
9

An Extension of ATL with Strategy Interaction

FARN WANG, Graduate Institute of Electronic Engineering, National Taiwan University; Department of
Electrical Engineering, National Taiwan University; Research Center for Information Technology
Innovation (CITI), Academia Sinica, Taiwan, ROC
SVEN SCHEWE, Department of Computer Sciences, University of Liverpool
CHUNG-HAO HUANG, Graduate Institute of Electronic Engineering, National Taiwan University

We propose an extension to ATL (alternating-time temporal logic), called BSIL (basic strategy-interaction
logic), for specifying collaboration among agents in a multiagent system. We show that BSIL is strictly more
expressive than ATL+ but incomparable with ATL∗, GL (game logic), and AMC (alternating μ-calculus) in
expressiveness. We show that a memoryful strategy is necessary for fulfilling a specification in BSIL. We
establish that the BSIL model-checking problem is PSPACE-complete. However, BSIL model checking can
be performed in time quadratic in the model for fixed formulas. The BSIL (and hence ATL+) satisfiability is
2EXPTIME-complete. Finally, we report our experiment with a model checker for BSIL.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Games, concurrent, turn based, multiagent, strategy, logic, model check-
ing, expressiveness, realizability, satisfiability

ACM Reference Format:
Farn Wang, Sven Schewe, and Chung-Hao Huang. 2015. An extension of ATL with strategy interaction.
ACM Trans. Program. Lang. Syst. 37, 3, Article 9 (June 2015), 41 pages.
DOI: http://dx.doi.org/10.1145/2734117

1. INTRODUCTION

In the new era of web apps and mobile devices, the integrated development environment
for various programming languages may face challenges for specifying and verifying
computer systems that interact intensively with their users and their environment.
The specification and verification of such open systems focus on the design of system
interfaces that allow for the fulfillment of some objectives of the users while enforcing
certain safety policies of the systems. Such open systems can naturally be modeled
as games, and their analysis therefore benefits from game-based techniques. From a
game theoretical perspective, the design problem of such open systems can be modeled
as multiagent games. Some agents represent the system, while other agents represent
the environment and the users of the system. An agent may have several objectives,

This work is supported by grant MOST 103-2221-E-002-150-MY3, Taiwan, ROC; by the Research Center for
Information Technology Innovation, Academia Sinica, Taiwan, ROC; and by the Engineering and Physical
Science Research Council (EPSRC), grant EP/H046623/1, UK.
Authors’ addresses: F. Wang, Department of Electrical Engineering, National Taiwan University, Taipei,
Taiwan 106, ROC; email: farn@ntu.edu.tw; S. Schewe, Department of Computer Sciences, University of
Liverpool, Liverpool, UK; email: Sven.Schewe@liverpool.ac.uk; C.-H. Huang, Graduate Institute of Electronic
Engineering, National Taiwan University, Taipei, Taiwan 106, ROC; email: yyergg@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0164-0925/2015/06-ART9 $15.00

DOI: http://dx.doi.org/10.1145/2734117

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

http://dx.doi.org/10.1145/2734117
http://dx.doi.org/10.1145/2734117

9:2 F. Wang et al.

and these objectives can conflict with the objectives of other agents. On the one hand,
if a user objective is not in conflict with the system’s objectives, then the user should
be allowed to achieve this objective. On the other hand, if a user objective conflicts
with the system’s, then the user objective should be forbidden from fulfillment. For
example, in a banking system, a user is allowed to withdraw money from his or her
bank account, check balances of his or her account, and so forth. The user may also
have other objectives forbidden by the system, such as withdrawing money from the
bank accounts of other customers or checking their balances. A system is then well
designed—reflected by winning in an execution (or play in the jargon of game theory)—
if the user can meet his or her allowed objectives but he or she cannot meet his or
her disallowed objectives. The goal in system design is, from the game theoretical
perspective, to design a computable strategy of the system that enforces all the system
objectives, allows the user to achieve objectives that are consistent with the system
objectives, and prevents the user from achieving objectives that are incompatible with
the system objectives. Such a strategy is called a winning strategy for the system.

At the moment, there are various logics that express such properties of strategic
power of agents, including ATL (alternating-time logic), ATL∗, AMC (alternating μ-
calculus), GL (game logic) [Alur et al. 2002], ATLsc, ATL∗

sc [Costa et al. 2010], and SL
(strategy logics) [Chatterjee et al. 2010; Mogavero et al. 2010], for the specification of
open systems. Each language also comes with a verification algorithm that helps to
decide whether or not a winning strategy for the system exists. There is, however, a
gap between the industrial need for efficient algorithms (and solvers) and the avail-
able technology offered from previous research. In particular, none of those languages
represents a proper combination of expressiveness for close interaction among agent
strategies and efficiency for specification verification. ATL, ATL∗, AMC, and GL [Alur
et al. 2002] allow us to specify that some players together have a strategy to satisfy some
fully temporalized objective: strategy quantifiers mark the start of a state formula. As
exemplified later, this is far from what the industry needs in specification.

Consider the example of a bank that would like to specify its information system
embodied as a system security strategy that allows a client to use a strategy to withdraw
money, to use a strategy to deposit money, and to use a strategy to query for his or her
balance. Moreover, the same system strategy should forbid any illegal operation on
the banking system. Specifically, the same system strategy must accommodate all
strategies of the client that are considered “good behavior” (i.e., behavior in line with
the specification) while blocking all strategies of the client that refer to undesired
behavior, and thus preventing the client from damaging the system. We will show that
ATL, ATL∗, and GL [Alur et al. 2002] do not support such specifications. For example,
it is not possible to specify in those languages that the system strategies used both in a
withdrawal transaction and in a deposit transaction must be the same. Consequently,
verification techniques for specifications in those languages cannot capture such real-
world objectives for open systems.

To solve the expressiveness problem in the previous example, strategy logics have
been proposed in Costa et al. [2010], Chatterjee et al. [2010], and Mogavero et al.
[2010]. These strategy logics allow for the flexible quantification of high-order strategy
variables in logic formulas. However, their verification complexities are prohibitively
high and hinder their practical application. The high complexity is due to the freedom
in the use of these strategies: the strategies in such strategy logics can be combined
in unrestricted ways. For example, in the strategy logic introduced in Mogavero et al.
[2010], we can write down the following property:

〈〈X〉〉[[Y]]〈〈Z〉〉�((((1, X)�p) ∧ ©(2, Y)�q) → (((2, Z)�q) ∧ ¬(3, Z)�q)).

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:3

Here, 〈〈X〉〉 and 〈〈Z〉〉 declare the existence of strategies named X and Z, respectively.
[[Y]] is a universal quantification on a strategy named Y . The operators (1, X), (2, Y),
(2, Z), and (3, Z) bind strategy X, Y, Z, and Z, to Agents 1, 2, 2, and 3, respectively.
It is apparent that this language provides a very high level of freedom in reasoning
over strategies. As frequently witnessed in the history of temporal logic development,
proper restrictions in the modal operations and path quantifiers can lead to a spectrum
of sublogics with different expressiveness and model-checking efficiency. The following
are two examples:

• The validity problem of L (the first-order language of unary predicate symbols and
the binary predicate symbol ≤) is nonelementary [Stockmeyer 1974], while PTL, with
the same expressiveness as L, is only PSPACE-complete [Sistla and Clarke 1985].

• Between CTL [Clarke et al. 1986] and CTL* [Emerson and Halpern 1985, 1986],
there are many subclasses of CTL* with various balances between expressiveness
and verification efficiency. Fair CTL [Emerson and Lei 1987], as a natural class be-
tween CTL and CTL*, is expressive enough for many practical specifications and
still enjoys a polynomial-time model-checking complexity. There are also other sub-
classes of CTL* with various balance considerations [Ben-Ari et al. 1983; Emerson
and Clarke 1980; Emerson and Halpern 1986; Lamport 1980].

Subclasses of temporal logics with proper balance between expressiveness and ver-
ification efficiency have thus proven to be of practical relevance in addition to being
theoretically interesting. Indeed, most specifications in real-world projects have simple
structures, for example, safety, liveness, and so forth. It is therefore interesting to iden-
tify and study “natural” subclasses of strategy logics with a proper balance between
expressiveness and model-checking efficiency. Moreover, it appears to be practical and
appealing if the identified subclass can be characterized with elegant and intuitive syn-
tax. It is the main purpose of this article to propose new natural modal operators for
strategy collaborations and extend ATL for a subclass of strategy logic, which provides
a good balance between expressiveness and efficiency.

In the following, we use the classical prisoners’ dilemma to explain how we can design
new modal operators for structured strategy collaboration to achieve such a balance
between expressiveness and model-checking efficiency.

Example 1.1. Prisoners’ dilemma. Suppose the police are interrogating three
suspects (prisoners). The police have very little evidence. A prisoner may cooperate
(with his or her peers) and deny all charges made by the police. If all deny, they are
all acquitted of all charges. However, each prisoner may choose to betray his or her
peers and provide the police with evidence. If more than one prisoner choose to betray
their peers, all will be sentenced and stay in jail. If only one chooses to betray, then the
other prisoners will stay in jail, while he or she will be a “dirty witness” and all charges
against him or her will be dropped.

We may want to specify that the three prisoners can cooperate with each other (by
denying all charges) and will not be in jail. Let ja be the proposition for Prisoner a in
jail. This can be expressed in Alur et al.’s [2002] ATL∗, GL, or AMC, respectively, as
follows:1

ATL∗ : 〈1, 2, 3〉∧
a∈[1,3] �¬ ja

GL : ∃∃{1, 2, 3}.∧a∈[1,3] ∀�¬ ja
AMC : lfpx.〈1, 2, 3〉 © (x ∨ ∧

a∈[1,3] ¬ ja)

1Note that the three example formulas are not equivalent.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:4 F. Wang et al.

Here, “〈1, 2, 3〉” and “∃∃{1, 2, 3}” are both existential quantifiers on the collaborative
strategy among Prisoners 1, 2, and 3. Such a quantifier is called a strategy quantifier
(SQ) for convenience. Operator “lfp” is the least fix-point operator. Even though we
can specify strategies employed by sets of prisoners and there is a natural relationship
(containment) between sets with such logics, there is no way to relate strategies to
each other. For example, if Prisoners 1 and 2 are really loyal to Prisoner 3, they can
both deny the charges, make sure that Prisoner 3 will not be in jail, and let Prisoner 3
decide whether they will be in jail.

The research of strategies for related properties has a long tradition in game theory.
It is easy to see the similarity and link between the specification problems for the
prisoners’ dilemma and the banking system. This observation suggests that finding a
language with an appropriate and natural balance between the expressive power and
the verification complexity of a specification language is a central challenge.

To meet this challenge, we propose an extension of ATL, called BSIL (basic strategy-
interaction logic). In a first step, we extend ATL to ATL+, where ATL+ is the natural
extension obtained by allowing for Boolean connectives of path quantifiers. (See [Ben-
Ari et al. 1983; Emerson and Clarke 1980] for the similar extension of CTL to CTL+.) We
then introduce a new modal operator called strategy interaction quantifier (SIQ). In the
following, we use several examples in the prisoners’ dilemma to explain BSIL, starting
with the following specification for the property discussed at the end of Example 1.1:

〈1, 2〉((〈+〉�¬ j3) ∧ (〈+3〉�¬(j1 ∨ j2)) ∧ 〈+3〉�(j1 ∧ j2)). (A)

Here, “〈+3〉” is an existential SIQ that reasons over strategies of Prisoner 3 for collab-
orating with the strategies of Prisoners 1 and 2 introduced by the parent SQ “〈1, 2〉”.
Similarly, “〈+〉” means that no collaboration of any prisoner is needed. (For concise-
ness, we omit “〈+〉” in the following.) We also call an SIQ an SQ. In BSIL formulas, we
specifically require that no SIQ can appear as a topmost SQ in a path subformula.

As can be seen, SIQ imposes a hierarchical style of strategy collaboration that seems
natural for practical specification. Consider another example. If Prisoner 1 really hates
the others, he or she can always betray the other prisoners, making sure that Prison-
ers 2 and 3 will be in jail, and let them decide whether he or she will be in jail too. This
property can be expressed in BSIL as follows:

〈1〉((�(j2 ∧ j3)) ∧ (〈+2, 3〉�¬ j1) ∧ 〈+2, 3〉� j1). (B)

For convenience of discussion, we introduce the term strategy profile, which is techni-
cally a partial function from agent indices to strategies. A strategy profile represents
the collaboration among defined agents in the profile to fulfill a specification. Formula
(B) exhibits how BSIL can be useful in specifying the combination and interaction of
strategy profiles for various goals. Specifically, the following three strategy profiles are
used in Formula (B):

• The first, say, �, is defined only on 1 and fulfills �(j2 ∧ j3).
• The second, say, �1, is defined on 1, 2, 3 and fulfills �¬ j1.
• The second, say, �2, is defined on 1, 2, 3 and fulfills � j1.

Moreover, �, �1, and �2 use the same strategy for Agent 1.
One restriction of BSIL is that no negation between an SIQ and its parent SIQ or SQ

is allowed. This restriction then also forbids universal SIQ. While at first glance it seems
less than elegant in mathematics, it is both necessary for verification complexity and
compatible with practical specification styles. When we take a closer look, in fact, there
is an implicit universal SIQ at the end of every maximal syntax path from an SQ to its
descendant SIQ. In fact, BSIL admits one alternation of strategy quantification. Thus,

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:5

we can use BSIL for the specification of the ways to combine system strategy profiles
that can be computed statically to enforce the system policy against any hostile strategy
profile of those agents not participating in the system strategy profiles. If we explicitly
allow for universal SIQs in BSIL, then the strategy profiles associated with existential
SIQs in the scope of a universal SIQ may have to be computed dynamically. Thus, the
explicit universal SIQs will not only necessarily blow up the verification complexity
but also contradict the mainstream of game theory for statically calculable strategies.
In contrast, some strategy logics [Mogavero et al. 2010] allow for the specification of
strategy profiles that are not statically calculable.

In this work, we establish that BSIL is incomparable with ATL∗, GL, and AMC in
expressiveness. Although the strategy logics [Chatterjee et al. 2010; Costa et al. 2010;
Mogavero et al. 2010] are superclasses to BSIL with their flexible quantification of
strategies and binding to strategy variables, their model checking2 complexities are all
2EXPTIME-hard. In contrast, BSIL enjoys a PSPACE-complete model-checking com-
plexity for turn-based and concurrent game graphs. This may imply that BSIL provides
a better balance between expressiveness and verification efficiency than ATL∗, GL,
AMC [Alur et al. 2002], and SL [Chatterjee et al. 2010; Mogavero et al. 2010]. Further
related work is the stochastic game logic (SGL) by Baier et al. [2007], which allows for
expressing strategy interaction. However, for memoryful strategies, the model-checking
problem of SGL is undecidable.

We also establish some additional properties of BSIL. We show that the strategies
for BSIL properties against turn-based games need to be memoryful. We prove that
the BSIL model-checking problem is PSPACE-complete. However, the PSPACE model-
checking algorithm needs to enumerate the labelings on computation trees and may
suffer from high time complexity. We thus also present an alternative model-checking
algorithm with time complexity quadratic in the size of a game graph and exponential
only in the size of a BSIL specification. We also establish that the BSIL realizability
problem is complete for doubly exponential time.

The article is organized as follows. Section 2 discusses related work. Section 3 uses
the banking system as a running example. Section 4 explains concurrent and turn-
based game graphs for the description of multiagent systems. Section 5 presents BSIL
and ATL+ and establishes the need for memoryful strategies. Section 6 discusses the
expressiveness of BSIL. Section 7 establishes the PSPACE-completeness of the model-
checking problem for BSIL. In Section 8, we present the alternative model-checking
algorithm based on weak alternating automata construction. Section 9 discusses the
complexity of the BSIL realizability problem. Section 10 reports our implementation
and experiments. Section 11 is the conclusion.

2. RELATED WORK

2.1. Prior to Strategy Logics

Kupferman et al. [2001] proposed module checking, a famous framework for checking
whether open systems satisfy temporal logic properties. In this framework, the open
system interacts with its environment. For LTL, an open system satisfies a property
if there is no execution of the system that violates the specification. The two views of
(1) unraveling the system to the tree of its executions and checking if it contains an
infinite path that violates the specification and (2) checking if the environment has a
strategy to inflict a violation seem to be interchangeable. For branching time logics,
however, this is different in model checking.

2A model-checking problem is to check whether a given model (game graphs in this work) satisfies a logic
formula (in ATL and its extensions in this work).

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:6 F. Wang et al.

Checking if the unraveling of the system satisfies a specification is the traditional
target of model checking. In a nutshell, the critique raised in Kupferman et al. [2001]
is that checking that this tree is a model does not guarantee that it works in every
environment. It is argued that, for this, every subtree (without dead ends) of this
tree should satisfy the specification, as an environment may not be able to display
all the actions allowed for by the model. Testing whether a module comes with such
strong guarantees is referred to as module checking. Module checking can thus be seen
as bringing environment strategies to model-checking branching time logics, as the
question of whether or not there is a pruned tree that is not a model of φ relates to
the question of whether or not there is a pruning strategy for the environment that
produces a tree that is not a model of φ.

For branching time logics, the existence of such a nondeterministic environment
strategy is a solvability problem, and the construction of a witness strategy is a syn-
thesis problem. It is therefore not surprising that the usual exponential blow-up is
incurred. The related synthesis problems in module checking is whether there is an
open system that provides these strong guarantees. They are referred to as synthesis in
reactive environments [Kupferman et al. 2000; Schewe and Finkbeiner 2007] since the
underlying concept is the same as those in the newer game logics from the ATL family.
That is, for path properties like LTL specifications, we are still interested at calculat-
ing a strategy for the system so that, for all counter strategies of the environment, the
path properties are maintained. In contrast, the pruning strategy for branching time
logics play a different role in that they shape the tree. For branching time logics, we
could view this as a two-player game, where the strategy of the “environment player”
to shape the tree is a strategy that ranges over the other strategy quantifiers (in the
form of existential and universal path quantifiers).

Alur et al. [2002] presented ATL (alternating-time temporal logic), ATL∗, AMC
(alternating-time μ-calculus), and GL (game logic) with strategy quantifier 〈〈M〉〉.

Brihaye et al. [2009] introduced a very expressive extension to ATL∗ with other
players’ strategies and memory constraints. They also showed that the model-checking
problem of this extension is decidable.

Pinchinat [2007] introduced a way to specify expressive constraints on strategies in
concurrent games by extending μ-calculus with decision modalities. Laroussinie and
Markey [2013] reported decidability of satisfiability problems in this direction with
new context constraints (e.g., the number of moves by agents is bound).

2.2. With Strategy Logics

Chatterjee et al. [2010] introduced a strategy logic allowing for first-order quantifica-
tion over strategies. The decision procedure is, however, nonelementary.

Mogavero et al. also identified fragments of strategy logics that enjoy a doubly expo-
nential time complexity model-checking algorithm [Mogavero et al. 2010, 2012, 2013].
For example, in Mogavero et al. [2013], conjunction and disjunction cannot happen in
the same scope of strategy quantification. BSIL is also a fragment of strategy logic
with restriction on the hierarchy of SIQs and sometimes can be handy in expressing
the Boolean relation among strategies. Moreover, the restriction on BSIL results in a
much lower model-checking complexity of PSPACE.

Another interesting extension of ATL are the logics ATLsc and ATL∗
sc, introduced by

Costa et al. [2010], which interprets nested strategy quantification as a composition—
rather than a revocation—of strategy profiles. This is similar to the semantics of our
SIQs, and BSIL is indeed a sublogic of ATL∗

sc. The difference in the design of these
logics is the goal. The increased freedom in binding and freeing strategies in ATLsc
leads to a nonelementary model-checking procedure [Costa et al. 2010].

The flexibility in nesting strategy quantification also leads to equal expressiveness
of ATLsc and ATL∗

sc [Costa et al. 2010], whereas BSIL cannot express ATL∗. Naturally,

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:7

this freedom in ATLsc comes at a cost, namely, in the form of the high complexity of
the decision problems of these logics. In contrast, BSIL has been designed with expres-
siveness and complexity in mind, in particular by restricting the use of negations and
by allowing for binding, but not for revoking the binding of strategies by SIQs. These
restrictions keep the model-checking complexity at bay (PSPACE) while maintaining
the capability to express relevant properties.

BSIL and the various fragments of strategy logics all can express certain interaction
and collaboration relations among strategies used by agents in a multiagent game.
They are designed with different considerations in balancing between expressiveness
and verification efficiency. BSIL is also special in that its design takes the natural way
that strategy collaboration can be specified into consideration.

3. RUNNING EXAMPLE

We use the banking example described in the introduction to explain the idea of this
work. Suppose that a bank wants to provide the following services:

• Depositing to an account by a client from the root screen
• Transferring money from an account in the bank to an account in another bank, also

from the root screen

As we can see, the deposit service involves the interaction between a client and the
bank, while the transfer service involves at least three parties: a client, the bank,
and a partner bank. Also, in the meantime, the bank wants to forbid any client and
partner from checking sensitive information of other clients, for example, checking the
password of another client.

3.1. Trying to Write Down a Correct Formal Specification

To develop the services, the bank manager in charge of the project needs to specify the
services and make sure that the specification is not erroneous. If he or she turns to
the literature, the bank manager may choose ATL or its extensions, such as fair ATL,
ATL*, AMC, or GL, to specify the services. The choice is plausible at first glance since
ATL and fair ATL both have a polynomial-time model-checking algorithm and could
support the verification of the services. So the manager could attempt to specify the
services with the following formula:

〈1〉
(

�¬checkOthersPassword
∧ 〈2〉�depositDone
∧ 〈2, 3〉�transferDone

)
. (C)

Here, we use the agent with index/name 1 for the bank, 2 for the client, and 3 for the
partner bank. But on second glance, we can see that this specification is too permissive.
The subformula 〈2〉�depositDone says that the client can force a deposit transaction no
matter how the banking system responds. In practice, there are many factors beyond
the control of the client for the success of a transaction. For example, when the banking
system is in maintenance or out of order, the transaction may fail.

After realizing the problem with Formula (C), the manager may decide to rewrite
the specification as follows:

〈1〉�¬checkOthersPassword
∧ 〈1, 2〉�depositDone
∧ 〈1, 2, 3〉�transferDone

. (D)

This specification repairs the issue observed in Formula (C) since now
〈1, 2〉�depositDone says with the collaboration of the banking system, the client can
finish a deposit transaction. However, there is a subtle issue that nullifies the formula.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:8 F. Wang et al.

In the collaboration between the banking system and the client for property
〈1, 2〉�depositDone, the banking system is no longer required to maintain prop-
erty �¬checkOthersPassword since, according to the semantics of ATL, the speci-
fication does not require the banking system to use the same strategy to en-
force both 〈1〉�¬checkOthersPassword and 〈1, 2〉�depositDone. The same issue also
appears in 〈1, 2, 3〉�transferDone. That is, the banking system’s strategy in en-
forcing 〈1, 2, 3〉�transferDone is not required to be the same one as in enforcing
〈1〉�¬checkOthersPassword . Thus, the service system would be allowed to leak the client’s
passwords when transferring funds.

3.2. Resorting to General Strategy Logics for a Correct Specification

When the manager discovers after several trials that the specification cannot be ex-
pressed in ATL, ATL*, GL, and AMC [Alur et al. 2002], he or she may turn to strategy
logics [Chatterjee et al. 2010; Mogavero et al. 2010] from the literature. Using these
logics, he or she can express the property as follows:

〈x〉〈y〉〈z〉〈w〉[v][u][t]

((1, x)(2, v)(3, u)�¬checkOthersPassword
∧ (1, x)(2, y)(3, t)�depositDone
∧ (1, x)(2, z)(3, w)�transferDone

)
. (E)

This formula declares four existentially quantified strategies, x, y, z, and w, and three
universally quantified strategies, v, u, and t, and says the following:

• On using strategy x, the banking system can enforce �¬checkOthersPassword .
• On using strategy x and y, respectively, the banking system and a client can finish

the deposit transaction.
• On using strategy x, z, and w, respectively, the banking system, the client, and a

partner bank can also finish a fund-transfer transaction.

However, when the manager is pleased with this elegant specification, he or she may
want to use it to verify that the specification is met by the system after development or
delivery. In this case, he or she would find that there is no tractable algorithm and no
working tools for checking general specifications in strategy logics or synthesizing the
strategies. In fact, the complexity reported in the literature is at best doubly exponential
[Chatterjee et al. 2010; Mogavero et al. 2010]. So the manager finds him- or herself in
the dilemma between expressiveness and verification efficiency.

A further theoretical problem that has been discussed in the literature is that strat-
egy logics offer a reasoning power that may encode unexpected behavior. Let us consider
the following example:

〈x〉〈y〉[z]〈w〉[v][u][t]

((1, x)(2, v)(3, u)�¬checkOthersPassword
∧ (1, x)(2, v)(3, t)�(2, y)�depositDone
∧ (1, x)(2, u)(3, t)�(2, z)(3, w)�transferDone

)
. (F)

Here, [z], [v], [u], and [t] universally quantify strategies named z, v, u, and t, respec-
tively. As observed by Mogavero et al. [2014], these strategies include nonbehavioral
strategies: a choice of an agent, at a given point of a play, may depend on choices other
agents can make in the future or in counterfactual plays. As the latter moves are un-
predictable, such strategies cannot easily be implemented, making the use of the logic
problematic in practice. Indeed, the huge verification complexity of strategy logics can
be attributed to such freestyle binding operations of strategy names to agents. Thus,
the manager could wish for a subclass of strategy logics that allows for elegant ex-
pressions of natural and practical specifications while supporting verification with less
complexity. Similar examples can, in fact, appear in different projects with services
that rely on the collaboration of multiple agents.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:9

Fig. 1. Game graph of a banking system.

3.3. BSIL: New Strategy Modalities Expressive Enough for the Specification

In fact, in conceivable applications, the developers cannot implement and are not inter-
ested in clairvoyant strategies. In other words, for practical specifications, it is likely
that existential SIQs are expressive enough. In BSIL, Formula (E) can be rewritten as
follows:

〈1〉
(

�¬checkOthersPassword
∧ 〈+2〉�depositDone
∧ 〈+2, 3〉�transferDone

)
. (G)

This formula says that the banking system has a strategy in which at any instant,
the system can ensure that no password is leaked, the system allows a client to finish
a deposit transaction, and the system allows a client to transfer funds from or to a
partner bank.

3.4. Symbolic Strategy Names and Path Obligations

But to verify such a BSIL property, we need new techniques to check that, along plays,
the same decision is made for the same strategy. Consider the model of the banking sys-
tem in Figure 1. We need to find strategies of the agents to fulfill �¬checkOthersPassword ,
�depositDone, and �transferDone. To explain our verification algorithms, we use symbolic
strategy names x, y, z, w and the binding notations in Formula (G). In fact, Formula (G)
is exactly the same as Formula (E). Thus, by interpreting all symbolic strategy names
as existentially quantified, Formula (G) can be rewritten as follows:

((1, x)�¬checkOthersPassword)
∧ ((1, x)(2, y)�depositDone)
∧ ((1, x)(2, z)(3, w)�transferDone).

(H)

Note that, since we only allow explicit existential strategy quantification, the number
of strategy bindings are exactly determined by the number and sizes of the SQs and
SIQs in the formula.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:10 F. Wang et al.

Fig. 2. Part of the computation tree of the banking system.

If we label (1, x)�¬checkOthersPassword , (1, x)(2, y)�depositDone, and
(1, x)(2, z)(3, w)�transferDone on nodes of a computation tree in a labeling proce-
dure, the symbolic names precisely reflect the constraints on the decisions along plays.
For example, suppose that both (1, x)�¬checkOthersPassword and (1, x)(2, y)�depositDone
are labeled on a state of location dep. This state has three successor states: for conve-
nience C1 of location idle via [fail, commit,⊥], C2 of location idle via [succ, cancel,⊥],
and C3 of location depDone via [succ, commit,⊥]. If strategy x chooses action succ,
then obligation (1, x)�¬checkOthersPassword will be passed down to C2 and C3. In this
situation, whether obligation (1, x)(2, y)�depositDone is labeled on C2 or C3 relies
on the action decision of strategy y. But the constraint on the strategy decision
is that if (1, x)(2, y)�depositDone is labeled on C2, then (1, x)�¬checkOthersPassword
must also be labeled on C2, and if (1, x)(2, y)�depositDone is labeled on C3, then
(1, x)�¬checkOthersPassword must also be labeled on C3. The reason is that the path
obligations are enforced by the same strategy of the bank.

3.5. Passing Down the Path Obligations While Observing the Restrictions Among S-Profiles

The previous observation points out how to judge whether a passing-down scheme of
path obligations from a parent state to its child states is consistent with the strategy
quantification. For example, suppose that we have the following characteristics of the
strategy profile (1, x)(2, y)(2, z)(3, w):

• Strategy x of the banking system never issues action fail.
• Strategies y and z never cancel transactions for a client.
• Strategy w never shows a busy message for the partner bank.

Then, the verification problem of strategy interaction can be visualized as finding
strategies x, y, z, and w that select paths in a computation tree to satisfy three path
obligations: �¬checkOthersPassword , �depositDone, and �transferDone. Figure 2 shows
part of a computation tree when strategy x for the banking system is fixed with the
following restriction:

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:11

• At location idle, depDone, and xferDone, always issue action ⊥.
• At location dep and xferCfm, only issue action succ.

The leaves of the tree all end at location idle, where the same tree structure is repli-
cated. We can start synthesizing the strategies y, z, and w in the context of this strategy
x, which, for convenience of explanation, is memoryless (or positional).

As we have suggested, we can label the path obligations on the nodes of the compu-
tation tree and examine whether a strategy profile can fulfill all the path obligations.
In the literature, we can name the nodes by their branching paths. For example, the
root is named ε, which is the empty string. Then, the node at location xferDone is
named “100” and the rightmost idle node is named “12.” We begin by label node ε with
the three path obligations: (1, x)�¬checkOthersPassword , (1, x)(2, y)�depositDone, and
(1, x)(2, z)(3, w)�transferDone. Then we can pass the path obligations to the children in
the following way:

• We must pass (1, x)�¬checkOthersPassword to both child “0” and “1” of the root since
the two children are both selected by action ⊥ of the banking system.

• We can pass (1, x)(2, y)�depositDone and (1, x)(2, z)(3, w)�transferDone, respectively,
to child “0” and “1” of the root since the two children are selected with the same
strategy x of the banking system and different strategies (y and z) of the client.

Note that we can check whether the passing down of the path obligation is consistent
with the strategy quantifications in the input Formula (G) just by checking the labeling
of path obligations with strategy name bindings since all consistency information is
maintained there.

Similarly, from node “0,” strategy x and y can together choose to pass (1, x)(2, y)
�depositDone to node “00,” while strategy x must unilaterally pass (1, x)�¬
checkOthersPassword to both “00” and “01.” Then, at node “00,” (1, x)(2, y)�depositDone
is fulfilled eventually and no longer needs be passed down. The passing down of path
obligations from node “1” and fulfillment of (1, x)(2, z)(3, w)�transferDone can then be
shown similarly.

