
3

Complexity Hierarchies beyond Elementary

SYLVAIN SCHMITZ, LSV, ENS Cachan & CNRS & Inria, Université Paris-Saclay

We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness state-
ments of many nonelementary problems. This hierarchy allows the classification of many decision problems
with a nonelementary complexity, which occur naturally in areas such as logic, combinatorics, formal lan-
guages, and verification, with complexities ranging from simple towers of exponentials to Ackermannian
and beyond.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Measures and
Classes; F.2.0 [Analysis of Algorithms and Problem Complexity]: General; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic

General Terms: Theory

Additional Key Words and Phrases: Fast-growing complexity, subrecursion, well-quasi-order

ACM Reference Format:
Sylvain Schmitz. 2016. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory 8, 1, Arti-
cle 3 (February 2016), 36 pages.
DOI: http://dx.doi.org/10.1145/2858784

1. INTRODUCTION

Complexity classes, along with the associated notions of reductions and completeness,
provide our best theoretical tools to classify and compare computational problems. The
richness and liveness of this field can be experienced by taking a guided tour of the
Complexity Zoo,1 which presents succinctly most of the known specimens. The visitor
will find there a wealth of classes at the frontier between tractability and intractability,
starring the classes P and NP, as they help in understanding what can be solved
efficiently by algorithmic means.

From this tractability point of view, it is not so surprising to find much less space
devoted to the “truly intractable” classes, in the exponential hierarchy and beyond. Such
classes are nevertheless quite useful for classifying problems and have been employed
routinely in areas such as logic, combinatorics, formal languages, and verification since
the 1970s and the exponential lower bounds proven by Meyer and Stockmeyer [Meyer
1975b; Stockmeyer and Meyer 1973].

Nonelementary problems. Actually, the two seminal articles of Meyer and Stockmeyer
go further than mere exponential lower bounds: they respectively show that satisfia-
bility of the weak monadic theory of one successor (WS1S) and equivalence of star-free

1https://complexityzoo.uwaterloo.ca.

This work was partially supported by ANR grant ReacHard 11-BS02-001-01.
Author’s address: S. Schmitz, LSV, ENS de Cachan, 61 avenue du Président Wilson, 94235 CACHAN Cedex,
France; email: schmitz@lsv.ens-cachan.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1942-3454/2016/02-ART3 $15.00
DOI: http://dx.doi.org/10.1145/2858784

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

http://dx.doi.org/10.1145/2858784
https://complexityzoo.uwaterloo.ca
http://dx.doi.org/10.1145/2858784

3:2 S. Schmitz

expressions (SFEq) are nonelementary, as they require space bounded above and
below by towers of exponentials of height depending (elementarily) on the size of the
input. Those are just two examples among many other problems with nonelementary
complexities (e.g., see Meyer [1975a], Friedman [1999], and Vorobyov [2004]), but they
are actually good representatives of problems with a tower of exponentials as com-
plexity, i.e., one would expect them to be complete for some suitable complexity class.

What might then come as a surprise is the fact that presently, the Zoo does not
provide any intermediate stops where classical problems like WS1S and SFEq would
fit adequately: they are not in ELEMENTARY (henceforth ELEM), but the next class is
PRIMITIVE-RECURSIVE (aka PR), which is far too big: WS1S and SFEq are not hard for
PR under any reasonable notion of reduction. In other words, we seem to be missing a
“TOWER” complexity class, which ought to sit somewhere between ELEM and PR. Going
higher, we find a similar uncharted area between PR and RECURSIVE (aka R). These
absences are not specific to the Complexity Zoo: on the contrary, they seem universal
in textbooks on complexity theory, which seldom even mention ELEM or PR. Somewhat
oddly, the complexities above R are better explored and can rely on the arithmetical
and analytical hierarchies.

Drawing distinctions based on complexity characterizations can guide the search for
practically relevant restrictions to the problems. In addition, nonelementary problems
are much more pervasive now than in the 1970s, and they are also considered for practi-
cal applications, motivating the implementation of tools, e.g. MONA for WS1S [Elgaard
et al. 1998]. It is therefore high time for the definition of hierarchies suited for their
classification.

Our contribution. In this article, we propose an ordinal-indexed hierarchy (Fα)α of
fast-growing complexity classes for nonelementary complexities. Beyond the already
mentioned TOWER

def= F3, for which WS1S and SFEq are examples of complete problems,
this hierarchy includes nonprimitive-recursive classes, for which quite a few complete
problems have arisen in the recent years, e.g.,

—Fω in Mayr and Meyer [1981], Urquhart [1999], Schnoebelen [2010], Figueira [2012],
Bresolin et al. [2012], Lazić et al. [2013], Hofman and Totzke [2014], and Hague
[2014].

—Fωω in Chambart and Schnoebelen [2008b], Ouaknine and Worrell [2007], Lasota and
Walukiewicz [2008], Atig et al. [2010], Chambart and Schnoebelen [2007], Barceló
et al. [2013] and Rosa-Velardo [2014];

—Fωωω in Haddad et al. [2012]; and
—Fε0 in Haase et al. [2014] and Decker and Thoma [2015].

The classes Fα are related to the Grzegorczyk (E k)k [Grzegorczyk 1953] and ex-
tended Grzegorczyk (Fα)α [Löb and Wainer 1970] hierarchies, which have been used
in complexity statements for nonelementary bounds. The (Fα)α classes are very well
suited for characterizing various classes of functions, i.e., computed by forms of for pro-
grams [Meyer and Ritchie 1967] or terminating while programs [Fairtlough and Wainer
1992], or provably total in fragments of Peano arithmetic [Fairtlough and Wainer 1998;
Schwichtenberg and Wainer 2012], and they characterize some important milestones
like ELEM or PR. However, they are too large to classify our decision problems and do
not lead to completeness statements—in fact, one can show that there are no “ELEM-
complete” nor “PR-complete” problems (see Section 2). However, our Fα share several
nice properties with the Fα classes, i.e., they form a strict hierarchy (Section 5) and are
robust to slight changes in their generative functions and to changes in the underlying
model of computation (Section 4) .

To argue for the suitability of the classes Fα for the classification of high-complexity
problems, we sketch two completeness proofs in Section 3 and present an already long

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:3

list of complete problems for Fω and beyond in Section 6. A general rule of thumb seems
to be that statements of the form “L is in Fα but not in Fβ for any β < α” found in the
literature can often be replaced by the much more precise “L is Fα-complete.”

Of course, there are essential limitations to our approach: there is no hope of defining
such ordinal-indexed hierarchies that would exhaust R using sensible ordinal nota-
tions [Feferman 1962]; this is called the subrecursive stumbling block in Section 5.1
Schwichtenberg and Wainer [2012]. Our aim here is more modestly to provide suitable
definitions “from below” for naturally occurring complexity classes above ELEM.

In an attempt not to drown the reader in the details of subrecursive functions and
their properties, most of the technical contents appear in Appendix A at the end of the
article.

2. FAST-GROWING COMPLEXITY CLASSES

In this section, we define the complexity classes Fα. We rely on the fast-growing func-
tions Fα of Löb and Wainer [1970] as a standard against which we can measure high
complexities (compare to Section 2.2.1). In logic and recursion theory, these functions
are used to generate the classes of functions Fα when closed under substitution and
limited primitive recursion (see Section 5.3.1). However, these classes are not suitable
for our complexity classification objectives: the class Fα contains indeed arbitrary finite
compositions of the function Fα. Instead, in Section 2.3, we define each Fα class as the
class of problems decidable within time bounded by a single application of Fα composed
with any function p already defined in the lower levels Fβ for β < α.

These hierarchies of functions, function classes, and complexity classes that we em-
ploy to deal with nonelementary complexities are all indexed using ordinals, and we
reuse the very rich literature on subrecursion (e.g., Rose [1984], Odifreddi [1999] and
Schwichtenberg and Wainer [2012]). We strive to employ notations compatible with
those of Chapter 4 of Schwichtenberg and Wainer [2012] and refer the interested
reader to their monograph for proofs and additional material.

2.1. Cantor Normal Forms and Fundamental Sequences

In this article, we only deal with ordinals that can be denoted syntactically as terms in
Cantor normal form (CNF):

α = ωα1 · c1 + · · · + ωαn · cn where α > α1 > · · · > αn and ω > c1, . . . , cn > 0 (CNF)

and hereditarily α1, . . . , αn are also written in CNF. In this representation, α = 0 if and
only if n = 0. An ordinal α with CNF of form α′ + 1 is called a successor ordinal—it has
n > 0 and αn = 0, and otherwise if α > 0, it is called a limit ordinal and can be written
as γ + ωβ by setting γ = ωα1 · c1 + · · · + ωαn · (cn − 1) and β = αn. We usually employ “λ”
to denote limit ordinals.

A fundamental sequence for a limit ordinal λ is a sequence (λ(x))x<ω of ordinals with
supremum λ. We consider a standard assignment of fundamental sequences for limit
ordinals, which is defined inductively by

(γ + ωβ+1)(x) def= γ + ωβ · (x + 1), (γ + ωλ)(x) def= γ + ωλ(x). (1)

This particular assignment of fundamental sequences satisfies, e.g., 0 < λ(x) < λ(y)
for all x < y and limit ordinals λ. For instance, ω(x) = x + 1, (ωω4 + ωω3+ω2

)(x) =
ωω4 +ωω3+ω·(x+1). We also consider the ordinal ε0, which is the supremum of all ordinals
writable in CNF, as a limit ordinal with fundamental sequence defined by ε0(0) def= ω

and ε0(x + 1) def= ωε0(x), i.e., a tower of ω’s of height x + 1.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:4 S. Schmitz

2.2. The Extended Grzegorczyk Hierarchy

This is an ordinal-indexed infinite hierarchy of classes (Fα)α<ε0 of functions with argu-
ment(s) and images in N [Löb and Wainer 1970]. The extended Grzegorczyk hierarchy
has multiple natural characterizations—e.g., as loop programs for α < ω [Meyer and
Ritchie 1967], as ordinal-recursive functions with bounded growth [Wainer 1970], as
functions computable with restricted resources as we will see in (5), and as functions
that can be proven total in fragments of Peano arithmetic [Fairtlough and Wainer
1998].

2.2.1. Fast-Growing Functions. At the heart of each Fα lies the αth fast-growing function
Fα: N → N, which is defined inductively on the ordinal index: as the successor function
at index 0

F0(x) def= x + 1, (2)

by iteration at successor indices α + 1

Fα+1(x) def= Fω(x)
α (x) =

ω(x) times︷ ︸︸ ︷
Fα(· · · (Fα(x)) · · ·), (3)

and by diagonalization on the fundamental sequence at limit indices λ

Fλ(x) def= Fλ(x)(x). (4)

For instance, F1(x) = 2x + 1, F2(x) = 2x+1(x + 1) − 1, F3 is a nonelementary function

that grows faster than tower(x) def= 2. .
.2}

x times, Fω a nonprimitive-recursive “Ackerman-
nian” function, Fωω a nonmultiply-recursive “hyper-Ackermannian” function, and Fε0 (x)
cannot be proven total in Peano arithmetic. For every α, the Fα function is strictly mono-
tone in its argument, i.e., x < y implies Fα(x) < Fα(y). As Fα(0) = 1, it is therefore also
strictly expansive, i.e., Fα(x) > x for all x.

2.2.2. Computational Characterization. The extended Grzegorczyk hierarchy itself is de-
fined by means of recursion schemes with the (Fα)α as generators (see Section 5.3.1).
Nevertheless, for α ≥ 2, each of its levels Fα is also characterized as a class of functions
computable with bounded resources [Wainer 1970]. More precisely, for α ≥ 2, it is the
class of functions computable by deterministic Turing machines in time bounded by
O(Fc

α (n)) for some constant c, when given an input of size n:

Fα =
⋃
c<ω

FDTIME
(
Fc

α (n)
)
. (5)

Note that the choice between deterministic and nondeterministic, or between time-
bounded and space-bounded computations in (5), is irrelevant, because α ≥ 2 and F2 is
already a function of exponential growth.

