Temporal logics for multi-agent systems

Nicolas Markey LSV, CNRS & ENS Cachan, France

Journées Nationales Lyon, 21-22 January 2013

Verification of computerised systems

Verification of computerised systems

• Computers are everywhere

• Bugs are everywhere...

Neur

Toyota to recall Prius hybrids over ABS software

See video, below

By Martyn Williams

Pebruary 5, 2010 94:55 AMET 😔 Comments (6) 🗸 Recommended (15) 🔳 Like

IDG News Service - Toyota plans to recall around 400,000 of its Prius hybrid cars to replace software that controls the antilock braking system (ABS), the auto maker said Tuesday.

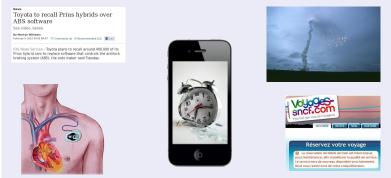
Réservez votre voyage

I a réservation de billets de train est interrompue pour maintenance, afin d'améliorer la qualité de service. Le service sera de nouveau disponible prochalmement. Nous vous remercions de votre compréhension.

Verification of computerised systems

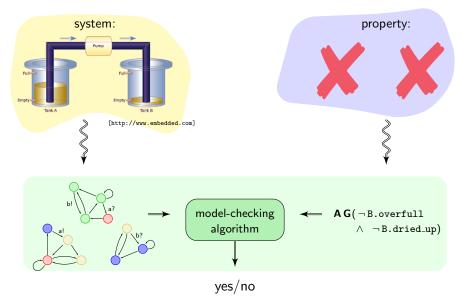
Computers are everywhere

Bugs are everywhere...



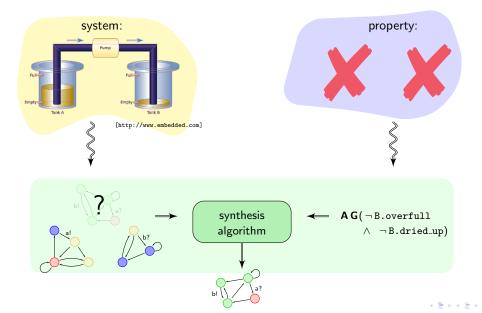
• Verification should be everywhere!

Model checking and synthesis



★ E ► ★ E ►

Model checking and synthesis



Outline of the presentation

Introduction ~ formal verification model checking and synthesis

Classical temporal logics: CTL and LTL ~ expressing properties of "closed" systems

 Temporal logics for games: ATL

 expressing properties of interacting systems extensions to non-zero-sum games

Outline of the presentation

Introduction formal verification model checking and synthes

2 Classical temporal logics: CTL and LTL → expressing properties of "closed" systems

 Temporal logics for games: ATL
 ~ expressing properties of interacting systems extensions to non-zero-sum games

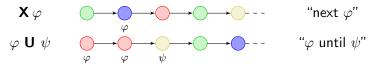
• atomic propositions: \bigcirc , \bigcirc , ...

- atomic propositions: \bigcirc , \bigcirc , ...
- boolean combinators: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...

- atomic propositions: \bigcirc , \bigcirc , ...
- boolean combinators: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...
- path quantifiers:

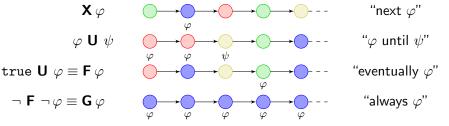
- atomic propositions: \bigcirc , \bigcirc , ...
- boolean combinators: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...
- path quantifiers:

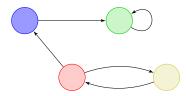
• temporal modalities:

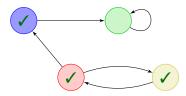


- atomic propositions: \bigcirc , \bigcirc , ...
- boolean combinators: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...
- path quantifiers:

• temporal modalities:

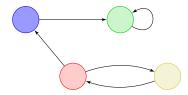


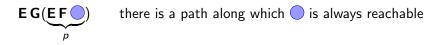


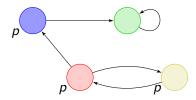


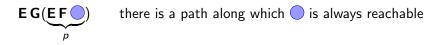
• CTL: each temporal modality is in the immediate scope of a path quantifier.

