
Robustness issues in timed models

Nicolas Markey

LSV, CNRS & ENS Cachan, France

(based on joint works with Patricia Bouyer, Erwin Fang, Pierre-Alain Reynier, Ocan Sankur)
(also starring Martin De Wulf, Laurent Doyen, Jean-François Raskin)

QAPL’14 – Grenoble, France



Modelling real-time systems

How
shou

ld w
e m

odel

real-
time

cons
train

ts?



Modelling real-time systems

How
shou

ld w
e m

odel

real-
time

cons
train

ts?



Reasoning about real-time systems

Timed automata [AD90]

A timed automaton is made of

a transition system,

a set of clocks,

timing constraints on states and transitions.

Example (A computer mouse)

idleleft

x≤300

right

x≤300

left button?

x := 0

right button?

x := 0

x = 300

left click!

x ≤ 300

left button?

left double click!

x = 300

right click!

x ≤ 300

right button?

right double click!

x



Reasoning about real-time systems

Timed automata [AD90]

A timed automaton is made of

a transition system,

a set of clocks,

timing constraints on states and transitions.

Example (A computer mouse)

idleleft

x≤300

right

x≤300

left button?

x := 0

right button?

x := 0

x = 300

left click!

x ≤ 300

left button?

left double click!

x = 300

right click!

x ≤ 300

right button?

right double click!

x



Reasoning about real-time systems

Timed automata [AD90]

A timed automaton is made of

a transition system,

a set of clocks,

timing constraints on states and transitions.

Example (A computer mouse)

idleleft

x≤300

right

x≤300

left button?

x := 0

right button?

x := 0

x = 300

left click!

x ≤ 300

left button?

left double click!

x = 300

right click!

x ≤ 300

right button?

right double click!

x



Reasoning about real-time systems

Timed automata [AD90]

A timed automaton is made of

a transition system,

a set of clocks,

timing constraints on states and transitions.

Example (A computer mouse)

idleleft
x≤300

right
x≤300

left button?

x := 0

right button?

x := 0

x = 300

left click!

x ≤ 300 left button?

left double click!

x = 300

right click!

x ≤ 300 right button?

right double click!

x



Discrete-time semantics

...because computers are digital!

Example ([Alur91])

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output never changes:

t

i



Discrete-time semantics

...because computers are digital!

Example ([Alur91])

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output never changes:

t

i



Discrete-time semantics

...because computers are digital!

Example ([Alur91])

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output never changes:

t

i



Discrete-time semantics

...because computers are digital!

Example ([Alur91])

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output never changes:

t

i



Discrete-time semantics

...because computers are digital!

Example ([Alur91])

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output never changes:

t

i



Discrete-time semantics

...because computers are digital!

Example ([Alur91])

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output never changes:

t

i



Discrete-time semantics

...because computers are digital!

Example ([Alur91])

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output never changes:

t

i



Discrete-time semantics

...because computers are digital!

Example ([Alur91])

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under continuous-time, the output can change to 1:

t

i



Continuous-time semantics

...real-time models for real-time systems!

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).



Regions and zones

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2



Regions and zones

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2



Regions and zones

Zones

Zones are a coarser abstraction:

(x ≥ 2) ∧ (0 ≤ y ≤ 3) ∧ (x − y ≤ 4)

y

x

Representation as DBM:


0 x y

0 0 −2 0
x +∞ 0 4
y 3 +∞ 0

 ≡


0 x y

0 0 −2 0
x 7 0 4
y 3 1 0





Regions and zones

Zones

Zones are a coarser abstraction:

(x ≥ 2) ∧ (0 ≤ y ≤ 3) ∧ (x − y ≤ 4)

y

x

Representation as DBM:


0 x y

0 0 −2 0
x +∞ 0 4
y 3 +∞ 0

 ≡


0 x y

0 0 −2 0
x 7 0 4
y 3 1 0





Regions and zones

Zones

`1 `2
x≥1∧ y≤2

y :=0

The predecessors of (`2, x ≤ 3 ∧ y − x ≤ 0) are computed as

= Pretime

 ∩ Unresety

 

; efficient implementations

; successful applications



Regions and zones

Zones

`1 `2
x≥1∧ y≤2

y :=0

The predecessors of (`2, x ≤ 3 ∧ y − x ≤ 0) are computed as

= Pretime

 ∩ Unresety

 

; efficient implementations

; successful applications



Regions and zones

Zones

`1 `2
x≥1∧ y≤2

y :=0

The predecessors of (`2, x ≤ 3 ∧ y − x ≤ 0) are computed as

= Pretime

 ∩ Unresety

 