2.2.3. Main Properties. Each class Fα is closed under (finite) composition. Every func-
tion f in Fα is honest, i.e., it can be computed in time bounded by some function also
in Fα [Wainer 1970; Fairtlough and Wainer 1998]—this is a relaxation of the time con-
structible condition, which asks instead for computability in time O(f (n)). Since each
f in Fα is also bounded by Fc

α for some c [Löb and Wainer 1970, Theorem 2.10], this
means that

Fα =
⋃

f ∈Fα

FDTIME(f (n)). (6)

In particular, for every α, the function Fα belongs to Fα, and therefore Fc
α also belongs

to Fα.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:5

Every f in Fβ is also eventually bounded by Fα if β < α [Löb and Wainer 1970], i.e.,
there exists a rank x0 such that for all x1, . . . , xn, if maxi xi ≥ x0, then f (x1, . . . , xn) ≤
Fα(maxi xi)—a fact that we will use copiously. However, for all α > β > 0, Fα �∈ Fβ , and
the hierarchy (Fα)α<ε0 is therefore strict for α > 0.

2.2.4. Milestones. At the lower levels, F0 = F1 contains (among others) all linear
functions (see Section 5.3.2). However, in this article, we focus on the nonelementary
classes by restricting ourselves to α ≥ 2. Writing

F<α
def=

⋃

β<α

Fβ, (7)

we find, i.e., F2 = F<3 = FELEM, the set of Kalmar-elementary functions; F<ω = FPR,
the set of primitive-recursive functions; F<ωω = FMR, the set of multiply-recursive
functions; and F<ε0 = FOR, the set of ordinal-recursive functions (up to ε0). We are
dealing here with classes of functions, but writing F ∗

α for the restriction of Fα to {0, 1}-
valued functions, i.e.,

F ∗
α =

⋃
c<ω

DTIME
(
Fc

α (n)
)
, F ∗

<α

def=
⋃

β<α

F ∗
β , (8)

we obtain the corresponding classes for decision problems F ∗
<3 = ELEM, F ∗

<ω = PR,
F ∗

<ωω = MR, and F ∗
<ε0

= OR.

2.3. Fast-Growing Complexity Classes

Unfortunately, the classes in the extended Grzegorczyk hierarchy are not quite sat-
isfying for some interesting problems, which are nonelementary (or or nonprimitive
recursive or nonmultiply recursive, etc), but only barely so. The issue is that complex-
ity classes like, e.g., F ∗

3 , which is the first class to contain nonelementary problems,
are very large: i.e., F ∗

3 contains problems that require space F100
3 (n), more than a hun-

dredfold compositions of towers of exponentials. As a result, hardness for F ∗
3 cannot

be obtained for many classical examples of nonelementary problems.
We therefore introduce smaller classes of problems:

Fα
def=

⋃

p∈F<α

DTIME(Fα(p(n))). (9)

In contrast with F ∗
α in (8), only a single application of Fα is possible, composed with

some “lower” reduction function p from F<α. As previously, the choice of DTIME rather
than NTIME or SPACE is irrelevant for α ≥ 3 (see Lemma 4.6 later).

This definition yields, i.e., the desired class TOWER
def= F3, closed under elemen-

tary reductions (i.e., reductions in F2), but also a class ACK
def= Fω of Ackermannian

problems closed under primitive-recursive reductions, a class HACK
def= Fωω of hyper-

Ackermannian problems closed, e.g., under multiply-recursive reductions. In each case,
we can think of Fα as the class of problems not solvable with resources in F<α, but barely
so: nonelementary problems for F3, nonprimitive-recursive ones for Fω, nonmultiply-
recursive ones for Fωω , and so on. Figure 1 presents the first main stops of the hierarchy.

2.3.1. Reduction Classes. Of course, we could replace in (9) the class of reductions F<α

by a more traditional one, like logarithmic space (FL) or polynomial time (FP) functions.
However, we feel that our definition in (9) better captures the intuition that we have of
a problem being “complete for Fα.” Moreover, using at least F2 as our class of reductions
allows one to effectively compute the Fα function in the functional version FFα of Fα

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:6 S. Schmitz

Fig. 1. Some complexity classes beyond ELEM.

(see Section 5.1), leading to interesting combinatorial algorithms (see Section 3.2.3 for
an example).

Unless stated differently, we always assume many-one F<α reductions when dis-
cussing hardness for Fα in the remainder of this article, but we could just as easily
consider Turing reductions (see Section 4.2.3).

2.3.2. Basic Fα-Complete Problems. By (9), Fα-hardness proofs can reduce from the ac-
ceptance problem of some input string x by some deterministic Turing machine M
working in time Fα(p(n)) for some p in F<α. This can be simplified to a machine M′
working in time Fα(n). Indeed, because p in F<α is honest, p(n) can be computed in
F<α. Thus, the acceptance of x by M can be reduced to the acceptance problem of a
#-padded input string x′ def= x#p(|x|)−|x| of length p(|x|) by a machine M′ that simulates M
and treats # as a blank symbol—now M′ works in time Fα(n). Another similarly basic
Fα-hard problem is the halting problem for Minsky machines with the sum of counters
bounded by Fα(n) (see Fischer et al. [1968]).

To sum up, by definition of the (Fα)α classes, we have the following two Fα-complete
problems—which incidentally have been used in most of the master reductions in the
literature to prove nonprimitive-recursiveness, nonmultiple-recursiveness, and other
hardness results [Jančar 2001; Urquhart 1999; Schnoebelen 2010; Chambart and
Schnoebelen 2008b; Haddad et al. 2012; Haase et al. 2014; Lazić et al. 2013; Rosa-
Velardo 2014; Decker and Thoma 2015]:

Fα-Bounded Turing machine acceptance (Fα-TM).

Instance: A deterministic Turing machine M working in time Fα and an input x.
Question: Does M accept x?

Fα-Bounded Minsky machine halting (Fα-MM).

Instance: A deterministic Minsky machine M with sum of counters bounded by
Fα(|M|).

Question: Does M halt?

See Section 6 for a catalogue of natural complete problems, which should be easier to
employ in reductions.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:7

3. FAST-GROWING COMPLEXITIES IN ACTION

Now we present two short tutorials for the use of fast-growing complexities, namely
for the equivalence problem for start-free expressions (Section 3.1) and reachability
in lossy counter systems (Section 3.2), pointing to the relevant technical results from
later sections. In each case, we also briefly discuss the palliatives employed so far in
the literature for expressing such complexities.

3.1. A TOWER-Complete Example

Such an example can be found in the seminal paper of Stockmeyer and Meyer [1973]
and is quite likely already known by many readers. Define a star-free expression over
some alphabet � as a term e with abstract syntax

e ::= a | ε | ∅ | e + e | ee | ¬e,

where “a” ranges over � and “ε” denotes the empty string. Such expressions are induc-
tively interpreted as languages included in �∗ by

�a�
def= {a} �ε�

def= {ε} �∅�
def= ∅

�e1 + e2�
def= �e1� ∪ �e2� �e1e2�

def= �e1� · �e2� �¬e� def= �∗ \ �e�.

The decision problem SFEq asks, given two such expressions e1, e2, whether they are
equivalent, i.e., whether �e1� = �e2�. Stockmeyer and Meyer [1973] show that this
problem is hard for tower(log n) space under FL reductions if |�| ≥ 2. The problem
WS1S can be shown similarly hard thanks to a reduction from SFEq.

3.1.1. Completeness. Recall that TOWER is defined as F3, i.e., by the instantiation of (9)
for α = 3, as the problems decidable by a Turing machine working in time F3 of some
elementary function of the input size:

TOWER
def= F3 =

⋃

p∈FELEM

DTIME
(
F3(p(n))

)
. (10)

Once hardness for TOWER(log n) is established, hardness for TOWER under elementary
reductions is immediate; a detailed proof can apply Theorem 4.1 and Equation (22) to
show that

TOWER =
⋃

p∈FELEM

SPACE(tower(p(n)) (11)

and use a padding argument as in Section 2.3.2 to conclude.
That SFEq is in TOWER can be checked using an automaton-based algorithm: con-

struct automata recognizing �e1� and �e2�, respectively, using determinization to handle
each complement operator at the expense of an exponential blowup and check equiva-
lence of the obtained automata in PSPACE—the overall procedure is in space polynomial
in TOWER(n), thus in F3. A similar automata-based procedure yields the upper bound
for WS1S.

3.1.2. Discussion. Regarding upper bounds, there was a natural candidate in the liter-
ature for the missing class TOWER: Grzegorczyk [1953] defines an infinite hierarchy of
function classes (E k)k∈N inside FPR with E k+1 = Fk for k ≥ 2. This yields FELEM = E 3,
and the TOWER function is in E 4 \ E 3. Thus, WS1S and SFEq are in “time E 4,” and such
a notation has occasionally been employed, i.e., for β-Eq, the β equivalence of simply
typed λ-terms [Statman 1979; Schwichtenberg 1982; Beckmann 2001]. Again, we face
the issue that E 4 is much too large a resource bound, as it contains, i.e., all of the finite

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:8 S. Schmitz

iterates of the TOWER function, and there is therefore no hope of proving the hardness
for E 4 of WS1S, SFEq, or indeed β-Eq, at least if using a meaningful class of reductions.

Regarding nonelementary lower bounds, recent papers typically establish hardness
for k-EXPTIME (or k-EXPSPACE) for infinitely many k (possibly through a suitable param-
eterization of the problem at hand), such as by reducing from the acceptance of an

input of size n by a 2. .
.2

︸︷︷︸
k times

n

time-bounded Turing machine. Provided that such a lower

bound argument is uniform for those infinitely many k, it immediately yields a TOWER-
hardness proof, by choosing k ≥ n. On a related topic, note that in contrast with, e.g.,
the relationship between PH and PSPACE, because the exponential hierarchy is known
to be strict, we know for certain that

—for all k, k-EXPTIME � ELEM = ⋃
k k-EXPTIME,

—there are no “ELEM-complete problems,” and
—ELEM � TOWER.

3.2. An ACK-Complete Example

Possibly the most popular complete problem for ACK in use in reductions, LCM Reach-
ability asks whether a given configuration is reachable in a lossy counter machine
(LCM) [Schnoebelen 2010]. Such counter machines are syntactically identical to Min-
sky machines 〈Q, C, δ, q0〉, where transitions δ ⊆ Q × C × {=0?, ++, --} × Q operate on
a set C of counters through zero-tests c=0?, increments c++, and decrements c--. How-
ever, the semantics of an LCM differ from the usual, “reliable” semantics of a counter
machine in that the counter values can decrease in an uncontrolled manner at any
point of the execution. These unreliable behaviors make several problems decidable on
LCMs, contrasting with the situation with Minsky machines.

Formally, a configuration σ = (q, v̄) associates a control location q in Q with a counter
valuation v̄ in NC, i.e., counter values can never go negative. A transition of the form
(q, c, op, q′) defines a computation step (q, v̄) → (q′, v̄′) where v̄(c′) ≤ v̄′(c′) for all c �= c′
in C, and

—if op = =0?, then v̄(c) ≥ v̄′(c) = 0,
—if op = ++, then v̄(c) + 1 ≥ v̄′(c), and
—if op = --, then v̄(c) ≥ v̄′(c) + 1.

Let the initial configuration be (q0, 0̄). The reachability problem for such a system
asks whether a given configuration τ can be reached in a finite number of steps, i.e.,
whether (q0, 0̄) →∗ τ . The hardness proof of Schnoebelen [2010] immediately yields
that this problem is ACK-hard (see also Urquhart [1999] and Schnoebelen [2002]),
where ACK is defined as an instance of (9): it is the class of problems decidable with Fω

resources of some primitive-recursive function of the input size:

ACK
def= Fω =

⋃

p∈FPR

DTIME
(
Fω(p(n))

)
. (12)

3.2.1. Decidability of LCM. LCMs define well-structured transition systems over the set
of configurations Q × NC, for which generic algorithms have been designed [Abdulla
et al. 2000; Finkel and Schnoebelen 2001], which rely on the existence of a well-quasi-
ordering (WQO; see Kruskal [1972]) over the set of configurations. The particular
variant of the algorithm we present here is well suited for a complexity analysis and
is taken from Schmitz and Schnoebelen [2013].

Call a sequence of configurations σ0, σ1, . . . , σn a witness if σ0 = τ is the target
configuration, σn = (q0, 0̄) is the initial configuration, and σi+1 → σi for all 0 ≤ i < n. An

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:9

instance of LCM is positive if and only if there exists a witness, which we will search
for backward, starting from τ and attempting to reach the initial configuration (q0, 0̄).

Consider the ordering over configurations defined by (q, v̄) ≤ (q′, v̄′) if and only if
q = q′ and v̄ ≤× v̄′, the latter being defined as v̄(c) ≤ v̄′(c) for all c in C. Observe
that if σ0, σ1, . . . , σn is a shortest witness, then for all i < j, σi �≤ σ j , i.e., it is a bad
sequence for ≤, or we could have picked σ j at step i and obtained a strictly shorter
witness. Furthermore, if at some step i there existed s′

i ≤ si with s′
i → si−1, then we

could substitute s′
i for si and still have a witness, because si+1 → s′

i. Thus, if there exists
a witness, then there is a minimal bad one, i.e., a bad one where for all 0 < i < n,
σi+1 ∈ MinPre(σi) where MinPre(σ) def= min≤{σ ′ | σ ′ → σ }.

Now, because Q and C are finite, (Q×NC,≤) is a well-quasi-order by Dickson’s lemma,
and thus

(i) for all i, the set MinPre(σi) is finite, and
(ii) any bad sequence, i.e., any sequence σ0, σ1, . . . where σi �≤ σ j for all i < j, is finite.

Therefore, an algorithm for LCM can proceed by exploring a tree of prefixes of poten-
tial minimal witnesses, which has finite degree by (i) and finite height by (ii), hence by
Kőnig’s lemma is finite.

3.2.2. Length Function Theorems. A nondeterministic version of this search for a witness
for LCM will see its complexity depend essentially on the height of the tree, i.e., on
the length of bad sequences. Define the size of a configuration as its infinity norm
|(q, v̄)| = maxc∈C v̄(c), and note that any σ in MinPre(σi) is of size |σ | ≤ |σi| + 1. This
means that in any sequence σ0, σ1, . . . where τ = σ0 and σi+1 ∈ MinPre(σi) for all i,
|σi| ≤ |τ | + i = succi(|τ |), the ith iterate of the successor function succ(x) def= x + 1. We
call such a sequence controlled by succ.

What a length function theorem provides is an upper bound on the length of controlled
bad sequences over a WQO, depending on the control function—here the successor
function—and the maximal order type of the WQO—here ω|C| · |Q|. In our case, the
theorems in Schmitz and Schnoebelen [2011, 2012] provide an

F |Q|
h,|C|(|τ |) ≤ Fh,ω(max{|C|, |Q|, |τ |}) def= � (13)

upper bound on both this length and the maximal size of any configuration in the
sequence, where

—h: N → N is an increasing polynomial function (which depends on the control function)
and

—for any increasing h: N → N, (Fh,α)α is a relativized fast-growing hierarchy that uses
h instead of the successor function as base function with index 0:

Fh,0(x) def= h(x), Fh,α+1(x) def= Fω(x)
h,α (x), Fh,λ(x) def= Fh,λ(x)(x). (14)

3.2.3. A Combinatorial Algorithm. We have established an upper bound on the length
of a shortest minimal witness, entailing that if a witness exists, then it is of length
bounded by � defined in (13). This bound can be exploited by a nondeterministic forward
algorithm, which

(1) computes � in a first phase: as we will see with Theorem 5.1, this can be performed
in time Fh,ω(e(n))) for some elementary function e,

(2) then nondeterministically explores the reachable configurations, starting from the
initial configuration (q0, 0̄) and attempting to reach the target configuration τ—but
aborts if the upper bound on the length is reached. This second phase uses at most
� steps, and each step can be performed in time polynomial in the size of the current

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:10 S. Schmitz

configuration, itself bounded by �. The whole phase can thus be performed in time
polynomial in �, which is bounded by Fh,ω(f (n)) for some primitive-recursive f by
Lemma 4.6.

Thus, the overall complexity of this algorithm can be bounded by Fh,ω(p(n)) where
h and p are primitive-recursive. Because by Corollary 4.3 and Equation (22), for any
primitive-recursive strictly increasing h,

ACK =
⋃

p∈FPR

NTIME
(
Fh,ω(p(n))

)
, (15)

this means that LCM is in ACK.

3.2.4. Discussion. The oldest statement of ACK-completeness (under polynomial time
Turing reductions) of which we are aware is due to Clote [1986] for FCP, the finite con-
tainment problem for Petri nets (see Section 6.1.1). As observed by Clote, his definition
of ACK as DTIME

(
Fω(n)

)
is somewhat problematic, since the class is not robust under

changes in the model of computation, i.e., RAM versus multitape Turing machines.
A similar issue arises with the definition

⋃
c<ω DTIME(Fω(n + c)) employed in Haddad

et al. [2012]: although robust under changes in the model of computation, it is not
closed under reductions. Those classes are too tight to be convenient.

Conversely, stating that a problem is “in F ∗
ω but not in F ∗

k for any k” (e.g., Figueira
et al. [2011]) is much less informative than stating that it is Fω-complete: F ∗

ω is too
large to allow for completeness statements (see Section 5).

4. ROBUSTNESS

In the applications of fast-growing classes we discussed in Sections 3.1 and 3.2, we
relied on both counts on their “robustness” to minor changes in their definition. More
precisely, we employed space or time hierarchies indifferently, and alternative gener-
ative functions: first for the lower bound of SFEq and WS1S, when we used the tower
function instead of F3 in the reduction, and later for the upper bound of LCM, where
we relied on a relativized version of Fω. In this section, we prove these and other small
changes to be innocuous.

4.1. Generative Functions

There are many variants for the definition of the fast-growing functions (Fα)α, but they
are all known to generate essentially the same hierarchy (Fα)α.2 Nevertheless, because
the fast-growing complexity classes Fα we defined are smaller, there is no guarantee
for these classical results to hold for them.

4.1.1. Ackermann Hierarchy. We start with one particular variant, which is rather com-
mon in the literature: define Aα: N → N for α > 0 by

A1(x) def= 2x, Aα+1(x) def= Ax
α(1), Aλ(x) def= Aλ(x)(x). (16)

The hierarchy differs in the treatment of successor indices, where the argument is
reset to 1 instead of keeping x as in (3). This definition results, i.e., in A2(x) = 2x and
A3(x) = tower(x) and is typically used in lower bound proofs.

2See Ritchie [1965] and Löb and Wainer [1970, pp. 48–51] for such results—and the works of Weiermann
et al. on phase transitions for investigations of when changes do have an impact, e.g., Omri and Weiermann
[2009].

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:11

We can define a hierarchy of decision problems generated from the (Aα)α by analogy
with (9):

Aα
def=

⋃

p∈F<α

DTIME(Aα(p(n)). (17)

For two functions g: N → N and h: N → N, let us write g ≤ h if g(x) ≤ h(x) for all x
in N. Because Aα ≤ Fα for all α > 0, it follows that Aα ⊆ Fα. The converse inclusion
also holds: to prove it, it suffices to exhibit for all α > 0 a function pα in F<α such that
Fα ≤ Aα ◦ pα. It turns out that a uniform choice pα(x) def= 6x+5 fits those requirements—
it is a linear function in F0 and Fα ≤ Aα ◦ pα as shown in Lemma A.4, and thus we have
the following theorem.

THEOREM 4.1. For all α > 0, Aα = Fα.

4.1.2. Relativized Hierarchies. Another means of defining a variant of the fast-growing
functions is to pick a different definition for F0: recall the relativized fast-growing
functions employed in (14). The corresponding relativized complexity classes are then
defined by

Fh,α
def=

⋃

p∈F<α

DTIME(Fh,α(p(n))). (18)

It is easy to check that if g ≤ h, then Fg,α ≤ Fh,α for all α. Because we assumed h to be
strictly increasing, this entails Fα ≤ Fh,α, and we have the inclusion Fα ⊆ Fh,α for all
strictly increasing h.

The converse inclusion does not hold, since, i.e., Fh,1 is nonelementary for h(x) = 2x.
However, observe that in this instance, h ≤ F2, and we can see that FF2,k = F2+k for all
k in N. This entails that Fh,1 ⊆ F3 for h(x) = 2x. Thus, when working with relativized
classes, one should somehow “offset” the ordinal index by an appropriate amount.

There is nevertheless a difficulty with relativized functions: it is rather straightfor-
ward to show that Fh,α ≤ Fβ+α if h ≤ Fβ , assuming that the direct sum β + α does not
“discard” any summand from the CNF of β, e.g., FF1,k = Fk+1 and FFω,ω = Fω·2. However,
observe that FF1,ω(x) = FF1,x+1(x) = Fx+2(x) > Fx+1(x) = Fω(x). Thanks to the closure of
Fα under reductions in F<α, this issue can be solved by composing with an appropriate
function, e.g., FF1,ω(x) ≤ Fω(x + 1). This idea is formalized in Section A.4 and allows to
show the following theorem.

THEOREM 4.2. Let h: N → N be a strictly increasing function and α, β be two ordinals.

(i) If h ∈ Fβ , then Fh,α ⊆ Fβ+1+α.
(ii) If h ≤ Fβ , then Fh,α ⊆ Fβ+α.

PROOF. For (i), if h is in Fβ , then there exists xh in N such that for all x ≥ xh,
h(x) ≤ Fβ+1(x) [Löb and Wainer 1970, Lemma 2.7]. By Lemma A.5, this entails that
for all x ≥ xh, Fh,α(x) ≤ Fβ+1+α(Fγ (x)) for some γ < β + 1 + α. Define the function fh

by fh(x) def= x + xh; then for all x, Fh,α(x) ≤ Fh,α(fh(x)) ≤ Fβ+1+α(Fγ (fh(x))). Observe that
Fγ ◦ fh is in F<β+1+α, and thus Fh,α ⊆ Fβ+1+α.

For (ii), if β + α = 0, then β = α = 0, and thus h(x) = x + 1 since it has to be strictly
increasing, and Fh,0 = F0. Otherwise, Lemma A.5 shows that Fh,α ≤ Fβ+α ◦ Fγ for some
γ < β + α. Observe that Fγ is in F<β+α, and thus Fh,α ⊆ Fβ+α.

The statement of Theorem 4.2 is somewhat technical but easy to apply to concrete
situations, i.e., note the following corollary.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:12 S. Schmitz

COROLLARY 4.3. Let h: N → N be a strictly increasing primitive recursive function and
α ≥ ω. Then Fh,α = Fα.

PROOF. The function h is in Fk for some k < ω, and thus Fh,α ⊆ Fk+1+α = Fα by
Theorem 4.2. Conversely, since h is strictly increasing, Fα ⊆ Fh,α.

4.1.3. Fundamental Sequences. Our last example of a minor variation is to change the
assignment of fundamental sequences. Instead of the standard assignment of (1), we
posit a monotone function s: N → N and consider the assignment

(γ + ωβ+1)(x)s
def= γ + ωβ · s(x), (γ + ωλ)(x)s

def= γ + ωλ(x)s . (19)

Thus, the standard assignment in (1) is obtained as the particular case s(x) = x + 1. As
previously, this gives rise to new fast-growing functions

F0,s(x) def= x + 1, Fα+1,s(x) def= Fs(x)
α,s (x), Fλ,s(x) def= Fλ(x)s,s(x) (20)

and complexity classes

Fα,s
def=

⋃

p∈F<α

DTIME(Fα,s(p(n))). (21)

We obtain similar results with nonstandard fundamental sequences as with rela-
tivized hierarchies (thus also yielding a statement similar to that of Corollary 4.3).

THEOREM 4.4. Let s: N → N be a strictly increasing function and α, β be two ordinals.

(i) If s ∈ Fβ , then Fα,s ⊆ Fβ+1+α.
(ii) If s ≤ Fβ , then Fα,s ⊆ Fβ+α.

PROOF. By applying Theorem 4.2 alongside Lemma A.6.

The case where s is the identity function id(x) def= x is fairly common in the literature;
we obtain in this particular case the following corollary.

