Temporal logics for multi-agent systems

Nicolas Markey
LSV, CNRS & ENS Cachan, France

L. B
© I
(w)]
Journées Nationales
Lyon, 21-22 January 2013

Verification of computerised systems

o Computers are everywhere

Verification of computerised systems

o Computers are everywhere

@ Bugs are everywhere...

Toyota to recall Prius hybrids over
ABS software

See video, below

Verification of computerised systems

o Computers are everywhere

@ Bugs are everywhere...

Toyota to recall Prius hybrids over

braking system (ABS), the auto maker said Tuesday.

@ Verification should be everywhere!

Model checking and synthesis

system: property:

<— AG(—B.overfull
A —B.dried_up)

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

Model checking and synthesis

system: property:

Tk 8
[http://waw.embedded. com] %

<— AG(—B.overfull
A —B.dried_up)

synthesis
algorithm

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

Outline of the presentation

@ Introduction
~» formal verification model checking and synthesis

@ Classical temporal logics: CTL and LTL
~> expressing properties of “closed” systems

© Temporal logics for games: ATL
~ expressing properties of interacting systems
extensions to non-zero-sum games

Outline of the presentation

@ Classical temporal logics: CTL and LTL
~> expressing properties of “closed” systems

Computation-Tree Logic (CTL")

@ atomic propositions: O, O, ..

Computation-Tree Logic (CTL")
@ atomic propositions: O, O, ..

o boolean combinators: —p, o V ¥, o A Y, ...

Computation-Tree Logic (CTL")

@ atomic propositions: O, O, ..

@ boolean combinators: — ¢, ¢ V ¢, o A Y, ...

o path quantifiers:

ASRSI SR SRS

Computation-Tree Logic (CTL")

@ atomic propositions: O, O, ..

@ boolean combinators: — ¢, ¢ V ¢, o A Y, ...

o path quantifiers:

e temporal modalities:
X O—@—0—O0—0--
]
Uy O—O— —O0—@--

® ¥ P

ASRSI SR SRS

“neXt (pn

“o until ¥"

Computation-Tree Logic (CTL")

@ atomic propositions: O, O, ..

@ boolean combinators: — ¢, ¢ V ¢, o A Y, ...

o path quantifiers:

Ep Ay
e temporal modalities:
X O—@—0O0—0—0r--
]
Uy O—O— —O0—@--

® ® P

true U g =F o O—@— —0O—@--
©
~F-op=Go &—0—0—0—0--
¥ ® @ ® ®

ASRSI SR SRS

“neXt (pn

“o until ¥"
“eventually ¢"

“always ¢"

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

EFO Q© is reachable

@—(DO

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

EFO Q© is reachable

@—C(O

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

EG(EFQ) there is a path along which © is always reachable

@—(DO

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

EG(EFQ) there is a path along which © is always reachable
~——

p

Q—CDO

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

EG(EFQ) there is a path along which © is always reachable
~——

p

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

-E(-O)U O in order to reach (), we have to visit ©

@—(DO

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

-E(-O)U O in order to reach (), we have to visit ©

@—C(O

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

o LTL: Ep or Ay, where ¢ has no path quantifier.

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

o LTL: Ep or Ay, where ¢ has no path quantifier.

E(GF) there is a path visiting (infinitely many times

O

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

o LTL: Ep or Ay, where ¢ has no path quantifier.

E(GF) there is a path visiting (infinitely many times

O

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

o LTL: Ep or Ay, where ¢ has no path quantifier.

A[(FO)= (FG -~)] any path that visits ©
visits (finitely many times

O

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

o LTL: Ep or Ay, where ¢ has no path quantifier.

A[(FO)= (FG -~)] any path that visits ©
visits (finitely many times

«O

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

o LTL: Ep or Ay, where ¢ has no path quantifier.

Theorem
LTL (symbolic) model checking is PSPACE-complete.

Fragments of CTL"

@ CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

o LTL: Ep or Ay, where ¢ has no path quantifier.

Theorem
LTL (symbolic) model checking is PSPACE-complete.

Theorem
CTL* (symbolic) model checking is PSPACE-complete.

Outline of the presentation

© Temporal logics for games: ATL
~ expressing properties of interacting systems
extensions to non-zero-sum games

Reasoning about multi-agent systems

Concurrent games
A concurrent game is made of

@ a transition system;

q1

O/Q

T e

az

Reasoning about multi-agent systems

Concurrent games
A concurrent game is made of
@ a transition system;

@ a set of agents (or players);

q1

O/Q

T e

az

Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of
@ a transition system;
@ a set of agents (or players);

@ a table indicating the transition to be taken given the actions
of the players.

®
®| @y

S
player 2
£,

J
® @ 8
3

Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of
@ a transition system;
@ a set of agents (or players);

@ a table indicating the transition to be taken given the actions
of the players.

Turn-based games QO
A turn-based game is a game /

wh.ere only one agent plays at SN

a time.

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player
alternately go to © and ().

/ 0

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player = ®
alternately go to © and ().

/ 0

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player =
alternately go to © and (). Q/Q\

/ 0

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player =
alternately go to © and (). Q/Q\
O @

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player =
alternately go to © and (). Q/Q\
o 8

O - O

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player
alternately go to © and ().

/ o B

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player
alternately go to © and ().

2
o &

/N o 9
)

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player
alternately go to © and ().

2
o &

/N © 9
2

v

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player
alternately go to © and ().

