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Reasoning about real-time systems

Timed automata [AD90]
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Discrete-time semantics

...because computers are digital!

Example ([Alur91])
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Continuous-time semantics

...real-time models for real-time systems!

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).
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Regions and zones

Zones

Zones are a coarser abstraction:

(x ≥ 2) ∧ (0 ≤ y ≤ 3) ∧ (x − y ≤ 4)
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Representation as DBM:
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x +∞ 0 4
y 3 +∞ 0

 ≡


0 x y

0 0 −2 0
x 7 0 4
y 3 1 0
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From models to implementations

Example: Patriot anti-ballistic-missile failure

25 February 1991, during Gulf war.
28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

1

10
−
〈

1

10

〉
24 bit

' 10−7

x=0.1,x :=0
clock+=0.1

After 100 hours, the total drift was 0.34 seconds.
The incoming missile could not be destroyed.
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From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.
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From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Example (Strict timing constraints)

Pid

xid≤2

r :=0

r==0

xid:=0

r :=id

xid:=0

r :=0

xid:=0 r=id

xid>2

When P1 and P2 run in parallel (sharing variable r), the state
where both of them are in is not reachable.

This property is lost when xid > 2 is replaced with xid ≥ 2.
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parametrized discrete-time semantics:

Does there exists a time step δ (sampling rate) under
which the system behaves correctly?

; reachability is undecidable [CHR02]
; untimed-language inclusion is decidable [AKY10]

parametrized continuous-time semantics:
Does the system behave correctly under continuous-
time semantics with imprecisions up to some δ?



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Parametrized semantics

parametrized discrete-time semantics:

Does there exists a time step δ (sampling rate) under
which the system behaves correctly?

; reachability is undecidable [CHR02]
; untimed-language inclusion is decidable [AKY10]

parametrized continuous-time semantics:
Does the system behave correctly under continuous-
time semantics with imprecisions up to some δ?



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Parametrized semantics

parametrized discrete-time semantics:

Does there exists a time step δ (sampling rate) under
which the system behaves correctly?

; reachability is undecidable [CHR02]
; untimed-language inclusion is decidable [AKY10]

parametrized continuous-time semantics:
Does the system behave correctly under continuous-
time semantics with imprecisions up to some δ?



Outline of the talk

1 Discrete time vs. dense time

2 From models to implementations

3 Checking robust safety
Enlarging clock constraints
Shrinking clock constraints

4 Checking robust controllability
Parametrized perturbations
Permissive strategies

5 Conclusions and future works



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

Theorem ([Pur98,DDMR04])

Parametrized robust safety is decidable.
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Shrinking timing constraints

Counteracting guard enlargement

Shrinking turns constraints [a, b] into [a + δ, b − δ].

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.
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Shrinking timing constraints

Counteracting guard enlargement

Shrinking turns constraints [a, b] into [a + δ, b − δ].

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.

; prototype tool:

http://www.lsv.ens-cachan.fr/Software/shrinktech/

http://www.lsv.ens-cachan.fr/Software/shrinktech/
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Game-based approach to robustness

Solving robust reachability

Player 1 proposes a delay d and a transition t;

transition t is taken after some delay in [d − δ, d + δ] chosen
by Player 2.

Consider a transition with guard x ≤ 3 ∧ y ≥ 1:

strict semantics

x=3

y=1
δ

δ

d

loose semantics

x=3

y=1

d



Game-based approach to robustness

Solving robust reachability

Player 1 proposes a delay d and a transition t;

transition t is taken after some delay in [d − δ, d + δ] chosen
by Player 2.

Theorem ([BMS12,SBMR13])

Robust reachability is EXPTIME-complete in the loose semantics.

Robust reachability and repeated reachability are
PSPACE-complete in the strict semantics.
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y := 0
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Orbit graphs for the strict semantics

`0 `1 `2
1<x<2

y :=0

y≥2,y :=0

x≤2,x :=0
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Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k .
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Orbit graphs for the strict semantics

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k.

Theorem

The automaton is robustly controllable if, and only if, it has a
reachable aperiodic cycle.
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Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

Permissive strategies propose intervals of delays.

Our setting:

the penalty assigned to interval [a, b] is 1/(b − a).
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Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

Theorem

For one-clock timed games:

Memoryless optimal-penalty strategies exist.

They can be computed in polynomial time.



Outline of the talk

1 Discrete time vs. dense time

2 From models to implementations

3 Checking robust safety
Enlarging clock constraints
Shrinking clock constraints

4 Checking robust controllability
Parametrized perturbations
Permissive strategies

5 Conclusions and future works



Conclusion and challenges

Conclusions

Robustness issues identified long ago...

Several attempts, but no satisfactory solution yet!

Challenges and open questions

symbolic algorithms;

measuring robustness, using distances between automata;
; link between “syntactic distance” and “semantic distance”

probabilistic approach to robustness;
; evaluate expected time before a new state is visited.

investigate robustness in weighted timed automata;
; energy constraints;
; imprecision on cost rates;

synthesis of robust strategies.
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