COROLLARY 4.5. For all α, Fα,id = Fα.

PROOF. By Theorem 4.4 and since id ≤ F0, we have the inclusion Fα,id ⊆ Fα. The
converse inclusion stems from Fα ≤ Fα,id ◦ F0, as can be seen by transfinite induction
over α (see Lemma A.7).

4.2. Computational Models and Reductions

In order to be used together with reductions in F<α, the classes Fα need to be closed
under such functions. The main technical lemma to this end states the following.

LEMMA 4.6. Let f and f ′ be two functions in F<α. Then there exists p in F<α such
that f ◦ Fα ◦ f ′ ≤ Fα ◦ p.

PROOF. By Corollary A.9, we know that there exists g in F<α such that f ◦Fα ≤ Fα ◦ g.
We can thus define p def= g ◦ f ′, which is also in F<α since the latter is closed under
composition, to obtain the statement.

4.2.1. Computational Models. Note that because we assume that α ≥ 3, F<α contains all
of the elementary functions, and thus Lemma 4.6 also entails the robustness of the Fα

classes under changes in the model of computation—e.g., RAM versus Turing machines
versus Minsky machines, deterministic or nondeterministic or alternating—or the type

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:13

of resources under consideration—time or space, e.g.,

Fα =
⋃

p∈F<α

NTIME(Fα(p(n))) =
⋃

p∈F<α

SPACE(Fα(p(n))). (22)

4.2.2. Many-One Reductions. For a function f : N → N and two languages A and B, we
say that A many-one reduces to B in time f (n), written A ≤ f

m B, if there exists a Turing
transducer T working in deterministic time f (n) such that for all x, x is in A if and
only if T (x) is in B. For a class of functions C, we write A ≤C

m B if there exists f in C
such that A ≤ f

m B. As could be expected given the definitions, each class Fα is closed
under many-one F<α reductions.

THEOREM 4.7. Let A and B be two languages. If A ≤F<α
m B and B ∈ Fα, then A ∈ Fα.

PROOF. By definition, A ≤F<α
m B means that there exists a Turing transducer T

working in deterministic time f (n) for some f in F<α; note that this implies that the
function implemented by T is also in F<α by (6). Furthermore, B ∈ Fα entails the
existence of a Turing machine M that accepts x if and only if x is in B and works in
deterministic time Fα(p(n)) for some p in F<α. We construct T (M), a Turing machine
that, given an input x, first computes T (x) by simulating T and then simulates M on
T (x) to decide acceptance; T (M) works in deterministic time f (n) + Fα(p(T (n))), which
shows that A is in Fα by Lemma 4.6.

4.2.3. Turing Reductions. We write similarly that A ≤ f
T B if there exists a Turing ma-

chine for A working in deterministic time f (n) with oracle calls to B, and A ≤C
T B if

there exists f in C such that A ≤ f
T B. It turns out that Turing reductions in F<α can be

used instead of many-one reductions.

THEOREM 4.8. Let α ≥ 3 and A and B be two languages. If A ≤F<α

T B and B ∈ Fα, then
A ∈ Fα.

PROOF. It is a folklore result on queries in recursion theory that if A ≤ f
T B, then

A ≤2 f

m Btt where 2 f (n) def= 2 f (n) and Btt is the truth table version of the language B,
which evaluates a Boolean combination of queries “x ∈ B.” Indeed, we can easily
simulate the oracle machine for A using a nondeterministic Turing transducer also in
time f (n) that guesses the answers of the B oracle and writes a conjunction of checks
“x ∈ B” or “x �∈ B” on the output, to be evaluated by a Btt machine. This transducer
can be determinized by exploring both outcomes of the oracle calls and handling them
through disjunctions in the output; it now works in time 2 f (n).

Since α ≥ 3 and f is in F<α, 2 f is also in F<α. Furthermore, since B is in Fα, Btt is
also in Fα. The statement then holds by Theorem 4.7.

5. STRICTNESS

The purpose of this section is to establish the strictness of the (Fα)α hierarchy
(Section 5.2). As a first step, we prove that the Fα functions are “elementarily” con-
structible (Section 5.1), which is of independent interest for combinatorial algorithms,
in line with Section 3.2.3. We end this section with a remark on the case α = 2
(Section 5.3).

5.1. Elementary Constructivity

The functions Fα are known to be honest, i.e., to be computable in time Fα [Wainer
1970; Fairtlough and Wainer 1998]. However, this is not tight enough for their use in
length function theorems, as in Section 3.2.3, where we want to compute their value in

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:14 S. Schmitz

time elementary in Fα itself. Formally, we call a function f elementarily constructible if
there exists an elementary function e in FELEM = F ∗

<3 such that f (n) can be computed
in time e(f (n)) for all n.

We present the statement in the more general case of relativized fast-growing func-
tions, defined in (14) and discussed in Section 4.1.2; since F0(x) = x + 1 is elementarily
constructible, this yields the result that all Fα functions are elementarily constructible.

THEOREM 5.1. Let h: N → N be an elementarily constructible strictly increasing func-
tion and α be an ordinal, then Fh,α is also elementarily constructible.

PROOF. Assume that h(n) can be computed in time e(h(n)) for some fixed elemen-
tary monotone function e. Proposition A.12 shows that Fh,α can be computed in time

O(f (Fh,α(n))) for the elementary function f (x) def= x · (p◦ Gωα (x)) + e(x)), where p◦ Gωα is
an elementary function that takes the cost of manipulating (an encoding of) the ordinal
indices into account. Lemma 4.6 then yields the result.

5.2. Strictness

Let us introduce yet another generalization of the (Fα)α classes, which will allow for a
characterization of the (F ∗

α)α and (F ∗
<α)α classes. For an ordinal α and a finite c > 0,

define

Fc
α

def=
⋃

p∈F<α

DTIME
(
Fc

α (p(n))
)
. (23)

Thus, Fα as defined in (9) corresponds to the case c = 1.

PROPOSITION 5.2. For all α ≥ 2,

F ∗
α =

⋃
c

Fc
α.

PROOF. The left-to-right inclusion is immediate by definition of F ∗
α in (8). The con-

verse inclusion stems from the fact that if p is in Fβ for some β < α, then there exists
d such that p ≤ Fd

α [Löb and Wainer 1970, Theorem 2.10], and hence Fc
α ◦ p ≤ Fc+d

α by
monotonicity of Fα.

Let us prove the strictness of the (Fc
α)c,α hierarchy. By Proposition 5.2, it will also

prove that of (F ∗
α)α along the way (note that it is not implied by the strictness of (Fα)α,

as it would be conceivable that none of the separating examples would be {0, 1}-valued).

THEOREM 5.3 (STRICTNESS). For all c > 0 and 2 ≤ β < α,

Fc
β � Fc+1

β � Fα.

PROOF OF Fc+1
β � Fα. Consider first a language L in Fc+1

β , accepted by a Turing
machine working in time Fc+1

β ◦ p for some p in F<β that we can assume to be monotone.
Since β < α and Fc+1

β ◦ p is in Fβ , there exists n0 such that for all n ≥ n0, Fc+1
β (p(n)) ≤

Fα(n), and hence for all n, Fc+1
β (p(n)) ≤ Fc+1

β (p(n + n0)) ≤ Fα(n + n0) by monotonicity
and expansivity of Fβ . Observe that the function n �→ n0 + n is in F0 ⊆ F<α, and thus
L also belongs to Fα.

The strictness of the inclusion can be shown by a straightforward diagonalization
argument. Define for this the language

Lα
def= {〈M〉#x | M accepts x in Fα(|x|) steps}, (24)

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:15

where 〈M〉 denotes a description of the Turing machine M and # is a separator. Then,
by Theorem 5.1, Lα belongs to Fα, thanks to a Turing machine that first computes Fα in
time Fα ◦ e for some elementary function e, and then simulates M in time elementary in
Fα ◦ e. Assume now for the sake of contradiction that Lα belongs to Fc+1

β , i.e., that there
exists some c and some Turing machine K that accepts Lα in time Fc+1

β . Again, since
β < α and Fc+1

β ◦ F1 is in Fβ , there exists n0 such that for all n ≥ n0, Fc+1
β (2n+1) ≤ Fα(n).

We exhibit a new Turing machine N,

(1) which takes as input the description 〈M〉 of a Turing machine and simulates K on
〈M〉#〈M〉 but accepts if and only if K rejects, and

(2) we ensure that a description 〈N〉 of N has size n ≥ n0.

Feeding this description 〈N〉 to N, it runs in time Fc+1
β (2n + 1) ≤ Fα(n), and we obtain

a contradiction whether it accepts or not:

—if N accepts, then K rejects 〈N〉#〈N〉, which is therefore not in Lα, and thus N does
not accept 〈N〉 in at most Fα(n) steps, which is absurd;

—if N rejects, then K accepts 〈N〉#〈N〉, which is therefore in Lα, and thus N accepts
〈N〉 in at most Fα(n) steps, which is absurd. �

PROOF OF Fc
β � Fc+1

β . Similar to the previous proof; picking Fc+1
β as the time bound

instead of Fα in (24) suffices to establish strictness.

By Proposition 5.2, a first consequence of Theorem 5.3 is that

F ∗
β � Fα (25)

for all 2 ≤ β < α. Another consequence is that (Fα)α “catches up” with (F ∗
α)α at every

limit ordinal.

COROLLARY 5.4. Let λ be a limit ordinal, then

F ∗
<λ =

⋃

β<λ

Fβ � Fλ.

PROOF. The equality F ∗
<λ = ⋃

β<λ Fβ and the inclusion F ∗
<λ ⊆ Fλ can be checked by

considering a problem in some F ∗
β for β < λ: it is in Fc

β for some c > 0 by Proposition 5.2,
and hence in Fβ+1 with β + 1 < λ by Theorem 5.3, and therefore in Fλ again by Theo-
rem 5.3. Regarding the strictness of the inclusion, assume for the sake of contradiction
that Fλ ⊆ ⋃

β<λ Fβ : this would entail Fλ ⊆ Fβ for some β < λ, violating Theorem 5.3.

Corollary 5.4 yields another characterization of the primitive-recursive and multiply-
recursive problems as

PR =
⋃

k

Fk, MR =
⋃

k

Fωk. (26)

Note that strictness implies that there are no “F ∗
α -complete” problems under F<α

reductions, since by Proposition 5.2 such a problem would necessarily belong to some
Fc

α level, which would in turn entail the collapse of the (Fc
α)c hierarchy at the Fc

α level
and contradict Theorem 5.3.

Similarly, fix a limit ordinal λ and some reduction class Fα for some α < λ: there
cannot be any meaningful “F ∗

<λ-complete” problem under Fα reductions, as such a
problem would be in F ∗

β for some α < β < λ, hence contradicting the strictness of
the (F ∗

β)β<α hierarchy; in particular, there are no “PR-complete” nor “MR-complete”
problems.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:16 S. Schmitz

5.3. The Case α = 2

This case is a bit particular. We did not consider it in the rest of the article (nor the
other cases for α < 2) because it does not share the usual characteristics of the (Fα)α:
i.e., the model of computation and the kind of resources become important, as

F2
def=

⋃

p∈F1

DTIME(F2(p(n))) (27)

would a priori be different if we were to define it through NTIME or DSPACE computa-
tions; the following results are artifacts of this particular choice of a definition.

5.3.1. Recursion Schemes. To define F2 fully, we need the original definition of the
extended Grzegorczyk hierarchy (Fα)α by Löb and Wainer [1970]—the characterization
in (5) is only correct for α ≥ 2. This definition is based on the closure of a set of initial
functions under the operations of substitution and limited primitive recursion. More
precisely, the set of initial functions at level α comprises the constant zero function 0,
the sum function +: x1, x2 �→ x1 + x2, the projections πn

i : x1, . . . , xn �→ xi for all 0 < i ≤ n,
and the fast-growing function Fα. New functions are added to form the class Fα through
two operations:

—substitution if h0, h1, . . . , hp belong to the class, then so does f if

f (x1, . . . , xn) = h0(h1(x1, . . . , xn), . . . , hp(x1, . . . , xn));

—limited primitive recursion if h0, h1, and g belong to the class, then so does f if

f (0, x1, . . . , xn) = h0(x1, . . . , xn),
f (y + 1, x1, . . . , xn) = h1(y, x1, . . . , xn, f (y, x1, . . . , xn)),

f (y, x1, . . . , xn) ≤ g(max{y, x1, . . . , xn}).
Observe that primitive recursion is defined by ignoring the last limitedness condition

in the previous definition. See the survey by Clote [1999] on the relationships between
machine-defined and recursion-defined complexity classes.

5.3.2. Linear Exponential Time. Let us focus for now on F1, which is the class of reductions
used in F2. First note that the successor function succ(x) = x + 1 = x + F1(0) belongs
to F1.

Call a function f linear if there exists a constant c such that f (x1, . . . , xn) ≤ c ·maxi xi

for all x1, . . . , xn. Observe that for all c, the function fc(x) def= c · x is in F1 since fc(0) = 0,
fc(x + 1) = succc(0) + fc(x), and fc(x) ≤ Fc

1 (x); thus, any linear function is bounded
above by a function in F1. Conversely, if f is in F1, then it is linear: this is true of
the initial functions and preserved by the two operations of substitution and limited
primitive recursion.3

This entails that F2 matches a well-known complexity class, since furthermore
F2(n) = 2n+1+log(n+1) − 1 is in 2O(n): F2 is the weak (aka linear) exponential-time com-
plexity class:

F2 = E def= DTIME
(
2O(n)). (28)

6. A SHORT CATALOGUE

Our introduction of the fast-growing complexity classes is motivated by already known
decidability problems, arising for instance in logic, verification, or database theory, for

3Thus, F1 � E 2: the latter additionally contains the function x, y �→ (x + 1) · (y + 1) as an initial function and
is equal to FLINSPACE [Ritchie 1963; Clote 1999, Theorem 3.36].

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:17

which no precise classification could be provided in the existing hierarchies. By listing
some of these problems, we hope to initiate the exploration of this mostly uncharted
area of complexity and to foster the use of reductions from known problems rather than
proofs from Turing machines. The following catalogue of complete problems does not
attempt to be exhaustive—i.e., Friedman [1999] presents many problems “of enormous
complexity.”

Because examples for TOWER are well known and abound in the literature, starting
with a 1975 survey by Meyer [1975a],4 we rather focus on the nonprimitive-recursive
levels, i.e., the Fα for α ≥ ω. Interestingly, for their upper bound, all of these examples
rely on the existence of some WQO (of maximal order type ωα; see de Jongh and Parikh
[1977]) and on a matching length function theorem.

6.1. Fω-Complete Problems

Here we gather some of the decision problems known to be ACK-complete at the
time of this writing. The common trait of all of these problems is their reliance on
Dickson’s lemma over Nd for some d for decidability, and on the associated length func-
tion theorems [McAloon 1984; Clote 1986; Figueira et al. 2011; Abriola et al. 2015] for
ACK upper bounds.

6.1.1. Vector Addition Systems. Vector addition systems (VAS, and equivalently Petri
nets) provided the first known Ackermannian decision problem: FCP.

A d-dimensional VAS is a pair 〈v̄0, Ā〉, where v̄0 is an initial configuration in Nd and
Ā is a finite set of transitions in Zd. A transition ū in Ā can be applied to a configuration
v̄ in Nd if v̄′ = v̄ + ū is in Nd; the resulting configuration is then v̄′. The complexity of
decision problems for VAS usually varies from EXPSPACE-complete [Lipton 1976; Rackoff
1978; Blockelet and Schmitz 2011] to Fω-complete [Mayr and Meyer 1981; Jančar 2001]
to undecidable [Hack 1976; Jančar 1995], via a key problem, whose exact complexity is
unknown: VAS Reachability [Mayr 1981; Kosaraju 1982; Lambert 1992; Leroux 2011;
Leroux and Schmitz 2015].

Finite containment problem (FCP).

Instance: Two VAS V1 and V2 known to have finite sets Reach(V1) and Reach(V2) of
reachable configurations.

Question: Is Reach(V1) included in Reach(V2)?
Lower bound: Mayr and Meyer [1981], from an Fω-bounded version of Hilbert’s Tenth

Problem. A simpler reduction is given by Jančar [2001] from Fω-MM, the halting
problem of Fω-bounded Minsky machines.

Upper bound: Originally McAloon [1984] and Clote [1986], or more generally using
length function theorems for Dickson’s lemma [Figueira et al. 2011; Abriola et al.
2015].

Comment: Testing whether the set of reachable configurations of a VAS is finite
is EXPSPACE-complete [Lipton 1976; Rackoff 1978]. FCP has been generalized by
Jančar [2001] to a large range of behavioral relations between two VAS. Without
the finiteness condition, these questions are undecidable [Hack 1976; Jančar 1995,
2001].

An arguably simpler problem on VAS has recently been shown to be ACK-complete
by Hofman and Totzke [2014]. A labeled vector addition system with states (VASS)
V = 〈Q, �, d, T , q0, v̄0〉 is a VAS extended with a finite set Q of control states that
includes a distinguished initial state q0. The transitions in T of such systems are

4Of course, Meyer does not explicitly state TOWER-completeness, but it follows immediately from the lower
and upper bounds that he provides.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:18 S. Schmitz

furthermore labeled with symbols from a finite alphabet �: transitions are then defined

as quadruples q
a,ū−→ q′ for a in � and ū in Zd. Such a system defines an infinite labeled

transition system 〈Q× Nd,→, (q0, v̄0)〉, where (q, v̄)
a−→ (q′, v̄ + ū) if q

a,ū−→ q′ is in T and
v̄ + ū ≥ 0̄. The set of traces of V is the set of finite sequences L(V) def= {a1 · · · an ∈ �∗ |
∃(q, v̄) ∈ Q× Nd.(q0, v̄0)

a1···an−−−→ (q, v̄)}.
One-dimensional VASS universality (1VASSU).

Instance: A one-dimensional labeled VASS V = 〈Q, �, 1, T , q0, x̄0〉.
Question: Does L(V) = �∗, i.e., is every finite sequence over � a trace of V?
Lower bound: Hofman and Totzke [2014], by reduction from reachability in gainy

counter machines (see LCM).
Upper bound: Hofman and Totzke [2014], using length function theorems for

Dickson’s lemma.
Comment: One-dimensional VASS are also called one counter nets in the literature.

More generally, the inclusion problem L ⊆ L(V) for some rational language L is
still ACK-complete.

6.1.2. Unreliable Counter Machines. An LCM is syntactically a Minsky machine, but its
operational semantics are different: its counter values can decrease nondeterministi-
cally at any moment during execution. See Section 3.2 for details.

Lossy counter machines reachability (LCM).

Instance: An LCM M and a configuration σ .
Question: Is σ reachable in M with lossy semantics?
Lower bound: Schnoebelen [2010], by a direct reduction from Fω-bounded Minsky

machines. The first proofs were given independently by Urquhart [1999] and
Schnoebelen [2002].

Upper bound: Length function theorem for Dickson’s lemma.
Comment: Completeness also holds for terminating LCMs—meaning that every

computation starting from the initial configuration terminates—for coverability
in Reset or Transfer Petri nets, and for reachability in gainy counter machines,
where counter values can increase nondeterministically.

6.1.3. Relevance Logics. Relevance logics provide different semantics of implication,
where a fact B is said to follow from A, written “A → B,” only if A is actually relevant
in the deduction of B. For instance, this excludes A → (B → A), (A ∧ ¬A) → B, and
so forth—see Dunn and Restall [2002] for more details. Although the full logic R is
undecidable [Urquhart 1984], its conjunctive-implicative fragment R→,∧ is decidable
and ACK-complete.

Conjunctive relevant implication (CRI).

Instance: A formula A of R→,∧.
Question: Is A a theorem of R→,∧?
Lower bound: Urquhart [1999], from a variant of LCM: the emptiness problem of

alternating expansive counter systems, for which he proved Fω-hardness directly
from Fω-MM the halting problem in Fω-bounded Minsky machines.

Upper bound: Urquhart [1999], using length function theorem for Dickson’s lemma.
Comment: Hardness also holds for any intermediate logic between R→,∧ and T→,∧,

which might include some undecidable fragments. The related contractive propo-
sitional linear logic LLC and its additive-multiplicative fragment MALLC are
also ACK-complete [Lazić and Schmitz 2015].

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:19

6.1.4. Data Logics and Register Automata. Data logics and register automata are con-
cerned with structures like words or trees with an additional equivalence relation over
the positions. The motivation for this stems in particular from XML processing, where
the equivalence stands for elements sharing the same datum from some infinite data
domain D. Enormous complexities often arise in this context, both for automata mod-
els (register automata and their variants, when extended with alternation or histories)
and for logics (which include logics with freeze operators and XPath fragments)—the
two views being tightly interconnected.

Emptiness of alternating 1-register automata (A1RA).

Instance: An A1RA A.
Question: Is the data language L(A) empty?
Lower bound: Demri and Lazić [2009], from reachability in gainy counter machines

LCM.
Upper bound: Demri and Lazić [2009], by reducing to reachability in gainy counter

machines LCM.
Comment: There exist many variants of the A1RA model, and hardness also holds for

the corresponding data logics (e.g., Jurdzinski and Lazic [2011], Demri and Lazic
[2009], Figueira and Segoufin [2009], Tan [2010], Figueira [2012] and Tzevelekos
and Grigore [2013]). See A1TA for the case of linearly ordered data and LTL↓

[k] for
data logics using multiple attributes with a hierarchical policy.

6.1.5. Metric Temporal Logic. Metric temporal logic (MTL) allows reasoning on timed
words over � × R, where � is a finite alphabet and the real values are nondecreas-
ing timestamps on events [Koymans 1990]. When considering infinite timed words,
one usually focuses on non-Zeno words, where the timestamps are increasing and un-
bounded. MTL is an extension of linear temporal logic, where temporal modalities are
decorated with real intervals constraining satisfaction; for instance, a timed word w
satisfies the formula F[3,∞)ϕ at position i, written w, i |= F[3,∞)ϕ, only if ϕ holds at some
position j > i of w with timestamp τ j − τi ≥ 3. The safety fragment of MTL restricts
the intervals decorating “until” modalities to be right bounded.

Satisfiability of safety metric temporal logic (SMTL).

Instance: A safety MTL formula ϕ.
Question: Does there exist an infinite non-Zeno timed word w subject to w, 0 |= ϕ?
Lower bound: Lazić et al. [2013], by a direct reduction from Fω-bounded Turing

machines.
Upper bound: Lazić et al. [2013], by resorting to length function theorems for Dick-

son’s Lemma.
Comment: The complexity bounds are established through reductions to and from

the fair termination problem for insertion channel systems, which Lazić et al.
[2013] show to be ACK-complete (see LCST).

6.1.6. Ground Term Rewriting. A ground term rewrite system with state (sGTRS) main-
tains a finite ordered labeled tree along with a control state from some finite set.
Although most questions about ground term rewrite systems are decidable [Dauchet
and Tison 1990], the addition of a finite set of control states yields a Turing-powerful
formalism. Formally, a sGTRS 〈Q, �, R〉 over a ranked alphabet � and a finite set of
states Q is defined by a finite set of rules R ⊆ (Q×T (�))2 of the form (q, t) → (q′, t′) act-
ing over pairs of states and trees, which rewrite a configuration (q, C[t]) into (q′, C[t′])
in any context C.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:20 S. Schmitz

Hague [2014] adds age labels in N to every node of the current tree. In the initial con-
figuration, every tree node has age zero, and at each rewrite step (q, C[t]) → (q′, C[t′]),
in the resulting configuration the nodes in t′ have age zero, and the nodes in C see their
age increment by one if q �= q′ or remain with the same age as in (q, C[t]) if q = q′. A
senescent sGTRS with lifespan k in N restricts rewrites to only occur in subtrees of age
at most k, i.e., when matching C[t] the age of the root of t is ≤ k.

State reachability in senescent ground term rewrite systems (SGTRS).

Instance: A senescent sGTRS 〈Q, �, R〉 with lifespan k, two states q0 and qf in Q,
and an initial tree t0 in T (�).

Question: Does there exist a tree t in T (�) such that (qf , t) is reachable from (q0, t0)?
Lower bound: Hague [2014], from coverability in reset Petri nets (see LCM).
Upper bound: Hague [2014], by reducing to coverability in reset Petri nets (see LCM).

6.1.7. Interval Temporal Logics. Interval temporal logics provide a formal framework for
reasoning about temporal intervals. Halpern and Shoham [1991] define a logic with
modalities expressing the basic relationships that can hold between two temporal
intervals, 〈B〉 for “begun by,” 〈E〉 for “ended by,” and their inverses 〈B̄〉 and 〈Ē〉. This
logic, and even small fragments of it, has an undecidable satisfiability problem, thus
prompting the search for decidable restrictions and variants. Montanari et al. [2010]
show that the logic with relations AĀBB̄—where 〈A〉 expresses that the two intervals
“meet,” i.e., share an endpoint—has an Fω-complete satisfiability problem over finite
linear orders, as follows.

Finite linear satisfiability of AĀBB̄ (ITL).

Instance: An AĀBB̄ formula ϕ.
Question: Does there exist an interval structure S over some finite linear order and

an interval I of S s.t. S, I |= ϕ?
Lower bound: Montanari et al. [2010], from reachability in lossy counter sys-

tems (LCM).
Upper bound: Montanari et al. [2010], by reducing to reachability in lossy counter

systems (LCM).
Comment: Hardness already holds for the fragments ĀB and ĀB̄ [Bresolin et al.

2012].

6.2. Fωω -Complete Problems

The following problems are known to be complete for HACK. In most cases, they have
been proven decidable thanks to Higman’s lemma over some finite alphabet, and the
complexity upper bounds stem from the length function theorems of Weiermann [1994],
Cichoń and Tahhan Bittar [1998], and Schmitz and Schnoebelen [2011].

6.2.1. Lossy Channel Systems. Lossy channel systems (LCS) are finite labeled transition
systems 〈Q, M, δ, q0〉 where transitions in δ ⊆ Q × {?, !} × M × Q read and write on
an unbounded channel. This would lead to a Turing-complete model of computation,
but the operational semantics of LCS are “lossy”: the channel loses symbols in an
uncontrolled manner. Formally, the configurations of an LCS are pairs (q, x), where q
in Q holds the current state and x in M∗ holds the current contents of the channel. A
read (q, ?m, q′) in δ updates this configuration into (q, x′) if there exists some x′′ subject
to x′ ≤∗ x′′ and mx′′ ≤∗ x—where ≤∗ denotes subword embedding—whereas a write
transition (q, !m, q′) updates it into (q′, x′) with x′ ≤∗ xm; the initial configuration is
(q0, ε), with empty initial channel contents.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:21

Due to the unboundedness of the channel, there might be infinitely many config-
urations reachable through transitions. Nonetheless, many problems are decidable
[Abdulla and Jonsson 1996; Cécé et al. 1996] using Higman’s lemma and what would
later become known as the theory of well-structured transition systems (WSTS) [Finkel
1987; Abdulla et al. 2000; Finkel and Schnoebelen 2001]. LCS are also the primary
source of problems hard for Fωω .

LCS reachability (LCS).

Instance: An LCS and a configuration (q, x) in Q× M∗.
Question: Is (q, x) reachable from the initial configuration?
Lower bound: Chambart and Schnoebelen [2008b], by a direct reduction from

Fωω -MM the halting problem in Fωω -bounded Minsky machines.
Upper bound: Chambart and Schnoebelen [2008b], using the length function the-

orem of Cichoń and Tahhan Bittar [1998], or more generally using length func-
tion theorems for Higman’s lemma [Weiermann 1994; Schmitz and Schnoebelen
2011].

Comment: Hardness holds already for the (semantically defined) class of terminating
systems, and for reachability in insertion channel systems, where symbols are
nondeterministically inserted in the channel at arbitrary positions instead of
being lost. The bounds are refined and parameterized in function of the size of the
alphabet M in Karandikar and Schmitz [2013].

There are many interesting applications of this question; let us mention one in
particular: Atig et al. [2010] show how concurrent finite programs communicating
through weak shared memory—i.e., prone to reorderings of read or writes, modeling
the actual behavior of microprocessors, their instruction pipelines, and cache levels—
have an Fωω -complete control-state reachability problem, through reductions to and
from LCS.

LCS termination (LCST).

Instance: An LCS.
Question: Is every sequence of transitions from the initial configuration finite?
Lower bound: Chambart and Schnoebelen [2008b], by a reduction from terminating

instances of LCS.
Upper bound: Length function theorems for Higman’s lemma.
Comment: Unlike Reachability, Termination is sensitive to switching from lossy se-

mantics to insertion semantics: it becomes NL-complete in general [Cécé et al.
1996], TOWER-complete when the channel system is equipped with channel
tests [Bouyer et al. 2012], and ACK-complete when one asks for fair nontermi-
nation, where the channel contents are read infinitely often [Lazić et al. 2013].

6.2.2. Embedding Problems. Embedding problems were introduced by Chambart and
Schnoebelen [2007], motivated by decidability problems in various classes of channel
systems mixing lossy and reliable channels. These problems are centered on the sub-
word embedding relation ≤∗ and referred to as Post Embedding Problems. There is
a wealth of variants and applications (e.g., see Chambart and Schnoebelen [2008a],
Karandikar and Schnoebelen [2012], and Karandikar and Schmitz [2013]).

Here we give a slightly different viewpoint, taken from Barcelo et al. [2013] and
Karandikar and Schmitz [2013], that uses regular relations (i.e., definable by syn-
chronous finite transducers) and rational relations (i.e., definable by finite transducers).

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:22 S. Schmitz

Rational embedding problem (RatEP).

Instance: A rational relation R included in �∗ × �∗.
Question: Is R ∩ ≤∗ nonempty?
Lower bound: Chambart and Schnoebelen [2007], from reachability in lossy channel

systems (LCS).
Upper bound: Length function theorems for Higman’s lemma.
Comment: Chambart and Schnoebelen [2007] refer to this problem as the Regular

Post Embedding Problem, not to be mistaken with GEP. An equivalent pre-
sentation uses a rational language L included in �∗ and two homomorphisms
u, v: �∗ → �∗, and asks whether there exists w in L subject to u(w) ≤∗ v(w). The
bounds are refined and parameterized in function of the size of the alphabet �
in Karandikar and Schmitz [2013].

Generalized embedding problem (GEP).

Instance: A regular relation R included in (�∗)m and a subset I of {1, . . . , m}2.
Question: Does there exist (w1, . . . , wm) in R subject to all (i, j) in I, wi ≤∗ w j?
Lower bound: Barceló et al. [2013], from RatEP.
Upper bound: Length function theorems for Higman’s lemma.
Comment: The Regular Embedding Problem (RegEP) corresponds to the case where

m = 2 and I = {(1, 2)}, and is already Fωω -hard (see Karandikar and Schmitz
[2013] for refined bounds). Barceló et al. [2013] use GEP to show the Fωω -hardness
of querying graph databases using particular extended conjunctive regular path
queries.

6.2.3. Timed Automata. Timed automata, invented by Alur and Dill [1994], are finite
automata able to recognize timed words. They are extended with clocks that evolve
synchronously through time, and can be reset and compared against some time inter-
val by the transitions of the automaton. The model can be extended with alternation,
which is then called an ATA. Satisfiability problems for MTL reduce to emptiness
problems for ATAs. Using WSTS techniques, Ouaknine and Worrell [2007] and Lasota
and Walukiewicz [2008] prove that in the case of a single clock, emptiness of ATAs
is decidable. Note that the safety fragment of MTL has an ACK-complete satisfiability
problem (see SMTL).

Emptiness of alternating 1-clock timed automata (A1TA).

Instance: An A1TA A.
Question: Is the timed language L(A) empty?
Lower bound: Lasota and Walukiewicz [2008], from reachability in insertion channel

systems (LCS).
Upper bound: Length function theorems for Higman’s lemma.
Comment: Hardness already holds for universality of nondeterministic 1-clock timed

automata.

Finite satisfiability of metric temporal logic (fMTL).

Instance: An MTL formula ϕ.
Question: Does there exist a finite timed word w subject to w, 0 |= ϕ?
Lower bound: Ouaknine and Worrell [2007], from reachability in insertion channel

systems (LCS).
Upper bound: Length function theorems for Higman’s lemma.
Comment: Satisfiability for infinite timed words is undecidable [Ouaknine and

Worrell 2006].

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:23

Note that recent work on data automata over linearly ordered domains has uncovered
some strong ties with timed automata [Figueira et al. 2015; Figueira 2012].

6.2.4. Unordered Data Nets. Unordered data nets are a generalization of Petri nets
where each token carries some datum from some infinite data domain, which can be
tested for equality against the data of other tokens when firing the transitions of the
system. This is a restriction over the more general data nets [Lazić et al. 2013], where
the data domain is deemed to be densely linearly ordered (see ENC). Like general
data nets, unordered data nets allow so-called whole-place operations, endowing them
with generalized reset capabilities; the exact complexity of coverability for unordered
Petri data nets, where such operations are not available, is unknown at the moment
(TOWER-hardness is shown by Lazić et al. [2008]).

Unordered data nets coverability (UDN).

Instance: An unordered data net N and a place p of the net.
Question: Is there a reachable marking with a least one token in p?
Lower bound: Rosa-Velardo [2014], by a direct reduction from the halting problem

in Fωω -bounded Minsky machines.
Upper bound: Rosa-Velardo [2014], by proving a length function theorem for Mfin(Nd)

the set of finite multisets of vectors of naturals, ordered by multiset embedding.

This is the only instance in this list of a HACK-complete problem that does not explicitly
rely on Higman’s lemma.

6.3. Fωωω -Complete Problems

Currently, the known Fωωω -complete problems are all related to extensions of Petri nets
called enriched nets, which include timed-arc Petri nets [Abdulla and Nylén 2001],
ordered data nets and ordered Petri data nets [Lazić et al. 2008], and constrained mul-
tiset rewriting systems [Abdulla and Delzanno 2006]. Reductions between the different
classes of enriched nets were shown by Abdulla et al. [2011] and Bonnet et al. [2010].
Defining these families of nets here would take too much space (see the referenced
papers for details). These models share one characteristic: they define well-structured
transition systems over finite sequences of vectors of natural numbers, which have an
ωωωω

maximal order type.

Enriched net coverability (ENC).

Instance: An enriched net N and a place p of the net.
Question: Is there a reachable marking with a least one token in p?
Lower bound: Haddad et al. [2012], by a direct reduction from the halting problem

in Fωωω -bounded Minsky machines.
Upper bound: Haddad et al. [2012], using length function theorems for finite

sequences of vectors of natural numbers and Higman’s lemma [Schmitz and
Schnoebelen 2011].

6.4. Fε0 -Complete Problems

Problems complete for Fε0 are untractable in a distinctive sense: although there exists a
Turing machine able to answer on every instance, the termination proof of this Turing
machine implies a totality proof for a function akin to Fε0 : however, the latter is known
to be independent of Peano arithmetic (e.g., Fartlough and Wainer [1998]).

6.4.1. Priority Channel Systems. Priority channel systems are defined similarly to LCS
(compare to Section 6.2.1), but the message alphabet M is linearly ordered to

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:24 S. Schmitz

represent message priorities. Rather than message losses, the unreliable behaviors
are now message supersedings, i.e., applications of the rewrite rules ab → b for b ≥ a
in M on the channel contents.

PCS reachability (PCS).

Instance: A PCS and a configuration (q, x) in Q× M∗.
Question: Is (q, x) reachable from the initial configuration?
Lower bound: Haase et al. [2014], by a direct reduction from the halting problem in

Fε0 -bounded Turing machines.
Upper bound: Haase et al. [2014], using length function theorems for nested appli-

cations of Higman’s lemma [Schmitz and Schnoebelen 2011].

6.4.2. Nested Counter Systems and Hierarchical Multiattributed Data Logics. Finite data words
may generally carry several data values from some infinite data domain in addition
to a label from some finite alphabet. The satisfiability of data logics over such data
words becomes undecidable, even for the restricted logics discussed in Section 6.1.4.
However, decidability can be recovered when the logic is restricted by a hierarchical
discipline on its attributes {0, . . . , k}, where attribute i can only be tested for equality
on two positions of the word if all attributes 0, . . . , i − 1 are also simultaneously tested.

Satisfiability of freeze LTL with ordered attributes (LTL↓
[k]).

Instance: A formula ϕ of freeze LTL with one register and k hierarchical attributes.
Question: Does there exist a k-attributed finite data word w subject to w |= ϕ?
Lower bound: Decker and Thoma [2015], by a direct reduction from Fε0 -bounded

Minsky machine.
Upper bound: Decker and Thoma [2015], by a reduction to reachability in priority

channel systems (PCS).
Comment: The complexity bounds are established through the coverability problem

for a class of nested counter systems [Decker and Thoma 2015].

7. CONCLUDING REMARKS

The classical complexity hierarchies are limited to elementary problems despite a
growing number of natural problems that require much larger computational resources.
In this article, we propose a definition for fast-growing complexity classes (Fα)α, which
provide accurate enough notations for many nonelementary decision problems: they
allow to express some important landmarks, like TOWER = F3, ACK = Fω, or HACK =
Fωω , and are close enough to the extended Grzegorczyck hierarchy so that complexity
statements in terms of Fα can often be refined as statements in terms of Fα. These
definitions allow one to employ the familiar vocabulary of complexity theory, reductions,
and completeness instead of the more ad hoc notions used thus far. This will hopefully
foster the reuse of “canonical problems” in establishing high complexity results rather
than proofs from first principles, i.e., resource-bounded Turing machines.

A pattern emerges in the list of known Fα-complete problems, allowing one to an-
swer a natural concern already expressed by Clote [1986]: “What do complexity classes
for such rapidly growing functions really mean?” Indeed, beyond the intellectual sat-
isfaction one might find in establishing a problem as complete for some class, being
Fα-complete brings additional information on the problem itself: that it relies in some
essential way on the ordinal ωα being well ordered. All problems in Section 6 match
this pattern, as their decision algorithms rely on well-quasi-orders with maximal order
type ωα for their termination, for which length function theorems then allow one to
derive Fα bounds.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:25

Finally, we remark that currently there are no known natural problems of “inter-
mediate” complexity, i.e., between ELEM and ACK, or between the latter and HACK.
Parametric versions of LCM or LCS seem like good candidates for this, but so far the
best lower and upper bounds do not quite match (e.g., see Karandikar and Schmitz
[2013]). It would be interesting to find examples that exercise the intermediate levels
of the (Fα)α hierarchy.

APPENDIX

A. SUBRECURSIVE HIERARCHIES

This section presents the technical background and proofs missing from the main
text.

A.1. Hardy Functions

Let h: N → N be a strictly increasing function. The Hardy functions (hα)α<ε0 controlled
by h are defined inductively by

h0(x) def= x, hα+1(x) def= hα(h(x)), hλ(x) def= hλ(x)(x). (29)

A definition related to fundamental sequences is that of the predecessor at x of an
ordinal greater than 0, which recursively considers the xth element in the fundamental
sequence of limit ordinals until a successor ordinal is found:

Px(α + 1) def= α, Px(λ) def= Px(λ(x)). (30)

Using predecessors, the definition of the Hardy functions becomes even simpler: for
α > 0,

hα(x) def= hPx(α)(h(x)). (31)

For instance, observe that hk(x) for some finite k is the kth iterate of h. This intuition
carries over: hα is a transfinite iteration of the function h, using diagonalization to
handle limit ordinals. The usual Hardy functions Hα are then obtained by fixing H(x) def=
succ(x) = x + 1.

The Hardy functions enjoy a number of properties (see Fairtlough and Wainer [1992]
and Cichoń and Tahhan Bittar [1998]). They are expansive, and they are monotonic
with respect to both the base function h and to the argument x: for all g ≤ h, x ≤ y, and
α,

x ≤ hα(x), gα(x) ≤ hα(x), hα(x) ≤ hα(y). (32)

As often with subrecursive functions, what the Hardy functions lack is monotonicity in
the ordinal index (see Section A.2).

By transfinite induction on ordinals, we also find several identities:

hωα ·c = Fc
h,α, (33)

hα+β = hα ◦ hβ. (34)

Note that (33) entails the expansiveness and monotonicity of the fast-growing
functions.

Equation (34) is extremely valuable: it shows that —up to some extent—the
composition of Hardy functions can be internalized in the ordinal index. However,
here we run into a limitation of considering “set-theoretic” ordinal indices: infor-
mally, (34) is implicitly restricted to ordinals α + β “in CNF.” Formally, it requires

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:26 S. Schmitz

α + β = α ⊕ β , where “⊕” denotes the natural sum operation. For instance, it fails in
H1(Hω(x)) = H1(Hx(x + 1)) = 2x + 2 > 2x + 1 = Hω(x), although 1 + ω = ω . We will
discuss this point further in Section A.6.

Remark A.1. Thanks to (33), the definitions of the (F<α)α and (Fα)α classes can be
restated purely in terms of Hardy functions. Indeed,

F<α =
⋃

β<α,c<ω

FDTIME
(
Fc

β (n)
) =

⋃

β<α,c<ω

FDTIME(Hωβ ·c(n)) =
⋃

γ<ωα

FDTIME(Hγ (n)),

Fα =
⋃

p∈F<α

DTIME(Hωα

(p(n))).

A.2. Monotonicity

One of the issues of most subrecursive hierarchies of functions is that they are not
monotone in the ordinal index: β < α does not necessarily imply Hβ ≤ Hα, i.e.,
Hx+2(x) = 2x + 2 > 2x + 1 = Hω(x). However, what is true is that they are even-
tually monotone: if β < α, then there exists n0 such that for all x ≥ n0, Hβ(x) ≤ Hα(x).
This result (and others) can be proven using a pointwise ordering: for all x, define the
≺x relation as the transitive closure of

α ≺x α + 1, λ(x) ≺x λ. (35)

The relation “β ≺x α” is also noted “β ∈ α[x]” in Schwichtenberg and Wainer [2012,
pp. 158–163]), where the results of this section are proven.

The ≺x relations form a strict hierarchy of refinements of the ordinal ordering <:

≺0 � ≺1 � · · · � ≺x � · · · � <. (36)

We are going to use two main properties of the pointwise ordering:

x < y implies λ(x) ≺y λ(y), (37)

β ≺x α implies Hβ(x) ≤ Hα(x). (38)

For a first application, define the norm of an ordinal term as the maximal coefficient
that appears in its normal form: if α = ωα1 · c1 + · · · + ωαm · cm with α1 > · · · > αm

and c1, . . . , cm > 0, then Nα
def= max{c1, . . . , cm, Nα1, . . . , Nαm}. Then β < α implies

β ≺Nβ α [Schwichtenberg and Wainer 2012, p. 158]. Together with (38), this entails
that for all x ≥ Nβ, Hβ(x) ≤ Hα(x).

A.3. Ackermann Functions

In this section, we prove some basic properties of the Ackermann hierarchy of functions
(Aα)α defined in Section 4.1.1. Its definition is less uniform than the fast-growing and
Hardy functions, leading to slightly more involved proofs.

LEMMA A.2. For all α > 0, Aα(0) ≤ 1.

PROOF. By transfinite induction over α. For α = 1, A1(0) = 0 ≤ 1. For a successor
ordinal α + 1, Aα+1(0) = 1. For a limit ordinal λ, Aλ(0) = Aλ(0)(0) ≤ 1 by induction
hypothesis.

As usual with subrecursive hierarchies, the main issue with the Ackermann functions
is to prove various monotonicity properties in the argument and in the index.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:27

LEMMA A.3. For all α, β > 0 and x, y:

(i) if α > 1, Aα is strictly expansive: Aα(x) > x,
(ii) Aα is strictly monotone in its argument: if y > x, Aα(y) > Aα(x),

(iii) (Aα)α is pointwise monotone in its index: if α �x β, Aα(x) ≥ Aβ(x).

PROOF. Let us first consider the case α = 1: A1 is strictly monotone, proving (ii).
Regarding (i) for α = 2, A2(x) = 2x > x for all x.

We prove now the three statements by simultaneous transfinite induction over α.
Assume that they hold for all β < α (and thus for all β ≺x α for all x).

For (i),

—If α is a successor ordinal β +1, then Aβ+1(x) ≥ Aβ(x) > x by induction hypothesis (iii)
and (i) on β ≺x α.

—If α is a limit ordinal λ, then Aλ(x) = Aλ(x)(x) > x by induction hypothesis (i) on
λ(x) ≺x α.

For (ii), it suffices to prove the result for y = x + 1:

—If α is a successor ordinal β + 1, then Aα(x + 1) = Aβ(Aα(x)) > Aα(x) by induction
hypothesis (i) on β ≺x α.

—If α is a limit ordinal λ, then Aλ(x + 1) = Aλ(x+1)(x + 1) ≥ Aλ(x)(x + 1) by induction
hypothesis (iii) on λ(x) ≺x+1 λ(x + 1) (recall Equation (37)), hence the result by
induction hypothesis (ii) on λx ≺x α.

For (iii), it suffices to prove the result for α = β + 1 and β = α(x) and rely on
transitivity:

—If α = β + 1, then we show (iii) by induction over x: the base case x = 0 stems
from Aα(0) = A0

β(1) = 1 ≥ Aβ(0) by Lemma A.2; the induction step x + 1 stems from
Aα(x + 1) = Aβ(Aα(x)) ≥ Aβ(x + 1) using the induction hypothesis on x and (ii) on
β ≺Aα(x) α.

—If β = α(x), then Aα(x) = Aβ(x) by definition. �
Our main interest in the Ackermann functions is their relation with the fast-growing

ones.

LEMMA A.4. For all α > 0 and all x, Aα(x) ≤ Fα(x) ≤ Aα(6x + 5).

PROOF. We only prove the second inequality, as the first one can be deduced from the
various monotonicity properties of Fα and Aα. The case x = 0 is settled for all α > 0 by
checking that Fα(0) = 1 ≤ 10 = A1(5) ≤ Aα(5), since 1 �x α for all α > 0 and we can
therefore apply Lemma A.3.(iii). Assume now that x > 0; we prove the statement by
transfinite induction over α > 0:

—For the base case α = 1, F1(x) = 2x + 1 ≤ 12x + 10 = A1(6x + 5).
—For the successor case α +1, Aα+1(6x +5) = A5(x+1)

α (Ax
α(1)) ≥ A5(x+1)

α (x) by Lemma A.3.
We show by induction over j that A5 j

α (x) ≥ F j
α (x). This holds for the base case j = 0,

and for the induction step, A5
α(A5 j

α (x)) ≥ A5
α(F j

α (x)) by induction hypothesis on j
and Lemma A.3.(ii). Furthermore, for all y > 0, Aα(A4

α(y)) ≥ Aα(A4
1(y)) = Aα(16y) ≥

Aα(6y+5) ≥ Fα(y) by induction hypothesis on α, which shows that A5
α(F j

α (x)) ≥ F j+1
α (x)

when choosing y = F j
α (x) > 0. Then A5(x+1)

α (x) ≥ Fx+1
α (x) = Fα+1(x), thus completing

the proof in the successor case.
—For the limit case λ, Aλ(6x + 5) = Aλ(6x + 5)(6x + 5) ≥ Aλ(x)(6x + 5) ≥ Fλ(x)(x) =

Fλ(x), using successively Lemma A.3.(iii) on λ(x) ≺6x+5 λ(6x + 5) and the induction
hypothesis on λ(x) < λ. �

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:28 S. Schmitz

A.4. Relativized Functions

We prove here the missing lemma from the proof of Theorem 4.2:

LEMMA A.5. Let h: N → N be a function, α, β be two ordinals, and x0 be a natural
number. If for all x ≥ x0, h(x) ≤ Fβ(x), then there exists an ordinal γ such that

(i) for all x ≥ x0, Fh,α(x) ≤ Fβ+α(Fγ (x)), and
(ii) γ < β + α whenever β + α > 0.

