
Environment Abstraction for Parameterized
Verification?

Edmund Clarke1, Muralidhar Talupur1, Helmut Veith2

1Carnegie Mellon University, Pittsburgh, PA, USA
2Technische Universität München, Munich, Germany

Abstract. Many aspects of computer systems are naturally modeled as param-
eterized systems which renders their automatic verification difficult. In well-
known examples such as cache coherence protocols and mutual exclusion proto-
cols, the unbounded parameter is the number of concurrent processes which run
the same distributed algorithm. In this paper, we introduce environment abstrac-
tion as a tool for the verification of such concurrent parameterized systems. Envi-
ronment abstraction enriches predicate abstraction by ideas from counter abstrac-
tion; it enables us to reduce concurrent parameterized systems with unbounded
variables to precise abstract finite state transition systems which can be verified
by a finite state model checker. We demonstrate the feasibility of our approach
by verifying the safety and liveness properties of Lamport’s bakery algorithm and
Szymanski’s mutual exclusion algorithm. To the best of our knowledge, this is the
first time both safety and liveness properties of the bakery algorithm have been
verified at this level of automation.

1 Introduction

We propose a new method for the verification of concurrent parameterized systems
which combines predicate abstraction [21] with ideas from counter abstraction [29].
In predicate abstraction, the memory state of a system is approximated by a tuple of
Boolean values which indicate whether certain properties (“predicates”) of the memory
state hold or not. For example, instead of keeping all 64 bits for two integer variables
x, y, predicate abstraction may just track the Boolean value of the predicate x > y.

Counter abstraction, in contrast, is specifically tailored for concurrent parameterized
systems which are composed of finite state processes: for each possible state s of a
single finite state process, the abstract state contains a counter Cs which denotes the
number of processes currently in state s. Thus, the process identities are abstracted away
in counter abstraction. It can be argued that counter abstraction constitutes a very natural
abstraction mechanism for protocols. In practice, the counters in counter abstraction are
themselves abstracted in that they are cut off at value 2.

? This research was sponsored by the the National Science Foundation (NSF) under grants no.
CCR-9803774 and CCR-0121547. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of NSF. The third author was also supported by the EU GAMES Net-
work.

Fig. 1. Abstraction Mapping.

Counter abstraction however has two main problems: first, it works only for finite
state systems, and second, it assumes perfect symmetry, i.e., each process is identical
to every other process in every aspect. Well-known algorithms such as Lamport’s bak-
ery algorithm are not directly amenable to counter abstraction: the bakery algorithm
has an infinite state space due to an unbounded integer variable, and also an inherent
asymmetry due to its use of process id’s.

In this paper, we will address the two disadvantages of counter abstraction by incor-
porating the idea of counter abstraction into a new form of predicate abstraction: since
the state space is infinite, we do not count the processes in a given state as in tradi-
tional counter abstraction, but instead we count the number of processes satisfying a
given predicate. Note that the counters which we actually use in this paper are cut off
at the value 1; such degenerated counters are evidently tantamount to existential quan-
tifiers. Counting abstraction, too, usually needs only counters in the range [0..2]. Since
our abstraction maintains the state of one process explicitly, a range of [0..1] for each
counter suffices.

Our new form of abstraction is also different from common predicate abstraction
frameworks: Since the number of processes in a concurrent parameterized system is
unbounded, the system does not have a single infinite-state model, but an infinite se-
quence of models which increase in complexity. Moreover, since the individual pro-
cesses can have local data variables with unbounded range (e.g. integers), each of these
models is an infinite-state system by itself. Thus, computing the abstract transition re-
lation is a non-trivial task. Note that the predicates need to reflect the properties of a set
of concurrent processes whose cardinality we do not know at verification time. To en-
code the necessary information into the abstract model, we will introduce environment
predicates.

Environment Predicates. We use an asynchronous model which crucially distinguishes
between the finite control variables of a process and the unbounded data variables of
a process. The control variables are used to model the finite control of the processes
while the data variables can be read by other processes in order to modify their own
data variables. The variables can be used in the guards of the other processes, thus
facilitating a natural communication among the processes.1

1 We assume that transitions involving global conditions are treated atomically, i.e., while a
process is evaluating e.g. a guard, no other process makes any transition. This simplification
– which we shall call the atomicity assumption further on – is implicit in other works on
parameterized verification, see [3, 5, 6, 29].

2

Figure 1 visualizes the intuition underlying environment abstraction. The grey box
on the left hand side represents a concrete state of a system with 16 concurrent pro-
cesses. The different colors of the disks/processes represent the internal states of the
processes, i.e., the positions of the program counter.

The star-shaped graph on the right hand side of Figure 1 represents an abstract state.
The abstract state contains one distinguished process – called the reference process x
– which is at the center of the star. In this example, the reference process x represents
process 1 of the concrete state. The disks on the circumference of the star represent
the environment of the reference process. Intuitively, the goal of the abstraction is to
embed the reference process x of the abstract state into an abstract environment as rich
as the environment which process 1 has in the concrete state. Thus, the abstract state
represents the concrete state “from the point of view of process 1.”