; efficient implementations

; successful applications



Outline of the talk

1 Discrete time vs. dense time

2 From models to implementations

3 Checking robust safety
Enlarging clock constraints
Shrinking clock constraints

4 Checking robust controllability
Parametrized perturbations
Permissive strategies

5 Conclusions and future works



Outline of the talk

1 Discrete time vs. dense time

2 From models to implementations

3 Checking robust safety
Enlarging clock constraints
Shrinking clock constraints

4 Checking robust controllability
Parametrized perturbations
Permissive strategies

5 Conclusions and future works



From models to implementations

Example: Patriot anti-ballistic-missile failure

25 February 1991, during Gulf war.
28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

1

10
−
〈

1

10

〉
24 bit

' 10−7

x=0.1,x :=0
clock+=0.1

After 100 hours, the total drift was 0.34 seconds.
The incoming missile could not be destroyed.



From models to implementations

Example: Patriot anti-ballistic-missile failure

25 February 1991, during Gulf war.
28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

1

10
−
〈

1

10

〉
24 bit

' 10−7

x=0.1,x :=0
clock+=0.1

After 100 hours, the total drift was 0.34 seconds.
The incoming missile could not be destroyed.



From models to implementations

Example: Patriot anti-ballistic-missile failure

25 February 1991, during Gulf war.
28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

1

10
−
〈

1

10

〉
24 bit

' 10−7

x=0.1,x :=0
clock+=0.1

After 100 hours, the total drift was 0.34 seconds.
The incoming missile could not be destroyed.



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Example (Zeno behaviors)

x<1∧ y<1

x :=0

y=1

y

0
x

1

1



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Example (Converge phenomena)

x≤1 x≤1 x≤1

x=1

x :=0

y=1

z:=0

z>0

y :=0

y

0
x

1

1



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Example (Strict timing constraints)

Pid

xid≤2

r :=0

r==0

xid:=0

r :=id

xid:=0

r :=0

xid:=0 r=id

xid>2

When P1 and P2 run in parallel (sharing variable r), the state
where both of them are in is not reachable.

This property is lost when xid > 2 is replaced with xid ≥ 2.



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Parametrized semantics

parametrized discrete-time semantics:

Does there exists a time step δ (sampling rate) under
which the system behaves correctly?

; reachability is undecidable [CHR02]
; untimed-language inclusion is decidable [AKY10]

parametrized continuous-time semantics:
Does the system behave correctly under continuous-
time semantics with imprecisions up to some δ?



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Parametrized semantics

parametrized discrete-time semantics:

Does there exists a time step δ (sampling rate) under
which the system behaves correctly?

; reachability is undecidable [CHR02]
; untimed-language inclusion is decidable [AKY10]

parametrized continuous-time semantics:
Does the system behave correctly under continuous-
time semantics with imprecisions up to some δ?



From models to implementations

the continuous-time semantics is a mathematical idealization

it assumes zero-delay transitions;

it assumes infinite precision of the clocks;

it assumes immediate communication between systems.

Parametrized semantics

parametrized discrete-time semantics:

Does there exists a time step δ (sampling rate) under
which the system behaves correctly?

; reachability is undecidable [CHR02]
; untimed-language inclusion is decidable [AKY10]

parametrized continuous-time semantics:
Does the system behave correctly under continuous-
time semantics with imprecisions up to some δ?



Outline of the talk

1 Discrete time vs. dense time

2 From models to implementations

3 Checking robust safety
Enlarging clock constraints
Shrinking clock constraints

4 Checking robust controllability
Parametrized perturbations
Permissive strategies

5 Conclusions and future works



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x∈[1−δ,1+δ]

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ



Enlarged semantics for timed automata

a transition can be taken at any time in [t − δ; t + δ].

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

Theorem ([Pur98,DDMR04])

Parametrized robust safety is decidable.



Extended region automaton

For any location ` and any two regions r and r ′, if

r ∩ r ′ 6= ∅ and

(`, r ′) belongs to an SCC of R(A),

then we add a transition (`, r)
γ−→ (`, r ′).

γ

y

0
x

1

1

2

2

3

3



Extended region automaton

For any location ` and any two regions r and r ′, if

r ∩ r ′ 6= ∅ and

(`, r ′) belongs to an SCC of R(A),

then we add a transition (`, r)
γ−→ (`, r ′).

γ

y

0
x

1

1

2

2

3

3



Extended region automaton

For any location ` and any two regions r and r ′, if

r ∩ r ′ 6= ∅ and

(`, r ′) belongs to an SCC of R(A),

then we add a transition (`, r)
γ−→ (`, r ′).

γ

y

0
x

1

1

2

2

3

3



Extended region automaton

For any location ` and any two regions r and r ′, if

r ∩ r ′ 6= ∅ and

(`, r ′) belongs to an SCC of R(A),

then we add a transition (`, r)
γ−→ (`, r ′).

γ

y

0
x

1

1

2

2

3

3



Extended region automaton

For any location ` and any two regions r and r ′, if

r ∩ r ′ 6= ∅ and

(`, r ′) belongs to an SCC of R(A),

then we add a transition (`, r)
γ−→ (`, r ′).

γ

y

0
x

1

1

2

2

3

3



Extended region automaton

For any location ` and any two regions r and r ′, if

r ∩ r ′ 6= ∅ and

(`, r ′) belongs to an SCC of R(A),

then we add a transition (`, r)
γ−→ (`, r ′).

γ

y

0
x

1

1

2

2

3

3



Shrinking timing constraints

Counteracting guard enlargement

Shrinking turns constraints [a, b] into [a + δ, b − δ].

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.



Shrinking timing constraints

Counteracting guard enlargement

Shrinking turns constraints [a, b] into [a + δ, b − δ].

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.



Shrinking timing constraints

Counteracting guard enlargement

Shrinking turns constraints [a, b] into [a + δ, b − δ].

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.

Main tools: parametrized shrunk DBMs
max-plus fixpoint equations



Shrinking timing constraints

Counteracting guard enlargement

Shrinking turns constraints [a, b] into [a + δ, b − δ].

In particular, punctual constraints become empty.

Definition

A timed automaton is shrinkable if, for some δ > 0, its shrunk
automaton (time-abstract) simulates the original automaton.

Theorem ([SBM11])

Shrinkability is decidable in EXPTIME.

; prototype tool:

http://www.lsv.ens-cachan.fr/Software/shrinktech/

http://www.lsv.ens-cachan.fr/Software/shrinktech/


Shrinking timing constraints

Example

x≤2−k5δ

y :=0

2−k1δ≤x≤4−k2δ
2−k3δ≤y≤4−k4δ

k5δ

⊆ Unresety

Pretime


k3δ

k4δ

k1δ k2δ




; k5 = max(k5, k2 + k3)



Shrinking timing constraints

Example

x≤2−k5δ

y :=0

2−k1δ≤x≤4−k2δ
2−k3δ≤y≤4−k4δ

k5δ

⊆ Unresety

Pretime


k3δ

k4δ

k1δ k2δ




; k5 = max(k5, k2 + k3)



Shrinking timing constraints

Example

x≤2−k5δ

y :=0

2−k1δ≤x≤4−k2δ
2−k3δ≤y≤4−k4δ

k5δ

⊆ Unresety


(k2+k3)δ



; k5 = max(k5, k2 + k3)



Shrinking timing constraints

Example

x≤2−k5δ

y :=0

2−k1δ≤x≤4−k2δ
2−k3δ≤y≤4−k4δ

k5δ

⊆

(k2+k3)δ

; k5 = max(k5, k2 + k3)



Shrinking timing constraints

Example

x≤2−k5δ

y :=0

2−k1δ≤x≤4−k2δ
2−k3δ≤y≤4−k4δ

k5δ

⊆

(k2+k3)δ

; k5 = max(k5, k2 + k3)



Outline of the talk

1 Discrete time vs. dense time

2 From models to implementations

3 Checking robust safety
Enlarging clock constraints
Shrinking clock constraints

4 Checking robust controllability
Parametrized perturbations
Permissive strategies

5 Conclusions and future works



Game-based approach to robustness

Solving robust reachability

Player 1 proposes a delay d and a transition t;

transition t is taken after some delay in [d − δ, d + δ] chosen
by Player 2.



Game-based approach to robustness

Solving robust reachability

Player 1 proposes a delay d and a transition t;

transition t is taken after some delay in [d − δ, d + δ] chosen
by Player 2.

Consider a transition with guard x ≤ 3 ∧ y ≥ 1:

strict semantics

x=3

y=1
δ

δ

d

loose semantics

x=3

y=1

d



Game-based approach to robustness

Solving robust reachability

Player 1 proposes a delay d and a transition t;

transition t is taken after some delay in [d − δ, d + δ] chosen
by Player 2.

Theorem ([BMS12,SBMR13])

Robust reachability is EXPTIME-complete in the loose semantics.

Robust reachability and repeated reachability are
PSPACE-complete in the strict semantics.



Shrunk DBMs for the loose semantics

Extend the region automaton into a 2-player turn-based game

x = y = 1

y := 0

r0 r1 r2 r3

r ′0

r0 r ′0

r1, s1

r2, s2

r3, s3



Shrunk DBMs for the loose semantics

Extend the region automaton into a 2-player turn-based game

x = y = 1

y := 0
r0 r1 r2 r3

r ′0

r0 r ′0

r1, s1

r2, s2

r3, s3



Orbit graphs for the strict semantics

`0 `1 `2
1<x<2

y :=0

y≥2,y :=0

x≤2,x :=0

y

0
x

1

1

2

2

`1

∆

y

0
x

1

1

2

2

`1

e1

y

0
x

1

1

2

2

`2

∆

y

0
x

1

1

2

2

`2

e2

y

0
x

1

1

2

2

`1

∆

y

0
x

1

1

2

2

`1

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k .



Orbit graphs for the strict semantics

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k.



Orbit graphs for the strict semantics

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k.



Orbit graphs for the strict semantics

Definition

A cycle π is forgetful if its orbit
graph is strongly connected.

A cycle π is aperiodic if πk is
forgetful, for all k.

Theorem

The automaton is robustly controllable if, and only if, it has a
reachable aperiodic cycle.



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the untimed setting... [BDMR09, BMOU11]

a

b

c

d
,

/
5

1

0

8

0
1

6

1

2

a

cb d

b,, /

, /

1

6

6



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the untimed setting... [BDMR09, BMOU11]

a

b

c

d
,

/
5

1

0

8

0
1

6

1

2

a

cb d

b,, /

, /

1

6

6



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the untimed setting... [BDMR09, BMOU11]

a

b

c

d
,

/
5

1

0

8

0
1

6

1

2

a

cb d

b,, /

, /

1

6

6



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

Permissive strategies propose intervals of delays.

Our setting:

the penalty assigned to interval [a, b] is 1/(b − a).



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

`0

`1

`2

/

,

a, x ≥ 2

a, x < 2

b, x ≤ 1

a, x ≤ 2b, x := 0

Possible (memoryless) strategy:



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

`0

`1

`2

/

,

a, x ≥ 2

a, x < 2

b, x ≤ 1

a, x ≤ 2b, x := 0

Possible (memoryless) strategy:

in `0, play (a, [0, 2));

in `1:

if x ≤ 1, play (b, [0, 1− x ]);
otherwise, play (a, [0, 2− x ]);

in `2, play (b, [0,+∞))

; penalty = +∞



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

`0

`1

`2

/

,

a, x ≥ 2

a, x < 2

b, x ≤ 1

a, x ≤ 2b, x := 0

Possible (memoryless) strategy:

in `0, play (a, [0, 2));

in `1:

if x ≤ 1, play (b, [0, 1− x ]);
otherwise, play (a, [0, 2− x ]);

in `2, play (b, [0,+∞))

; penalty = +∞



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

`0

`1

`2

/

,

a, x ≥ 2

a, x < 2

b, x ≤ 1

a, x ≤ 2b, x := 0

Possible (memoryless) strategy:

in `0, play (a, [0, 1]);

in `1:

if x = 0, play (b, [0, 1]);
otherwise, play (a, [0, 2− x ]);

in `2, play (b, [0,+∞))

; penalty = 1



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

`0

`1

`2

/

,

a, x ≥ 2

a, x < 2

b, x ≤ 1

a, x ≤ 2b, x := 0

Possible (memoryless) strategy:

in `0, play (a, [0, 1]);

in `1:

if x = 0, play (b, [0, 1]);
otherwise, play (a, [0, 2− x ]);

in `2, play (b, [0,+∞))

; penalty = 1



Synthesizing permissive strategies

Permissive strategies

Permissive strategies can propose several moves rather than a
single one.

In the timed setting...

Theorem

For one-clock timed games:

Memoryless optimal-penalty strategies exist.

They can be computed in polynomial time.



Outline of the talk

1 Discrete time vs. dense time

2 From models to implementations

3 Checking robust safety
Enlarging clock constraints
Shrinking clock constraints

4 Checking robust controllability
Parametrized perturbations
Permissive strategies

5 Conclusions and future works



Conclusion and challenges

Conclusions

Robustness issues identified long ago...

Several attempts, but no satisfactory solution yet!

Challenges and open questions

symbolic algorithms;

measuring robustness, using distances between automata;
; link between “syntactic distance” and “semantic distance”

probabilistic approach to robustness;
; evaluate expected time before a new state is visited.

investigate robustness in weighted timed automata;
; energy constraints;
; imprecision on cost rates;

synthesis of robust strategies.



Conclusion and challenges

Conclusions

Robustness issues identified long ago...

Several attempts, but no satisfactory solution yet!

Challenges and open questions

symbolic algorithms;

measuring robustness, using distances between automata;
; link between “syntactic distance” and “semantic distance”

probabilistic approach to robustness;
; evaluate expected time before a new state is visited.

investigate robustness in weighted timed automata;
; energy constraints;
; imprecision on cost rates;

synthesis of robust strategies.


	Discrete time vs. dense time
	From models to implementations
	Checking robust safety
	Enlarging clock constraints
	Shrinking clock constraints

	Checking robust controllability
	Parametrized perturbations
	Permissive strategies

	Conclusions and future works

