
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/227294990

How Hard Is It to Find Extreme Nash Equilibria in

Network Congestion Games?

Conference Paper in Theoretical Computer Science · December 2008

DOI: 10.1007/978-3-540-92185-1_17

CITATIONS

4
READS

85

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Carsharing View project

LZK-SIM [BAU] View project

Johannes Hatzl

Graz University of Technology

20 PUBLICATIONS 195 CITATIONS

SEE PROFILE

Sven O. Krumke

RPTU - Rheinland-Pfälzische Technische Universität Ka…

224 PUBLICATIONS 2,382 CITATIONS

SEE PROFILE

Heike Sperber

RPTU - Rheinland-Pfälzische Technische Universität Ka…

8 PUBLICATIONS 75 CITATIONS

SEE PROFILE

All content following this page was uploaded by Johannes Hatzl on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/227294990_How_Hard_Is_It_to_Find_Extreme_Nash_Equilibria_in_Network_Congestion_Games?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/227294990_How_Hard_Is_It_to_Find_Extreme_Nash_Equilibria_in_Network_Congestion_Games?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Carsharing-3?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/LZK-SIM-BAU?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes-Hatzl?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes-Hatzl?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Graz-University-of-Technology?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes-Hatzl?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sven-Krumke?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sven-Krumke?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RPTU-Rheinland-Pfaelzische_Technische_Universitaet_Kaiserslautern_Landau?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sven-Krumke?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Heike-Sperber?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Heike-Sperber?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RPTU-Rheinland-Pfaelzische_Technische_Universitaet_Kaiserslautern_Landau?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Heike-Sperber?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes-Hatzl?enrichId=rgreq-78758cad1960598078ef24ca2f088fdc-XXX&enrichSource=Y292ZXJQYWdlOzIyNzI5NDk5MDtBUzoxMDQzMzYyMTAyNjgxNzBAMTQwMTg4NzA5OTYxNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

How Hard Is It to Find Extreme Nash Equilibria
in Network Congestion Games?

Elisabeth Gassner1,�, Johannes Hatzl1, Sven O. Krumke2, Heike Sperber2,��,
and Gerhard J. Woeginger3,���

1 Graz University of Technology, Institute of Optimization and Discrete
Mathematics, Steyrergasse 30, Graz, Austria
{gassner,hatzl}@opt.math.tu-graz.ac.at

2 University of Kaiserslautern, Department of Mathematics, P.O.Box 3049,
67653 Kaiserslautern, Germany

{krumke,sperber}@mathematik.uni-kl.de
3 Eindhoven University of Technology, Department of Mathematics and Computer

Science, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
gwoegi@win.tue.nl

Abstract. We study the complexity of finding extreme pure Nash equi-
libria in symmetric (unweighted) network congestion games. In our con-
text best and worst equilibria are those with minimum respectively
maximum makespan. On series-parallel graphs a worst Nash equilibrium
can be found by a Greedy approach while finding a best equilibrium is
NP-hard. For a fixed number of users we give a pseudo-polynomial algo-
rithm to find the best equilibrium in series-parallel networks. For general
network topologies also finding a worst equilibrium is NP-hard.

Keywords: Network congestion game, unsplittable flow, makespan ob-
jective, extreme equilibria, complexity.

1 Introduction

In the last years there has been a lot of interest in algorithmic game theory
combining aspects of game theory and computer science. Driven by growing de-
mand for faster and larger communication networks more and more questions
were asked: How do non-cooperative users interact in such networks where in-
creasing load on individual parts of the network causes a degradation in service,
often in the form of reduced transfer speed? How does this congestion effect
influence the whole network? Is there some kind of self-regulation among the

� This research is partially supported by the Austrian Science Fund Project P18918-
N18 Efficiently solvable variants of location problems.

�� Supported by the Rhineland-Palatinate Cluster of Excellence Dependable Adaptive
Systems and Mathematical Modeling.

��� Supported by the Netherlands Organisation for Scientific Research (NWO), grant
639.033.403, and by BSIK grant 03018 (BRICKS: Basic Research in Informatics for
Creating the Knowledge Society).

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 82–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How Hard Is It to Find Extreme Nash Equilibria 83

users? Classical game theory provides qualitative answers such as existence of
equilibria, states of the network in which all users are satisfied, and computer
scientists added more quantitative question and concepts. It is a well known fact
(cf. Pigou [1]), that in general selfish non-cooperative behaviour does not lead to
social optimal outcome. Papadimitriou [2] coined the term price of anarchy for
the ratio of the social cost of a worst Nash equilibrium and the minimal social
cost. The KP-Model named after Koutsoupias and Papadimitriou [3] describes
the situation in which users of possibly different size assign their traffic to par-
allel links with linear latency functions. For pure assignments this corresponds
to uniform/related machines in scheduling. Fotakis et al. [4] came up with the
question whether a best or worst pure equilibrium w.r.t. to makespan can be
computed efficiently and established that in the KP-Model both problems are
strongly NP-hard. Gairing et al. [5] added that it is even hard to approximate
the worst equilibrium social cost on identical links while there is a PTAS for the
best equilibrium social cost. Fischer and Vöcking [6] considered the worst mixed
equilibrium.

The hardness proofs for extreme equilibria stated above are based on the
users’ different sizes, i.e., the amounts of unsplittable traffic they send through
the network and the close relationship to scheduling and bin-packing problems.
The question arises whether finding extreme Nash equilibria for unit-size users
is substantially easier as for the unit-size case the corresponding scheduling and
bin-packing instances become polynomially solvable. We will show that most
versions of finding extreme equilibria are still NP-hard even for unit-size users.
Up to now the complexity status of finding extreme equilibria with respect to the
makespan was only considered for the KP-Model. However, in this case finding
extreme equilibria for unit-size users is trivial because even for arbitrary non-
decreasing latency functions on parallel links all Nash Equilibria have equal and
minimal makespan as shown by Epstein et al. [7].

The game describing unit-size users sending their unsplittable traffic through
arbitrary directed networks with latency functions on edges is called network
congestion game and was already studied in the 1970’s by Rosenthal [8]. He
established that the more general congestion games possess pure strategy Nash
equilibria. Fabrikant et al. [9] established that for symmetric (single-commodity)
network congestion games an arbitrary equilibrium can be computed in polyno-
mial time, but for asymmetric network congestion games or general symmetric
congestion games it is PLS-complete to find an equilibrium. Fotakis et al. [10]
introduced that the greedy approach yields a pure Nash equilibrium not only on
parallel links but also on series-parallel graphs.

Contribution. We consider (unweighted) network congestion games with arbi-
trary non-decreasing latency functions on edges. Our negative results need only
linear latencies �e(x) = aex.

We establish that finding a best or a worst Nash equilibrium concerning
makespan social cost is not equally hard in the following meaning: We prove
that on series-parallel graphs finding a best equilibrium is NP-hard. It is strongly
NP-hard if the number of users is part of the input and weakly NP-hard

84 E. Gassner et al.

otherwise. Moreover, we suggest a pseudo-polynomial time algorithm that de-
termines a best Nash equilibrium on series-parallel graphs if the number of users
is fixed. This indicates that this problem is not strongly NP-hard. In contrast to
this we show that a worst pure equilibrium is found by the Greedy approach of
Fotakis et al. [10] on these graphs.

In general networks also finding a worst equilibrium is NP-hard. In fact, we
prove it to be NP-hard in the strong sense already for two users on an acyclic
network with linear latencies.

Road Map. The paper is organized as follows: Section 2 introduces our notation
and preliminary results such as existence of pure equilibria and computation of
an arbitrary equilibrium. In Section 3 we discuss our results on finding a worst
Nash equilibrium and in Section 4 for a best Nash equilibrium, respectively.

2 Preliminaries

We consider N users of the same size, i.e., each routing the same amount of
unsplittable flow from a single source s to a single sink t through a directed
graph G = (V, E). The edges of G are equipped with non-decreasing latency
functions �e : N0 → R

+
0 for all e ∈ E modelling the congestion effects. An

instance of the game is thus given by (G = (V, E), (�e)e∈E , s ∈ V, t ∈ V, N). By
scaling the latency functions appropriately we assume without loss of generality
all users to have unit size.