To describe the environment of a process, we need to consider the relationships
which can hold between the data variables of two processes. We can graphically indicate
a specific relationship between any two processes by a corresponding arrow between
the processes; the form of the arrow (full, dashed, etc.) determines which relationship
the two processes have. In the figure, we assume that we have only two relationships
R1, R2. For example, R1(x, y) might say that the local variable t of process x has the
same value as local variable t in process y, while R2(x, y) might say that t has different
values in processes x and y. Relationship R1 is indicated by a full arrow, and R2 is
indicated by a dashed arrow. For better readability, not all relationships between the 16
processes are drawn.

More precisely, the environment of the reference process is described as follows:
we enumerate all cases how the data variables in the reference process can relate to
the data variables in a different process, as well as all possible program counter val-
ues which the other process can take. In our example, we have 2 relationships R1, R2

and 4 program counter positions, giving 8 different environment conditions. Therefore,
the abstract state contains 8 environment processes on the circumference. For each of
these 8 environment conditions, we indicate by the absence or presence of a bar, if
this environment condition is actually satisfied by some process in the concrete state.
For example, the dashed arrow from process 1 to the vertically striped process 2 in the
concrete state necessitates a dashed arrow from x to a vertically striped process in the
abstract state. Similarly, since there is no full arrow starting at process 1 in the concrete
state, all full arrows in the abstract state have a bar. An environment predicate is a quan-
tified formula which indicates the presence or absence of an environment condition for
the reference process. We will give a formal definition of these notions in Section 4.

Note that a single abstract state in general represents an infinite number of concrete
states. Moreover, a given concrete state gives rise to several abstract states, each of
which is induced by choosing a different possible reference process. For example, the
concrete state in Figure 1 may induce up to 16 abstract states, one for each process.

Existential Abstraction for Parameterized Systems. We construct an abstract system by
a variant of existential abstraction. We include an abstract transition if in some con-
crete instance of the parameterized system we can find a concrete transition between
concrete states which match the abstract states with respect to the same reference pro-

3

cess. The abstract model obtained by environment abstraction is a sound abstraction
which preserves both safety and liveness properties.

In this paper we use a simple input language which is general enough to describe
most practically relevant symmetric protocols, and to demonstrate the underlying prin-
ciples of our abstraction. We believe that our abstraction method can be naturally gen-
eralized for additional constructs as well.

To handle liveness we augment the abstract model using an approach suggested
by [29]. Note that in contrast to the indexed predicates method [24, 25], our approach
constructs an abstract transition system, instead of computing the set of reachable ab-
stract states. This feature of our approach is crucial for verifying liveness properties.

Tool Chain and Experiments. Our approach provides an automated tool chain in the
tradition of model checking.

1. The user feeds the protocol described in our language to the verification tool.
2. The environment abstraction tool extracts a finite state model from the process de-

scription, and puts the model in NuSMV format.
3. NuSMV verifies the specified properties.

Using the abstraction method described here, we have been able to verify automati-
cally the safety and liveness properties of two well known mutual exclusion algorithms,
namely Lamport’s Bakery algorithm [26] and Szymanski’s algorithm [31]. While safety
and liveness properties of Szymanski’s algorithm have been automatically verified with
atomicity assumption by Baukus et al [5], this is the first time both safety and liveness
of Lamport’s bakery algorithm have been verified (with the atomicity assumption) at
this level of automation.

2 Discussion of Related Work

Verification of parameterized systems is well known to be undecidable [2, 30]. Many
interesting approaches to this problem have been developed over the years, including
the use of symbolic automata-based techniques [1, 23, 8, 7], invariant based techniques
[3, 28], predicate abstraction [24], or exploiting symmetry [11, 14, 17, 15, 16]. Some of
the earliest work on verifying parameterized systems includes works by Browne et al
[9], German and Sistla [20], Emerson and Sistla [16]. In the rest of this section, we will
concentrate on the work which is closest to our approach.
Counter Abstraction [4, 12, 13, 29, 20] is an intuitive method to use on parameterized
systems. Pnueli et al [29] who coined the term counter abstraction show how systems
composed of symmetric and finite state processes can be handled automatically. Pro-
tocols which either break symmetry by exploiting knowledge of process id’s or which
have infinite state spaces however require manual intervention. Thus, the verification
of Szymanski’s and the Bakery protocol in [29] requires manual introduction of new
variables. The method also makes assumptions on the atomicity of guards.

The Invisible Invariants method was introduced in a series [28, 3, 18, 19] of papers.
The idea behind this technique is to find an invariant for the parameterized system by

4

examining concrete systems for low valuations of the parameter(s). The considered sys-
tem model is powerful enough to model various mutual exclusion and cache coherence
protocols which do not need unbounded integer variables. In [3], a modified version
of the bakery algorithm is verified: the original bakery algorithm is modified to elimi-
nate unbounded integer variables. In contrast, the method proposed in the current paper
can handle the original bakery protocol without such modifications. The authors of [3]
implicitly make the assumption that guards are evaluated atomically.

The Indexed Predicates method [24, 25] is a new form of predicate abstraction for in-
finite state systems. This method relies on the observation that complex invariants are
built of simple indexed predicates, i.e., predicates which have free index variables. By
choosing a set of indexed predicates appropriately one can use a modified form of pred-
icate abstraction to find a system invariant. In comparison to the above mentioned work,
this method makes weaker atomicity assumptions.

Our method is also based on predicate abstraction; in fact, the notion of a reference
process can be viewed as an “index” in the indexed predicates framework. However,
the contribution we make is very different: (i) We focus on concurrent parameterized
systems which enables us to use the specific and precise technique of environment ab-
straction. Our abstraction method exploits and reflects the structure of communicating
protocols. (ii) In the indexed predicates approach there is no notion of an abstract tran-
sition relation. Thus, their approach, which is tailored for computing reachable states,
works only for safety properties. In our framework, the abstract model does have a tran-
sition relation, and we can verify liveness properties as well as safety properties. (iii)
The indexed predicate technique requires manual intervention or heuristics for choosing
appropriate predicates. In contrast, our technique is automatic.

A method pioneered by Baukus et al [5] models an infinite class of systems by a single
WS1S system which is then abstracted into a finite state system. While this is an auto-
matic technique it cannot handle protocols such as the Bakery algorithm which have
unbounded integer variables. The global conditions are assumed to be atomic.

The inductive method of [27] based on model checking is applied to verify both safety
and liveness of the Bakery algorithm, notably without assuming atomicity. This ap-
proach however is not automatic: the user is required to provide lemmas and theorems
to prove the properties under consideration. Our approach in contrast is fully automatic.

Regular model checking [8] is an interesting verification technique very different from
ours. It is based on modeling systems using regular languages. This technique is appli-
cable to a wide variety of systems but it requires the user to express systems in terms of
regular languages which is a non-trivial process and requires user ingenuity.

Henzinger et. al. [22] also consider the problem of unbounded number of threads
but the system model they consider is different. The communication between threads
occurs through shared variables, whereas in our case, each process can look at the state
of the other processes.

In summary, automatic methods such as the WS1S method and counter abstraction
are restricted in the systems they can handle and make use of the atomicity assumption.
In contrast, the methods which make no or weaker assumptions about atomicity tend
to require user intervention, either in the form of providing appropriate predicates or in

5

the form of lemmas and theorems which lead to the final result. In this paper, we as-
sume atomicity of guards and describe a method which can handle well known mutual
exclusion protocols such as the Bakery and Szymanski’s protocols automatically. Im-
portantly, our method is able to abstract and handle unbounded integer variables. To the
best of our knowledge, this is the first time that the Bakery algorithm (under atomicity
assumption) has been verified automatically.

The method of environment abstraction described here has a natural extension which
eliminates the atomicity assumption. This extension of our method, which will be de-
scribed in future work, has been used to verify the Bakery algorithm and Szymanski’s
protocol without any restrictions.

3 System Model

Parameterized Systems. We consider asynchronous systems composed of an un-
bounded number of processes which communicate via shared variables. Each process
can modify its own variables, but has only read access to the variables of the other pro-
cesses. Each process has two sets of variables: the control variables F = {f1, . . . , fc},
where each fi has a finite, constant range and the data variables U = {u1, . . . ud},
where each ui is an unbounded integer. Intuitively, the two sets of variables serve dif-
ferent purposes: (i) The control variables in F determine the internal control state of the
process. As they have a finite domain, the variables in F amount to the finite control of
the process. (ii) The data variables in U contain actual data which can be read by other
processes to calculate their own data variables.

All processes run the same protocol P . For a given protocol P , a system consisting
of K processes running P will be denoted by P(K). Thus, the number K of pro-
cesses is the system parameter. We will write P(N) to denote the infinite collection
P(2),P(3), . . . of systems. To be able to refer to the state of individual processes in a
system P(K) we will assume that each process has a distinct and fixed process id from
the range [1..K]. We will usually refer to processes and their variables via their process
id’s. In particular, fa[i] and ub[i] denote the variables fa and ub of the process with id i.
The set of local states of a process i is then naturally given by the different valuations
of the tuple 〈f1[i], . . . , fc[i], u1[i], . . . , ud[i]〉. The global state of system P(K) is given
by a tuple 〈L1, . . . ,LK〉, where each Li is the local state of process i. The initial state
of each process is given by a fixed valuation of the local state variables. Note that all
processes in a system P(K) are identical except for their id′s. Thus, the process id’s
are the only means to break the symmetry between the processes. A process can use the
reserved expression slf to refer to its own process id. When a protocol text contains the
variables fa or ub without explicit reference to a process id, then this stands for fa[slf]
and ub[slf] respectively.

A concrete valuation of the variables in F determines the control state of a process.
Without loss of generality, we can assume for simplicity that F has only one variable pc

which determines the control state of a process. Thus, in the rest of the paper F = {pc},
although in program texts we may take the freedom to use more than one finite range
control variable. A formula of the form pc = const is called a control assignment. The
range of pc is called the set of control locations.

6

Guarded Transitions and Update Transitions. We will describe the transition rela-
tion of the processes in terms of two basic constructs, guarded transitions for the finite
control, and the more complicated update transitions for modifying data variables. A
guarded transition has the form

pc = L1 : if ∀otr 6= slf.G(slf, otr) then goto pc = L2 else goto pc = L3

or shorter

L1 : if ∀otr 6= slf.G(slf, otr) then goto L2 else goto L3

where L1, L2, L3 are control locations. In the guard ∀otr 6= slf.G(slf, otr) the variable
otr ranges over the process id’s of all other processes. The condition G(slf, otr) is any
formula involving the data variables of processes slf, otr and the pc variable of otr. The
semantics of a guarded transition is straightforward: in control location L1, the process
evaluates the guard and changes to control location L2 or L3 accordingly.

Update transitions are needed to describe protocols such as the Bakery algorithm
where a process computes a data value depending on all values which it can read from
other processes. For example, the Bakery algorithm has to compute the maximum of a
certain data variable (the “ticket variable”) in all other processes. Thus, we define an
update transition to have the general form

L1 : for all otr 6= slf if T (slf , otr) then uk := φ(otr)

goto L2

where L1 and L2 are control assignments, and T (slf, otr) is a condition involving data
variables of processes slf, otr. The semantics of the update transition is best understood
in an operational manner: In control location L1, the process scans over all the other
processes (in nondeterministically chosen order), and for each process otr checks if the
formula T (slf, otr) is true. In this case, the process changes the value of its data variable
uk according to uk := φ(otr), where φ(otr) is an expression involving variables of
process otr. Thus, the variable uk can be reassigned multiple times within a transition.
Finally, the process changes to control location L2. We assume that both guarded and
update transitions are atomic, i.e., during their execution no other process makes a
move.

Example 1. As an example of a protocol written in this language, consider a parame-
terized system P(N) where each process P has one finite variable pc : {1, 2, 3} rep-
resenting a program counter, one unbounded/integer variable t : Int, and executes the
following program:

1 : goto 2

2 : if ∀otr 6= slf.t[slf] 6= t[otr] then goto 3

3 : t := t[otr] + 1; goto 1

The statement 1 : goto 2 is syntactic sugar for

pc = 1 : if ∀otr 6= slf.true then goto pc = 2 else goto 1

7

Similarly, 3 : t := t[otr] + 1; goto = 1 is syntactic sugar for

pc = 3 : if ∀otr 6= slf.true then t := t[otr] + 1 goto pc = 1.

This example also illustrates that most commonly occurring transition statements in
protocols can be written in our input language. 2

Note that we have not specified the operations and predicates which are used in the
conditions and assignments. Essentially, this choice depends on the protocols and the
power of the decision procedures used. For the protocols considered in this paper, we
need linear order and equality on data variables as well as incrementation, i.e., addition
by 1. The full version of the paper [10] contains the descriptions of the Bakery algorithm
and Szymanski’s algorithm in terms of our language.

4 Environment Abstraction

In this section, we describe the principal framework of environment abstraction. In Sec-
tion 5 we will discuss how to actually compute abstract models for the class of param-
eterized systems introduced in the previous section. Both tasks are non-trivial, as we
need to construct a finite abstract model which reflects the properties of P(K) for all
K ≥ 1. We shall write P(N) |= Φ to say that P(K) |= Φ for all parameters K > 1.
Given a specification Φ and a system P(N), we will construct an abstract model PA

and an abstract specification ΦA such that PA |= ΦA implies P(N) |= Φ. The converse
does not have to hold, i.e., the abstraction is sound but not complete.

We will first describe how to construct the abstract model. We have already infor-
mally visualized and discussed the abstraction concept using Figure 1. More formally,
our approach is best understood by viewing the abstract state as a description ∆(x) of
the computing environment of a reference process x. Since x is a variable, we can then
meaningfully say that the description ∆(x) holds true or false for a concrete process.
We write g |= ∆(p) to express that in a global state g, ∆(x) holds true for the process
p.

An abstract state (i.e., a description ∆(x)) contains (i) detailed information about
the current internal state of x and (ii) information about the internal states of other
processes and their relationship to x. Since the number of other processes is not fixed,
we can either count the number of processes which are in a given relationship to x, or,
as in the current paper, keep track of the existence of such processes.

Technically, our descriptions reuse the predicates which occur in the control state-
ments of the protocol description. Let S be the number of control locations in the pro-
gram P . The internal state of a process x can be described by a predicate of the form

pc[x] = L

where L ∈ {1..S} is a control location.
In order to describe the relations between the data variables of different processes

we collect all predicates EP1(x, y), . . . , EPr(x, y) which occur in the guards of the
program. From now on we will refer to these predicates as the inter-predicates of the

8

program. Since in most practical protocols, synchronization between processes involves
only one or two data variables, the number of inter-predicates is usually quite small. The
relationship between a process x and a process y is now described by a formula of the
form

Ri(x, y)
.
= ±EP1(x , y) ∧ . . . ∧ ±EPr(x , y)

where ±EPi stands for EPi or its negation ¬EP i. It is easy to see that there are 2r

possible relationshipsR1(x, y), . . . , R2r (x, y) between x and y. In the example of Fig-
ure 1, the two relationship predicates R1, R2 are visualized by full and dashed arrows.

Fact 1 The relationship conditionsR1(x, y), . . . , R2r(x, y) are mutually exclusive.

Before we explain the descriptions ∆(x) in detail, let us first describe the most im-
portant building blocks for the descriptions which we call environment predicates. An
environment predicate expresses that for process x we can find another process y which
has a given relationship to process x and a certain internal state. The environment pred-
icates thus have the form

∃y.y 6= x ∧ Ri(x, y) ∧ pc[y] = j.

An environment predicate says the following: there exists a process y different from x

whose relationship to x is described by the EP predicates in Ri, and whose internal
state is j. There are T := 2r × S different environment predicates; we name them
E1(x), . . . , ET (x), and their quantifier-free matrices E1(x, y), . . . , ET (x, y). Note that
each Ek(x, y) has the form y 6= x ∧ Ri(x, y) ∧ pc[y] = j.

Fact 2 If an environment process y satisfies an environment conditionEi(x, y), then it
cannot simultaneously satisfy any other environment conditionEj(x, y), i 6= j.

Fact 3 Let Ei(x, y) be an environment condition and G(x, y) be a boolean formula
over the inter-predicates EP1(x, y), . . . , EPr(x, y) and predicates of the form pc[y] =
L. Then either Ei(x, y) ⇒ G(x, y) or Ei(x, y) ⇒ ¬G(x, y).

We are ready to return to the descriptions ∆(x). A description ∆(x) has the format

pc[x] = i ∧ ±E1(x) ∧ ±E2(x) ∧ · · · ∧ ±ET (x), where i ∈ [1..S]. (∗)

Intuitively, a description∆(x) therefore gives detailed information on the internal state
of process x, and how the other processes are related to process x. Note the correspon-
dence of ∆(x) to the abstract state in Figure 1: the control location i determines the
color of the central circle, and the Ej determine the processes surrounding the central
one.

We will now represent descriptions ∆(x) by tuples of values, as usual in predicate
abstraction. The possible descriptions (∗) only differ in the value of the program counter
pc[x] and in where they have negations in front of the E predicates. Denoting negation
by 0 and absence of negation by 1, every description ∆(x) can be identified with a
tuple 〈pc, e1, . . . eT 〉 where pc is a control location, and each ei is a boolean variable.
From this point of view, we have two ways to speak about abstract states: as descriptions
∆(x), and as tuples 〈pc, e1, . . . , eT 〉. Thinking of abstract states as descriptions is more
intuitive in the conceptual phase of this work, while the latter approach is more in line
with traditional predicate abstraction, and closer to the algorithms we use.

9

Example 2. Consider again the protocol shown in Example 1. There is only one inter-
predicate EP1(x, y)

.
= t[x] 6= t[y]. Thus we have two possible relationship conditions

R1(x, y)
.
= t[x] = t[y] and R2(x, y)

.
= t[x] 6= t[y]. Consequently, we have 6 different

environment predicates:

E1(x)
.
= ∃y 6= x.pc[y] = 1 ∧ R1(x, y) E4(x)

.
= ∃y 6= x.pc[y] = 1 ∧R2(x, y)

E2(x)
.
= ∃y 6= x.pc[y] = 2 ∧ R1(x, y) E5(x)

.
= ∃y 6= x.pc[y] = 2 ∧R2(x, y)

E3(x)
.
= ∃y 6= x.pc[y] = 3 ∧ R1(x, y) E6(x)

.
= ∃y 6= x.pc[y] = 3 ∧R2(x, y)

The abstract state then is a 7-tuple 〈pc, e1, . . . , e6〉 where pc refers to the internal
state of the reference process x. For each i ∈ [1..6], the bit ei tells whether there is an
environment process y 6= x such that the environment predicate Ei(x) becomes true. 2

Definition 1 (Abstract States). Given a parameterized system P(N) with control lo-
cations {1, .., S} and environment predicates E1(x), . . . , ET (x), the abstract state space
contains tuples 〈pc, e1, . . . eT 〉, where

– pc ∈ {1, .., S} denotes the control location of the reference process.
– each ej is a Boolean variable corresponding to the predicate Ej(x).

Since the concrete system P(K) contains K processes, a state s ∈ P(K) can give
rise to up to K different abstract states, one for every different choice of the reference
process.

Definition 2 (Abstraction Mapping). Let P (K), K > 1, be a concrete system and
p ∈ [1..K] be a process. The abstraction mapping αp induced by p maps a global state
g of P(K) to an abstract state 〈pc, e1, . . . , eT 〉 where

pc = the value of pc[p] in state g and for all ej we have ej = 1 ⇔ g |= Ej(p).

Definition 3 (Abstract Model). The abstract model PA is given by the transition
system (SA, ΘA, ρA) where

– SA = {1, .., S} × {0, 1}T , the set of abstract states, contains all valuations of the
tuple 〈pc, e1, . . . , eT 〉.

– ΘA, the set of initial abstract states, is the set of abstract states ŝ such that there
exists a concrete initial state s of a concrete system P(K), K > 1, such that there
exists a concrete process p with αp(s) = ŝ.

– ρA ⊆ SA × SA is a transition relation on the abstract states defined as follows:
There is a transition from abstract state ŝ1 to abstract state ŝ2 if there exist

(i) a concrete system P(K),K > 1 with a process p
(ii) a concrete transition from concrete state s1 to s2 in P(K)

such that αp(s1) = ŝ1 and αp(s2) = ŝ2.

10

4.1 Specifications

We will now focus on the properties that we want to verify. By a one process control
condition we mean a boolean formula over expressions of the form pc[x] = L,L ∈
{1, .., S}. By a two process control condition we mean a boolean formula over expres-
sions of the form pc[x] = L1, pc[y] = L2, where L1, L2 ∈ {1, .., S}.

Definition 4 (Two-Indexed Safety Properties). A two-indexed safety property is a
specification ∀x , y . AGφ(x , y), where x , y are variables which refer to distinct pro-
cesses, and φ(x , y) is a two process control condition.

Definition 5 (Liveness Properties). A liveness property is a specification of the form
∀x . AG(φ(x) → Fψ(x)), where φ(x) and ψ(x) are one process control conditions.

A standard example of a two-indexed safety property is the mutual exclusion prop-
erty ∀x , y . AG¬(pc[x] = crit ∧ pc[y] = crit), where crit is the control location of
the critical section. An example of a liveness property is the formula ∀x . AG (pc[x] =
try → F pc[x] = crit) which expresses that a process gets to enter the critical section
if it wants to.

We first show how to abstract a formula φ(x , y) without any temporal operators.
The abstraction φA of φ(x , y) is a predicate over the abstract states that is satisfied by
those and only those abstract states ŝ for which there exists a system P(K), K > 1
with a process p, and a global state s of P(K) such that

αp(s) = ŝ and ∀q 6= p. (s |= φ(p, q)).

Intuitively, we treat x as the reference process and y as an environment process and
find which abstract states correspond to the concrete formula φ(x , y). Similarly, for a
single index property φ(x), its abstraction φA is the predicate that is satisfied by those
and only those abstract states ŝ for which there exists a system P(K), K > 1, with a
process p and a global state s of P(K) such that αp(s) = ŝ and s |= φ(p).

Now we can define the abstract specifications: The abstraction of a two-indexed
safety property ∀x , y . AGφ(x , y) is the formula AGφA. The abstraction of a single-
indexed liveness property ∀x . AG (φ(x) → Fψ(x)) is the formula AG (φA → FψA).

Theorem 1 (Soundness of Abstraction). Let P(N) be a parameterized system and
PA be an over-approximation of its abstraction PA. Given any two-indexed safety or
single-indexed liveness property Φ and its abstraction ΦA we have PA |= ΦA implies
P(N) |= Φ.

4.2 Extensions for Fairness and Liveness

The abstract model that we have described, while sound, might be too coarse in practice
to be able to verify liveness properties. The reason is two fold:

(i) Spurious Infinite Paths. Our abstract model may have infinite paths which cannot
occur in any concrete system. This happens when two concrete states s1 and s2,
where s1 transitions to s2, both map to the same abstract state ŝ, leading to a self-
loop involving ŝ. Such a self-loop can lead to a spurious infinite path which hinders
the verification of liveness properties.

11

(ii) Fairness Conditions. Liveness properties are usually expected to hold under some
fairness conditions. A typical example of a fairness condition is that every process
x must leave the critical section a finite time after entering it. This is expressed
formally by the fairness condition pc[x] 6= crit. In this paper we will consider
fairness conditions pc[x] 6= L, where L is a control location. Liveness properties
are then expected to hold on fair paths: an infinite path in a concrete system P(K),
K ≥ 1 is fair only if the fairness condition pc[i] 6= L holds for each process i
infinitely often.

To handle these situations, we adapt a method developed by Pnueli et al. [29] in the
context of counter abstraction to our environment abstraction. To this end, we augment
our abstract model by adding new Boolean variables fromi, toi for every i ∈ [1..T].
Thus our new abstract states are tuples 〈pc, e1, . . . , eT , from1, . . . , fromT , to1, . . . , toT 〉.
We will now briefly describe this extension.

Intuitively, the new from, to variables keep track of the immediate history of an
abstract state, that is, the last step by which the abstract state was reached. The variable
fromi is true if a process y having satisfied Ei(x, y) in the previous state does not
satisfy Ei(x, y) in the new state. Similarly, the variable toi is true if the active process
having satisfied Ej(x, y), j 6= i in the previous state satisfies Ei(x, y) in the new state.
To eliminate the spurious infinite paths arising from loops described in item (i) above,
we add for each i ∈ [1..T] a compassion condition [29] 〈fromi, toi〉 which says If
fromi = true holds infinitely often in a path, then toi = true must hold infinitely
often as well.

Let us now turn to item (ii). Given a concrete fairness condition of the form pc[x] 6=
L, the corresponding abstract fairness condition for the reference process is given by
pc 6= L. Moreover, we introduce fairness conditions ¬(fromi = false ∧ ei = 1) for
all those environments Ei(x, y) which require process y to be in control location L,
i.e., those Ei(x, y) which contain the subformula pc[y] = L. For such an environment
condition Ei, the fairness condition ¬(fromi = false ∧ ei = 1) excludes the case
that there are environment processes satisfying Ei(x, y) which never move. For a more
detailed explanation and proofs please consult the full version.

5 Computing the Abstract Model

In our implementation, we consider protocols in which all inter-predicatesEP i(x, y)
have the form t[x] ≺ t[y] where ≺∈ {<,>,=} and t is a data variable.2 Thus, each lo-
cal process compares its own variables only with their counterparts in other processes.
Most real protocols satisfy this condition. Our results however do not depend on this
particular choice of inter-predicates.

Computing the abstract transition relation is evidently complicated by the fact that
there is an infinite number of concrete systems. To get around this problem, we consider
each concrete transition statement of the program separately and over-approximate the

2 The incrementation operation occurs only on the right hand side of assignments in update
transitions.

12

set of abstract transitions it can lead to. Their union will be our abstract transition rela-
tion.

A concrete transition can either be a guarded transition or an update transition. Each
transition can be executed by the reference process or one of the environment processes.
Thus there are four cases to consider:

Active process is . . . guarded transition update transition
. . . reference process Case 1 Case 2
. . . environment process Case 3 Case 4

In this section we will consider Case 1, that is, the reference process executing the
guarded transition. Computing the abstract transition in other cases is similar in spirit
but quite lengthy. We refer the reader to the full version [10] of this paper for a more
detailed description of how we compute the abstract initial condition and the abstract
transition relation.

Let us now turn to Case 1 in detail, and consider the guarded transition

L1 : if ∀otr 6= slf.G(slf, otr) then goto L2 else goto L3. (∗)

Suppose the reference process is executing this guarded transition statement. If at least
one of the environment processes contradicts the guard G then the reference process
transitions to control location L3, i.e., the else branch. Otherwise, the reference process
goes to L2. We will now formalize the conditions under which the if and else branches
are taken.

Definition 6 (Blocking Set for Reference Process). Let G
.
= ∀otr 6= slf.G(slf , otr)

be a guard. We say that an environment condition Ei(x , y) blocks the guard G if
Ei(x , y) ⇒ ¬G(x , y). The set Bx(G) of all indices i such that Ei(x , y) blocks G is
called the blocking set of the reference process for guard G .

Note that by Fact 3, either Ei(x , y) ⇒ ¬G(x , y) or Ei(x , y) ⇒ G(x , y) for every
environment Ei(x , y). The intuitive idea behind the definition is that Bx(G) contains
the indices of all environment conditions which enforce the else branch. We will now
explain how to represent the guarded transition (∗) in the abstract model: we introduce
an abstract transition from ŝ1 = 〈pc, e1, .., eT , from1, .., fromT , to1, .., toT 〉 to ŝ2 =
〈pc′, e1, .., eT , from′

1
, .., from′

T , to
′
1
, .., to′

T 〉 if

1. pc = L1, i.e., the reference process is in location L1,
2. one of the following two conditions holds:

– If Branch: ∀i ∈ Bx(G). (ei = 0) and pc′ = L2, i.e., the guard is true and the
reference process moves to control state L2.

– Else Branch: ¬∀i ∈ Bx(G). (ei = 0) and pc′ = L3, i.e., the guard is false and
the reference process moves to control state L3.

3. all the variables from′
1
, .., from′

T and to′
1
, .., to′

T are false, expressing that none of
the environment processes changes its state.

Thus, in order to compute the abstract transition we just need to find the blocking
set Bx(G). This task is easy for predicates involving only linear order.

13

Inter-preds Intra-preds Reachable states Safety Liveness
Szymanski 1 8 O(214) 0.1s 1.82s
Bakery 3 5 O(2146) 68.55s 755.0s

Fig. 2. Running Times

6 Experimental Results

We have implemented a prototype of our abstraction method in JAVA. As argued above,
our implementation handles protocols in which all the predicates appearing in the guards
involve only {<,>,=}. Thus, in this preliminary implementation, the decision prob-
lems that arise during the abstraction are simple and are handled by our abstraction
program internally. We verified the safety and liveness properties of Szymanski’s mu-
tual exclusion protocol and Lamport’s bakery algorithm. These two protocols have an
intricate combinatorial structure and have been used widely as benchmarks for param-
eterized verification. For safety properties, we verified that no two processes can be
present in the critical section at the same time. For liveness, we verified the property
that if a process wishes to enter the critical section then it eventually will.

We used the NuSMV model checker to verify the finite abstract model. The model
checking times are shown in Figure 2. The abstraction time is negligible, less than 0.1s.
Figure 2 also shows the number of predicates and the size of the reachable state space
as reported by NuSMV. All experiments were run on a 2.4 GHz Pentium machine with
512 MB main memory.

7 Conclusion

We have enriched predicate abstraction by ideas from counter abstraction to develop a
new framework for verifying parameterized systems. We have applied this method to
verify, under the atomicity assumption, the safety and liveness properties of two well
known mutual exclusion protocols.

The main focus of this paper was the verification of small but very intricate systems.
In these systems, the challenge is to handle the tightly inter-twined execution of an
unbounded number of processes and to maintain predicates which are spanning multiple
processes.

At the heart of our approach lies a notion of abstraction – environment abstraction –
which describes the status of a concurrent system from the point of view of a single pro-
cess. In addition to safety properties, environment abstraction naturally allows to verify
fairness properties as well. The framework presented in this paper is a specific instance
of environment abstraction tailored for distributed mutual exclusion algorithms. The
general approach can be naturally extended in several ways:

– In this paper, the internal state of a process is described by a control location pc =
L. In a more general framework, the state of a process can be described using
additional predicates which relate the different data variables of one process. This
extension is quite straightforward but omitted from the current paper for the sake
of simplicity.

14

– We have also extended the method to deal with systems in which there is a central
process in addition to the K local processes. This extension allows us to handle
directory based cache coherence protocols and will be reported in future work.

– The most important improvement of our results concerns the elimination of the
atomicity assumption as to achieve automated protocol verification in a non-simplified
setting for the first time. We recently have reached this goal by an extension of en-
vironment abstraction. We will report these results in future work.

To conclude, we want to emphasize that viewing a concurrent system from the point
of view of a single process closely matches the reasoning involved in designing a dis-
tributed algorithm. We therefore believe that environment abstraction naturally yields
powerful system abstractions.

Acknowledgments

The authors are grateful to the anonymous referees and Ken McMillan, and Lenore
Zuck for discussions and comments which helped to improve the presentation of this
paper.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model-checking made simple
and efficient. In Proc. 13th International Conference on Concurrency Theory (CONCUR),
2002.

2. K. Apt and D. Kozen. Limits for automatic verification of finite state concurrent systems.
Information Processing Letters, 15:307–309, 1986.

3. T. Arons, A. Pnueli, S. Ruah, and L. Zuck. Parameterized verification with automatically
computed inductive assertions. In Proc. 13th Intl. Conf. Computer Aided Verification (CAV),
2001.

4. T. Ball, S. Chaki, and S. Rajamani. Verification of multi-threaded software libraries. In
ICSE, 2001.

5. K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting WS1S systems to verify
parameterized networks. In Proc. TACAS, 2000.

6. K. Baukus, Y. Lakhnech, and K. Stahl. Verification of parameterized protocols. In Journal
of Universal of Computer Science, 2001.

7. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In 15th Intern. Conf.
on Computer Aided Verification (CAV’03). LNCS, Springer-Verlag, 2003.

8. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In 12th Intern.
Conf. on Computer Aided Verification (CAV’00). LNCS, Springer-Verlag, 2000.

9. M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with many
identical finite state processes. Information and Computation, 81:13–31, 1989.

10. E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized verification.
In www.cs.cmu.edu/∼tmurali/vmcai06.ps.

11. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal model checking. In
Proc. 5th Intl. Conf. Computer Aided Verification (CAV), 1993.

12. G. Delzanno. Automated verification of cache coherence protocols. In Computer Aided
Verification 2000 (CAV 00), 2000.

15

13. A. E. Emerson and V. Kahlon. Model checking guarded protocols. In Eighteenth Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 361–370, 2003.

14. E. A. Emerson, J. Havlicek, and R. Trefler. Virtual symmetry. In 15th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), 2000.

15. E. A. Emerson and A. Sistla. Utilizing symmetry when model-checking under fairness as-
sumptions: An automata theoretic approach. TOPLAS, 4, 1997.

16. E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Proc. 5th Intl. Conf.
Computer Aided Verification (CAV), 1993.

17. E. A. Emerson and R. Trefler. From asymmetry to full symmetry. In CHARME, 1999.
18. Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with incomprehensible ranking. In

Proc. VMCAI, 2004.
19. Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In Conference

on Tools and Algorithms for Construction and Analysis of Systems (TACAS), 2004.
20. S. M. German and A. P. Sistla. Reasoning about systems with many processes. Journal of

the ACM, 39, 1992.
21. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg, editor,

Proc. CAV 97), volume 1254, pages 72–83. Springer Verlag, 1997.
22. T. Henzinger, R. Jhala, and R. Majumdar. Race checking with context inference. In Proceed-

ings of the International Conference on Programming Language Design and Implementation
(PLDI), 2004.

23. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking
with rich assertional languages. In Proc. CAV’97, volume 1254 of LNCS, pages 424–435.
Springer, June 1997.

24. S. K. Lahiri and R. Bryant. Constructing quantified invariants. In Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS), 2004.

25. S. K. Lahiri and R. Bryant. Indexed predicate discovery for unbounded system verification.
In Proc. 16th Intl. Conf. Computer Aided Verification (CAV), 2004.

26. L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Communica-
tions of the ACM, 17(8):453–455, 1974.

27. K. L. McMillan, S. Qadeer, and J. B. Saxe. Induction in compositional model checking. In
Conference on Computer Aided Verfication, pages 312–327, 2000.

28. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants.
In Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS),
2001.

29. A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1,∞) counter abstraction. In Computer
Aided Verification 2002 (CAV 02), 2002.

30. I. Suzuki. Proving properties of a ring of finite state machines. Information Processing
Letters, 28:213–214, 1988.

31. B. K. Szymanski. A simple solution to Lamport’s concurrent programming problem with
linear wait. In Proc International Conference on Supercomputing Systems, 1988.

16

