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Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

Theorem

LTL (symbolic) model checking is PSPACE-complete.

Theorem

CTL∗ (symbolic) model checking is PSPACE-complete.
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Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of

a transition system;

a set of agents (or players);

a table indicating the transition to be taken given the actions
of the players.

Turn-based games

A turn-based game is a game
where only one agent plays at
a time.
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Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

Theorem

ATL model checking is PTIME-complete.
ATL symbolic model checking is EXPTIME-complete.
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Theorem

ATLsc is strictly more expressive than ATL.
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Model checking ATLsc

Theorem

Given a CGS C, a state `0 and an ATLsc formula ϕ, we can build
an alternating parity tree automaton A s.t.

L(A) 6= ∅ ⇔ C, `0 |=∅ ϕ.

A has size d-exponential, where d is the maximal number of
nested quantifiers.

Theorem

Model checking ATLsc is d-EXPTIME-complete.



Model checking ATLsc

Theorem

Given a CGS C, a state `0 and an ATLsc formula ϕ, we can build
an alternating parity tree automaton A s.t.

L(A) 6= ∅ ⇔ C, `0 |=∅ ϕ.

A has size d-exponential, where d is the maximal number of
nested quantifiers.

Theorem

Model checking ATLsc is d-EXPTIME-complete.



Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

The unwinding tree is accepted by a deterministic tree
automaton;



Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

The unwinding tree is accepted by a deterministic tree
automaton;



Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo

17→m1

popl

17→m2 17→m1

popr

1 7→m3

popl

po po popl

A strategy is encoded as a labelling of the unwinding tree;



Model checking ATLsc

Tree-automata approach

17→m2

pl

po

17→m3

pl

po
17→m1

po

pl

17→m2 17→m1

po

pr

1 7→m3

po

pl

po po po

pl

We can mark outcomes corresponding to selected strategies;



Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

We mark the tree with extra propositions pl and pr , and
require that it satisfies A(G po ⇒ pl U pr );



Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

We require that subtrees rooted at a pl or pr node is accepted
by the automaton for ϕ or ϕ′, respectively;



Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

We can build a tree automaton accepting all trees that can be
labelled with correct strategies. This requires turning the
alternating tree automaton into a non-deterministic one,
which yields an exponential-size automaton.
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behavioural equivalence for ATLsc .
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