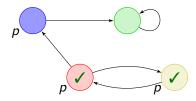
 $EG(EF \bigcirc)$ there is a path along which \bigcirc is always reachable



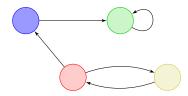




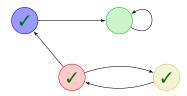




- CTL: each temporal modality is in the immediate scope of a path quantifier.
 - $\neg E(\neg \bigcirc) U \bigcirc$ in order to reach \bigcirc , we have to visit \bigcirc



- CTL: each temporal modality is in the immediate scope of a path quantifier.
 - $\neg E(\neg \bigcirc) U \bigcirc$ in order to reach \bigcirc , we have to visit \bigcirc



• CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem

CTL model checking is PTIME-complete. CTL symbolic model checking is PSPACE-complete.

• CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem

CTL model checking is PTIME-complete. CTL symbolic model checking is PSPACE-complete.

• LTL: $\mathbf{E}\varphi$ or $\mathbf{A}\varphi$, where φ has no path quantifier.

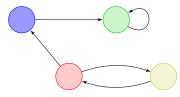
• CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem

CTL model checking is PTIME-complete. CTL symbolic model checking is PSPACE-complete.

• LTL: $\mathbf{E}\varphi$ or $\mathbf{A}\varphi$, where φ has no path quantifier.

 $E(GF \bigcirc)$ there is a path visiting \bigcirc infinitely many times



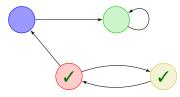
• CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem

CTL model checking is PTIME-complete. CTL symbolic model checking is PSPACE-complete.

• LTL: $\mathbf{E}\varphi$ or $\mathbf{A}\varphi$, where φ has no path quantifier.

 $E(GF \bigcirc)$ there is a path visiting \bigcirc infinitely many times



• CTL: each temporal modality is in the immediate scope of a path quantifier.

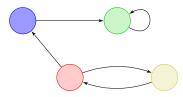
Theorem

CTL model checking is PTIME-complete. CTL symbolic model checking is PSPACE-complete.

• LTL: $\mathbf{E}\varphi$ or $\mathbf{A}\varphi$, where φ has no path quantifier.

$$\mathsf{A}[(\mathsf{F} \bigcirc) \Rightarrow (\mathsf{F} \mathsf{G} \neg \bigcirc)]$$

any path that visits **O** visits **O** finitely many times



• CTL: each temporal modality is in the immediate scope of a path quantifier.

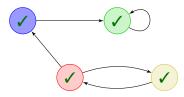
Theorem

CTL model checking is PTIME-complete. CTL symbolic model checking is PSPACE-complete.

• LTL: $\mathbf{E}\varphi$ or $\mathbf{A}\varphi$, where φ has no path quantifier.

$$\mathsf{A}[(\mathsf{F} \bigcirc) \Rightarrow (\mathsf{F} \mathsf{G} \neg \bigcirc)]$$

any path that visits **O** visits **O** finitely many times



• CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem

CTL model checking is PTIME-complete. CTL symbolic model checking is PSPACE-complete.

• LTL: $\mathbf{E}\varphi$ or $\mathbf{A}\varphi$, where φ has no path quantifier.

Theorem

LTL (symbolic) model checking is PSPACE-complete.

• CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem

CTL model checking is PTIME-complete. CTL symbolic model checking is PSPACE-complete.

• LTL: $\mathbf{E}\varphi$ or $\mathbf{A}\varphi$, where φ has no path quantifier.

Theorem

LTL (symbolic) model checking is PSPACE-complete.

Theorem

CTL* (symbolic) model checking is PSPACE-complete.

Outline of the presentation

Introduction ~ formal verification model checking and synthesis

2 Classical temporal logics: CTL and LTL → expressing properties of "closed" systems

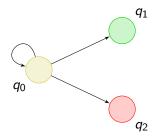
 Temporal logics for games: ATL

 expressing properties of interacting systems extensions to non-zero-sum games

Concurrent games

A concurrent game is made of

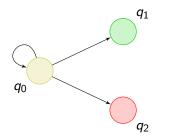
• a transition system;



Concurrent games

A concurrent game is made of

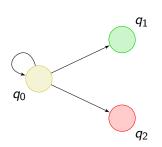
- a transition system;
- a set of agents (or players);



Concurrent games

A concurrent game is made of

- a transition system;
- a set of agents (or players);
- a table indicating the transition to be taken given the actions of the players.



