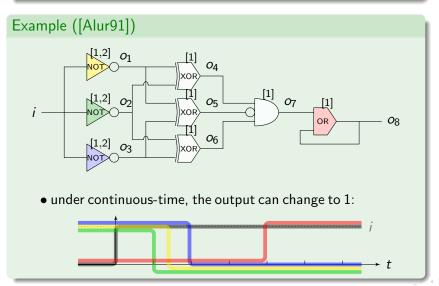


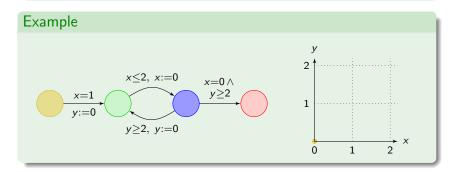


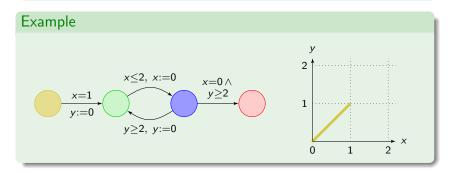


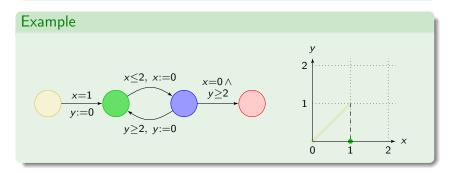


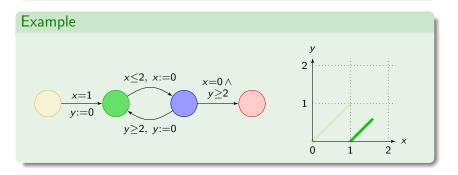


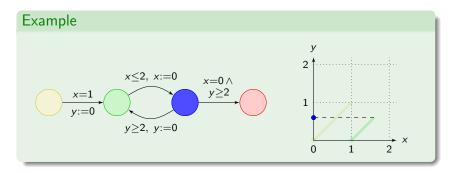


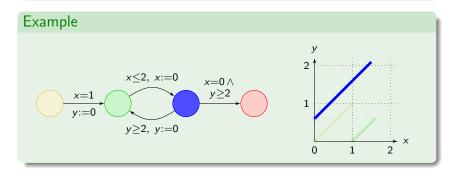


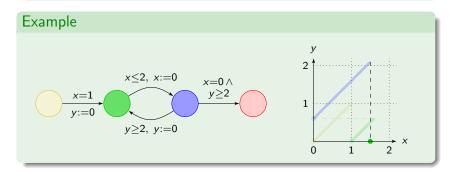


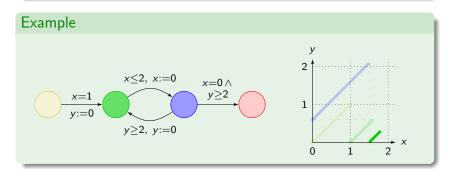


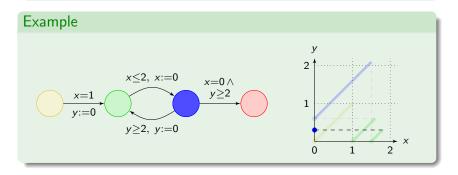


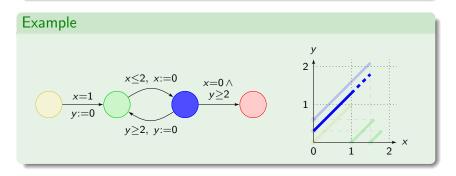


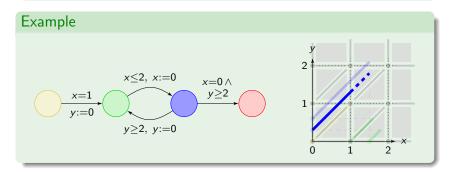




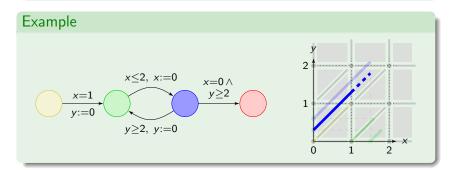








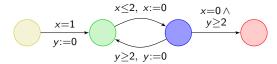
...real-time models for real-time systems!



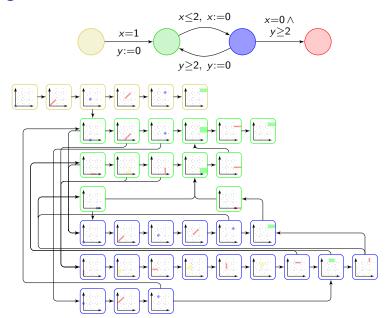
Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other important properties).

Regions and zones



Regions and zones



Regions and zones

Zones

Zones are a coarser abstraction:

$$(x \ge 2) \land (0 \le y \le 3) \land (x - y \le 4)$$

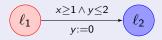
Zones

Zones are a coarser abstraction:

$$(x \geq 2) \land (0 \leq y \leq 3) \land (x - y \leq 4)$$

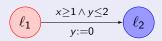
Representation as DBM:

Zones



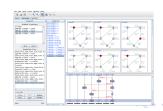
The predecessors of $(\ell_2, x \leq 3 \land y - x \leq 0)$ are computed as

Zones



The predecessors of ($\ell_2, x \leq 3 \, \wedge \, y - x \leq 0$) are computed as

→ efficient implementations



Zones

$$\begin{array}{c|c}
 & x \ge 1 \land y \le 2 \\
\hline
 & y := 0
\end{array}$$

The predecessors of $(\ell_2, x \leq 3 \land y - x \leq 0)$ are computed as

- → efficient implementations
- → successful applications

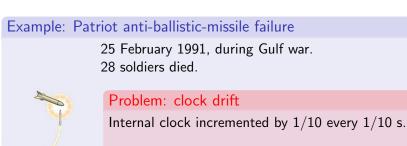
Outline of the talk

- 1 Discrete time vs. dense time
- 2 From models to implementations
- Checking robust safety
 - Enlarging clock constraints
 - Shrinking clock constraints
- 4 Checking robust controllability
 - Parametrized perturbations
 - Permissive strategies
- 5 Conclusions and future works

Outline of the talk

- Discrete time vs. dense time
- 2 From models to implementations
- Checking robust safety
 - Enlarging clock constraints
 - Shrinking clock constraints
- 4 Checking robust controllability
 - Parametrized perturbations
 - Permissive strategies
- Conclusions and future works

28 soldiers died.



Example: Patriot anti-ballistic-missile failure

 $25\ \mathsf{February}\ 1991,\ \mathsf{during}\ \mathsf{Gulf}\ \mathsf{war}.$

28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

$$\left| \frac{1}{10} - \left\langle \frac{1}{10} \right\rangle_{24 \text{ bit}} \simeq 10^{-7}$$

x=0.1, x:=0 clock+=0.1

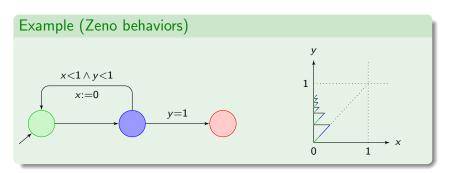
After 100 hours, the total drift was 0.34 seconds. The incoming missile could not be destroyed.

the continuous-time semantics is a mathematical idealization

- it assumes zero-delay transitions;
- it assumes infinite precision of the clocks;
- it assumes immediate communication between systems.

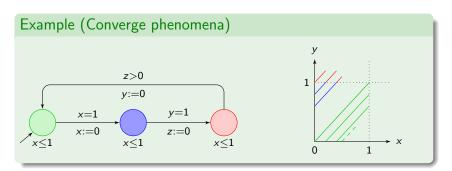
the continuous-time semantics is a mathematical idealization

- it assumes zero-delay transitions;
- it assumes infinite precision of the clocks;
- it assumes immediate communication between systems.



the continuous-time semantics is a mathematical idealization

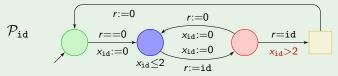
- it assumes zero-delay transitions;
- it assumes infinite precision of the clocks;
- it assumes immediate communication between systems.



the continuous-time semantics is a mathematical idealization

- it assumes zero-delay transitions;
- it assumes infinite precision of the clocks;
- it assumes immediate communication between systems.

Example (Strict timing constraints [KLL⁺97])



When P_1 and P_2 run in parallel (sharing variable r), the state where both of them are in \square is not reachable.

This property is lost when $x_{id} > 2$ is replaced with $x_{id} \ge 2$.

the continuous-time semantics is a mathematical idealization

- it assumes zero-delay transitions;
- it assumes infinite precision of the clocks;
- it assumes immediate communication between systems.

Parametrized semantics

- parametrized discrete-time semantics:
 - Does there exists a time step δ (sampling rate) under which the system behaves correctly?

the continuous-time semantics is a mathematical idealization

- it assumes zero-delay transitions;
- it assumes infinite precision of the clocks;
- it assumes immediate communication between systems.

Parametrized semantics

- parametrized discrete-time semantics:
 - Does there exists a time step δ (sampling rate) under which the system behaves correctly?
 - → reachability is undecidable [CHR02]
 - \sim untimed-language inclusion is decidable [AKY10]

the continuous-time semantics is a mathematical idealization

- it assumes zero-delay transitions;
- it assumes infinite precision of the clocks;
- it assumes immediate communication between systems.

Parametrized semantics

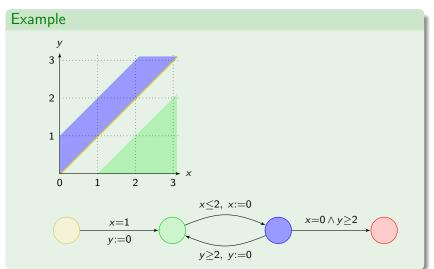
- parametrized discrete-time semantics:
 - Does there exists a time step δ (sampling rate) under which the system behaves correctly?
 - → reachability is undecidable [CHR02]

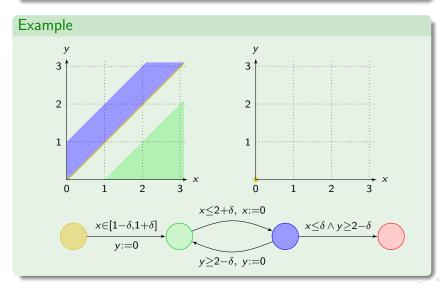
 ∴ Line (ALX)(10)

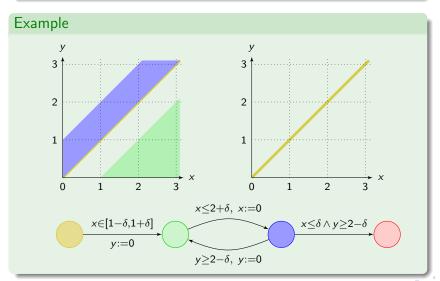
 ∴ Li
 - ightarrow untimed-language inclusion is decidable [AKY10]
- parametrized continuous-time semantics:
 - Does the system behave correctly under continuoustime semantics with imprecisions up to some δ ?

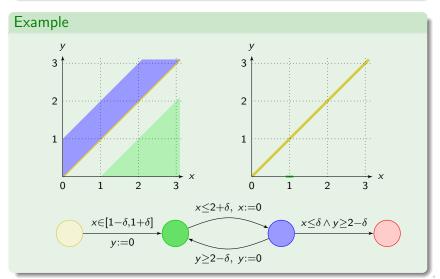
Outline of the talk

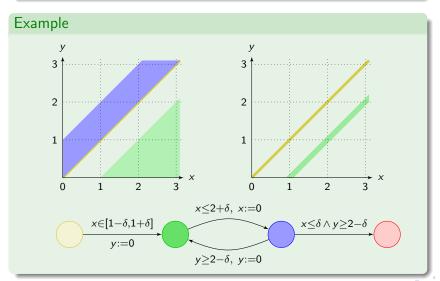
- Discrete time vs. dense time
- 2 From models to implementations
- Checking robust safety
 - Enlarging clock constraints
 - Shrinking clock constraints
- 4 Checking robust controllability
 - Parametrized perturbations
 - Permissive strategies
- 5 Conclusions and future works

