Temporal logics for multi-agent systems

Nicolas Markey
LSV, CNRS & ENS Cachan, France

L. B
© I
(w)]
Journées Nationales
Lyon, 21-22 January 2013



Verification of computerised systems

o Computers are everywhere




Verification of computerised systems

o Computers are everywhere

@ Bugs are everywhere...

Toyota to recall Prius hybrids over
ABS software

See video, below




Verification of computerised systems

o Computers are everywhere

@ Bugs are everywhere...

Toyota to recall Prius hybrids over

braking system (ABS), the auto maker said Tuesday.

@ Verification should be everywhere!
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Outline of the presentation

@ Introduction
~» formal verification model checking and synthesis

@ Classical temporal logics: CTL and LTL
~> expressing properties of “closed” systems

© Temporal logics for games: ATL
~ expressing properties of interacting systems
extensions to non-zero-sum games
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Computation-Tree Logic (CTL")

@ atomic propositions: O, O, ..

@ boolean combinators: — ¢, ¢ V ¢, o A Y, ...

o path quantifiers:

Ep Ay
e temporal modalities:
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Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

o LTL: Ep or Ay, where ¢ has no path quantifier.

Theorem
LTL (symbolic) model checking is PSPACE-complete.

Theorem
CTL* (symbolic) model checking is PSPACE-complete.




Outline of the presentation

© Temporal logics for games: ATL
~ expressing properties of interacting systems
extensions to non-zero-sum games
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Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of
@ a transition system;
@ a set of agents (or players);

@ a table indicating the transition to be taken given the actions
of the players.
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Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of
@ a transition system;
@ a set of agents (or players);

@ a table indicating the transition to be taken given the actions
of the players.

Turn-based games QO
A turn-based game is a game /

wh.ere only one agent plays at SN

a time.
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Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player
alternately go to © and ().

A | O
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Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

Theorem

ATL model checking is PTIME-complete.
ATL symbolic model checking is EXPTIME-complete.
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Another semantics: ATL with strategy contexts

Wi
/CQ/ (0) 6((0) FO)

/ @ consider the following strategy
/Q of Player ©: “always go to
@ in the remaining tree, Player
\ can always enforce a visit to Q.
Q



ATL with strategy contexts

Definition
ATLsc has two new strategy quantifiers: (A9 ¢ and {A{ p.

@ (A) issimilar to (A)) but assigns the corresponding strategy
to A for evaluating ¢;

e (A} drops the assigned strategies for A.
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ATL with strategy contexts

Theorem
ATLc is strictly more expressive than ATL.

Proof

(19 ((2) Xa A (2) X b) is only true in the second game.
But ATL cannot distinguish between these two games.

e e (1.1),(2.2),(3.3)

(2.1) (1.2),(1.3),(3.2) (2.1),(2.3),(3.1)

cIR: EIRG

(1.1),(2.2)
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What ATLg. can express

e All ATL™ properties;
@ Client-server interactions for accessing a shared resource:

/\ (c) Faccess.

c€eClients

(Server) G | A
- /\ access. /\ access.s

@ Existence of Nash equilibria:

<‘A17"'7An'> /\ (<A,> pA = (pAf)

i
@ Existence of dominating strategy:

(A) Bl (—¢ = [A] ~¢)
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Model checking AT L,

Theorem

Given a CGS C, a state {g and an ATLs. formula @, we can build
an alternating parity tree automaton A s.t.

LA £ < Cl o

A has size d-exponential, where d is the maximal number of
nested quantifiers.

Theorem
Model checking ATLg. is d-EXPTIME-complete.
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@ The unwinding tree is accepted by a deterministic tree
automaton;
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Tree-automata approach
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o A strategy is encoded as a labelling of the unwinding tree;
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Tree-automata approach
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@ We can mark outcomes corresponding to selected strategies;




Model checking AT L,

Tree-automata approach

—O

PiPo

PiPo Popi

PoPr PoPpi

@ We mark the tree with extra propositions p; and p,, and
require that it satisfies A(G p, = p; U p,);




Model checking AT L,

Tree-automata approach

PiPo

PiPo Popi

‘—Q PoPr PoPpi

@ We require that subtrees rooted at a p; or p, node is accepted
by the automaton for ¢ or ¢/, respectively;




Model checking AT L,

Tree-automata approach

@ We can build a tree automaton accepting all trees that can be
labelled with correct strategies. This requires turning the
alternating tree automaton into a non-deterministic one,
which yields an exponential-size automaton.
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Conclusions

@ Our results on ATL.:
o ATL, is a natural semantic extension of the popular ATL;

o ATLs. is much more expressive: equilibria, client-server
interactions... Well-suited for non-zero-sum objectives;

e There is a price for this expressiveness: high complexity of the
model-checking algorithm.

@ Future works:
o study satisfiability of ATL;

e behavioural equivalence for ATL,,.

e handle stochastic strategies, partial observation, ...
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