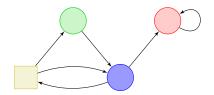
Concurrent games

A concurrent game is made of

- a transition system;
- a set of agents (or players);
- a table indicating the transition to be taken given the actions of the players.

Turn-based games

A turn-based game is a game where only one agent plays at a time.



Reasoning about open systems

Strategies

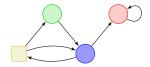
A strategy for a given player is a function telling what to play depending on what has happened previously.

Reasoning about open systems

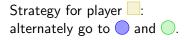
Strategies

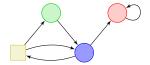
A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategy for player : alternately go to and .

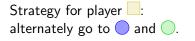


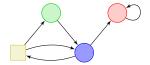
Strategies



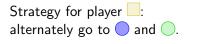


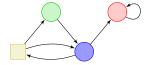
Strategies



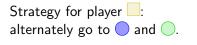


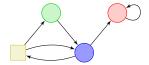
Strategies



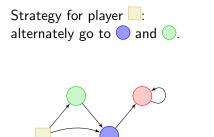


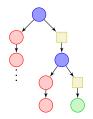
Strategies



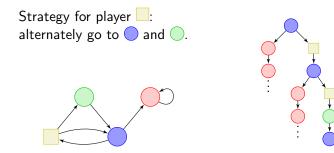


Strategies

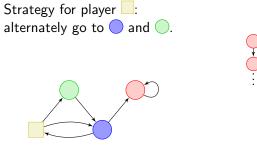


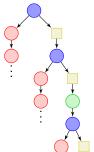


Strategies

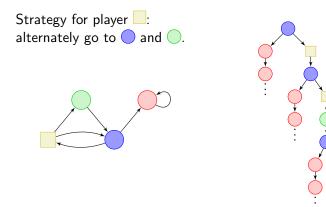


Strategies



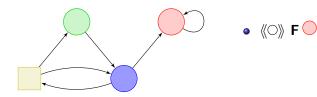


Strategies

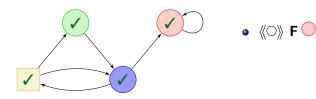


ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:

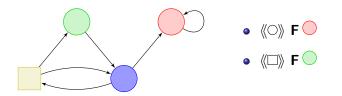
ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:



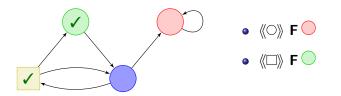
ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:



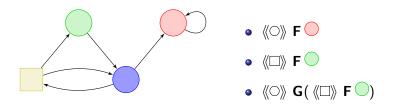
ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:



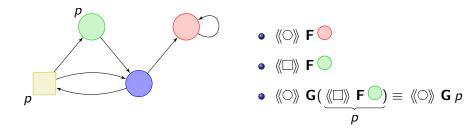
ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:



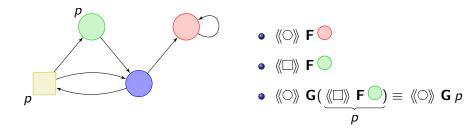
ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:



ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:



ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:

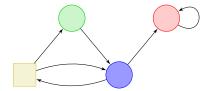


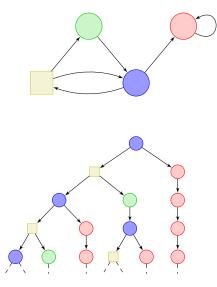
ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities **X** and **U**, and strategy quantifiers:

 $\langle\!\langle A \rangle\!\rangle \varphi$ expresses that A has a strategy to enforce φ .

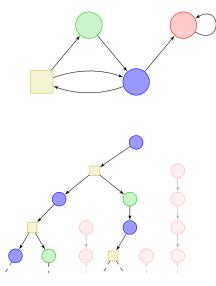
Theorem

ATL model checking is PTIME-complete. ATL symbolic model checking is EXPTIME-complete.

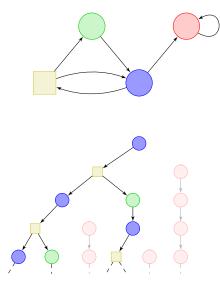




 consider the following strategy of Player O: "always go to ";



 consider the following strategy of Player O: "always go to ";



(⟨○⟩⟩ G((⟨□⟩⟩ F ○)

- consider the following strategy of Player O: "always go to ";
- in the remaining tree, Player can always enforce a visit to .

Definition

 $\mathsf{ATL}_{\mathit{sc}} \text{ has two new strategy quantifiers: } \left<\!\left< A \right> \varphi \text{ and } \left<\!\left< A \right> \varphi \right.\right>$

- (A) is similar to ((A)) but assigns the corresponding strategy to A for evaluating φ;
- $\langle A \rangle$ drops the assigned strategies for A.

Theorem

ATL_{sc} is strictly more expressive than ATL.

Theorem

ATL_{sc} is strictly more expressive than ATL.

Proof

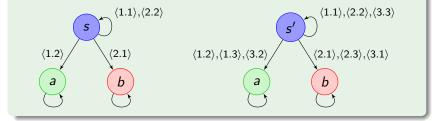
$$\langle\!\langle A
angle arphi \equiv \langle\!\langle \mathsf{Agt}
angle \langle\!\langle A
angle
angle \hat{arphi}$$

Theorem

ATL_{sc} is strictly more expressive than ATL.

Proof

 $\langle 1 \rangle$ ($\langle 2 \rangle$ **X** $a \land \langle 2 \rangle$ **X** b) is only true in the second game. But ATL cannot distinguish between these two games.



What ATL_{sc} can express

• All ATL* properties;

What ATL_{sc} can express

- All ATL* properties;
- Client-server interactions for accessing a shared resource:

$$\langle \cdot \text{Server} \rangle \ \mathbf{G} \left[\begin{array}{c} & \bigwedge_{c \in \text{Clients}} \langle c \rangle \ \mathbf{F} \operatorname{access}_{c} \\ \wedge \\ & \neg \\ & \neg \\ c \neq c'} \operatorname{access}_{c} \land \operatorname{access}_{c'} \end{array} \right]$$

What ATL_{sc} can express

- All ATL* properties;
- Client-server interactions for accessing a shared resource:

$$\langle \cdot \text{Server} \rangle \ \mathbf{G} \left[\begin{array}{c} & \bigwedge_{c \in \text{Clients}} \langle c \rangle \ \mathbf{F} \operatorname{access}_{c} \\ \wedge \\ & \neg & \bigwedge_{c \neq c'} \operatorname{access}_{c} \wedge \operatorname{access}_{c'} \end{array} \right]$$

• Existence of Nash equilibria:

$$\langle A_1, ..., A_n \rangle \bigwedge_i (\langle A_i \rangle \varphi_{A_i} \Rightarrow \varphi_{A_i})$$

What ATL_{sc} can express

- All ATL* properties;
- Client-server interactions for accessing a shared resource:

$$\langle \cdot \text{Server} \rangle \ \mathbf{G} \left[\begin{array}{c} & \bigwedge_{c \in \text{Clients}} \langle c \rangle \ \mathbf{F} \operatorname{access}_{c} \\ \wedge \\ & \neg & \bigwedge_{c \neq c'} \operatorname{access}_{c} \wedge \operatorname{access}_{c'} \end{array} \right]$$

• Existence of Nash equilibria:

$$\langle A_1, ..., A_n \rangle \bigwedge_i (\langle A_i \rangle \varphi_{A_i} \Rightarrow \varphi_{A_i})$$

• Existence of dominating strategy:

$$\langle A \rangle [B] (\neg \varphi \Rightarrow [A] \neg \varphi)$$

Theorem

Given a CGS C, a state ℓ_0 and an ATL_{sc} formula φ , we can build an alternating parity tree automaton \mathcal{A} s.t.

$$\mathcal{L}(\mathcal{A}) \neq \varnothing \quad \Leftrightarrow \quad \mathcal{C}, \ell_0 \models_{\varnothing} \varphi.$$

 \mathcal{A} has size d-exponential, where d is the maximal number of nested quantifiers.

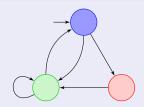
Theorem

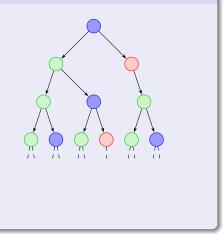
Given a CGS C, a state ℓ_0 and an ATL_{sc} formula φ , we can build an alternating parity tree automaton \mathcal{A} s.t.

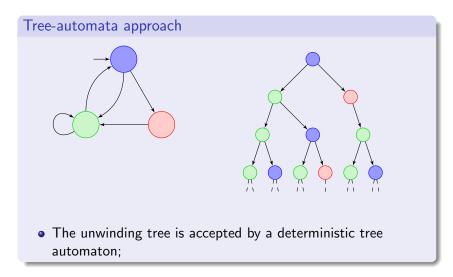
$$\mathcal{L}(\mathcal{A}) \neq \varnothing \quad \Leftrightarrow \quad \mathcal{C}, \ell_0 \models_{\varnothing} \varphi.$$

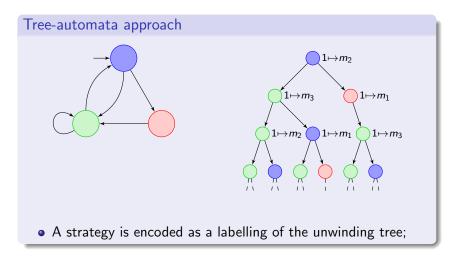
 \mathcal{A} has size d-exponential, where d is the maximal number of nested quantifiers.

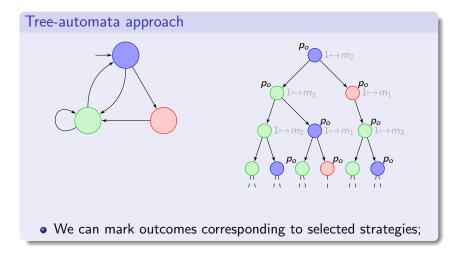
Theorem Model checking ATL_{sc} is d-EXPTIME-complete.

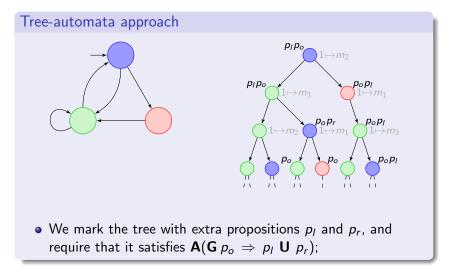


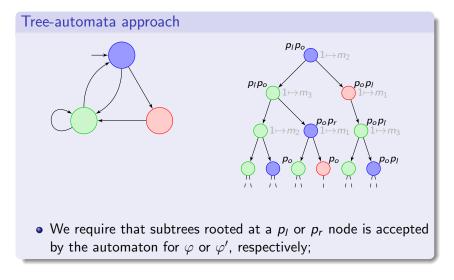


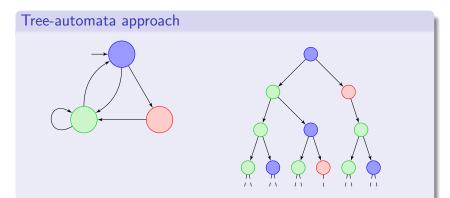












• We can build a tree automaton accepting all trees that *can be labelled* with correct strategies. This requires turning the alternating tree automaton into a non-deterministic one, which yields an exponential-size automaton.

Conclusions

- Our results on ATL_{sc}:
 - ATL_{sc} is a natural semantic extension of the popular ATL;
 - ATL_{sc} is much more expressive: equilibria, client-server interactions... Well-suited for non-zero-sum objectives;
 - There is a price for this expressiveness: high complexity of the model-checking algorithm.

Conclusions

- Our results on ATL_{sc}:
 - ATL_{sc} is a natural semantic extension of the popular ATL;
 - ATL_{sc} is much more expressive: equilibria, client-server interactions... Well-suited for non-zero-sum objectives;
 - There is a price for this expressiveness: high complexity of the model-checking algorithm.

- Future works:
 - study satisfiability of ATL_{sc};
 - behavioural equivalence for ATL_{sc}.
 - handle stochastic strategies, partial observation, ...