Let P denote the set of all simple s-t-paths in G and thus the strategy set
of all users. In our context a flow is a function f : P → N0 that assigns integer
values to paths in the network. The latency on a path is the sum of the latencies
on its edges that depends on the total flow on the edge:

�P (f) :=
∑

e∈P

�e

⎛

⎝
∑

P ′∈P: e∈P ′

fP ′

⎞

⎠ (1)

We denote by fe :=
∑

P∈P: e∈P fP the flow on edge e uniquely induced by
the flow f defined on paths. Note that there may be different so-called flow-
decompositions or flows on paths that correspond to the same flow on edges.
Example 1 shows that we need the information about paths for modelling the
users’ behaviour in our game.

A Nash equilibrium is a stable situation in which no user wants to deviate
from her chosen path because she cannot decrease her experienced latency this
way:

Definition 1 (Nash Equilibrium, Nash Flow). A flow on paths f =(fP)P∈P
is at Nash equilibrium, if and only if for all paths P1, P2 with fP1 > 0 we have

�P1(f) ≤ �P2(f̃) with f̃P =

⎧
⎪⎨

⎪⎩

fP − 1 if P = P1

fP + 1 if P = P2

fP otherwise
. (2)

How Hard Is It to Find Extreme Nash Equilibria 85

Existence of Nash Equilibria. Rosenthal [8] used the following potential
function Π : F → R defined on the set of feasible flows F to prove the existence
of pure Nash equilibria in network congestion games:

Π(f) =
∑

e∈E

fe∑

i=1

�e(i) (3)

Flows corresponding to local optima of this potential function constitute Nash
equilibria. Fabrikant et al. [9] establish that one equilibrium can be computed
in polynomial time because a min-cost flow in the following instance MCF(G)
minimizes Rosenthal’s potential function and is thus a Nash flow.

Definition 2 (Min-cost Flow Instance, MCF(G)). Given a network con-
gestion game (G = (V, E), (�e)e∈E , s ∈ V, t ∈ V, N) construct the corresponding
min-cost flow instance as follows:

For every edge e ∈ E we need N copies with costs cei = �e(i), i = 1, . . . , N .
The capacities of all edges are 1 and we send N units of flow from s to t.

Observe that every path decomposition of every optimal solution of the min-cost
flow instance MCF(G) yields a Nash equilibrium as the negative cycle optimality
condition for optimal min-cost flows directly implies that no user wants to deviate
from her chosen strategy. However, not every Nash equilibrium is also an optimal
solution of the min-cost flow instance (cf. Examples 3 and 4).

Note that there are instances and Nash flows (not global but local optima
of Rosenthal’s potential) such that a different path decomposition of the flow
on edges induced by a Nash flow is not again Nash (cf. Example 1). Thus, it is
necessary to have the information about the flow on paths as the output of the
game.

Example 1 (Nash equilibria and flow decompositions). Consider the instance
given in Figure 1 in which two users travel from s to t. The latency functions
are given as edge labels. In order to distinguish parallel edges (s, u) (or (u, t)),
we call them upper and lower edge between s and u (u and t).

Observe that the flow sending the first user on edge (s, t), the second user on
the path consisting of the upper edge from s to u and the lower edge from u to
t and the third user on the path containing the so far unused edges is a Nash
equilibrium. The flow on every edge is equal to 1.

But if we change the flow decomposition and send the second user on both
upper and the third on the lower edges this last user becomes unsatisfied be-
cause she would be better off changing to edge (s, t). Hence, not every path
decomposition of a flow on edges yields a Nash equilibrium.

s u t

x

2x

x

2x

1.5x

Fig. 1. Nash equilibrium property might depend on flow decomposition (Example 1)

86 E. Gassner et al.

Social Cost. In this paper, we consider minimizing the makespan as the social
objective function. This notion comes from scheduling and is a priori only ap-
plicable to parallel link networks. Flows minimizing the following more general
makespan definition are sometimes also called min-max flows.

Definition 3 (Makespan, Social Cost). Given a flow on paths f = (fP)P∈P
the makespan is given by

Cmax(f) := max
P∈P:fP >0

�P (f). (4)

Epstein et al. [7] showed that on parallel links all Nash equilibria have equal
makespan but this does not hold in general:

Example 2 (Nash equilibria with different non-optimal makespans). Consider the
instance given in Figure 2 for two users. If every edge is used by exactly one user
and the paths are alternating between upper and lower edges then an optimal
solution with makespan 12 is achieved. Observe that in any Nash equilibrium
there is exactly one user on every edge between s and u1 and between u1 and u2
and there are two users on the upper edges between u2 and u3 and between u3
and t. A best Nash equilibrium with makespan 13 can be obtained if both users
alternate between upper and lower connection on the first two edges. However,
one user may also choose the lower connections on both first edges. This yields
again a Nash equilibrium, which is worst and has makespan 14.

s u1 u2 u3 t

2x

3x

2x

3x

2x

5x

2x

5x

Fig. 2. Instance with several Nash equilibria

As in general the makespan of different Nash equilibria as well as an optimum
makespan are not equal, we are now interested in computing two extreme Nash
equilibria.

Extreme Nash Equilibria. We introduce the following two problems of finding
a best or worst pure equilibrium, respectively.

Worst Nash Equilibrium (W-NE for short):
Given: Network congestion game (G = (V, E), (�e)e∈E , s ∈ V , t ∈ V , N)
Output: Nash equililbrium f with maximal makespan amoung all Nash

equilibria.

Best Nash Equilibrium (B-NE for short):
Given: Network congestion game (G = (V, E), (�e)e∈E , s ∈ V , t ∈ V , N)
Output: Nash equililbrium f with minimal makespan amoung all Nash

equilibria.

Note that the decision versions of these two problems are in NP for acyclic
networks G as in those networks for a given flow f a longest path w.r.t. to the
fixed edge lengths �e(fe) can be computed in polynomial time [11].

How Hard Is It to Find Extreme Nash Equilibria 87

Unfortunately, it can be shown that in general neither a best nor a worst Nash
equilibrium is an optimal solution of MCF(G):

Example 3 (Best Nash flow not optimal in MCF(G)). Reconsider the instance
of Example 2 and observe that the unique solution of MCF(G) is the Nash
equilibrium with makespan 14 and thus not the best one.

Example 4 (Worst Nash flow not optimal in MCF(G)). In case of the worst
Nash equilibrium consider the instance given in Figure 3 for two users:

s

u1 u2

u3 u4

t

x

x
x

x

x

x

0

0

Fig. 3. The unique worst Nash equilibrium does not imply an optimal min-cost flow
(Example 4)

The optimal solution f∗ of MCF(G) for the graph given in Figure 3 is unique
and has a unique path decomposition sending one user on Q1 = (s, u1, u4, t) and
Q2 = (s, u3, u2, t) each with makespan Cmax(f∗) = 2. However, f with fP1 =
fP2 = 1 where P1 = (s, u1, u2, t) and P2 = (s, u3, u4, t) is a Nash equilibrium
with Cmax(f) = 3.

The fact that in general no worst Nash equilibrium is an optimal min-cost flow
in MCF(G) is quite interesting because in the special case of series-parallel
graphs there always exists a worst Nash equilibrium that is an optimal solu-
tion of the min-cost flow problem MCF(G). This follows from the result that the
Greedy approach determines a worst Nash equilibrium in series-parallel graphs
(cf. Section 3).

Series-Parallel Graphs. As already mentioned we consider not only arbitrary
network topologies but also series-parallel networks. Series-parallel graphs can be
defined inductively. A single edge e = (s, t) is series-parallel with start terminal
s and end-terminal t by definition. Let Gi be series-parallel with start-terminal
si and end-terminal ti (i = 1, 2). Then the graph S(G1, G2) obtained by iden-
tifying t1 as s2 is a series-parallel graph, with s1 and t2 as its terminals (series
composition). And the graph G = P (G1, G2) obtained by identifying s1 as s2
and also t1 as t2 is a series-parallel graph (parallel composition). This graph has
s1(= s2) and t1(= t2) as its terminals (cf. [10]).

This class of graphs has some very nice properties: Bein et al. [12] established
that the Greedy approach solves the min-cost flow problem in series-parallel
graphs. Combined with the min-cost flow instance introduced by Fabrikant et
al. [9] this yields that the greedy approach of iteratively assigning the users to
a shortest path with respect to the latency induced by the current flow plus an

88 E. Gassner et al.

additional user on every edge yields a Nash equilibrium on series-parallel graphs.
This result was also obtained by Fotakis et al. [10] who call this algorithm GBR
(greedy best response) and we keep this notation.

3 Worst Pure Nash Equilibrium

In this section the complexity status of determining a worst Nash equilibrium
is investigated. We prove that a Greedy strategy solves the problem on series-
parallel graphs and show strong NP-hardness for the problem on general graphs.

Special Case of Series-Parallel Graphs. In the following we show that the
Greedy Best Response (GBR) algorithm introduced by Fotakis et al. [10] always
leads to a worst Nash equilibrium in series-parallel graphs. The idea of this algo-
rithm is as follows: If one considers a setting where the users arrive consecutively,
a new user routes her path such that her personal latency is minimized given
the flow induced by the users currently in the network. This choice is irrevo-
cable, i.e., no user can change the strategy in the future. More formally, let us
denote by

L+(f) := min
P∈P

∑

e∈P

�e(fe + 1) (5)

the minimum latency for a new (N+1)st user given a flow f sending N users
from s to t. According to GBR the new user chooses her path PN+1 such that
the latency of PN+1 is L+(f). If a flow f ′ is obtained by a given flow f where a
single user is added according to GBR we use f ′ = f ⊕ PN+1. For series-parallel
graphs it has been shown in [10] that if f is an arbitrary Nash equilibrium then
f ′ = f ⊕PN+1 is again a Nash equilibrium. Note that this property does not hold
in general graphs. As a consequence GBR always leads to a Nash equilibrium if
all users have the same size and the underlying network is series-parallel. In this
paper, we strengthen this result and show that the obtained Nash equilibrium
is always a worst Nash equilibrium. This holds for all latency functions that
are non-decreasing. The next lemma, which is a key point in order to prove our
result, has already been used implicitly in [10]. It states that if we start with
a Nash equilibrium and add one more user according to GBR then the latency
of the new user is not less than the latency of all the previous users in the new
flow.

Lemma 1. Let G = (V, E) be a series-parallel graph and f a Nash equilibrium
for N users. If we choose PN+1 ∈ P according to GBR we obtain a new Nash
equilibrium f ′ = f ⊕ PN+1 such that

�PN+1(f
′) = Cmax(f ′).

The next two lemmata are dealing with the two compositions in the definition of
series-parallel graphs. In fact, we give a characterization of a Nash equilibrium
in S(G1, G2) and P (G1, G2). Before the results are stated the following notation
is introduced. Let Gi be a series-parallel graph and fi : Pi → N0 a flow in Gi for

How Hard Is It to Find Extreme Nash Equilibria 89

i = 1, 2. Then the set of all simple s-t-paths in P (G1, G2) is given by P1 ∪ P2.
We define a new flow f in P (G1, G2) by f := f1 ∪ f2, where f : P1 ∪ P2 → N0
and f |Pi = fi for i = 1, 2.

Lemma 2. Let fi be a flow in a series-parallel graph Gi for i = 1, 2. Then
f = f1 ∪ f2 is a Nash equilibrium in P (G1, G2) if and only if the following
conditions are satisfied:

1. fi is a Nash equilibrium in Gi for i = 1, 2,
2. L+

G1
(f1) ≥ Cmax(f2) and L+

G2
(f2) ≥ Cmax(f1).

We want to establish a similar result for the series composition. Therefore let
Gi be series-parallel and fi : Pi → N0 a flow in Gi for i = 1, 2 for N users. Let
us assume without loss of generality that the users choose the paths P1, . . . , PN

(Q1, . . . , QN) in G1 (G2). For each permutation φ of {Q1, . . . , QN} we can obtain
a new flow f in S(G1, G2) if we define a new path for user i by P̄i = Pi ∪ Qφ(i).
The set of all flows that can be obtained this way will be denoted by f1 ⊗ f2.

Lemma 3. Let fi be a flow in Gi for i = 1, 2. Let f ∈ f1 ⊗ f2 then f is a Nash
flow in S(G1, G2) if and only if fi is a Nash equilibrium in Gi for i = 1, 2.

Using these lemmata we are able to prove the following theorem by induction on
the composition steps. The detailed proof is omitted due to space restrictions.

Theorem 1. If G is a series-parallel graph then the Nash equilibrium obtained
by GBR is a worst Nash equilibrium.

Complexity Status on General Graphs. Before proving NP-hardness of the
problem of finding a worst Nash equilibrium, we consider a related problem that
is called Blocking Path problem:

Blocking Path Problem (BlockP for short):
Given: Digraph G = (V, E) with source s ∈ V and sink t ∈ V .
Question: Does there exist an s-t-path P ∈ P such that after deleting the

edges of P there is no path from s to t?

Theorem 2. The Blocking Path Problem is strongly NP-complete even on acyclic
networks.

The proof is a reduction from 3SAT and due to lack of space postponed to
the full version of this paper. The Blocking Path Problem is used to show that
determining a worst Nash equilibrium in general networks is NP-hard even for
two users.

Theorem 3. Determining a Worst Pure Nash equilibrium is strongly NP-hard
even for two users on acyclic networks and with linear latency functions.

Proof. Consider an instance I(BlockP) of the strongly NP-complete Blocking
Path problem. Let G = (V, E) be the acyclic network of instance I(BlockP) with

90 E. Gassner et al.

s, t ∈ V . An instance of I(W-NE) of determining a worst pure Nash equilibrium
is defined as follows: I(W-NE) is defined on a graph G′ = (V, E′) which contains
the same vertex set as G and E′ = E∪{(s, t)}. Since G′ is acyclic it is possible to
define a bijective function π : V → {1, . . . , n} such that π(i) < π(j) if (i, j) ∈ E.
Given any such bijection π the latency functions are given by

�e(x) = (π(j) − π(i))x, e = (i, j) ∈ E.

Observe that due to this definition of the latency functions of edges in G every
path from s to t is a shortest path with respect to the edge lengths �e(1). Let
L∗ be the length of a shortest path from s to t in G with respect to edge lengths
�e(1) for e ∈ E. Then the latency of (s, t) is defined by �(s,t)(x) = (L∗ + 1

2)x.
We show that there exists a blocking path P ∗ for I(BlockP) if and only if

the answer to the decision problem corresponding to I(W-NE) is “yes” for K =
L∗ + 1

2 , i.e. there exists a Nash equilibrium f in G′ with cost Cmax(f) ≥ L∗ + 1
2 .

Given a blocking path P ∗ in I(BlockP) we construct a feasible flow f in G′ by
sending one user on P ∗ and the other on edge (s, t) inducing Cmax(f) = L∗ + 1

2 .
Observe that indeed both users are satisfied and this flow constitutes a Nash
equilibrium.

On the other hand, assume that there exists a Nash equilibrium f with
makespan Cmax(f) ≥ L∗ + 1

2 . Analysing the different cases of flow values on
(s, t), the Nash property of f together with the lower bound on Cmax(f) tell us
that in this setting one user is sent over (s, t) and one on a path P ∗ in G′. The
fact, that the user on (s, t) does not want to change to G′ implies that P ∗ is in
fact a blocking path. 	

4 Best Pure Nash Equilibrium

In this section, we show several complexity results concerning the problem of
determining a best Nash equilibrium. All results given in this section hold even
for series-parallel graphs. We show that computing a best Nash equilibrium for
N users is strongly NP-hard if N is part of the input. If the number of users
is fixed then the problem remains weakly NP-hard. At least for series-parallel
graphs this result is best possible because there exists a dynamic programming
algorithm with pseudo-polynomial running time.

Strong NP-Hardness Result. In this subsection, we prove that finding a best
Nash equilibrium on series-parallel graphs is strongly NP-hard if the number of
users is part of the input. We show this by a reduction of the corresponding
decision problem to the numerical 3-dimensional matching problem, which is
known to be strongly NP-complete (see [11]).

Numerical 3-Dimensional Matching (N3M for short):
Given: Disjoint sets X, Y, Z, each containing m elements, a weight w(a)

for all elements a ∈ X ∪ Y ∪ Z and a bound B ∈ Z
+.

Question: Does there exist a partition of X ∪ Y ∪ Z into m disjoint sets
A1, . . . , Am such that each Aj contains exactly one element from
each of X , Y and Z and

∑
a∈Ai

w(a) = B for all 1 ≤ i ≤ m.

How Hard Is It to Find Extreme Nash Equilibria 91

Theorem 4. Determining a best Nash equilibrium is strongly NP-hard on series-
parallel graphs if the number of users is part of the input.

Proof. Consider an instance I(N3M) of N3M. Observe that we may assume
without loss of generality that w(a) < 2w(b) and w(b) < 2w(a) for each pair
a, b ∈ X . Otherwise a large number M can be added to all elements in the set
X and to B until the desired condition is satisfied. An analogue property holds
for Y and Z.

Based on this instance we construct the following series-parallel graph G =
(V, E): Let V = (s, u, v, t) and for each element in the set X (Y , Z) we introduce
a directed edge from s to u (u to v, v to t). The latency function of an edge e is
given by �e(x) = w(a)x where w(a) is the weight of the corresponding element
in the instance I(N3M).

Observe that in a best Nash equilibrium every edge is used by exactly one user.
Hence, there is a one-to-one correspondence between the subsets Ai i = 1, . . . , m
and the paths of the users and therefore there exists a Nash equilibrium with m
users in G with social cost at most B if and only if I(N3M) is a YES-instance. 	

Weak NP-Hardness for Fixed Number of Users. This subsection deals
with the problem of determining a best Nash equilibrium if the number of users
N is fixed. The proof is a reduction from Even-Odd Partition. As it works similar
to that of the previous section it is omitted here.

Theorem 5. Determining a best Nash equilibrium is weakly NP-hard even for
two users and on series-parallel graphs.

A Pseudo-Polynomial Time Algorithm for Series-Parallel Graphs. In
this subsection, we discuss a dynamic programming approach to find a best Nash
equilibrium in series-parallel graphs if the number N of users is not part of the
input. Let f be a Nash equilibrium in a graph G for k users which choose the
paths P1, . . . , Pk. Then we define a multiset

C(f) := {�P1(f), . . . , �Pk
(f)}

which will be called cost profile of f . Note that several Nash equilibria can have
the same cost profile. The idea of the algorithm is to decide if for a given multiset
C = {c1, . . . , ck} with 0 ≤ k ≤ N there exists a corresponding Nash flow f with k
users. This is done using the inductive definition of series-parallel graphs. In order
to decide if a cost profile can be realized by a Nash flow f = f1 ∪f2 in P (G1, G2)
we need to know L+(fi). More formally, for a given multiset C = {c1, . . . , ck}
and a graph G we define

SG(C) := max{L+(f) | C(f) = {c1, . . . , ck}, f is a Nash flow}.

If such a Nash equilibrium does not exist we set SG(C) := −∞. Hence, all cost
profiles with SG(C) ≥ 0 do have a corresponding Nash flow f . Let us discuss the
algorithm in more detail.

92 E. Gassner et al.

1. A single edge (s, t)
For the simplest series-parallel graph there is a unique flow for all 0 ≤ k ≤ N
and all users have latency �(s,t)(k). Thus, we obtain immediately

SG(C) =

{
�(s,t)(k + 1) if C = {�(s,t)(k), . . . , �(s,t)(k)}, |C| = k ≤ N,

−∞ otherwise.

2. The series composition
Let C = {c1, . . . , ck} be given. Note that this cost profile can only be obtained
by a Nash flow f ∈ f1 ⊗ f2 with Ci := C(fi) = {ci

1, . . . , c
i
k} for i = 1, 2 and

C = {c1
1+c2

φ(1), . . . , c
1
k+c2

φ(k)} for some permutation φ. If such a permutation
exists we write C1 ⊗ C2 = C. Moreover, L+(f) = L+(f1) + L+(f2) because
every s − t path in G has to pass the vertex t1 = s2. Thus, we obtain

SG(C) = max
C1⊗C2=C

{SG1(C1) + SG2(C2)}. (6)

3. The parallel composition
Let C = {c1, . . . , ck} be given. A corresponding Nash flow f is of the form
f1 ∪ f2 with C1 := C(f1) = {c1

1, . . . , c
1
k1

}, C2 := C(f2) = {c2
1, . . . , c

2
k2

},
k1 + k2 = k and C = C1 ∪ C2. Moreover the conditions from Lemma 3 have
to be satisfied, i.e., max{c1

1, . . . , c
1
k1

} ≤ SG2(C2) and max{c2
1, . . . , c

2
k2

} ≤
SG1(C1). The shortest path in G with respect to the flow f is given by
min{L+(f1), L+(f2)}, because the shortest path in P (G1, G2) chooses either
a path with edges in G1 or in G2. Thus,

SG(C) = max
C=C1∪C2

|C1|+|C2|=k
max{c|c∈C1}≤SG2 (C2)
max{c|c∈C2}≤SG1 (C1)

min{SG1(C1), SG2(C2)} (7)

is satisfied.

Note that it is straightforward to get the best Nash flow at the end if the
corresponding flows which determine SG(C) during the algorithm are stored as
well. In order to analyze the running time of this algorithm note that for a
graph G and a fixed number k of users there are at most (|V |L)k

k! = O((|V |L)k)
different multisets, where L := maxe∈E le(N) is the maximum latency on an
edge and a simple path can have at most |V | edges. Due to the fact that this
is needed for all 0 ≤ k ≤ N the number of multisets that have to be stored
is at most N(|V |L)N = O((|V |L)N). It is easy to see that for the series and
parallel composition (6) and (7) can be done in polynomial time with respect to
the number of multisets. Thus, the proposed dynamic programming approach is
pseudo-polynomial which implies that B-NE is indeed not NP-hard in the strong
sense for series-parallel graphs.

References
1. Pigou, A.C.: The economics of welfare. Macmillan, Basingstoke (1920)
2. Papadimitriou, C.: Algorithms, games, and the internet. In: Proceedings of the

33rd Annual ACM Symposium on the Theory of Computing, pp. 749–753 (2001)

How Hard Is It to Find Extreme Nash Equilibria 93

3. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

4. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The
structure and complexity of nash equilibria for a selfish routing game. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

5. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Spirakis, P.: The structure
and complexity of extreme nash equilibria. Theoretical Computer Science 343(1-2),
133–157 (2005)

6. Fischer, S., Vöcking, B.: On the structure and complexity of worst-case equilibria.
Theororetical Computer Science 378(2), 165–174 (2007)

7. Epstein, A., Feldman, M., Mansour, Y.: Efficient graph topologies in network rout-
ing games. In: Joint Workshop on Economics of Networked Systems and Incentive-
Based Computing (2007)

8. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Inter-
national Journal of Game Theory 2(1), 65–67 (1973)

9. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equi-
libria. In: Proceedings of the 36th Annual ACM Symposium on the Theory of
Computing, pp. 604–612 (2004)

10. Fotakis, D., Kontogiannis, S., Spirakis, P.: Symmetry in network congestion games:
Pure equilibria and anarchy cost. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005.
LNCS, vol. 3879, pp. 161–175. Springer, Heidelberg (2005)

11. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of
NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman
& Co., New York (1979)

12. Bein, W.W., Brucker, P., Tamir, A.: Minimum cost flow algorithm for series-parallel
networks. Discrete Applied Mathematics 10, 117–124 (1985)

View publication stats

https://www.researchgate.net/publication/227294990

	How Hard Is It to Find Extreme Nash Equilibria in Network Congestion Games?
	Introduction
	Preliminaries
	Worst Pure Nash Equilibrium
	Best Pure Nash Equilibrium

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