3.6. Finding Finite Satisfying Evidence for a Formula in a Computation Tree

As we can see, the existence of the tree top in Figure 2 is sufficient for synthesizing
strategy profile (1, x)(2, y)(2, z)(3, w) to satisfy Formula (G). From this example, it is
easy to see the requirement for such a tree top. First, all eventual-formulas (or until-
formulas) from the root SQ to the next level of SQs have to be fulfilled by the strategy
profile. Second, the leaves of the tree top do not contain any eventual-formula (or until-
formula) labels. Thus, our PSPACE algorithm for model checking BSIL formulas is
actually a nondeterministic one that guesses and checks the consistency of the tree top
and strategic actions at the nodes in the tree top.

Then, the final question regarding our algorithms is the terminating condition for
searching the tree tops and strategy profiles. Let us consider a tree node labeled with
path obligations and how to (nondeterministically) explore for a tree top and a strategy
profile. Note that the path obligations labeled on a child will be no more than those
of its parent. In fact, the path obligations can stop being passed down in a path when
they are fulfilled. Path obligations are simply passed down and not generated along
the paths. As a result, along a path longer than the size of the game graph, either the
number of path obligations decreases or two nodes, say, v and v′ (for convenience, we
assume v is an ancestor of v′), with identical location and labels, must appear. If the
tree top is evidence of the existence of a strategy profile and the latter happens, then
we can replace the subtree rooted at v with the one rooted at v′ and the resulting tree
top is still evidence. This observation implies that we can focus on tree tops such that
along any path, there is no duplication of nodes with the same location and the same

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:12 F. Wang et al.

Fig. 3. A concurrent game graph.

path obligation labels. This implies that we only have to explore tree tops of depth no
greater than the size of the game graph times the number of temporal modalities in
the given BSIL formula.

4. GAME GRAPHS

4.1. Concurrent Games

A concurrent game is played by many agents that make their moves concurrently. Such
a game can be formalized with the following definition.

Definition 4.1. A concurrent game graph (CGG) is a tuple A = 〈m, Q, r, P, λ, R,�, δ〉
with the following restrictions:

• m is the number of agents in the game.
• Q is a finite set of states.
• r ∈ Q is the initial state of A.
• P is a finite set of atomic propositions.
• Function λ : Q �→ 2P labels each state in Q with a set of atomic propositions.
• R ⊆ Q× Q is the set of transitions.
• � is a set of tokens that can be issued by the agents during transitions.
• δ : (R × [1, m]) �→ � is a function that specifies the token (move symbol) issued by

each agent in a transition.

During a transition, each agent selects a token. If there is no transition matching all
the tokens selected by the agents, then there is no transition. Otherwise, the matching
transition takes place.

In Figure 3, we have the graphical representation of a concurrent game graph. The
ovals represent states, while the arcs represent state transitions. We also put down
the λ values inside the corresponding states. On each edge, we label the tokens issued
by the agents. Specifically, the label on arrow (q, q′) is [δ((q, q′), 1), . . . , δ((q, q′), m)]. For
example, in Figure 3, on edge (v, u), we have label [a, b], which means that to make the
transition, Agent 1 has to choose token a while Agent 2 has to choose b.

For convenience, in the remainder of the article, we assume that we are always in
the context of a given game graph G = 〈m, Q, r, P, λ, R,�, δ〉. Thus, when we write
Q, r, P, λ, R,�, and δ, we respectively refer to the corresponding components of this
game graph G.

A state predicate of P is a Boolean combination of elements in P. The satisfaction of
a state predicate η at a state q, in symbols q |= η, is defined in the standard way.

A play is an infinite path in a game graph. A play is initial if it begins with the initial
state. Given a play ρ = q̄0q̄1 . . . , for every k ≥ 0, we let ρ(k) = q̄k. Also, given h ≤ k, we
let ρ[h, k] denote ρ(h) . . . ρ(k) and ρ[h,∞) denote the infinite tail of ρ from ρ(h). A play
prefix is a finite segment of a play from the beginning of the play. Given a play prefix
ρ = q̄0q̄1 . . . q̄n, we use |ρ| = n + 1 for the length of ρ. For convenience, we use last(ρ) to
denote the last state in ρ, that is, ρ(|ρ| − 1).

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:13

Fig. 4. A turn-based game graph.

Let Q∗ be the set of finite sequences of states in Q. For an agent a ∈ [1, m], a strategy
σ for a is a function from Q∗ to �. An agency Aof [1, m] is an integer subset of [1, m]. For
example, “{1, 3, 4}” represents the agency that consists of Agents 1, 3, and 4. A strategy
profile (or S-profile) � of an agency A ⊆ [1, m] is a partial function from [1, m] to the
set of strategies such that, for every a ∈ [1, m], a ∈ A if and only if �(a) is defined.
The composition of two S-profiles �,�, in symbols � ◦ � is defined with the following
restrictions for every a ∈ [1, m]:

• If �(a) is defined, then � ◦ �(a) = �(a).
• If �(a) is defined and �(a) is undefined, then � ◦ �(a) = �(a).
• If �(a) and �(a) are both undefined, then � ◦ �(a) is also undefined.

We will use the composition of S-profiles to model inheritance of strategy bindings from
ancestor formulas.

A play ρ is compatible with a strategy σ of an agent a ∈ [1, m] if and only if for every
k ∈ [0,∞), δ((ρ(k), ρ(k + 1)), a) = σ (ρ[0, k]). The play is compatible with an S-profile �
of Agency A if and only if for every a ∈ A, the play is compatible with �(a) of Agent a.

4.2. Turn-Based Games

Another popular game structure is the turn-based game, in which at each state, at
most one agent gets to decide the next state. For example, in Figure 4, we have the
graphical representation of a turn-based game graph with initial state v. The ovals
and squares represent states, respectively, of Agent 1 and Agent 2. The arcs represent
state transitions.

In fact, turn-based games are special cases of concurrent games, as every turn-based
game can be represented as a concurrent game. Specifically, a turn-based game graph
(TBG) G = 〈m, Q, r, P, λ, R,�, δ〉 can be viewed as a concurrent game, which is defined
as follows:

• � = Q∪ {⊥}, where ⊥ denotes a dummy move not in Q.
• For every (q, q′) ∈ R, if q belongs to Agent a, then δ((q, q′), a) = q′, and for every

a′ �= a, δ((q, q′), a′) =⊥.
• For every (q1, q2), (q1, q3) ∈ R, and Agent a, δ((q1, q2), a) = ⊥ if and only if

δ((q1, q3), a) =⊥. This restriction says that every state can be owned by only one
agent.

For convenience, for a turn-based game, the owner of a state q, ω(q) in symbols is
defined as Agent a with ∀(q, q′) ∈ E(δ((q, q′), a) = q′. For ease of notation, we denote
with Qa = {q ∈ Q | ω(q) = a} the states owned by an Agent a.

Turn-based game graphs are often easier to handle than concurrent games. For this
reason, we will often use turn-based game graphs in examples and explanation of the
theory in order to ease the presentation.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:14 F. Wang et al.

5. BASIC STRATEGY INTERACTION LOGIC (BSIL)

5.1. BSIL Syntax

For concurrent game graph G of magents, we have three types of formulas: state formu-
las, tree formulas, and path formulas. State formulas describe properties of states. Tree
formulas describe interaction of strategies. Path formulas describe properties of plays.
BSIL formulas are constructed with the following three syntax rules, respectively, for
state formulas φ, tree formulas τ , and path formulas θ :

φ ::= p | ¬φ1 | φ1 ∨ φ2 | 〈A〉τ | 〈A〉θ
τ ::= τ1 ∨ τ2 | τ1 ∧ τ2 | 〈+A〉τ1 | 〈+A〉θ
θ ::= ¬θ1 | θ1 ∨ θ2 | © φ1 | φ1Uφ2.

Here, p is an atomic proposition in P and A is an agency of [1, m]. 〈A〉 is a strategy
quantifier and 〈+A〉 is a strategy interaction quantifier. 〈A〉ψ means that there exists an
S-profile for the Agency A that makes all plays satisfy ψ . Formulas of the form 〈+B〉ψ1
must happen within an SQ. Intuitively, they mean that there exists an S-profile of B
that collaborates with the strategies declared with ancestor formulas to make ψ1 true.
For convenience, we view SQs as special cases of SIQs. Also, for conciseness, we omit
null SIQs 〈+〉.

State formulas φ are called BSIL formulas. From now on, we assume that we are
always in the context of a given BSIL formula χ . Note that we strictly require that
strategy interaction cannot cross path modal operators. This restriction is important
and allows us to analyze the interaction of strategies locally in a state and then enforce
the interaction along all paths from this state.

For convenience, we also use the common shorthands:

true ≡ p ∨ (¬p) false ≡ ¬true ψ1 ⇒ ψ2 ≡ (¬ψ1) ∨ ψ2

�φ1 ≡ true Uφ1 �φ1 ≡ ¬�¬φ1.

The SQs and SIQs introduced earlier are all existential in that they are satisfied with
one S-profile. Note that there is no universal SQs and SIQs in BSIL. This is purely
for the complexity of the model-checking algorithm (and problem) that we are going
to present later. Thus, BSIL can be used to specify the different ways of combining
S-profiles to enforce system policy.

For ease of notation, we may abbreviate 〈{a1, . . . , an}〉 and 〈+{a1, . . . , an}〉 as 〈a1, . . . , an〉
and 〈+a1, . . . , an〉, respectively.

5.2. BSIL Semantics

BSIL subformulas are interpreted with respect to S-profiles. A state or a tree formula
φ is satisfied at a state q with S-profile �, denoted G, q |=� φ, if and only if the following
inductive constraints are satisfied:

• G, q |=� p if and only if p ∈ λ(q).
• For state formula φ1, G, q |=� ¬φ1 if and only if G, q |=� φ1 is false.
• For state or tree formulas ψ1 and ψ2, G, q |=� ψ1 ∧ ψ2 if and only if G, q |=� ψ1 and

G, q |=� ψ2.
• For state or tree formulas ψ1 and ψ2, G, q |=� ψ1 ∨ ψ2 if and only if either G, q |=� ψ1

or G, q |=� ψ2.
• G, q |=� 〈A〉τ if and only if there exists an S-profile � of A with G, q |=� τ .
• G, q |=� 〈+A〉τ if and only if there exists an S-profile � of A with G, q |=�◦� τ . Here,

the composition � ◦ � of the S-profiles � and � models the inheritance of strategy
bindings, �, from ancestor formulas.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:15

Fig. 5. A simple turn-based game that demands memoryful strategies.

• G, q |=� 〈A〉θ if and only if there exists an S-profile � of A such that, for all plays ρ
from q compatible with �, ρ |=� θ holds. Intuitively, this means that ρ satisfies path
formula θ with S-profile �.

• G, q |=� 〈+A〉θ if and only if there exists an S-profile � of A such that, for all plays ρ
from q compatible with � ◦ �, ρ |=�◦� θ holds.

A play ρ satisfies a path formula θ with S-profile �, in symbols ρ |=� θ , if and only if
the following restrictions hold:

• For a path formula θ1, ρ |=� ¬θ1 if and only if it is not the case that ρ |=� θ1.
• For path formulas θ1 and θ2, ρ |=� θ1 ∨ θ2 if and only if either ρ |=� θ1 or ρ |=� θ2.
• ρ |=� ©ψ1 if and only if G, ρ[1,∞) |=� ψ1.
• ρ |=� ψ1Uψ2 if and only if there exists an h ≥ 0 with G, ρ[h,∞) |=� ψ2 and for all

j ∈ [0, h), G, ρ[j,∞) |=� ψ1.

For convenience, we let ⊥ be a null S-profile, that is, a function that is undefined on
everything. If φ1 is a BSIL (state) formula and G, q |=⊥ φ1, then we may simply write
G, q |= φ1. If G, r |= φ1, then we also write G |= φ1.

5.3. ATL+

ATL+ is the syntactic fragment of BSIL given by the following grammar:

φ ::= p | ¬φ1 | φ1 ∨ φ2 | 〈A〉θ
θ ::= ¬θ1 | θ1 ∨ θ2 | © φ1 | φ1Uφ2.

ATL+ can also be viewed as an extension of ATL [Alur et al. 2002] that, similar to
the extension of CTL to CTL+ [Ben-Ari et al. 1983; Emerson and Halpern 1986], allows
for the Boolean combination of path formulas. All complexities of ATL+ must reside
between those of BSIL and ATL as well as between those of BSIL and CTL+, which we
will use to establish the lower bounds for ATL+ and BSIL.

5.4. Memory

In this subsection, we show a simple example, in which the agents need memory to
achieve their objective for ATL+ specifications. This is exemplified by the simplest pos-
sible case: the turn-based game in Figure 5 with one agent, two states, one atomic
proposition, and two memoryless strategies that do not count the unreached states in
the histories. For the ATL+ sentence 〈1〉((¬© p)∧�p), apparently Agent 1 needs mem-
ory to enforce it. In fact, we can propose another semantics of ATL+ (and thus BSIL)
that only allows memoryless strategies in all strategy profiles. The earlier example can
be used to establish the following lemma.

LEMMA 5.1. The semantics of ATL+ (and thus BSIL) with memoryless strategies is
not equivalent to the original semantics. This even holds for the single-agent case.

6. EXPRESSIVE POWER OF BSIL

In this section, we establish that BSIL is incomparable with ATL∗, AMC, and GL
[Alur et al. 2002] in expressiveness. In fact, we will first establish the incomparability
between BSIL with GL and AMC. Then, the incomparability with BSIL follows since
GL and AMC are superclasses of ATL∗ [Alur et al. 2002].

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:16 F. Wang et al.

Fig. 6. Base cases for the expressiveness of BSIL over ATL∗.

6.1. Comparison with GL

GL separates strategy quantifications from path quantifications. In comparison, ATL∗
and BSIL combine these two quantifications into SQs and SIQs. Thus, with GL, we
can specify that, for all S-profiles of A, there exists a play satisfying ψ1. The (exis-
tential) strategy quantification for Agency A of GL is of the form ∃∃A.ψ1. The path
quantifications are just ordinary CTL modalities: ∀�,∀U, ∃�, and ∃U.

The following two lemmas show the relation between GL and BSIL. Lemma 6.1 uses
two inductive families of game graphs to show that GL is not as expressive as BSIL.
The base cases, G1 and H1, are in Figure 6 for three agents. The inductive cases Gk+1
and Hk+1 are respectively constructed out of Gk and Hk as in Figure 7.

LEMMA 6.1. Every GL formula φ with k (k > 0) SQs cannot distinguish Gk and Hk,
while 〈1〉((〈+2〉�p) ∧ 〈+2〉�q) can.

PROOF. It is clear that 〈1〉((〈+2〉�p) ∧ (〈+2〉�q)) can distinguish Gk and Hk no matter
the value of k. The proof continues by an induction on k and the number of SQs in φ.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:17

Fig. 7. Inductive cases for the expressiveness of BSIL over ATL∗.

Base case: Assume that φ has only one modal operator. Then there are the following
case analyses of GL formulas.

• Case 1: φ is ∃∃A.φ1, where φ1 is a Boolean combination of formulas of the form ∃ψ or
∀ψ, where ψ is a path formula. Note that φ1 characterizes a set of states that either
start a play satisfying ψ or start only plays satisfying ψ . The following case analysis
shows that, for every trace subset S and every agency A, there exists a strategy
of A to characterize S in Figure 6(a) if and only if there exists a strategy for A to
characterize S in Figure 6(b).
—Case 1a: φ is ∃∃∅.φ1. In this case, there is no strategy and the sets of traces

imposed by no strategy in the two state graphs are both {�p,�q}. Thus, ∃∃∅.φ1
cannot distinguish the trace sets of the two state graphs.

—Case 1b: φ is ∃∃{1}.φ1. From Figure 6, no matter what strategies Agency {1} may
choose, the trace sets for the two game graphs are both {�p,�q}. Thus, ∃∃{1}.φ1
cannot distinguish the trace sets of the two state graphs.

—Case 1c: φ is ∃∃{2}.φ1. This case is similar to Case 1b.
—Case 1d: φ is ∃∃{3}.φ1. This case is similar to Case 1b.
—Case 1e: φ is ∃∃{1, 2}.φ1. Agency {1, 2} can cooperate to force three trace sets,

{�p}, {�q}, {�p,�q}, in both of the game graphs in Figure 6. Thus, ∃∃{1, 2}.φ1 cannot
distinguish the trace sets of the two state graphs.

—Case 1f: φ is ∃∃{1, 3}.φ1. This case is similar to Case 1e.
—Case 1g: φ is ∃∃{2, 3}.φ1. This case is similar to Case 1e.
—Case 1h: φ is ∃∃{1, 2, 3}.φ1. Agency {1, 2, 3} can cooperate to force three trace sets,

{�p}, {�q}, {�p,�q}, in both of the game graphs in Figure 6. Thus, ∃∃{1, 2, 3}.φ1
cannot distinguish the trace sets of the two state graphs.

• Case 2: φ is a Boolean combination of formulas in Case 1. Since Case 1 does not
distinguish the two game graphs, this case cannot do it either.

Thus, the base case is proven.
Induction step: If φ has k modal operators, to tell the difference between Gk and
Hk, we need a modal subformula of φ that can tell the difference between Gk−1 and

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:18 F. Wang et al.

Hk−1. But according to the inductive hypothesis, this is impossible. Thus, the lemma is
proven.

THEOREM 6.2. GL formula ∃∃{1}.((∃�p) ∧ ∃�q) is not equivalent to any BSIL formula.

PROOF. The proof basically follows the same argument in Alur et al. [2002] that
∃∃{1}.((∃�p) ∧ ∃�q) is not equivalent to any ATL∗ formula.

Lemma 6.1 and Theorem 6.2 together show that GL and BSIL are not comparable
in expressiveness.

6.2. Comparison with AMC

AMC is an extension from μ-calculus and allows for multiple fixpoints interleaved
together [Alur et al. 2002]. An AMC formula contains fixpoint operators on state set
variables. The only modality of AMC is of the form 〈A〉©ψ and least fixpoint lfpx.ψ1(x),
where ψ1(x) is a Boolean function of atomic propositions and state set variables (in-
cluding x). It is required that every occurrence of x in ψ1 is under an even number of
negations. The duality of the least fixpoint operator is the greatest fixpoint operator
gfp. Formula gfpx.ψ1 is defined as ¬lfpx.¬ψ1(x).

To establish that AMC is not as expressive as BSIL, we basically follow the proof
style for Lemma 6.8 and use the same two families of game graphs. The statement
of the lemma requires notations for state set variables and other details in AMC. We
need to define the domain of values for the free state set variables in AMC formulas.
Let X be the set of state set variables. Without loss of generality, we assume that no
two subformulas of the form lfpx.φ in a given AMC formula share the same quantified
name of x. Given a subformula lfpxi.φ with free variables x1, . . . , xn in φ and no modal
operator 〈. . .〉© in φ, we define φ as a base template for xi. Then we can define the base
formula domain of xi, denoted F0(xi), as the smallest set with the following restrictions.
We let φ[x1 �→ η1, . . . , xn �→ ηn] be the AMC formula identical to φ, except that every
occurrence of xi in φ is respectively replaced with ηi:

• For each xi ∈ X with base template φ, φ[x1 �→ false, . . . , xn �→ false] ∈ F0(xi).
• For each xi ∈ X with base template φ and φ1 ∈ F0(x1), . . . , φn ∈ F0(xn), φ[x1 �→

φ1, . . . , xn �→ φn] ∈ F0(xi).

Note that there is neither variables nor “lfp” operators in F0(x) for every x. Thus, we
can define the characterization κ of a formula φ1 in F0(x) for G, in symbols κ(G, φ1), as
follows:

• For each atomic proposition p ∈ P, κ(G, p) = {q | p ∈ λ(q)}.
• For each φ ∈ F0(x), κ(G,¬φ) = Q− κ(G, φ).
• For each φ1, φ2 ∈ F0(x), κ(G, φ1 ∨ φ2) = κ(G, φ1) ∪ κ(G, φ2).

A valuation ν of variables in X for G is a mapping from X such that, for each x ∈ X,
there exists a base domain formula φ of x such that ν(x) = κ(G, φ).

The expressiveness comparison between AMC and BSIL relies on the following
lemma.

LEMMA 6.3. For every AMC formula φ without modal operator of the form 〈. . .〉©,
state set variable x, and a formula φ1 in F0(x), r0 ∈ κ(G0, φ1) if and only if s0 ∈ κ(H0, φ1)
in Figure 6.

PROOF. We can prove this with a structural induction on φ1. The base case is straight-
forward. The inductive step follows since Boolean combinations of subformulas that
cannot distinguish G0 and H0 cannot distinguish the two game graphs.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:19

Now we want to classify AMC formulas according to the nesting depths of operators of
the form 〈. . .〉© in a formula. Specifically, we let AMC(k) be the set of AMC formulas with
exactly nesting depth k of operator 〈. . .〉©. For example, lfpx.〈1〉 © (p → lfpy.〈2〉(x ∨
y∧©q)) is in AMC(2). Then, AMC(0) is the smallest set with the following restrictions:

• Case 1a: For each atomic proposition p ∈ P, p ∈ AMC(0).
• Case 1b: For each proposition variable x ∈ X, x ∈ AMC(0).
• Case 1c: For each φ ∈ AMC(0), ¬φ ∈ AMC(0).
• Case 1d: For each φ1, φ2 ∈ AMC(0), φ1 ∨ φ2 ∈ AMC(0).
• Case 1e: For each φ ∈ AMC(0) and proposition variable x ∈ X, lfpx.φ ∈ AMC(0).

Then AMC(k), k > 0, is the smallest set with the following restrictions.

• Case 2a: For each A ⊆ [1, m] and φ ∈ AMC(k−1), 〈A〉 © φ ∈ AMC(k),
• Case 2b: For each φ ∈ AMC(k), ¬φ ∈ AMC(k).
• Case 2c: For each φ1 ∈ AMC(k) and φ2 ∈ ⋃

h≤k AMC(h), φ1 ∨ φ2 ∈ AMC(k).
• Case 2d: For each φ1 ∈ ⋃

h≤k AMC(h) and φ2 ∈ AMC(k), φ1 ∨ φ2 ∈ AMC(k).
• Case 2e: For each φ ∈ AMC(k) and proposition variable x ∈ X, lfpx.φ ∈ AMC(k).

Note that there could be free variables in the formulas classified previously. The evalu-
ation of such formulas for a game graph depends on the valuation of the free variables.

Given two game graphs G, H and an AMC formula φ, we say that two valuations
of ν and ν ′, respectively, of G and H are consistent if for every x ∈ X, there exists a
φ1 ∈ F0(x) such that ν(x) = κ(G, φ1) and ν ′(x) = κ(H, φ1). In the following, we adopt the
AMC semantic notations in Alur et al. [2002]. Given a game graph G, an AMC formula
φ, and a valuation ν of state set variables in X, (φ)G(ν) denotes the set of states of G
that satisfy φ with valuation ν.

LEMMA 6.4. Assume that Gk and Hk are defined in Figures 6 and 7. For every k, AMC
formula φ ∈ AMC(k), and two consistent valuations ν and ν ′, respectively, of Gk and Hk,
rk ∈ (φ)Gk(ν) if and only if sk ∈ (φ)Hk(ν ′).

PROOF. We use an induction on k to prove the lemma.
Base case: When φ is in Cases 1a through 1d, the lemma follows straightforwardly. In
Case 1e, (lfpx.ψ)G1 (ν) can be expanded as follows. We let

• ψG1,ν,(0) be (ψ[x �→ false])G1 (ν) and
• for each h > 0, ψG1,ν,(h) be (φ[x �→ ψ

G1,(h−1)
1])(ν).

Then, (lfpx.φ)G1 (ν) = ⋃
h≥0 ψG1,ν,(h) according to the semantics of AMC. Similarly,

(lfpx.φ)H1 (ν ′) = ⋃
h≥0 ψ H1,ν ′,(h). According to the same argument for Cases 1a through

1d, for each h ≥ 0, r0 ∈ ψG1,ν,(h) if and only if s0 ∈ ψ H1,ν ′,(h). Thus, it is clear that
r0 ∈ (lfpx.φ)G1 (ν) if and only if s0 ∈ (lfpx.φ)H1 (ν ′). Thus, the lemma is proven in this case.
Induction step: To tell the difference between Gk and Hk, we need a formula with the
following structure:

• At least one nesting of operators like 〈. . .〉© in a least fixpoint operation to infer the
reachability of Gk−1 and Hk−1.

• A modal subformula nested inside a 〈. . .〉© modal operator of φ that can tell the
difference of Gk−1 and Hk−1. But according to the inductive hypothesis, this is
impossible.

Thus, the lemma is proven.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:20 F. Wang et al.

Then, with Lemma 6.4, we conclude the proof for Lemma 6.5 in the following.

LEMMA 6.5. For every AMC formula φ, there are two game graphs that φ cannot
distinguish while 〈1〉((〈+2〉�p) ∧ 〈+2〉�q) can.

PROOF. In the proof for Lemma 6.4, it is apparent that φ with φ ∈ AMC(k) cannot tell
Gk and Hk.

By the same argument in Alur et al. [2002], for the one-agent game, BSIL coincides
with CTL and is not as expressive as AMC.

THEOREM 6.6. For game graphs of one agent, AMC is strictly more expressive than
BSIL.

PROOF. For one-agent games, AMC is equivalent to μ-calculus and BSIL is equivalent
to CTL, which is strictly less expressive than μ-calculus.

A comment on Lemmas 6.1 and 6.5 is that the path modal formulas in the lemmas
can be changed independently to �¬p and �¬q without affecting the validity of the
lemma. This can be used to show that the example properties in the introduction are
indeed inexpressible in ATL∗, GL, and AMC.

6.3. Comparison with ATL∗

It is easy to see that BSIL is a superclass of ATL. Thus, we have the following lemma.

LEMMA 6.7. BSIL is at least as expressive as ATL.

Then, Lemmas 6.1 and 6.5 lead to the fact that there are some BSIL properties that
ATL∗ cannot express since GL and AMC are both superclasses of ATL∗ [Alur et al.
2002].

LEMMA 6.8. For every ATL∗ formula φ, there are two game graphs that φ cannot
distinguish while 〈1〉((〈+2〉�p) ∧ 〈+2〉�q) can.

Lemmas 6.7 and 6.8 together establish that ATL is strictly less expressive than BSIL.
Then, the following lemma shows the reverse direction.

THEOREM 6.9. ATL∗ formula 〈1〉��p is not equivalent to any BSIL formula.

PROOF. The proof is similar to the proof for the inexpressibility of 〈1〉��p with ATL
[Alur et al. 2002].

Lemmas 6.8 and 6.9 together establish that ATL∗ and BSIL are not comparable in
expressiveness.

7. BSIL AND ATL+ MODEL CHECKING ARE PSPACE-COMPLETE

The model-checking problem of BSIL is contained in PSPACE mainly due to the re-
striction that disallows negation in tree formulas. As in the model-checking algorithms
of ATL [Alur et al. 2002], we can evaluate the proper state subformulas independently
and then treat them as auxiliary propositions. Moreover, as in the evaluation of �-
formulas in ATL model checking, if a �-formula can be enforced with an S-profile, it
can be enforced in a finite number of steps along every play compatible with the strat-
egy in a computation tree. Once a bound b for this finite number of steps is determined,
we can enumerate all strategies embedded in the computation tree up to depth b and
try to find one that enforces a BSIL formula.

As explained in Section 3, our algorithm also labels subformulas and their symbolic
S-profiles on the nodes in a computation tree. The formula is satisfied if and only if
we can find a finite tree top with labels consistent with the SQs and SIQs in the input

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:21

formula and can be extended to an infinite computation tree. In Section 7.1, we derive
the labels (i.e., subformulas and their symbolic S-profiles) that are sufficient for our
model-checking algorithm and present two procedures:

• localEval(), which checks whether the satisfaction of formulas at a state can be
decided locally, and

• sucSet(), which nondeterministically chooses a scheme to pass down the subformulas
and their symbolic S-profiles to the child nodes without violating the restrictions on
the S-profiles declared with the SQs and SIQs.

There are, however, severe differences between exploring a computation tree for
BSIL and exploring one for ATL [Alur et al. 2002]. For BSIL, we have to take the in-
teraction of strategies into account. For example, we may have to enforce a subformula
〈1〉((〈+2〉�p) ∧〈+2〉(�q ∨�r)). Then, when exploring the computation tree, we may fol-
low two strategies of Agent 2, one to enforce �p and the other to enforce �q or �r. There
are the following situations for the interaction between these two strategies. The two
strategies may make the same decision all the way until we reach a tree node v. (For
turn-based games, v has to be owned by Agent 2.) This can be conceptualized as passing
the obligations of �p and �q ∨ �r along the path from the root to v. Then, at node v,
the two strategies may differ in their decisions and pass down the two obligations to
different branches.

Then, in Section 7.2, we present our algorithm in two parts, one for model check-
ing BSIL state formulas and the other for model checking BSIL tree formulas. In
Section 7.3, we prove the correctness of the algorithm. In Section 7.4, we show that our
algorithm is in PSPACE. Together with Lemma 7.8 in Section 7.5, we then establish
the PSPACE-completeness of the BSIL and ATL+ model-checking problems.

7.1. Computing Path Obligations and Passing Them Down the Computation Tree

We use {a1 �→ s1, . . . , an �→ sn} to denote a partial function that maps ai to si for each
i ∈ [1, n]. Given a partial function f , we denote the domain of f by def (f). Inheriting
the notations in Mogavero et al. [2010], we may also represent the the mapping as
(a1, s1)(a2, s2) . . . (an, sn).

We need some special techniques in checking tree formulas. We adopt the concept of
strategy variables from Chatterjee et al. [2010] and Mogavero et al. [2010]. A strategy
variable binding (SV binding for short) is a partial function from [1, m] to strategy
variables. Given an SV binding �, � ◦ (a1, s1) . . . (an, sn) is the SV binding that is identical
to � except that Agent ai is bound to si for every i ∈ [1, n].

Suppose that we are given SV bindings �1, . . . , �n and S-profiles �1, . . . , �n. We say
that �1, . . . , �n matches �1, . . . , �n if and only if for every a ∈ [1, m] and i, j ∈ [1, n]
with a ∈ def (�i) ∩ def (� j), �i(a) = � j(a) if and only if �i(a) = � j(a).

Given an SV binding � and a state, tree, or path formula ψ , �ψ is called a bound
formula. �ψ is a bound path obligation (BP constraint) if ψ is a Boolean combination
of path formulas. A Boolean combination of BP obligations is called a Boolean bound
formula (BB formula). The strategy variables in BB formulas are only used to tell
whether or not two path properties are to be enforced with the same strategy. For
example, the property 〈1〉((〈+2〉�p) ∧ 〈+2〉(�q ∨ �r)) can be rewritten as BB formula
((1, s1)(2, s2)�p) ∧ (1, s1)(2, s3)�q ∨ �r, which says that Agent 1 must use the same
strategy to fulfill both �p and �q ∨ �r, while Agent 2 may use different strategies to
fulfill these two path properties.

Suppose we are given a function π that maps symbolic strategy names to strategies.
Similar to the semantics of strategy logics [Mogavero et al. 2010] with strategy vari-
ables, we can also define the satisfaction of BB formulas �ψ at a state q with π , in
symbols G, q |=π �ψ , as follows:

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:22 F. Wang et al.

Table I. Rewriting Rules for BB Formulas

bf(�¬¬φ) ≡ bf(�φ)
bf(�(τ1 ∨ τ2)) ≡ bf(�τ1) ∨ bf(�τ2)
bf(�(τ1 ∧ τ2)) ≡ bf(�τ1) ∧ bf(�τ2)
bf(�〈a1, . . . , an〉ψ) ≡ bf({a1 �→ newVar(), . . . , an �→ newVar()}ψ)
bf(�〈+a1, . . . , an〉ψ) ≡ bf(� ◦ {a1 �→ newVar(), . . . , an �→ newVar()}ψ)
bf(� © φ1) ≡ � © bf(∅φ1)
bf(�¬ © φ1) ≡ � © bf(∅¬φ1)
bf(�φ1Uφ2) ≡ �bf(∅φ1)Ubf(∅φ2)
bf(�¬φ1Uφ2) ≡ �((bf(∅φ1)Ubf(¬∅(φ1 ∨ φ2))) ∨ �bf(∅¬φ2))
bf(�p) ≡ p ; bf(�¬p) ≡ ¬p
bf(�true) ≡ true ; bf(�¬true) ≡ false
bf(�false) ≡ false ; bf(�¬false) ≡ true

φ1, φ2: state or path formulas.τ1, τ2: tree formulas.ψ1, ψ2: tree or path formulas.

• G, q |=π �1ψ1 ∨ �2ψ2 if and only if G, q |=π �1φ1 or G, q |=π �2φ2 holds.
• G, q |=π �1φ1 ∧ �2φ2 if and only if both G, q |=π �1φ1 and G, q |=π �2φ2 hold.
• Given an SV binding � and a path formula ψ1 with an S-profile � = {a �→ π (�(a)) |

a ∈ def(�)}, G, q |=π �ψ1 if and only if for all plays ρ compatible with � from q,
ρ |=� ψ1 holds.

In Table I, we present equivalence rules to rewrite state, tree, and path formulas to BB
formulas using the procedure bf(). For convenience, we use a procedure newVar() that
returns a strategy variable that has not been used before. In general, the semantics of
BSIL deals with the satisfaction of a set of subformulas bound to different S-profiles.
The following two lemmas relate the rules in Table I with the semantics of BSIL
formulas.

LEMMA 7.1. Suppose we are given a state q, a BSIL subformula ψ , and an S-profile
� such that G, q |=� ψ . There exist an SV binding � and a function π such that
G, q |=π bf(�ψ).

PROOF. We construct � and π as follows. Without loss of generality, we assume ψ is
unique in the input formula. For every a ∈ def(�), we let �(a) = sψ

a and π (sψ
a) = �(a).

It is clear that the functional composition of � and π is actually �. Then, according to
the semantics of G, q |=π bf(�ψ) presented earlier, G, q |=π bf(�ψ) since for all play ρ
compatible with � from q, ρ |=� ψ . Thus, the lemma is proven.

LEMMA 7.2. Suppose we are given a state q, a BSIL subformula ψ , an SV binding �,
and a function π such that G, q |=π bf(�ψ). Then there exists an S-profile � such that
G, q |=� ψ .

PROOF. We can construct � by defining, for all a ∈ def (�), �(a) = π (�(a)). Thus,
� is the functional composition of � and π . Then, according to the semantics of
G, q |=π bf(�ψ) presented earlier, G, q |=π bf(�ψ) implies G, q |=� ψ . Thus, the lemma
is proven.

To ease the presentation of our algorithms, we also assume that there is a procedure
that rewrites a BB formula to an equivalent BB formula in disjunctive normal form.
Specifically, a disjunctive normal BB formula (DNBB formula) is the disjunction of
conjunctions of BP obligations. The rewriting of a BB formula φ to a DNBB formula
can be done by repeatedly applying the distribution law of conjunctions of disjunctions
until a DNBB formula is obtained.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:23

Example 7.3. DNBB formula rewriting: We have the following rewriting process
for a BSIL formula for five agents:

bf(∅〈1, 2〉(〈+3〉(�p ∨ �q) ∧ 〈+3〉(〈+2〉�r ∨ 〈+4〉�q)))
≡ bf((1, s1)(2, s2)(〈+3〉(�p ∨ �q) ∧ 〈+3〉(〈+2〉�r ∨ 〈+4〉�q)))
≡ bf((1, s1)(2, s2)〈+3〉(�p ∨ �q)) ∧ bf((1, s1)(2, s2)〈+3〉(〈+2〉�r ∨ 〈+4〉�q))
≡ bf((1, s1)(2, s2)(3, s3)(�p ∨ �q)) ∧ bf((1, s1)(2, s2)(3, s4)(〈+2〉�r ∨ 〈+4〉�q))
≡ (1, s1)(2, s2)(3, s3)(�p ∨ �q)

∧ ((1, s1)(2, s5)(3, s4)�r ∨ (1, s1)(2, s2)(3, s4)(4, s6)�q)
≡ ((1, s1)(2, s2)(3, s3)(�p ∨ �q) ∧ (1, s1)(2, s5)(3, s4)�r)

∨ ((1, s1)(2, s2)(3, s3)(�p ∨ �q) ∧ (1, s1)(2, s2)(3, s4)(4, s6)�q)

This DNBB formula sheds some light on the analysis of BSIL formulas. As can be seen,
the formula is satisfied if and only if one of the two outermost disjuncts is satisfied.
Without loss of generality, we examine the first disjunct:

η1 ≡ (1, s1)(2, s2)(3, s3)(�p ∨ �q) ∧ (1, s1)(2, s5)(3, s4)�r.

There are the following two S-profiles involved in the satisfaction of the formula:

• �1 for (1, s1)(2, s2)(3, s3) of {1, 2, 3} used to satisfy �p ∨ �q, and
• �2 for (1, s1)(2, s5)(3, s4) of {1, 2, 3} used to satisfy �r.

This disjunct imposes the restrictions that �1 and �2 must agree in their moves by
Agent 1. (Or for turn-based games, they must agree in their choices at nodes owned by
Agent 1.) Similarly, we can examine

η2 ≡ (1, s1)(2, s2)(3, s3)(�p ∨ �q) ∧ (1, s1)(2, s2)(3, s4)(4, s6)�q.

There is a new S-profile introduced:

• �3 for (1, s1)(2, s2)(3, s4)(4, s6) of {1, 2, 3, 4} used to satisfy �q.

This disjunct imposes the restrictions that �1 and �3 must agree in their moves
by Agents 1 and 2. In the following, we use the observation in this example to con-
struct structures from DNBB formulas for the model checking of conjunctive DNBB
formulas.

For ease of notation, we represent a conjunctive DNBB formula η as a set of BP
obligations in our algorithms. Our goal is to design a computation tree exploration
procedure that, given a set C of BP obligations, labels each node in the tree with a
subset of C for the set of path formulas that some S-profiles have to enforce without
violating the restrictions of strategy interaction imposed in C through the strategy
variables. In the design of the procedure, one central component is how to label the
children of a node with appropriate sets of BP obligations as inherited path obligations
from C. We need two basic procedures for this purpose. The first is to evaluate the truth
values of path literals in BP obligations with a proposition interpretation when possible.
Specifically, when we can deduce the truth values of U-formulas and �-formulas from
the truth values of propositions (or state subformulas) at a state, the procedure changes
the respective U-formula and �-formula to their respective truth values. The procedure
is as follows:

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:24 F. Wang et al.

localEval(W, θ) // λ() has been extended with satisfied state subformulas at each
state.

1: switch (θ)
2: case true or false: return θ
3: case p: if p ∈ W then return true else return false end if
4: case ¬p: if p ∈ W then return false else return true end if
5: case θ1 ∨ θ2:
6: Let θ1 be localEval(W, θ1) and θ2 be localEval(W, θ2).
7: if θ1 is true or θ2 is true then return true.
8: else if θ1 is false then return θ2. else if θ2 is false then return θ1. else return

θ1 ∨ θ2.
9: end if

10: case θ1 ∧ θ2:
11: Let θ1 be localEval(W, θ1) and θ2 be localEval(W, θ2).
12: if θ1 is false or θ2 is false then return false.
13: else if θ1 is true then return θ2. else if θ2 is true then return θ1. else return

θ1 ∧ θ2.
14: end if
15: case ©φ1: return θ
16: case �φ1: if φ1 �∈ W then return false else return θ end if
17: case φ1Uφ2:
18: if φ2 ∈ W then return true else if φ1 �∈ P then return false else return θ

end if
19: end switch

Statement 18 checks if �θ is fulfilled. When it is fulfilled, θ is changed to true. State-
ments 18 and 16 also check if �θ is violated. When a violation happens, θ is changed
to false.

Then we need a procedure, next(), that calculates the BP obligations passed down
from a previous state. This is simply done by replacing every ©φ by φ in the BP
obligations. For example, next(©φ) = φ, next(�φ) = �φ, next(φ1Uφ2) = φ1Uφ2, and
next(�φ) = �φ.

With the two basic procedures defined earlier, we now present a procedure that
nondeterministically calculates sets of BP obligations passed down to the successor
states. This is accomplished with the procedure sucSet(q, C) in the following. Given
a node q in the computation tree and a set C, the procedure nondeterministically
returns an assignment of BP obligations to children of q to enforce the BP obligations
in C without violating the strategy interaction of BP obligations.

sucSet(q, C) // λ() has been extended with satisfied state subformulas at each
state.

1: Convert C to{�localEval(λ(q), θ) | �θ ∈ C}.
2: if �false ∈ C then return ∅ end if
3: Let S be the set of all symbolic strategy variables in C. That is, S = {s | a �→ s ∈

�,�θ ∈ C}.
4: Nondeterministically pick an αs ∈ � for each s ∈ S.
5: Let K be {(q′,∅) | (q, q′) ∈ R}.
6: for each �θ ∈ C do
7: If for all (q, q′), there is an a ∈ def(�) with δ((q, q′), a) �= α�(a) then return ∅

end if

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:25

8: for (q′, C ′) ∈ � with ∀a ∈ def(�)(δ((q, q′), a) = α�(a)) do
9: Replace (q′, C ′) with (q′, C ′ ∪ {�next(θ)}) in K.

10: end for
11: end for
12: return K.

The nondeterministic choices at statement 4 make sure that one symbolic strategy
variable is mapped to exactly one move. The loop at statement 6 iterates through
all the path obligations at the current node and passes them down to the children
if necessary. The if statement at line 7 checks whether all obligations can be passed
down to some children. If some obligations are not passed due to mismatch between
moves of the strategies and the labels on the transitions, then we return with failure.
Otherwise, statement 8 passes the obligations to all children with matching transition
labels. The obligations to children are recorded in K, which is returned with success at
statement 12.

7.2. Procedures for Checking BSIL Properties

The procedure in the following checks a BSIL state property φ at a state q of A:

checkBSIL(q, φ)
1: if φ is p then if φ ∈ λ(q) then return true. else return false. end if
2: else if φ is φ1 ∨ φ2 then return checkBSIL(q, φ1) ∨ checkBSIL(q, φ2)
3: else if φ is ¬φ1 then return ¬checkBSIL(q, φ1)
4: else if φ is 〈A〉τ for a tree or path formula τ then return checkTree(q, 〈A〉τ)
5: end if

The procedure is straightforward and works inductively on the structure of the input
formula. For convenience, we need procedure checkSetOfBSIL(Q′, φ1) in the following
that checks a BSIL property φ1 at each state in Q′:

checkSetOfBSIL(Q′, φ1)
1: if φ1 �∈ P ∪ {true, false} then
2: for each q′ ∈ Q′ do
3: if checkBSIL(q′, φ1) then Let λ(q′) be (λ(q′) ∪ {φ1}) − {¬φ1}.
4: else Let λ(q′) be (λ(q′) − {φ1}) ∪ {¬φ1}. end if
5: end for
6: end if

Then, we use procedure checkTree(q, 〈A〉τ) in the following to check if a state q satisfies
〈A〉τ :

checkTree(q, 〈A〉τ)
1: Rewrite bf(∅〈A〉τ) to DNBB-formula η1 ∨ · · · ∨ ηn.
2: for i ∈ [1, n] do
3: Represent ηi as a set C of BP-obligations.
4: for each �θ in C. do
5: if θ is ©φ1 then checkSetOfBSIL({q′ | (q, q′) ∈ R}, φ1).
6: else if θ is φ1Uφ2 then checkSetOfBSIL(Q, φ1); checkSetOfBSIL(Q, φ2); end if
7: end for
8: if recTree(q, C) then return true. end if
9: end for

10: return false.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:26 F. Wang et al.

We first rewrite 〈A〉τ to its DNBB formula at statement 1 by calling bf(∅〈A〉τ) and
using the distribution law of conjunctions over disjunctions. (In practice, to contain
the complexity in PSPACE, we only need to enumerate the disjuncts of the DNBB
formula in PSPACE.) We then iteratively check with the loop starting from statement
2 if 〈A〉τ is satisfied due to one of its conjunctive DNBB formula components of 〈A〉τ . At
statement 3, we construct the set C of BP obligations of the component. We evaluate
the subformulas with the inner loop starting at statement 4. Finally, at statement 8,
we explore the computation tree, with procedure recTree(q, C) in the following, and
pass down the path obligations to the children according to the restrictions of the SV
binding in C:

recTree(q, C)
1: if (q, C) coincides with an ancestor in the exploration then
2: if there is no �φ1Uφ2 in C then return true; else return false. end if
3: end if
4: if sucSet(q, C) is empty then return false end if
5: for each (q′, C ′) ∈ sucSet(q, C) with C ′ �= ∅ do
6: if recTree(q′, C ′) is false then return false. end if
7: end for
8: return true.

Note that procedure recTree(q, C) is nondeterministic since it employs sucSet(q, C) to
nondeterministically calculate an assignment of path obligations to the children of q.

7.3. Correctness Proof of the Algorithm

In order to prove the correctness of this algorithm, we define obligation distribution
trees (OD trees) in the following. An OD tree for a set C of BP obligations and a game
graph G from a state q0 ∈ Q is a labeled computation tree 〈V, r̄, α, E, β〉 with the
following restrictions:

• V is the set of nodes in the tree.
• r̄ ∈ V is the root of the tree.
• α : V �→ Q labels each tree node with a state. Also, α(r̄) = q0.
• E ⊆ V × V is the set of arcs of the tree such that, for each (q, q′) ∈ R, there exists an

(v, v′) ∈ E with α(v) = q and α(v′) = q′.
• β : V �→ 2C labels each node with a subset of C for path formulas in χ that need to

be fulfilled at a node. Moreover, we have the following restrictions on β:
—C = β(r).
—For every v ∈ V and every (q′, C ′) ∈ sucSet(α(v), β(v)), there exists a (v, v′) ∈ E

with α(v′) = q′ and β(v′) = C ′.

The OD tree is fulfilled if and only if for every path v0v1 . . . vk . . . along the tree from the
root, there exists an h ≥ 0 such that, for every j ≥ h, there is neither � © φ1 ∈ β(v j)
nor �φ1Uφ2 ∈ β(v j). We have the following connection between an OD tree and an
execution of procedure recTree(q, C) from the root of an OD tree.

LEMMA 7.4. For a set C of BP obligations, recTree(q, C) returns true if and only if
there exists a fulfilled OD tree for C and G from q.

PROOF. In order to prove the lemma, we show both directions.
(⇒) : It is straightforward to see that recTree(q, C) returns true only if a finite tree
has been constructed with leaves duplicating their ancestors. According to statement
2 of recTree(q, C), it is clear that along the path from that ancestor to a leaf, no node is
labeled with a BP obligation of the form � © φ1 or �φ1Uφ2 by β. Thus, we can extend

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:27

the leaves by duplicating the subtree rooted at their duplicating ancestors. In this way,
we can extend the finite tree to a fulfilled OD tree.
(⇐) : Suppose there exists a fulfilled OD tree for C and G from q. Since all infinite
paths from the root stabilize to suffixes without index labels by β for until-formulas (as
the tree is finitely branching, it would otherwise contain an infinite path with standing
untility by Köngs lemma), we can repeatedly replace every subtree T with a subtree
T ′ of T such that the roots of T and T ′ have the same α and β labels. We can repeat
this replacement until no node labeled with either a next-formula or an until-formula
has the same α and β labels as one of its descendants. The existence of such an OD
tree after the replacements implies that recTree(q, C) eventually explores such a tree,
finds the termination condition at all leaves, and returns true.

LEMMA 7.5. Given a conjunctive DNBB formula η represented as a set C of BP
obligations, there exists a function π on strategy variables in η with G, q |=π η if and
only if there exists a fulfilled OD tree for G and C from q.

PROOF. The lemma can also be proven in two directions. In the forward direction,
we can use π to construct S-profiles to enforce η. The S-profiles can then be used to
construct a fulfilled OD tree for G and C from q.

In the backward direction, we can follow the paths and obligations that are passed
down in the OD tree and construct S-profiles that enforce η. Then, from these S-profiles,
due to the one-to-one correspondence between the strategy variables and the strategies
in the S-profiles, we can define a π with G, q |=π η.

The correctness of procedure recTree(q, C) then directly follows from Lemmas 7.4
and 7.5. Then, the correctness of procedure checkBSIL(q, φ) follows by a structural
induction on a given BSIL formula and the correctness of procedure recTree(q, C).

LEMMA 7.6. Given a state q in G, checkBSIL(q, χ) if and only if G, q |=⊥ χ .

7.4. Complexities of the Algorithm

The algorithm that we presented in Sections 7.1 and 7.2 can run in PSPACE mainly be-
cause we can enumerate the conjunts in a disjunctive normal form (DNF) expression in
PSPACE and can implement procedure recTree(q, C) with a stack of polynomial height.
To see this, please recall that we use the procedure sucSet(q, C) to calculate the assign-
ment of BP obligations to the children to q in the computation tree. Specifically, proce-
dure sucSet(q, C) nondeterministically returns a set � with elements of the form (q′, C ′)
such that (q, q′) ∈ R and C ′ ⊆ C since in procedure sucSet(q, C), a path obligation �θ is
passed down to a child and recorded in the corresponding C ′ only when it matches the
for loop condition at statement 8. Thus, along any path in the OD tree, the sets of literal
bounds never increase. Moreover, when there is a node in the exploration of the OD
tree that coincides with an ancestor, we backtrack in the exploration. This implies that,
along any path segment longer than |Q|, one of the following two conditions holds:

• A backtracking happens at the end of the segment.
• The sets of BP obligations along the segment must decrease in size at least once.

These conditions lead to the observation that, with procedure sucSet(q, C), the recur-
sive exploration of a path can grow no longer than 1+|C|·|Q|. This leads to the following
lemma.

LEMMA 7.7. The BSIL model-checking algorithm in Sections 7.1 and 7.2 is in PSPACE.

PROOF. For convenience, we let #(χ) be the number of modal formulas in χ . Following
the argument from earlier, it is straightforward to check that to explore an OD tree,

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:28 F. Wang et al.

we only need a stack of at most 1 + #(χ) · |Q| frames. In each frame, we only need to
record a state in Q, a subset of [1, #(χ)] for the path obligations, and a � returned from
procedure sucSet(q, C). Procedure sucSet(q, C) can be nondeterministically computed
by randomly assigning the obligations in C to the successors of q and checking if
the assignment satisfies the strategy interaction restriction of the BP obligations.
Procedure checkBSIL(q, φ) can then be executed in space cubic in the size of φ for
the �s at nodes along the path. Thus, we conclude that the algorithm is a PSPACE
algorithm.

A rough analysis of the time complexity of our algorithm follows. Let |χ | be the
length of a BSIL formula χ . At each call to sucSet(), the size of C is at most |χ |. The
number of root-to-leaf paths in an OD tree is at most |χ | since we only have to pass
down |χ | BP obligations. We can use the positions of the common ancestors of the
leaves of such paths to analyze the number of the configurations of such OD trees. The
common ancestors can happen anywhere along the root-to-leaf paths. Thus, there are
(1+|χ | · |Q|)|χ | ways to arrange the positions of the common ancestors since the lengths
of paths are at most 1 + |χ | · |Q|. The number of ways that the BP obligations can
be assigned to the leaves is at most |χ ||χ |. The number of state labelings of the nodes
on the paths is at most |Q||χ |·(1+|χ |·|Q|). Thus, given a C, the total number of different
OD trees is in O(|Q||χ |·(1+|χ |·|Q|)|χ ||χ |(1 + |χ | · |Q|)|χ |) = O(|Q||χ |·(2+|χ |·|Q|)|χ |2|χ |). There are
O(2|χ |) different possible values of C. There are at most |χ | OD trees to construct
for the model-checking task. Thus, the total time complexity of our algorithm is in
O(|χ |2|χ ||Q||χ |·(2+|χ |·|Q|)|χ |2|χ |).

7.5. Lower Bound and Completeness

We close by establishing the PSPACE lower bound for ATL+ model checking, and hence
the PSPACE-completeness of ATL+ and BSIL model checking. This is done by reduction
from the prenex QBF (quantified Boolean formula) satisfiability problem [Garey and
Johnson 1979] to an ATL+ model-checking problem for a two-agent game graph, where
both the game graph and the ATL+ specification are linear in the prenex QBF problem
we reduce from. We assume a QBF property η ≡ �1 p1 . . . �l pl(C1 ∧ C2 ∧ · · · ∧ Cn) with
a set P = {p1, . . . , pl} of atomic propositions and the following restrictions:

• For each k ∈ [1, l], �k is either ∃ or ∀.
• For each k ∈ [1, n], Ck is a clause lk,1 ∨ · · · ∨ lk,hk, where, for each j ∈ [1, hk], lk, j is a

literal, that is, either an atomic proposition or a negated atomic proposition.

Intuitively, the reduction is to translate the QBF formula to a game graph and an ATL+
formula for a traversal requirement on the game graph. The atomic propositions are
then encoded as path constraints on the game graph. The interesting thing about the
reduction is that the ATL+ formula (naturally) contains no SIQs at all. This reduction
may be reformulated so that we get the SIQ in the expressiveness without paying extra
computation complexity.

Suppose that �p represents the subgraphs for the truth of an atomic proposition
p. The rest of the game graph is partitioned into subgraphs �p responsible for the
interpretation of atomic proposition p for all p ∈ P. Then, the prenex QBF formula
actually can be interpreted as a requirement for covering those �ps with the decisions
in those �ps. For example, the formula η ≡ ∃p∀q∃r((p ∨ q ∨ r) ∧ (¬p ∨ ¬r)) can be read
as there exists a decision in �p such that for every decision in �q, there exists a decision
in �r such that

• one of �p, �q, and �r is covered; and
• either �p or �r is not covered.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:29

Fig. 8. Turn-based game graph for the PSPACE-hardness proof of a Boolean formula with n propositions.

The details of constructing those �ps and �ps can be found in the proof of the following
lemma that establishes the PSPACE complexity lower bound.

LEMMA 7.8. The ATL+ model-checking problem for turn-based game graphs is
PSPACE-hard.

PROOF. Suppose we are given a prenex QBF η with propositions in P. We assume
without loss of generality that all propositions are bound variables. (Note that, for the
satisfiability problem, we can simply bind all free propositions by leading existential
quantifiers.) We also use P for the atomic proposition set of G. The idea is to use, for
each p ∈ P, “�p” to encode that p is true and “�¬p” to encode that p is false. (Note
that �¬p ≡ ¬�p.) Then we construct a two-agent turn-based game graph Gη as shown
in Figure 8, which reflects the structure of η: there is a sequence of (true) decisions (the
states ui and the state vn+1 have only one outgoing transition, and no true decision is
taken there), which refer to the truth of the individual �pi. These decisions are taken
in the order given by the prenex quantifiers of η, and the existential decisions are taken
by Agent 1 while the universal decisions are taken by Agent 2.

In the graph, we use oval nodes for states owned by Agent 1 and square nodes for
states owned by Agent 2. In each state, we put down its name and the set of atomic
propositions that are true at the node. For each atomic proposition pi ∈ P, we have a
corresponding subgraph consisting of nodes vi and ui. The subgraph of ui corresponds
to �pi and that of vi, ui together corresponds to �pi .

The design of the graph allows only at most one visit to states v1, . . . , vn. For all
i ∈ [1, n], state vi is owned by Agent 2 if pi is universally quantified and owned by
Agent 1 otherwise. If pi is owned by Agent 1, then Agent 1 can choose either (vi, ui) or
(vi, vi+1). If pi is owned by Agent 2, then both choices of Agent 2 at node vi must yield
satisfaction of η.

Given an η = 〈1〉∧
1≤i≤k

∨
1≤ j≤hk

li, j , we construct an ATL+ formula φη as

〈1〉∧
1≤i≤k

∨
1≤ j≤hk

τ (li, j), where τ (p) def= �p and τ (¬p) def= �¬p; that is, φη is obtained
from η by replacing the leading quantifiers in η by 〈1〉.

We now show that Gη |= φη if and only if η is satisfied (i.e., if η is a tautology). The
latter is the case if there is a winning strategy for a “satisfier” in the following game
between a “satisfier” and a “refuter”: following the order of the bound variables, the
satisfier and refuter choose the truth value of the existentially and universally bound
variables, respectively. When all variables are assigned truth values, the satisfier wins
if the CNF formula is satisfied with these values. Otherwise, the refuter wins.

Taking a winning strategy of the satisfier in this game obviously provides a winning
strategy for Agent 1 and, vice versa, a winning strategy of Agent 1 in the model-checking
game can be used as a winning strategy for the satisfier in the satisfaction game.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:30 F. Wang et al.

We have an example for the reduction in the proof of Lemma 7.8.

Example 7.9. Given η ≡ ∃p∀q∃r((p∨q∨r)∧ (¬p∨¬r)), according to the construction
in the proof of Lemma 7.8, we have the following ATL+ formula: φη

def= 〈1〉(((�p)∨ (�q)∨
(�r)) ∧ ((�¬p) ∨ (�¬r))).

Following Lemmas 7.8 and 7.7, we obtain the complexity of our model-checking
problems.

THEOREM 7.10. The BSIL and ATL+ model-checking problems are PSPACE-complete.

8. AUTOMATA FOR BSIL MODEL CHECKING

In this section, we discuss a simple encoding of BSIL model checking in alternating
automata on infinite trees [Kirsten 2002; Zappe 2002]. This naturally raises the ques-
tion of why we should study a second approach to BSIL model checking. The answer
is twofold. First, for model checking itself, it will allow us to establish that the model
complexity of BSIL model checking is polynomial-time complete: the problem to decide
for a fixed BSIL formula φ whether or not a game graph G is a model of φ is P-complete.
As it is widely believed that models are usually large while specifications are small,
a polynomial time bound in the size of the model might be considered more attractive
than a PSPACE bound on the complete input. Second, it provides us with the full access
of automata-based analysis tools, which will allow us to establish a doubly exponential
upper bound on the decision problem of whether or not a BSIL formula φ is satisfiable.

We start this section by introducing alternating automata, and then continue to
encode the model-checking algorithm from the previous section. These automata con-
structions are then used to establish the inclusion of the model-checking algorithm
in PTIME for fixed formulas, while hardness is shown by reducing reachability in
AND/OR graphs [Immerman 1981] to model checking the BSIL formula 〈1〉�p. Beyond
establishing PTIME inclusion, we actually show that the problem is fixed parameter
tractable: the problem is, for a fixed formula, only quadratic in the size of the model.

8.1. Alternating Automata (AA)

Alternating automata (AA) are used to recognize ω-regular tree languages over labeled
trees. Let N denote the set of nonnegative integers. Let D = [1, d] be an interval of N.
A D tree T is a nonempty prefix-closed subset of D

∗ (and hence T ⊆ D
∗). In T , D can

be interpreted as directions from each node in T . Such a T is an ordered tree in the
sense that the children of a node in T are naturally ordered according to the directions
in D. For example, when d = 5, the children of 1212 can be 12122, 12123, and 12125 in
order.

An X-labeled tree of ϒ is a pair 〈T , ξ 〉, where ξ : T → X is a function from T to X.
We use B

+(P) to denote the set of positive3 Boolean combinations of elements in P. A
satisfying assignment to a formula in B

+(P) is a subset of P such that the formula is
true if all elements in the set are interpreted true.

For the convenience of the readers, we briefly review the definition of AA.

Definition 8.1. An alternating automaton A is a tuple 〈X,U, u0, δ, γ 〉 with the follow-
ing constraints:

• X is the set of labels of the analyzed trees.
• U is a finite set of states.
• u0 ∈ U is an initial state.

3A Boolean formula is positive if there is no negation in the formula.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:31

• δ : (U × X) �→ B
+(D × U) is a function that maps each pair of a state in U and an

input letter in X to a positive Boolean combination of pairs of directions and states.
(Please be reminded that D is an interval of N and represents a set of directions.)

• γ : U �→ N is a valuation function that labels each state with a nonnegative integer,
called its priority.

Alternating automata are interpreted over X-labeled trees. A run of A on an X-labeled
tree ϒ = 〈T , ξ 〉 is a tree 〈T ′, ξ ′〉 with ξ ′ : T ′ �→ (T × U) with the following inductive
restrictions:

• ξ ′(ε) = (ε, u0). ε is the null sequence.
• For every u ∈ U and sequence ζ ∈ T and ζ ′ ∈ T ′ with ξ ′(ζ ′) = (ζ, u) and ξ (ζ) = x,

there is a satisfying assignment S of δ(u, x) such that for every (i, u′) ∈ S, there exists
a k ∈ N with ζ ′k ∈ T ′ and ξ ′(ζ ′k) = (ζ i, u′).

It is easy to see that the out-degree of a node in T ′ is at most d·|U |, while the out-degree
of T is at most d.

Intuitively, we want to construct AAs with states that represent path obligations. The
transitions then define in which way these path obligations are sent down the tree. An
element (i, u′) in the transition formula simply means that the path obligation from u
is sent to the child state u′ at direction i of the input X-labeled tree.

The priority of a node in a run tree is the priority of the state in its label. The priority
of an infinite path is the highest priority taken by infinitely many nodes on the path. A
run tree is accepting if the priority of all infinite paths are even, and a tree is accepted
if it has an accepting run. The set of trees accepted by such an automaton is called its
language, and an automaton is called empty if its language is empty.

An AA is called nondeterministic if all functions in the image of δ can be written as a
disjunction over conjuncts that contain at most one pair per direction. If they contain
only one such disjunct, it is called deterministic.

An AA is called a safety AA if all its states have the same even priority. For safety
AA, the priority function is therefore omitted. An AA is called weak if for all its states
u and all input letters x, the function δ(u, x) refers only to states with priorities greater
or equal to γ (u). It is called a Büchi AA if only priority values 1 and 2 are used; that is,
the image of γ is contained in {1, 2}. Note that weak AA can be rewritten as language-
equivalent Büchi AA by changing only the priority function from γ to γ ′, where γ ′ maps
a state u to 2 if γ (u) is even, and to 1 otherwise.

8.2. Model Checking with AAs

In this section, we relate the algorithms used for model checking from Section 7 to
alternating automata. In order to approach this translation, we start with the simple
case, where we model check a tree against a BSIL formula of the form 〈A〉τ , where τ
does not contain an SQ. This is plausible, since we can evaluate those SQs and replace
them with auxiliary propositions. In addition, we assume that all strategy decisions
are already made. This is also reasonable since we only allow existential SIQs and we
forbid negations directly applied to SIQs. Thus, we can check the model by checking
the existence of S-profiles that fulfill the SQs and SIQs. For convenience, we let S be
the set of strategies that fulfills the SQs and SIQs, if existent.

To keep the presentation simple, we study the algorithm for turn-based games and
then turn to the general case of concurrent games.

8.2.1. Turn-Based Games. As in Section 7, we start with the case that the DNBB formula
has only one disjunct. For this case, we model check a tree that has the form of an
unraveling of G. To relate this to the automata we have introduced, we assume for the

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:32 F. Wang et al.

moment that the successors are ordered: a tree node with k successors has a successor
in direction 1 through k. Each node is labeled with a quadruple (a, k, S, L), containing
the following information:

—a ∈ [1, m] shows the owner of the node;
—k ∈ D shows the number of successors;
—S ⊆ S is the set of strategies, for which we can reach the node. The strategies in S

are used just like atomic propositions; and
—H is the set of atomic propositions valid in the node.

For such a tree, we check two things for the satisfaction of a BSIL property:

(A1): The labeling of states as reachable is consistent; that is, there are strategies in
S such that for each strategy, exactly the nodes labeled by it are reachable.

(A2): For the respective set of paths described by this labeling, the single disjunct of
the DNBB is satisfied.

Note that, by these, we do not check that the form of the tree complies with an unrav-
eling of G. However, the following observation obviously holds.

LEMMA 8.2. G is a model of φ if and only if we can extend the unraveling of G such
that (A1) and (A2) are satisfied.

To test this, we will first show how to construct two AAs that check (A1) and (A2)
individually, and then construct a nondeterministic Büchi AA that checks (A1) and
(A2) together. Using a nondeterministic AA is attractive because it allows for projecting
away the strategies and interpreting G directly with the resulting AA.

LEMMA 8.3. We can construct a nondeterministic safety AA As = 〈X,Us, us
0, δs〉 with

2|S| states that recognizes the trees that satisfy (A1).

PROOF. We can simply use X = [1, m]×D×2S ×2P , Us = 2S, and us
0 = S. For all k ≤ d,

we have a transition function δs
k for the k successor case (of the input labeled tree node)

with the following restrictions:

• For an Agent a owning a state and a set of strategies S ⊆ S, we let Sa ⊆ S be the
strategy names of strategies for Agent a. We let �k

a be the set of k tuples of disjoint
sets (S1

a, S2
a , S3

a , . . . , Sk
a) that cover4 Sa and S¬

a = S − Sa be the set of strategies not
owned by a.

• We let δs
k(a, S) = ∨

(S1
a ,...,Sk

a)∈�k
a

∧
i∈[1,k](i, Si

a ∪ S¬
a). Then, we let δs(S, (a, k, S, H)) =

δs
k(a, S) and δs(S, (a, k, S′, H)) = false if S �= S′.

First, the automaton is nondeterministic, and it is easy to see that a run tree must
have the same form and the states in its nodes must comply with the strategies in the
label of the input tree.

With this observation, the correctness of the construction can be shown by a simple
inductive argument. For the induction basis, the initial node is reachable under all
strategies, and the run tree is labeled with all strategies. For the induction step, it is
easy to show by induction that a node of a (minimal) run tree (and, similarly, the input
tree) must have the following property:

• If a state is not labeled with a strategy si, then no successor is labeled with si.
• If a state is labeled with a strategy si owned by a different agent than the node, then

all successor states must be labeled with si.

4Note that disjoint cover does not mean partition, as we allow for empty sets.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:33

• If a state is labeled with a strategy si owned by the same agent as the node, then
exactly one successor state is labeled with si.

Also, any combination of the labels according to the last rule is possible. This exactly
characterizes the labeling of reachability for the different strategies.

Now we want to construct a weak deterministic AA for property (A2). Let C denote
the set of BP obligations from property (A2).

LEMMA 8.4. We can construct a weak deterministic automaton A∧ = 〈X,U∧, u∧
0 , δ∧, γ∧〉

with 2|C| states that recognizes the run trees that satisfy (A2).

PROOF. We can simply use X = [1, m] × D × 2S × 2P , U∧ = 2C, and u∧
0 = C. For the

transition formulas, we have the following restrictions:

• δ∧(C, (a, k, S, H)) = false if there exists a �θ ∈ C with � �⊆ S. That is, we require
that all transitions can only use strategies that have been passed down from the
ancestors.

• δ∧(C, (a, k, S, H)) = false if there exists a �θ ∈ C with localEval(H, θ) = false.
Please recall that localEval(H, θ) converts a θ that is locally violated by H to false.

• Otherwise, δ∧(C, (a, k, S, H)) = ∧
i∈[1,k](i, C ′) with C ′ = {�next(localEval(H, θ)) |

�θ ∈ C}.
Note that A∧ is made deterministic by encoding the choices of strategy passing-down
in the input symbol (a, k, S, H). Then, we define γ∧ such that γ∧(C) is odd if and only
if C contains an until-formula φ1Uφ2 or a next-formula ©φ1. The correctness of the
construction is straightforward.

Intersection of As and A∧ can, as usual, be done on the state level.

COROLLARY 8.5. We can construct a nondeterministic weak AA A′ = 〈[1, m] × D × 2S ×
2P,U, u0, δ

′, γ 〉 with 2|S|+|C| states that recognizes trees that satisfy (A1) and (A2).

PROOF. The new state sets U are simply Us × U∧ and the initial state is (us
0, u∧

0).
The transition function returns false if either δs or δ∧ returns false and is applied
independently for the two projections otherwise. Finally, γ (us, u∧) = γ∧(u∧).

COROLLARY 8.6. We can construct a nondeterministic weak automaton A = 〈[1, m] ×
D×2S×2P,U, u0, δ, γ 〉 with 2|S|+|C| states that recognizes the trees with labeling functions
that are projections from the trees that satisfy (A1) and (A2).

PROOF. As usual, this is achieved by choosing δ(u, (a, k, P)) = ∨
S⊆S

δ′(u,

(a, k, S, P)).

The previous lemmas and corollaries make it easy to proof the main claim of this
section.

THEOREM 8.7. Model checking BSIL formulas can be done in time exponential in the
BSIL formula and bilinear in the number of states and transitions of the model.

PROOF. Corollary 8.6 establishes this for BSIL formulas of the form φ = 〈A〉τ , where
τ does not contain any SQ. We can extend this to general BSIL state formulas with the
following steps:

(1) First, this extends to the case of several disjuncts simply by checking the claim for
each disjunct individually.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:34 F. Wang et al.

(2) Second, we can model check this for any state (treating it as the initial state) and
subsequently store the result by introducing a fresh atomic proposition pφ and
replace the subformula φ in the specification by pφ .

(3) We repeat the previous two steps until we have reduced the model-checking problem
to model checking a Boolean formula.

This procedure requires the model-checking procedure to be repeated for every SQ as
many times as G has states. (In principle, it would suffice for the topmost SQ to model
check it for only the initial state.)

The model-checking algorithm for each state and SQ requires one to run up to
the number of disjuncts many times the respective construction algorithm of A. We
can assume without loss of generality that the turn-based game structure is properly
labeled, as it contains a label for the ownership as well as a label for the atomic
propositions, so we only have to add a label for the number of successors and number
the directions.

The naı̈ve approach of playing the acceptance game by offering an acceptance player
the choice of a disjunct and a rejection player the choice of a direction is obviously too
expensive. But note that we can split the decision as follows:

• Let the acceptance player choose the set S from δ(u, (a, k, H)) =∨
S⊆S

δ′(u, (a, k, S, H)).
• Let the acceptance and rejection player choose δk

s (a, S) successively by starting with
I0 = D and S0 = Sa. Then we use binary search style to iteratively narrow down
I0, I1, . . . by repeating the following steps for i = 0, 1, 2, . . .:
(1) Cut Ii = [l, u] with m = � l+u

2 � into Il
i = [l, m] and Iu

i = [m+ 1, u].
(2) Let the acceptance player choose disjoint sets Li and Ui whose union is Si.
(3) Let the rejection player choose to continue either with Ii+1 = Il

i and Si+1 = Li or
with Ii+1 = Iu

i and Si+1 = Ui.
The repetition goes on until Ii = { j} is singleton and then (j, Si ∪(S−Sa)) is executed.

That is, by approaching the chosen transition in a logarithmic search, we can avoid
the overhead. Solving this game is linear in its state space, and this is linear in the
number of transitions of G.

For PTIME-hardness, we reduce the reachability checking in AND/OR graphs
[Immerman 1981] to model checking for the simple BSIL formula 〈1〉�p. For the reduc-
tion, it suffices to turn AND nodes to nodes owned by Agent 1 and OR nodes to nodes
owned by Agent 2.

THEOREM 8.8. Model checking BSIL formulas is PTIME-complete in the size of the
model.

8.2.2. Concurrent Games. The differences that occur when studying the general case of
concurrent game graphs rather than turn-based game structures are moderate.

Note that the weak deterministic AA for property (A2) from Lemma 8.4 is not affected
by this change. The automaton that checks for property (A1), on the other hand, is
affected.

To account for this change, we first revisit how the transition function of the au-
tomaton from the nondeterministic safety automaton in Lemma 8.3 works. The basic
mechanism is a disjunction over the possible choices in �k

a, which represents the possi-
ble decisions made by the Agent a who owns the current position for his or her different
strategies in Sa.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:35

Having a concurrent game graph A = 〈m, Q, r, P, λ, R,�, τ 〉, all agents need to make
their respective decision. The strategies of each agent decide which token each agents
selects.

We adjust the construction of the automaton that checks for property (A1) by using a
not to name the agent, but to name the state (i.e., a ∈ Q), and assuming Q = {1, . . . , k},
we redefine δk

s to

δk
s (a, S) =

∨
f :S→�

∧
q∈Q

(
q, S f

q

)
,

where S f
q ⊆ S is the subset of strategy names such that s ∈ S f

q if and only if

• s ∈ S and
• τ ((a, q), b) = f (s) holds for the Agent b for whom s is a strategy of Agent b.

f is simply a function that captures the decisions of the strategy.
The remainder of the constructions are not affected: the arguments used to establish

Lemma 8.2, Corollaries 8.6 and 8.5, and Theorem 8.7 are not affected by this change.
Note that some information about the CGG is now incorporated into the automaton

that checks (A1). The only minor precaution to be taken is that the number of decisions
might be reduced for some agents in some states.

It is also possible to encode the transition function as part of the input letter instead.
Note that, when model checking, this information is available through the CGG under
consideration. The main theorem is therefore unaffected.

THEOREM 8.9. Model checking BSIL formulas for CGGs is PTIME-complete in the
size of the model.

9. BSIL SATISFIABILITY

In this section, we show that the satisfiability problem of BSIL is 2EXPTIME-complete.
The upper bound can be inferred by the simulation theorem [Muller and Schupp
1995] (or the automata constructions behind them [Safra 1988; Piterman 2007; Schewe
2009]), while hardness is a consequence of the inclusion of CTL+ [Wilke 1999].

In the first step, we provide an AA for checking the consistency of a labeling as it
is constructed in the model-checking approach in the previous section. This labeling
contains explicit information about whether or not a BSIL SQ formula is satisfiable. In
the following, we assume without loss of generality that every state in the turn-based or
concurrent game is reachable from the initial state without mentioning this explicitly.
(Note that unreachable states have no impact on the correctness and can simply be
removed.)

LEMMA 9.1. We can build an AA B that is exponential in the size of a BSIL formula χ
and accepts a fully labeled concurrent game graph if and only if the labeling is consistent
and the concurrent game structure is a model of χ .

PROOF. For each SQ subformula φ of χ , we can build a weak nondeterministic AA Aφ

that consists of the nondeterministic AA Aη for each disjunct η in the DNBB formula
of φ (where we assume, without loss of generality, that their states are disjoint and Aη

has initial state uη) plus a fresh initial state u0 with priority 0. The transition function
for u0 is simply δ(u0, x) = ∨

η δ(uη, x); that is, in the first step, one arbitrary individual
automaton is entered and never left again.

Likewise, we can build a weak AA Dφ that accepts the complement language of Aφ by
dualizing it. Let K denote the set of subformulas of χ that start with an SQ. Assume,
without loss of generality, that the states of the individual Aφ and Dφ are disjoint and

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:36 F. Wang et al.

that the initial states of Aφ and Dφ are uφ and uφ , respectively. Then, we can build B
by adding two fresh states, a state u and the initial state u0 (both with priority 0), and
define the transition formula as follows:

• δ(u0, (a, k, P)) = false if P �|= χ and
• δ(u0, (a, k, P)) = δ(u, (a, k, P)) if P |= χ ,
• δ(u, (a, k, P)) = ∧

i∈[1,k](i, u) ∧ ∧
φ∈K,pφ∈P δ(uη, (a, k, P)) ∧ ∧

φ∈K,pφ /∈P δ(uη, (a, k, P)).

For the states of the individual Aφ and Dφ , their transition and priority function is
used.

The argument only uses the automata from the previous section in the last line.
Consequently, we can argue completely analogously for the concurrent game graphs.

LEMMA 9.2. We can build an AA B that is exponential in the size of a BSIL formula χ
and accepts a fully labeled turn-based game if and only if the labeling is consistent and
the turn-based game is a model of χ .

THEOREM 9.3. The satisfiability of a BSIL formula φ can be checked in time doubly
exponential in the size of ϕ. If ϕ is satisfiable by a turn-based game, then a model can
be constructed in time doubly exponential in ϕ.

PROOF. The main difference to the model-checking case is that we cannot infer a
sufficient branching degree from the model. We therefore proceed in two steps: we
assume that we know a sufficient branching degree and discuss a synthesis algorithm
for it.

The first observation is that, for states in a Dφ , we can use any subtree as this
automaton shows that something holds for all strategies. The reduction to a subtree
makes the property easier to satisfy. The second observation is that a winning strategy
for the acceptance player can be assumed to be memoryless. Thus, for each state of an
AA Aφ and each state of a tree accepted, strategies from the respective Sa (from the
proof for Lemma 8.3) are sent to at most |Sa| ≤ |S| directions. But successors of nodes
to whom from no state a nonempty subset of Sa is sent can be pruned, provided at least
one successor remains. This gives a bound on the number of directions needed, which
is bilinear in the number of states of all Aφ put together and the maximal number of
strategies. (The latter can be estimated by the number of SIQs bound by any SQ plus
one times the number of agents.) Thus, the number of directions can be restricted to a
number exponential in χ .

Having established this bound for the number of required directions, we can build a
language-equivalent nondeterministic Büchi AA in time exponential in B (for the given
k-bounded branching degree), whose emptiness can be checked in polynomial time.

Similarly, the particularities of a turn-based game are only used when determining
the number of directions needed. The argument directly extends to the number of
decisions needed in a concurrent game graph: the set � can be bounded accordingly,
using the same argument. For m agents, we would then have |�|m directions.

THEOREM 9.4. The satisfiability of a BSIL formula φ can be checked in time doubly
exponential in the size of ϕ. If ϕ is satisfiable, then a model can be constructed in time
doubly exponential in ϕ.

Remark. Strictly speaking, a specification alone does not reveal the number of agents.
There are two interpretations possible: either one requires the agents to be explicitly
named or one leaves the set of agents open. In the latter case, however, all agents that
are not named explicitly cooperate, and their strategy is never bound in any conjunct of
a DNBB. Hence, they can be collapsed to a single agent without changing the semantics.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:37

Table II. Experiment Data for the Prisoners’ Dilemma Model

Prisoner Count 2 3 4 5 6 7
Property (A) time 0.50s 0.92s 1.23s 3.19s 6.71s 25.s

mem 72M 75M 83M 146M 388M 1043M
Property (B) time 0.51s 0.88s 1.14s 2.90s 6.52s 23.1s

mem 71M 75M 80M 140M 361M 979M

To obtain hardness, we exploit the 2EXPTIME-completeness of CTL+. It is easy to
see that CTL+ is the sublogic of BSIL, where 〈A〉 is restricted to 〈∅〉 and 〈+A〉 operators
are restricted to 〈+∅〉 operators and always bind a temporal operator. Together with the
previous theorem, the 2EXPTIME-hardness of CTL+ [Wilke 1999] provides us with:

COROLLARY 9.5. Checking the realizability (both by a turn-based game and by a
concurrent game graph) of a BSIL formula ϕ is 2EXPTIME-complete in the size of ϕ.

10. EXPERIMENT

10.1. Implementation

We implemented a semisymbolic model checker of BSIL with REDLIB [Wang 2004,
2008a, 2008b, 2013, 2015], which is a free library for symbolic model checking based
on decision diagrams. REDLIB supports symbolic precondition and postcondition cal-
culation of discrete transitions. Moreover, the language to REDLIB supports flexible
automata templates and powerful synchronization operators that allow for the concise
modeling of multiparty synchronizations and synchronization correspondents with spe-
cific constraints.

Our model checker starts from a symbolic representation of the initial condition.
Then, it repeatedly applies the postcondition procedure of REDLIB to explore the
symbolic state representations in the computation tree. Our model checker uses the
result in Section 7 to bound the exploration depth of the tree.

10.2. Benchmarks and Their Experiment Report

We experimented with three parameterized benchmarks to observe how our model-
checking algorithm scales to the parameters. In all experiment data tables, we have the
following notations: “s” denotes seconds for computation time, “M” denotes megabytes
in memory usage, and “N/A” means “not available.” All experiments are conducted on
a PC with Intel i7-2600k 3.4GHZ CPU and 8G RAM running Ubuntu 12.04.
Prisoners’ dilemma
The first is the prisoners’ dilemma described in Example 1.1 with the number of pris-
oners as a parameter. Then we applied the model checker to check whether the model
satisfies Formulas (A) and (B) in the introduction. The time and memory usage of the
model checker are reported in Table II.
Banking systems
We also built a parameterized model for the banking system in our running example
section. The parameter is the number of clients. We want to check the following three
properties:

(I) The bank and the first client can together make a deposition transaction of the
client successful. This property is satisfied.

(J) The bank and the first client can together make a transfer transaction from the
client successful. The property is not satisfied since the partner bank of the transfer
destination may not cooperate.

(K) The bank, the first client, and the partner can together make a transfer transaction
successful. The property is satisfied.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:38 F. Wang et al.

Table III. Experiment Data for the Banking System Model

Client Counts 1 2 3 5 8 10 12
Property (I) time 1.14s 3.21s 12.3s 103s 1417s

N/A N/A
mem 16M 19M 39M 92M 246M

Property (J) time 0.76s 0.84s 1.51s 3.18s 8.42s 26.1s 52.9s
mem 18M 24M 31M 55M 99M 148M 245M

Property (K) time 3.84s 12.5s 41.7s 1036s
N/A N/A N/A

mem 21M 33M 67M 455M

The time and memory usage of the model checker for the three properties are reported
in Table III. It is easy to see that Formula (J) can be more efficiently checked than
Formulas (I) and (K). The reason for the difference is that Formulas (I) and (K) are
satisfied. Thus, we need to search for a tree top as a witness of the satisfaction. Usually,
a satisfying tree top can be very deep and wide. Searching for such a tree top can be
time-consuming and complex. In comparison, Formula (J) is not satisfied and can be
refuted in a few steps of exploration from the root of the computation tree.
Election games
The third benchmark is for campaign strategies of two to four political parties for seats
in the congress. There are several parameters in our model: the number of seats in the
congress, the amount of budget of each party in a round, and the number of candidates
of each party in a round. The game is played by the leaders of the parties who decide
the amount of support that a candidate receives in a round. Candidates with more
budget in a round will be elected in the round. If two or more candidates get the same
amount of support, the winner will be decided nondeterministically.

In our model, in each round, the leaders concurrently make their budget allocation
and then the election result is determined. For example, with $3 in the budget of the
leader of the first party with two candidates, the strategy of the leader can be written
as (x, y) ∈ {(3, 0), (2, 1), (1, 2), (0, 3)}, where x and y, respectively, denote the support (in
dollars) allocated to the first and the second candidates in the party. If there are only
two parties, Leader 1 uses strategy (2, 1), and Leader 2 uses strategy (0, 2) (assume he
or she has less budget), and the result of the round is that the two parties both win one
seat in the round. On the other hand, if Leader 2 chooses strategy (1, 1) instead, then
there is no strategy for Leader 1 to win more seats for his or her party.

We use the following seven properties to test our model checker:

(L) Party 1 has a strategy to make one of its candidate elected and allows Party 2 to
win more seats than Party 1.

(M) Party 1 has a strategy to win more seats than Party 2 and allows Party 2 to make
one of its candidates elected.

(N) Party 1 has a strategy to guarantee one of its candidates is elected and also to
cooperate with Party 2 to prevent Party 3’s candidates from being elected.

(O) Parties 1 and 2 can together prevent Party 3’s candidates from being elected.
(P) Party 1 has a strategy to guarantee one of its candidates is elected, to cooperate

with Party 2 to prevent Party 4’s candidates from being elected, and to cooperate
with Party 3 to prevent Party 5’s candidates from being elected.

(Q) Party 1 has a strategy to cooperate with Party 2 to prevent Party 4’s candidates
from being elected and to cooperate with Party 3 to prevent Party 5’s candidates
from being elected.

(R) Party 1 has a strategy to guarantee one of its candidates is elected and to cooperate
with Parties 2 and 3 to prevent Party 4’s candidates from being elected.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:39

Table IV. Experiment Data Election

Parameters
Properties s c1 b1 c2 b2 c3 b3 c4 b4 Result Time Mem

(L)

1 2 2 2 4 0 0 0 0 UNSAT 0.52s 61M
2 2 4 2 4 0 0 0 0 UNSAT 1.20s 75M
3 2 4 2 4 0 0 0 0 SAT 0.73s 75M
3 3 6 3 6 0 0 0 0 SAT 1.51s 211M
3 3 9 3 6 0 0 0 0 UNSAT 9.14s 837M
3 3 6 3 9 0 0 0 0 SAT 8.74s 502M
4 3 9 3 9 0 0 0 0 SAT 158s 6631M

(M)

1 2 2 2 4 0 0 0 0 UNSAT 0.53s 61M
2 2 4 2 4 0 0 0 0 UNSAT 1.15s 75M
3 2 4 2 4 0 0 0 0 UNSAT 1.14s 75M
3 3 6 3 6 0 0 0 0 UNSAT 0.93s 211M
3 3 9 3 6 0 0 0 0 SAT 5.22s 681M
3 3 6 3 9 0 0 0 0 UNSAT 8.49s 502M
4 3 9 3 9 0 0 0 0 UNSAT 93.17s 5082M

(N)
2 2 6 2 3 2 2 0 0

UNSAT 2.86s 493M
(O) SAT 4.61s 368M
(P) UNSAT 179s 3755M
(Q) 3 2 6 2 3 2 3 2 2 SAT 209s 2862M
(R) SAT 75s 1329M

Parameters: ci, bi: # candidates and total budget of party i, respectively; s: # of seats in the congress.

The satisfaction of the properties may depend on the budgets and numbers of candi-
dates of the parties. The seven properties allow us to observe how our algorithm works
for different combinations of parameter values. The time and memory usage data for
checking the seven properties are in Table IV.

10.3. Discussion of the Experiments

The experiment shows some possibilities of using our tool to flexibly support the anal-
ysis and synthesis of collaborating strategies among several agents. For the prisoners’
dilemma and the banking system, the prisoners and the clients are respectively mod-
eled as individual agents. In the experiment with the election game, the chairpersons
of the parties are modeled as individual agents and their candidates and respective
allocated budgets are modeled as numbers. It would be interesting to see how we can
explore the techniques in modeling and specifying concurrent games with our tool.

On the verification side, we can see that the CPU time and memory usage exhibit
typical combinatorial explosion for tools for solving difficult problems. As a preliminary
tool, our experiment and implementation do shed light for performance enhancement
research in the future. Specifically, our search for the OD trees does not take the shape of
the game graphs and the BSIL formulas into account. It is possible to design heuristics
that utilize the syntax information of the graphs and the formulas to construct OD trees.

11. CONCLUSION

BSIL can be useful in describing combinations of strategy profiles in a multiagent
system. It is carefully designed for low model-checking cost while maintaining suf-
ficient expressiveness to specify some useful properties. We have thoroughly inves-
tigated the theoretical aspects of BSIL, including the expressive power, the model-
checking complexity, and the complexity of the satisfiability problem. Our experiment
report also points out new research directions, including further extension to BSIL and
performance-enhancing techniques to our model-checking algorithms.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

9:40 F. Wang et al.

ACKNOWLEDGMENTS

The authors would like to thank Professor Moshe Vardi, Professor Fang Yu, and the anonymous reviewers
for their valuable comments and suggestions.

REFERENCES

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. September 2002. Alternating-time temporal logic.
Journal of the ACM (JACM) 49, 5 (Sept. 2002), 672–713.

Christel Baier, Tomas Brázdil, Marcus Gröser, and Antonin Kucera. 2007. Stochastic game logic. In QEST.
IEEE Computer Society, 227–236.

Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. 1983. The temporal logic of branching time. Acta
Informatica 20 (1983), 207–226.

Thomas Brihaye, Arnaud Da Costa, François Laroussinie, and Nicolas Markey. 2009. ATL with strategy
contexts and bounded memory. In LFCS, Vol. LNCS 5407. Springer-Verlag, 92–106.

Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. 2010. Strategy logic. Information and
Computation 208 (2010), 677–693.

Edmumd M. Clarke, Ernest Allen Emerson, and A. Prassad Sistla. 1986. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems (TOPLAS) 8, 2 (1986), 244263.

Arnaud Da Costa, François Laroussinie, and Nicolas Markey. 2010. ATL with strategy contexts: Expressive-
ness and model checking. In Proceedings of the IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’10) (Leibniz International Proceedings in Infor-
matics (LIPIcs)), Vol. 8. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 120–132.

E. Allen Emerson and Edmund M. Clarke. 1980. Characterizing correctness properties of parallel programs
as fixpoints. In Proceedings of the 7th Colloquium on Automata, Language, and Programming. LNCS,
vol. 85. Springer-Verlag.

E. Allen Emerson and Joe Y. Halpern. Feb. 1985. Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences 30, 1 (Feb. 1985), 1–24.

E. Allen Emerson and Joe Y. Halpern. Jan. 1986. ‘Sometimes’ and ‘Not Never’ Revisited: On branching versus
linear time temporal logic. Journal of ACM 33, 1 (Jan. 1986), 151–178.

E. Allen Emerson and Chin-Laung Lei. 1987. Modalities for model checking: Branching time logic strikes
back. Science of Computer Programming 8 (1987), 275–306.

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Company.

Neil Immerman. 1981. Number of quantifiers is better than number of tape cells. Journal of Computer and
System Sciences 22, 3 (1981), 65–72.

Daniel Kirsten. 2002. Alternating tree automata and parity games. In Automata, Logics, and Infinite Games,
Erich Gradel, Wolfgang Thomas, and Thomas Wilke (Eds.). LNCS, vol. 2500. Springer, 153–167.

Orna Kupferman, Parthasarathy Madhusudan, P. S. Thiagarajan, and Moshe Y. Vardi. 2000. Open systems
in reactive environments: Control and synthesis. In Proceedings of the 11th International Conference on
Concurrency Theory. LNCS, vol. 1877. Springer-Verlag, 92–107.

Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. 2001. Module checking. Information and Computation
164, 2 (2001), 322–344.

Leslie Lamport. 1980. Sometimes is sometimes “Not Never”-on the temporal logic of programs. In Proceedings
of the 7th Annual ACM Symposium on Principles of Programming Languages. 174–185.

Franois Laroussinie and Nicolas Markey. 2013. Satisfiability of ATL with strategy contexts. In Proceedings
of the Workshop on Games, Automata, Logics and Formal Verification (GANDALF’13). EPTCS, vol. 119.
208–223.

Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. 2012. What makes ATL∗ decidable?
A decidable fragment of strategy logic. In Concurrency Theory (CONCUR’12). LNCS, vol. 7454. Springer-
Verlag, 193–208.

Fabio Mogavero, Aniello Murano, and Luigi Sauro. 2013. On the boundary of behavioral strategies. In
ACM/IEEE LICS. 263–272.

Fabio Mogavero, Aniello Murano, and Luigi Sauro. 2014. A behavioral hierarchy of strategy logic. In Com-
putational Logic in Multi-Agent Systems. LNCS, vol. 8624. 148–165.

Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. 2010. Reasoning about strategies. In IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’10)

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

An Extension of ATL with Strategy Interaction 9:41

(Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 8. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 133–144.

David E. Muller and Paul E. Schupp. 1995. Simulating alternating tree automata by nondeterministic
automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra. Theoretical
Computer Science 141, 1–2 (1995), 69–107.

Sophie Pinchinat. 2007. A generic constructive solution for concurrent games with expressive constraints on
strategies. In Automated Technology for Verification and Analysis (ATVA’07), Vol. LNCS 4762. Springer-
Verlag, 253–267.

Nir Piterman. 2007. From nondeterministic Büchi and Streett automata to deterministic parity automata.
Journal of Logical Methods in Computer Science 3, 3 (2007).

Shmuel Safra. 1988. On the complexity of ω-automata. In Proceedings of the 29th Annual Symposium on
Foundations of Computer Science (FOCS’88). IEEE Computer Society Press, 319–327.

Sven Schewe. 2009. Tighter bounds for the determinisation of Büchi automata. In Proceedings of the 12th
International Conference on Foundations of Software Science and Computation Structures (FoSSaCS’09).
LNCS, vol. 5504. Springer-Verlag, 167–181.

Sven Schewe and Bernd Finkbeiner. 2007. Semi-automatic distributed synthesis. International Journal of
Foundations of Computer Science 18, 1 (2007), 113–138.

Aravinda Prasad Sistla and Edmund M. Clarke. 1985. The complexity of propositional linear temporal logics.
Journal of the ACM (JACM) 32, 3 (July 1985), 733–749.

Lawrence J. Stockmeyer. 1974. The complexity of decision problems in automata theory and logic. MIT.
Farn Wang. 2004. Efficient verification of timed automata with BDD-like data-structures. International

Journal of Software Tools for Technology Transfer (STTT) 6, 1 (2004). Special issue for the 4th Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS, vol.
2575, Springer-Verlag.

Farn Wang. 2008a. Efficient model-checking of dense-time systems with time-convexity analysis. In IEEE
Real-Time System Symposium (RTSS). IEEE Computer Society.

Farn Wang. 2008b. Time-progress evaluation for dense-time automata with concave path conditions. In
Automated Technology for Verification and Analysis (ATVA), Vol. LNCS 5311. Springer-Verlag.

Farn Wang. 2013. Efficient model-checking of dense-time systems with time-convexity analysis. Theoretical
Computer Science (TCS) 467 (Jan. 2013), 89–108.

Farn Wang. 2015. Model-checking fair dense-time systems with propositions and events. International Jour-
nal on Software Tools for Technology Transfer (STTT) 17, 2 (2015), 223–243.

Thomas Wilke. 1999. CTL+ is exponentially more succinct than CTL. In Proceedings of the IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS).
Springer-Verlag, 110–121.

Júlia Zappe. 2002. Modal μ-calculus and alternating tree automata. In Automata, Logics, and Infinite Games,
Erich Gradel, Wolfgang Thomas, and Thomas Wilke (Eds.). LNCS, vol. 2500. Springer, 171–184.

Received February 2013; revised August 2014; accepted February 2015

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 9, Publication date: June 2015.