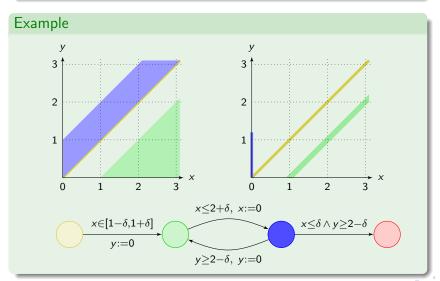


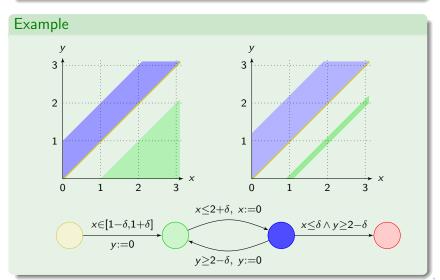


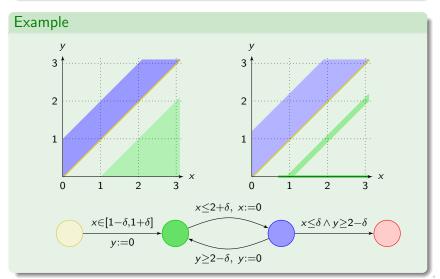


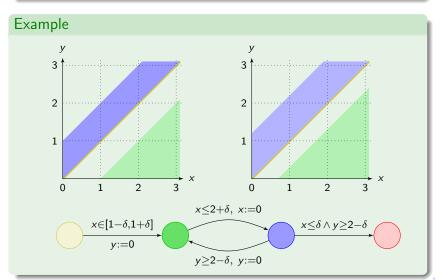


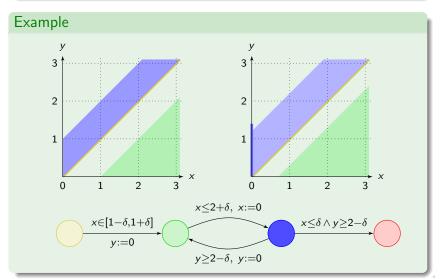


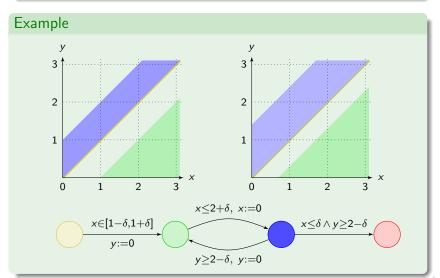


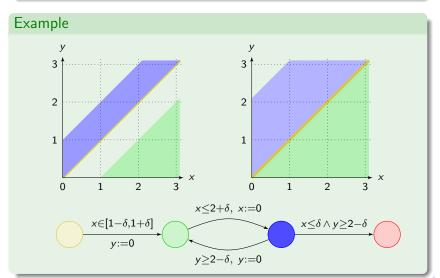


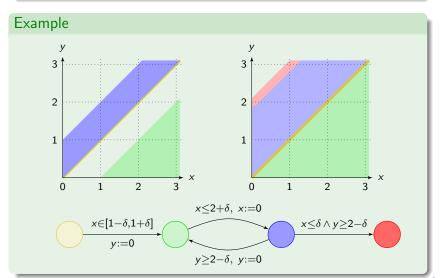




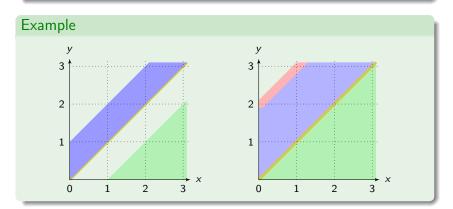








a transition can be taken at any time in $[t - \delta; t + \delta]$.

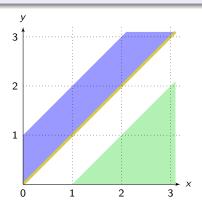


Theorem ([Pur98,DDMR04])

Parametrized robust safety is decidable.

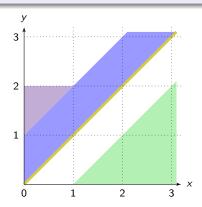
For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,



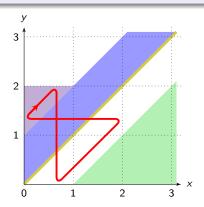
For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,



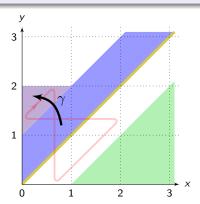
For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,



For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

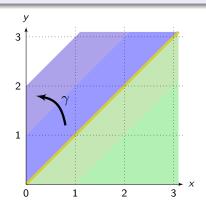


Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.

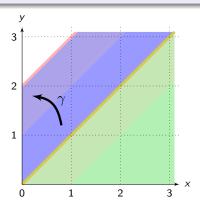


Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.



Counteracting guard enlargement

Shrinking turns constraints [a, b] into $[a + \delta, b - \delta]$.

In particular, punctual constraints become empty.

Counteracting guard enlargement

Shrinking turns constraints [a, b] into $[a + \delta, b - \delta]$.

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some $\delta>0$, its shrunk automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.

Counteracting guard enlargement

Shrinking turns constraints [a, b] into $[a + \delta, b - \delta]$.

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some $\delta>0$, its shrunk automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.

Main tools: parametrized shrunk DBMs max-plus fixpoint equations

Counteracting guard enlargement

Shrinking turns constraints [a, b] into $[a + \delta, b - \delta]$.

In particular, punctual constraints become empty.

Definition

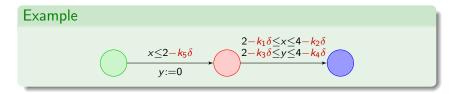
A timed automaton is shrinkable if, for some $\delta>0$, its shrunk automaton (time-abstract) simulates the original automaton.

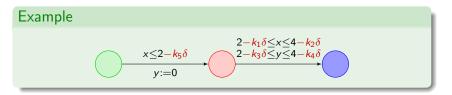
Theorem ([SBM11])

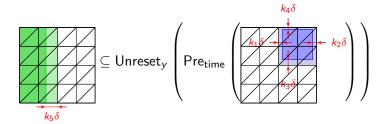
Shrinkability is decidable in EXPTIME.

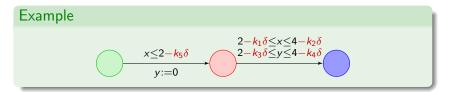
 \sim prototype tool:

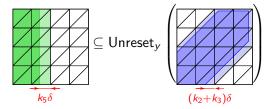
http://www.lsv.ens-cachan.fr/Software/shrinktech/

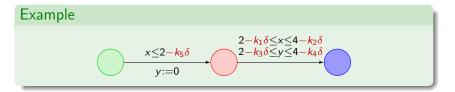


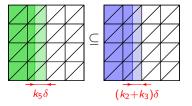


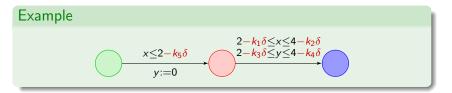


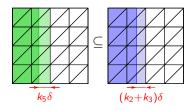












$$\rightsquigarrow k_5 = \max(k_5, k_2 + k_3)$$

Outline of the talk

- Discrete time vs. dense time
- 2 From models to implementations
- Checking robust safety
 - Enlarging clock constraints
 - Shrinking clock constraints
- 4 Checking robust controllability
 - Parametrized perturbations
 - Permissive strategies
- 5 Conclusions and future works

Game-based approach to robustness

Solving robust reachability

- Player 1 proposes a delay d and a transition t;
- transition t is taken after some delay in $[d \delta, d + \delta]$ chosen by Player 2.

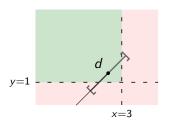
Game-based approach to robustness

Solving robust reachability

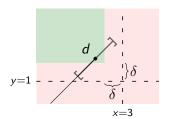
- Player 1 proposes a delay d and a transition t;
- transition t is taken after some delay in $[d \delta, d + \delta]$ chosen by Player 2.

Consider a transition with guard $x \le 3 \land y \ge 1$:

loose semantics



strict semantics



Game-based approach to robustness

Solving robust reachability

- Player 1 proposes a delay d and a transition t;
- transition t is taken after some delay in $[d \delta, d + \delta]$ chosen by Player 2.

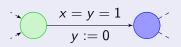
Theorem ([BMS12,SBMR13])

Robust reachability is EXPTIME-complete in the loose semantics.

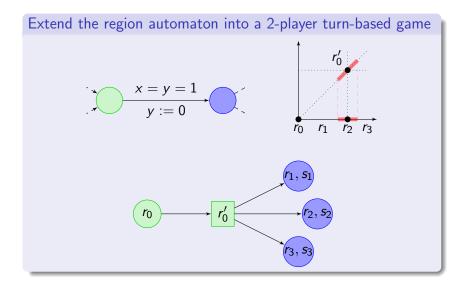
Robust reachability and repeated reachability are PSPACE-complete in the strict semantics.

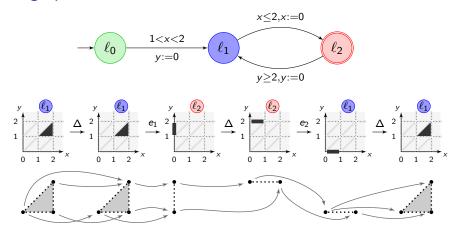
Shrunk DBMs for the loose semantics

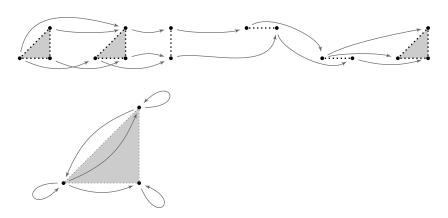
Extend the region automaton into a 2-player turn-based game

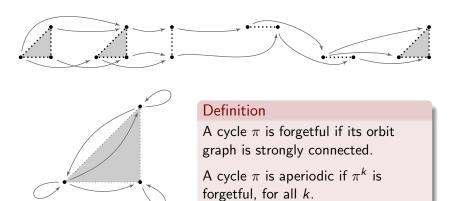


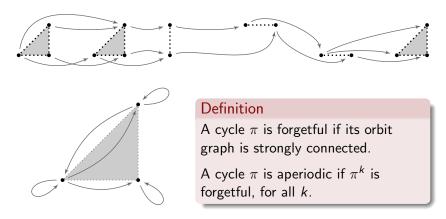
Shrunk DBMs for the loose semantics











Theorem

The automaton is robustly controllable if, and only if, it has a reachable aperiodic cycle.

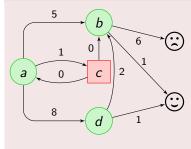
Permissive strategies

Permissive strategies can propose several moves rather than a single one.

Permissive strategies

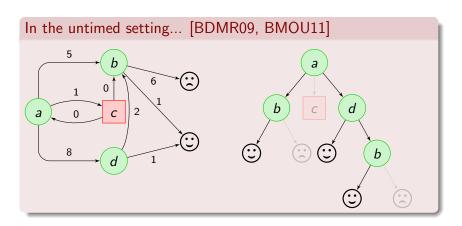
Permissive strategies can propose several moves rather than a single one.

In the untimed setting... [BDMR09, BMOU11]



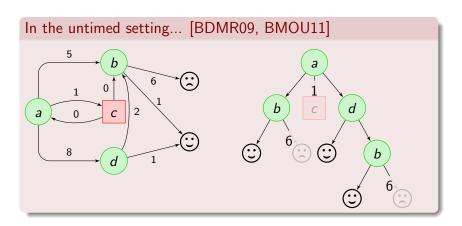
Permissive strategies

Permissive strategies can propose several moves rather than a single one.



Permissive strategies

Permissive strategies can propose several moves rather than a single one.



Permissive strategies

Permissive strategies can propose several moves rather than a single one.

In the timed setting...

Permissive strategies propose intervals of delays.

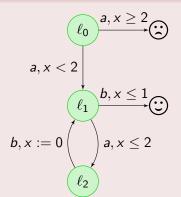
Our setting:

the penalty assigned to interval [a, b] is 1/(b-a).

Permissive strategies

Permissive strategies can propose several moves rather than a single one.

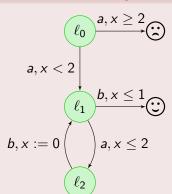
In the timed setting...



Permissive strategies

Permissive strategies can propose several moves rather than a single one.

In the timed setting...

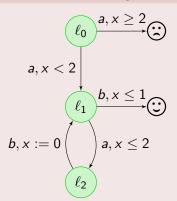


- in ℓ_0 , play (a, [0, 2));
- \bullet in ℓ_1 :
 - if $x \le 1$, play (b, [0, 1 x]);
 - otherwise, play (a, [0, 2-x]);
- in ℓ_2 , play $(b, [0, +\infty))$

Permissive strategies

Permissive strategies can propose several moves rather than a single one.

In the timed setting...

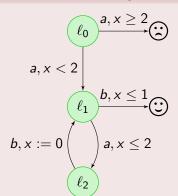


- in ℓ_0 , play (a, [0, 2));
- \bullet in ℓ_1 :
 - if $x \le 1$, play (b, [0, 1-x]);
 - otherwise, play (a, [0, 2-x]);
- in ℓ_2 , play $(b, [0, +\infty))$
 - \rightarrow penalty = $+\infty$

Permissive strategies

Permissive strategies can propose several moves rather than a single one.

In the timed setting...

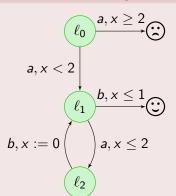


- in ℓ_0 , play (a, [0, 1/2]);
- in ℓ_1 , play (a, [0, 1-x]);

Permissive strategies

Permissive strategies can propose several moves rather than a single one.

In the timed setting...

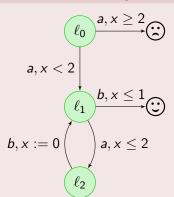


- in ℓ_0 , play (a, [0, 1/2]);
- in ℓ_1 , play (a, [0, 1-x]);
 - \rightarrow penalty = 4

Permissive strategies

Permissive strategies can propose several moves rather than a single one.

In the timed setting...

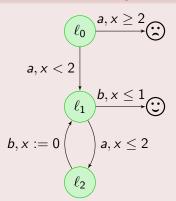


- in ℓ_0 , play (a, [0, 1]);
- \bullet in ℓ_1 :
 - if x = 0, play (b, [0, 1]);
 - otherwise, play (a, [0, 2-x]);
- in ℓ_2 , play $(b, [0, +\infty))$

Permissive strategies

Permissive strategies can propose several moves rather than a single one.

In the timed setting...



- in ℓ_0 , play (a, [0, 1]);
- ullet in ℓ_1 :
 - if x = 0, play (b, [0, 1]);
 - otherwise, play (a, [0, 2-x]);
- in ℓ_2 , play $(b, [0, +\infty))$
 - \rightarrow penalty = 3

Permissive strategies

Permissive strategies can propose several moves rather than a single one.

In the timed setting...

Theorem

For one-clock timed games:

- Memoryless optimal-penalty strategies exist.
- They can be computed in polynomial time.

Outline of the talk

- Discrete time vs. dense time
- 2 From models to implementations
- Checking robust safety
 - Enlarging clock constraints
 - Shrinking clock constraints
- 4 Checking robust controllability
 - Parametrized perturbations
 - Permissive strategies
- 5 Conclusions and future works

Conclusion and challenges

Conclusions

Robustness issues identified long ago...

Several attempts, but no satisfactory solution yet!

Conclusion and challenges

Conclusions

Robustness issues identified long ago...

Several attempts, but no satisfactory solution yet!

Challenges and open questions

- symbolic algorithms;
- measuring robustness, using distances between automata;
 - → link between "syntactic distance" and "semantic distance"
- probabilistic approach to robustness;
 - → evaluate expected time before a new state is visited.
- investigate robustness in weighted timed automata;
 - → energy constraints;
 - → imprecision on cost rates;
- synthesis of robust strategies.