A | O

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

&/@3 o (O)FO

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

/ @3 o (O)FO
‘/ T

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

QO o (O)FO
//\ o () FO

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

QO o (O)FO
; //\ o () FO

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

/ QO o (O)FO
AR o (O)FO
° (O) G((O) FO)

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

p
/ QO o (O) FO
S o (O)FO
p ° (O) G((O) FO)= (O) Gp

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

p
/ QO o (O) FO
S o (O)FO
p ° (O) G((O) FO)= (O) Gp

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

{(A)) ¢ expresses that A has a strategy to enforce .

Theorem

ATL model checking is PTIME-complete.
ATL symbolic model checking is EXPTIME-complete.

Another semantics: ATL with strategy contexts

/ N (O) G((O) FO)

Another semantics: ATL with strategy contexts

/C@/\ (O) G({) FO)
<©\Q @ consider the following strategy

/ of Player ©: “always go to | "
SPs
£ 0

Q

OO0

Another semantics: ATL with strategy contexts

Wi
/C@/ (0) 6((0) FO)

\ @ consider the following strategy

of Player ©: “always go to | "

Another semantics: ATL with strategy contexts

Wi
/CQ/ (0) 6((0) FO)

/ @ consider the following strategy
/Q of Player ©: “always go to
@ in the remaining tree, Player
\ can always enforce a visit to Q.
Q

ATL with strategy contexts

Definition
ATLsc has two new strategy quantifiers: (A9 ¢ and {A{ p.

@ (A) issimilar to (A)) but assigns the corresponding strategy
to A for evaluating ¢;

e (A} drops the assigned strategies for A.

ATL with strategy contexts

Theorem
ATLc is strictly more expressive than ATL.

ATL with strategy contexts

Theorem
ATLgc is strictly more expressive than ATL.

Proof

(A = {Agt] (A) &

ATL with strategy contexts

Theorem
ATLc is strictly more expressive than ATL.

Proof

(19 ((2) Xa A (2) X b) is only true in the second game.
But ATL cannot distinguish between these two games.

e e (1.1),(2.2),(3.3)

(2.1) (1.2),(1.3),(3.2) (2.1),(2.3),(3.1)

cIR: EIRG

(1.1),(2.2)

What ATLg. can express
e All ATL™ properties;

What ATLg. can express
e All ATL™ properties;
@ Client-server interactions for accessing a shared resource:

/\ (c) Faccess.

c€eClients

(Server) G | A
- /\ access. /\ access.s

What ATLg. can express

e All ATL™ properties;
@ Client-server interactions for accessing a shared resource:

/\ (c) Faccess.

c€eClients

(Server) G | A
- /\ access. /\ access.s

@ Existence of Nash equilibria:

<‘A17"'7An'> /\ (<A,> pA = (pAf)

i

What ATLg. can express

e All ATL™ properties;
@ Client-server interactions for accessing a shared resource:

/\ (c) Faccess.

c€eClients

(Server) G | A
- /\ access. /\ access.s

@ Existence of Nash equilibria:

<‘A17"'7An'> /\ (<A,> pA = (pAf)

i
@ Existence of dominating strategy:

(A) Bl (—¢ = [A] ~¢)

Model checking AT L,

Theorem

Given a CGS C, a state {g and an ATLs. formula @, we can build
an alternating parity tree automaton A s.t.

LA £ < Cl o

A has size d-exponential, where d is the maximal number of
nested quantifiers.

Model checking AT L,

Theorem

Given a CGS C, a state {g and an ATLs. formula @, we can build
an alternating parity tree automaton A s.t.

LA £ < Cl o

A has size d-exponential, where d is the maximal number of
nested quantifiers.

Theorem
Model checking ATLg. is d-EXPTIME-complete.

Model checking AT L,

Tree-automata approach

Model checking AT L,

Tree-automata approach

_O
G ® G

[} [} [I [[

@ The unwinding tree is accepted by a deterministic tree
automaton;

Model checking AT L,

Tree-automata approach

—O

o A strategy is encoded as a labelling of the unwinding tree;

Model checking AT L,

Tree-automata approach

Po Po

oN X®

[} [} [I [[

Po Po

@ We can mark outcomes corresponding to selected strategies;

Model checking AT L,

Tree-automata approach

—O

PiPo

PiPo Popi

PoPr PoPpi

@ We mark the tree with extra propositions p; and p,, and
require that it satisfies A(G p, = p; U p,);

Model checking AT L,

Tree-automata approach

PiPo

PiPo Popi

‘—Q PoPr PoPpi

@ We require that subtrees rooted at a p; or p, node is accepted
by the automaton for ¢ or ¢/, respectively;

Model checking AT L,

Tree-automata approach

@ We can build a tree automaton accepting all trees that can be
labelled with correct strategies. This requires turning the
alternating tree automaton into a non-deterministic one,
which yields an exponential-size automaton.

Conclusions

@ Our results on ATL.:
o ATL, is a natural semantic extension of the popular ATL;

o ATLs. is much more expressive: equilibria, client-server
interactions... Well-suited for non-zero-sum objectives;

e There is a price for this expressiveness: high complexity of the
model-checking algorithm.

Conclusions

@ Our results on ATL.:
o ATL, is a natural semantic extension of the popular ATL;

o ATLs. is much more expressive: equilibria, client-server
interactions... Well-suited for non-zero-sum objectives;

e There is a price for this expressiveness: high complexity of the
model-checking algorithm.

@ Future works:
o study satisfiability of ATL;

e behavioural equivalence for ATL,,.

e handle stochastic strategies, partial observation, ...

	Introduction
	Classical temporal logics: and LTL
	Temporal logics for games:

