
Temporal logics for multi-agent systems

Nicolas Markey

LSV, CNRS & ENS Cachan, France

Journées Nationales
Lyon, 21-22 January 2013

Verification of computerised systems

Computers are everywhere

Verification of computerised systems

Computers are everywhere

Bugs are everywhere...

Verification of computerised systems

Computers are everywhere

Bugs are everywhere...

Verification should be everywhere!

Model checking and synthesis

system:

[http://www.embedded.com]

8 8
property:

a!
b?

a?
b!

A G(¬ B.overfull
∧ ¬ B.dried up)

model-checking

algorithm

yes/no

a?
b!

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

Model checking and synthesis

system:

[http://www.embedded.com]

8 8
property:

a!
b?

a?
b! ? A G(¬ B.overfull

∧ ¬ B.dried up)

synthesis

algorithm

yes/no

a?
b!

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

Outline of the presentation

1 Introduction
; formal verification model checking and synthesis

2 Classical temporal logics: CTL and LTL
; expressing properties of “closed” systems

3 Temporal logics for games: ATL
; expressing properties of interacting systems

extensions to non-zero-sum games

Outline of the presentation

1 Introduction
; formal verification model checking and synthesis

2 Classical temporal logics: CTL and LTL
; expressing properties of “closed” systems

3 Temporal logics for games: ATL
; expressing properties of interacting systems

extensions to non-zero-sum games

Computation-Tree Logic (CTL∗)

atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

temporal modalities:

X ϕ
ϕ

“next ϕ”

ϕ U ψ
ϕ ϕ ψ

“ϕ until ψ”

ϕ
“eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ
ϕ ϕ ϕ ϕ ϕ

“always ϕ”

Computation-Tree Logic (CTL∗)

atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

temporal modalities:

X ϕ
ϕ

“next ϕ”

ϕ U ψ
ϕ ϕ ψ

“ϕ until ψ”

ϕ
“eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ
ϕ ϕ ϕ ϕ ϕ

“always ϕ”

Computation-Tree Logic (CTL∗)

atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

temporal modalities:

X ϕ
ϕ

“next ϕ”

ϕ U ψ
ϕ ϕ ψ

“ϕ until ψ”

ϕ
“eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ
ϕ ϕ ϕ ϕ ϕ

“always ϕ”

Computation-Tree Logic (CTL∗)

atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

temporal modalities:

X ϕ
ϕ

“next ϕ”

ϕ U ψ
ϕ ϕ ψ

“ϕ until ψ”

ϕ
“eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ
ϕ ϕ ϕ ϕ ϕ

“always ϕ”

Computation-Tree Logic (CTL∗)

atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

path quantifiers:

Eϕ
ϕ

Aϕ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

temporal modalities:

X ϕ
ϕ

“next ϕ”

ϕ U ψ
ϕ ϕ ψ

“ϕ until ψ”

ϕ
“eventually ϕ”true U ϕ ≡ F ϕ

¬ F ¬ϕ ≡ G ϕ
ϕ ϕ ϕ ϕ ϕ

“always ϕ”

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

E F is reachable

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

E F is reachable

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

3

p

3

p

3

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

E G(E F) there is a path along which is always reachable

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

E G(E F︸ ︷︷ ︸
p

) there is a path along which is always reachable

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

E G(E F︸ ︷︷ ︸
p

) there is a path along which is always reachable

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

3
p

3
p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

¬E(¬) U in order to reach , we have to visit

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

¬E(¬) U in order to reach , we have to visit

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

3

p

3

p

3

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

E(G F) there is a path visiting infinitely many times

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

E(G F) there is a path visiting infinitely many times

3

p

3

p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

A[(F)⇒ (F G ¬)] any path that visits

visits finitely many times

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

A[(F)⇒ (F G ¬)] any path that visits

visits finitely many times

3

p

3

p

3

p

3

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

Theorem

LTL (symbolic) model checking is PSPACE-complete.

p p

p

Fragments of CTL∗

CTL: each temporal modality is in the immediate scope of a
path quantifier.

Theorem

CTL model checking is PTIME-complete.
CTL symbolic model checking is PSPACE-complete.

LTL: Eϕ or Aϕ, where ϕ has no path quantifier.

Theorem

LTL (symbolic) model checking is PSPACE-complete.

Theorem

CTL∗ (symbolic) model checking is PSPACE-complete.

Outline of the presentation

1 Introduction
; formal verification model checking and synthesis

2 Classical temporal logics: CTL and LTL
; expressing properties of “closed” systems

3 Temporal logics for games: ATL
; expressing properties of interacting systems

extensions to non-zero-sum games

Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of

a transition system;

a set of agents (or players);

a table indicating the transition to be taken given the actions
of the players.

q0

q1

q2

q0 q2 q1

q1 q0 q2

q2 q1 q0

player 1

p
la

ye
r

2

Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of

a transition system;

a set of agents (or players);

a table indicating the transition to be taken given the actions
of the players.

q0

q1

q2

q0 q2 q1

q1 q0 q2

q2 q1 q0

player 1

p
la

ye
r

2

Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of

a transition system;

a set of agents (or players);

a table indicating the transition to be taken given the actions
of the players.

q0

q1

q2

q0 q2 q1

q1 q0 q2

q2 q1 q0

player 1

p
la

ye
r

2

Reasoning about multi-agent systems

Concurrent games

A concurrent game is made of

a transition system;

a set of agents (or players);

a table indicating the transition to be taken given the actions
of the players.

Turn-based games

A turn-based game is a game
where only one agent plays at
a time.

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play
depending on what has happened previously.

Strategy for player :
alternately go to and .

...

...

...
...

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

33

p

33

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

3

p

3

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F)

p

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F) ≡ 〈〈 〉〉 G p

p

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

p

p

〈〈 〉〉 F

〈〈 〉〉 F

〈〈 〉〉 G(〈〈 〉〉 F) ≡ 〈〈 〉〉 G p

p

Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions,
Boolean combinations, temporal modalities X and U, and strategy
quantifiers:

〈〈A〉〉ϕ expresses that A has a strategy to enforce ϕ.

Theorem

ATL model checking is PTIME-complete.
ATL symbolic model checking is EXPTIME-complete.

Another semantics: ATL with strategy contexts

〈〈 〉〉 G(〈〈 〉〉 F)

consider the following strategy
of Player : “always go to ”;

in the remaining tree, Player
can always enforce a visit to .

Another semantics: ATL with strategy contexts

〈〈 〉〉 G(〈〈 〉〉 F)

consider the following strategy
of Player : “always go to ”;

in the remaining tree, Player
can always enforce a visit to .

Another semantics: ATL with strategy contexts

〈〈 〉〉 G(〈〈 〉〉 F)

consider the following strategy
of Player : “always go to ”;

in the remaining tree, Player
can always enforce a visit to .

Another semantics: ATL with strategy contexts

〈〈 〉〉 G(〈〈 〉〉 F)

consider the following strategy
of Player : “always go to ”;

in the remaining tree, Player
can always enforce a visit to .

ATL with strategy contexts

Definition

ATLsc has two new strategy quantifiers: 〈·A·〉ϕ and 〈〉A〈〉ϕ.

〈·A·〉 is similar to 〈〈A〉〉 but assigns the corresponding strategy
to A for evaluating ϕ;

〈〉A〈〉 drops the assigned strategies for A.

Theorem

ATLsc is strictly more expressive than ATL.

ATL with strategy contexts

Theorem

ATLsc is strictly more expressive than ATL.

ATL with strategy contexts

Theorem

ATLsc is strictly more expressive than ATL.

Proof

〈〈A〉〉ϕ ≡ 〈〉Agt〈〉 〈·A·〉 ϕ̂

But ATL cannot distinguish between these two games.

s

a b

s ′

a b

〈1.1〉,〈2.2〉 〈1.1〉,〈2.2〉,〈3.3〉

〈1.2〉 〈1.2〉,〈1.3〉,〈3.2〉〈2.1〉 〈2.1〉,〈2.3〉,〈3.1〉

ATL with strategy contexts

Theorem

ATLsc is strictly more expressive than ATL.

Proof

〈·1·〉 (〈·2·〉 X a ∧ 〈·2·〉 X b) is only true in the second game.
But ATL cannot distinguish between these two games.

s

a b

s ′

a b

〈1.1〉,〈2.2〉 〈1.1〉,〈2.2〉,〈3.3〉

〈1.2〉 〈1.2〉,〈1.3〉,〈3.2〉〈2.1〉 〈2.1〉,〈2.3〉,〈3.1〉

What ATLsc can express

All ATL∗ properties;

Client-server interactions for accessing a shared resource:

〈·Server·〉 G

∧

c∈Clients
〈·c ·〉 F accessc

∧
¬

∧
c 6=c ′

accessc ∧ accessc ′

Existence of Nash equilibria:

〈·A1, ...,An·〉
∧
i

(〈·Ai ·〉ϕAi
⇒ ϕAi

)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

What ATLsc can express

All ATL∗ properties;

Client-server interactions for accessing a shared resource:

〈·Server·〉 G

∧

c∈Clients
〈·c ·〉 F accessc

∧
¬

∧
c 6=c ′

accessc ∧ accessc ′

Existence of Nash equilibria:

〈·A1, ...,An·〉
∧
i

(〈·Ai ·〉ϕAi
⇒ ϕAi

)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

What ATLsc can express

All ATL∗ properties;

Client-server interactions for accessing a shared resource:

〈·Server·〉 G

∧

c∈Clients
〈·c ·〉 F accessc

∧
¬

∧
c 6=c ′

accessc ∧ accessc ′

Existence of Nash equilibria:

〈·A1, ...,An·〉
∧
i

(〈·Ai ·〉ϕAi
⇒ ϕAi

)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

What ATLsc can express

All ATL∗ properties;

Client-server interactions for accessing a shared resource:

〈·Server·〉 G

∧

c∈Clients
〈·c ·〉 F accessc

∧
¬

∧
c 6=c ′

accessc ∧ accessc ′

Existence of Nash equilibria:

〈·A1, ...,An·〉
∧
i

(〈·Ai ·〉ϕAi
⇒ ϕAi

)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

Model checking ATLsc

Theorem

Given a CGS C, a state `0 and an ATLsc formula ϕ, we can build
an alternating parity tree automaton A s.t.

L(A) 6= ∅ ⇔ C, `0 |=∅ ϕ.

A has size d-exponential, where d is the maximal number of
nested quantifiers.

Theorem

Model checking ATLsc is d-EXPTIME-complete.

Model checking ATLsc

Theorem

Given a CGS C, a state `0 and an ATLsc formula ϕ, we can build
an alternating parity tree automaton A s.t.

L(A) 6= ∅ ⇔ C, `0 |=∅ ϕ.

A has size d-exponential, where d is the maximal number of
nested quantifiers.

Theorem

Model checking ATLsc is d-EXPTIME-complete.

Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

The unwinding tree is accepted by a deterministic tree
automaton;

Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

The unwinding tree is accepted by a deterministic tree
automaton;

Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo

17→m1

popl

17→m2 17→m1

popr

1 7→m3

popl

po po popl

A strategy is encoded as a labelling of the unwinding tree;

Model checking ATLsc

Tree-automata approach

17→m2

pl

po

17→m3

pl

po
17→m1

po

pl

17→m2 17→m1

po

pr

1 7→m3

po

pl

po po po

pl

We can mark outcomes corresponding to selected strategies;

Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

We mark the tree with extra propositions pl and pr , and
require that it satisfies A(G po ⇒ pl U pr);

Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

We require that subtrees rooted at a pl or pr node is accepted
by the automaton for ϕ or ϕ′, respectively;

Model checking ATLsc

Tree-automata approach

17→m2

plpo

17→m3

plpo
17→m1

popl

17→m2 17→m1

popr
1 7→m3

popl

po po popl

We can build a tree automaton accepting all trees that can be
labelled with correct strategies. This requires turning the
alternating tree automaton into a non-deterministic one,
which yields an exponential-size automaton.

Conclusions

Our results on ATLsc :

ATLsc is a natural semantic extension of the popular ATL;

ATLsc is much more expressive: equilibria, client-server
interactions... Well-suited for non-zero-sum objectives;

There is a price for this expressiveness: high complexity of the
model-checking algorithm.

Future works:

study satisfiability of ATLsc ;

behavioural equivalence for ATLsc .

handle stochastic strategies, partial observation, ...

Conclusions

Our results on ATLsc :

ATLsc is a natural semantic extension of the popular ATL;

ATLsc is much more expressive: equilibria, client-server
interactions... Well-suited for non-zero-sum objectives;

There is a price for this expressiveness: high complexity of the
model-checking algorithm.

Future works:

study satisfiability of ATLsc ;

behavioural equivalence for ATLsc .

handle stochastic strategies, partial observation, ...

	Introduction
	Classical temporal logics: and LTL
	Temporal logics for games:

