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Reasoning about real-time systems

Timed automata [AD90]

A timed automaton is made of
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Discrete-time semantics

...because computers are digital!

Example ([Alur91])
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Continuous-time semantics

...real-time models for real-time systems!

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).
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Regions and zones

Zones

Zones are a coarser abstraction:

(x ≥ 2) ∧ (0 ≤ y ≤ 3) ∧ (x − y ≤ 4)

y

x

Representation as DBM:


0 x y

0 0 −2 0
x +∞ 0 4
y 3 +∞ 0

 ≡


0 x y

0 0 −2 0
x 7 0 4
y 3 1 0
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Regions and zones

Zones

`1 `2
x≥1∧ y≤2

y :=0

The predecessors of (`2, x ≤ 3 ∧ y − x ≤ 0) are computed as

= Pretime

 ∩ Unresety

 

; efficient implementations

; successful applications
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From models to implementations

Example: Patriot anti-ballistic-missile failure

25 February 1991, during Gulf war.
28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

1

10
−
〈

1

10

〉
24 bit

' 10−7

x=0.1,x :=0
clock+=0.1

After 100 hours, the total drift was 0.34 seconds.
The incoming missile could not be destroyed.
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it assumes infinite precision of the clocks;

it assumes immediate communication between systems.



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Example (Zeno behaviors)

x<1∧ y<1

x :=0

y=1

y

0
x

1

1



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.
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From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Example (Strict timing constraints)

Pid

xid≤2

r :=0

r==0

xid:=0

r :=id

xid:=0

r :=0

xid:=0 r=id

xid>2

When P1 and P2 run in parallel (sharing variable r), the state
where both of them are in is not reachable.

This property is lost when xid > 2 is replaced with xid ≥ 2.
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it assumes immediate communication between systems.

Parametrized semantics

parametrized discrete-time semantics:

Does there exists a time step δ (sampling rate) under
which the system behaves correctly?

; reachability is undecidable [CHR02]
; untimed-language inclusion is decidable [AKY10]

parametrized continuous-time semantics:
Does the system behave correctly under continuous-
time semantics with imprecisions up to some δ?
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a transition can be taken at any time in [t − δ; t + δ].
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Enlarged semantics for timed automata
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Theorem ([Pur98,DDMR04])

Parametrized robust safety is decidable.
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For any location ` and any two regions r and r ′, if
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Shrinking timing constraints

Counteracting guard enlargement

Shrinking turns constraints [a, b] into [a + δ, b − δ].

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.
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A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.

Main tools: parametrized shrunk DBMs
max-plus fixpoint equations



Shrinking timing constraints

Counteracting guard enlargement

Shrinking turns constraints [a, b] into [a + δ, b − δ].

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.

; prototype tool:

http://www.lsv.ens-cachan.fr/Software/shrinktech/

http://www.lsv.ens-cachan.fr/Software/shrinktech/


Shrinking timing constraints

Example

x≤2−k5δ

y :=0

2−k1δ≤x≤4−k2δ
2−k3δ≤y≤4−k4δ

k5δ

⊆ Unresety

Pretime


k3δ

k4δ

k1δ k2δ




; k5 = max(k5, k2 + k3)
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Solving robust reachability

Player 1 proposes a delay d and a transition t;

transition t is taken after some delay in [d − δ, d + δ] chosen
by Player 2.



Game-based approach to robustness

Solving robust reachability

Player 1 proposes a delay d and a transition t;

transition t is taken after some delay in [d − δ, d + δ] chosen
by Player 2.

Consider a transition with guard x ≤ 3 ∧ y ≥ 1:

strict semantics

x=3

y=1
δ

δ

d

loose semantics

x=3

y=1

d



Game-based approach to robustness

Solving robust reachability

Player 1 proposes a delay d and a transition t;

transition t is taken after some delay in [d − δ, d + δ] chosen
by Player 2.

Theorem ([BMS12,SBMR13])

Robust reachability is EXPTIME-complete in the loose semantics.

Robust reachability and repeated reachability are
PSPACE-complete in the strict semantics.



Shrunk DBMs for the loose semantics

Extend the region automaton into a 2-player turn-based game

x = y = 1

y := 0

r0 r1 r2 r3

r ′0

r0 r ′0

r1, s1

r2, s2

r3, s3
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Orbit graphs for the strict semantics

`0 `1 `2
1<x<2

y :=0

y≥2,y :=0

x≤2,x :=0

y

0
x

1

1

2

2

`1

∆

y

0
x

1

1

2

2

`1

e1

y

0
x

1

1

2

2

`2

∆

y

0
x

1

1

2

2

`2

e2

y

0
x

1

1

2

2

`1

∆

y

0
x

1

1

2

2

`1

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k .



Orbit graphs for the strict semantics

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k.



Orbit graphs for the strict semantics

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k.



Orbit graphs for the strict semantics

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k.

Theorem

The automaton is robustly controllable if, and only if, it has a
reachable aperiodic cycle.
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Permissive strategies

Permissive strategies can propose several moves rather than a
single one.
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Permissive strategies

Permissive strategies can propose several moves rather than a
single one.
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Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

Permissive strategies propose intervals of delays.

Our setting:

the penalty assigned to interval [a, b] is 1/(b − a).
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in `2, play (b, [0,+∞))

; penalty = +∞
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Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

Theorem

For one-clock timed games:

Memoryless optimal-penalty strategies exist.

They can be computed in polynomial time.
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Conclusion and challenges

Conclusions

Robustness issues identified long ago...

Several attempts, but no satisfactory solution yet!

Challenges and open questions

symbolic algorithms;

measuring robustness, using distances between automata;
; link between “syntactic distance” and “semantic distance”

probabilistic approach to robustness;
; evaluate expected time before a new state is visited.

investigate robustness in weighted timed automata;
; energy constraints;
; imprecision on cost rates;

synthesis of robust strategies.
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