PROOF. Let us first fix some notations: write α = ωα1 + · · · + ωαm with α1 ≥ · · · ≥ αm
and β = ωβ1 + · · · + ωβn with β1 ≥ · · · ≥ βn, and let i be the maximal index in {1, . . . , n}
such that βi ≥ α1, or set i = 0 if this does not occur. Define β ′ def= ωβ1 + · · · + ωβi and
γ

def= ωβi+1 + · · · + ωβn (thus, β ′ = 0 if i = 0); then β = β ′ + γ and β + α = β ′ + α. Note
that this implies γ < ωα1 ≤ α ≤ β + α, unless α = 0 and then γ = 0, thus fulfilling (ii).

We first prove by transfinite induction over α that

Fβ ′+α ◦ Fγ ≥ Fγ ◦ FFβ ,α. (39)

PROOF OF (39). For the base case α = 0, then γ = 0 and β ′ = β, and indeed

Fβ(F0(x)) = Fβ(x + 1)
≥ Fβ(x) + 1 by monotonicity of Fβ

= F0(Fβ(x))
= F0(FFβ ,0(x)).

For the successor case α + 1 and assuming it holds for α, let us first show by induction
over j that for all y,

F j
β ′+α(Fγ (y)) ≥ Fγ

(
F j

Fβ ,α
(y)

)
. (40)

This immediately holds for the base case j = 0, and for the induction step,

Fβ ′+α

(
F j

β ′+α(Fγ (y))
) ≥ Fβ ′+α

(
Fγ (F j

Fβ ,α
(y))

)
by induction hypothesis (40) on j

≥ Fγ

(
FFβ ,α(F j

Fβ ,α
(y))

)
by induction hypothesis (39) on α < α + 1.

This yields the desired inequality:

Fβ ′+α+1(Fγ (x)) = F Fγ (x)+1
β ′+α (Fγ (x))

≥ Fx+1
β ′+α(Fγ (x))

≥ Fγ

(
Fx+1

Fβ ,α
(x)

)

= Fγ (FFβ ,α+1(x))

using (40) with j = x + 1 and y = x.
For the limit case λ,

Fβ ′+λ(Fγ (x)) = Fβ ′+λ(Fγ (x))(Fγ (x))

≤ Fβ ′+λ(x)(Fγ (x)) since λ(x) ≺Fγ (x) λ(Fγ (x))

≤ Fγ

(
FFβ ,λ(x)(x)

)
by induction hypothesis (39) on λ(x) < λ

= Fγ (FFβ ,λ(x)).

Returning to the main proof, a simple induction over α shows that for all x ≥ x0,

Fh,α(x) ≤ FFβ ,α(x). (41)

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:29

We then conclude for (i) that for all x ≥ x0,

Fh,α(x) ≤ FFβ ,α(x) by (41)

≤ Fγ (FFβ ,α(x)) by expansivity of Fγ

≤ Fβ ′+α(Fγ (x)) by (39).

A.5. Nonstandard Assignment of Fundamental Sequences

Here we show the omitted details of the proof of Theorem 4.4.

LEMMA A.6. Let s:N → N be a monotone function and α be an ordinal.

—If s is strictly expansive, then Fα,s ≤ Fs,α ◦ s, and
—otherwise Fα,s ≤ Fα.

PROOF. For the first point, let us show that

s(Fα,s(x)) ≤ Fs,α(s(x)) (42)

for all monotone s with s(x) > x, all α and all x, which entails the lemma since s is
expansive. We proceed by transfinite induction over α. For the base case, Fs,0(s(x)) =
s(s(x)) ≥ s(x + 1) = s(F0,s(x)) since s is monotone and strictly expansive. For the
successor case, Fs,α+1(s(x)) = Fs(x)+1

s,α (s(x)) ≥ s(Fs(x)
α,s (x)) = s(Fα+1,s(x)), where the middle

inequality stems from the fact that F j
s,α(s(x)) ≥ s(F j

α,s(x)), as can be seen by induction
on j using the induction hypothesis on α < α + 1. For the limit case, observe that
λ(x)s ≺s(x) λ(s(x)), thus Fs,λ(s(x)) = Fs,λ(s(x))(s(x)) ≥ Fs,λ(x)s (s(x)) ≥ s(Fλ(x)s,s(x)) = s(Fλ,s(x))
using the induction hypothesis on λ(x)s < λ.

The second point is straightforward by induction over α.

LEMMA A.7. For all α, F0 ◦ Fα ≤ Fα,id ◦ F0.

PROOF. By induction over α. For the zero case, F0(F0(x)) = x + 2 = F0,id(F0(x)).
For the successor case, we can check that F j

α,id(x + 1) ≥ F j
α (x) + 1 for all j using the

induction hypothesis on α, thus Fα,id(x + 1) = Fx+1
α,id (x + 1) ≥ Fx+1

α (x) + 1 = Fα+1(x) + 1.
For the limit case, note that λ(x) ≺x+1 λ(x + 1), thus Fλ,id(x + 1) = Fλx+1,id(x + 1) ≥
Fλ(x+1)(x) + 1 ≥ Fλ(x)(x) + 1 = Fλ(x) + 1.

A.6. Composing Hardy Functions

The purpose of this section is to provide the technical details for the proof of Lemma 4.6.
The natural sum α⊕β of two ordinals written as α = ωα1 +· · ·+ωαm with α1 ≥ · · · ≥ αm

and β = ωβ1 + · · ·ωβn with β1 ≥ · · · ≥ βn can be defined as the ordinal ωγ1 + · · · + ωγm+n

where the γi ’s range over {α j | 1 ≤ j ≤ m} ∪ {βk | 1 ≤ k ≤ n} in nonincreasing order. For
instance, ω2 + ωω = ωω but ω2 ⊕ ωω = ωω + ω2.

LEMMA A.8. For all ordinals α and β, and all functions h,

hα ◦ hβ ≤ hα⊕β.

PROOF. Write α = ωα1 + · · · + ωαm with α1 ≥ · · · ≥ αm and β = ωβ1 + · · · + ωβn with
β1 ≥ · · · ≥ βn, then α⊕β = ωγ1 +· · ·+ωγm+n. We prove the lemma by transfinite induction
over β: it holds immediately for the base case since α ⊕0 = α and for the successor case
since α ⊕ (β + 1) = (α ⊕ β) + 1. For the limit case, let i be the last index of βn among
the γ j in the CNF of α ⊕ β. If i = m+ n, then α ⊕ (β(x)) = (α ⊕ β)(x) and the statement

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:30 S. Schmitz

holds. Otherwise, define γ
def= ωγ1 + · · · + ωγi and γ ′ def= ωγi+1 + · · · + ωγm+n. For all x,

hα⊕β = hγ (hγ ′
(x)) by (34)

= hγ (hγ ′
(x))(hγ ′

(x)) since γ is a limit ordinal

≥ hγ (x)(hγ ′
(x)) since γ (x) ≺[hγ ′(x)] γ (hγ ′

(x))

= hα⊕(β(x))(x) by (34)

≥ hα(hβ(x)(x)) by induction hypothesis on β(x) < β

= hα(hβ(x)).

COROLLARY A.9. Let α be an ordinal and f a function in F<α. Then there exists g in
F<α such that f ◦ Fα ≤ Fα ◦ g.

PROOF. As f is in some Fβ for β < α, f ≤ Fc
β for some finite c by Löb and Wainer [1970,

Theorem 2.10], thus f ≤ Hωβ ·c by (33), and we let g def= Hωβ ·c, which indeed belongs to
Fβ ⊆ F<α. Still by (33), Fα = Hωα

. Observe that ωβ · c < ωα, hence (ωβ · c)⊕ωα = ωα+ωβ · c.
By (34), Hωα+ωβ ·c = Hωα ◦ Hωβ ·c. Applying (33) and Proposition A.8, we obtain that
f ◦ Fα ≤ g ◦ Fα ≤ Fα ◦ g.

A.7. Computing Hardy Functions

In this section, we explain how to compute Hardy functions, thus providing the back-
ground material for the proof of Theorem 5.1. This type of results is pretty standard—
see for instance Wainer [1970], Fartlough and Wainer [1998], or Schichtenberg and
Wainer [2012, pp. 159–160]—but the particular way that we employ is closer in spirit
to the viewpoint employed in Haddad et al. [2012], Karandikar and Schmitz [2013],
and Haase et al. [2014].

A.7.1. Hardy Computations. Using (31), let us call a Hardy computation for hα(n) a se-
quence of pairs 〈α0, n0〉, 〈α1, n1〉, . . . , 〈α�, n�〉, where α0 = α, n0 = n, α� = 0, and at each
step 0 < i ≤ �, αi = Pni−1 (αi−1) and ni = h(ni−1). An invariant of this computation is
that hαi (ni) = hα(n) at all steps 0 ≤ i ≤ �, hence n� = hα(n). Since h is increasing, the
ni values increase throughout this computation, whereas the αi values decrease, and
termination is guaranteed.

Our plan is to implement the Hardy computation of hα(n) using a Turing machine,
which essentially needs to implement the � steps 〈αi, ni〉 → 〈Pni−1 (αi−1), h(ni−1)〉. We
assume h to be an elementarily constructible expansive function such that h(n) can
be computed in e(h(n)) for some fixed monotone elementary function e. Then, the com-
plexity of a single step will depend mainly on h(ni−1) ≤ h�(n) and on the complexity of
updating αi.

A.7.2. Cichoń Functions. To measure the length � of a Hardy computation for hα(n), we
define a family (hα)α of functions N → N by induction on the ordinal index:

h0(x) def= 0, hα+1(x) def= 1 + hα(h(x)), hλ(x) def= hλ(x)(x). (43)

This family is also known as the length hierarchy and was defined by Cichoń and
Tahhan Bittar [1998]. It satisfies several interesting identities:

hα(x) = hhα(x)(x), hα(x) ≥ hα(x) + x. (44)

Its main interest here is that it measures the length of Hardy computations: � = hα(n) ≤
hα(n) by the preceding equations, which in turn implies h�(n) = hα(n).

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

Complexity Hierarchies beyond Elementary 3:31

A.7.3. Encoding Ordinal Terms. It remains to bound the complexity of computing αi =
Pni−1 (αi−1). Assuming some reasonable string encoding of the terms denoting the αi (e.g.,
Haase et al. [2014]), we will consider that each αi can be computed in time p(|αi|)
a monotone polynomial function of the size |αi| of its term representation, and we
will rather concentrate on bounding this size. We define it by induction on the term
denoting αi:

|0| def= 0, |ωα| def= 1 + |α|, |α + α′| def= |α| + |α′|. (45)

Let us also recall the definition of the slow-growing hierarchy (Gα)α:

G0(x) def= 0, Gα+1(x) def= 1 + Gα(x), Gλ(x) def= Gλ(x)(x). (46)

The slow-growing function satisfy several natural identities:

Gα(x) = 1 + GPx(α)(x), (47)

Gα(x + 1) > Gα(x), (48)

if β ≺x α then Gβ(x) ≤ Gα(x). (49)

Furthermore,

Gα+α′ (x) = Gα(x) + Gα′ (x) , Gωα (x) = (x + 1)Gα(x). (50)

Hence, Gα(x) is the elementary function that results from substituting x + 1 for every
occurrence of ω in the CNF of α [Schwichtenberg and Wainer 2012, p. 159].

LEMMA A.10. Let x > 0. Then |α| ≤ Gα(x).

PROOF. By induction over the term denoting α: |0| = 0 = G0(x), |ωα| = 1 + |α| ≤
(x + 1)|α| ≤ (x + 1)Gα(x) = Gωα (x), and |α + α′| = |α| + |α′| ≤ Gα(x) + Gα′ (x) = Gα+α′ (x).

LEMMA A.11. If 〈α0, n0〉, . . . , 〈α�, n�〉 is a Hardy computation for hα(n) with n > 0, then
for all 0 ≤ i ≤ �, |αi| ≤ Gα(n�).

PROOF. We distinguish two cases. If i = 0, then |α0| = |α| ≤ Gα(n) by Lemma A.10
since n > 0, and hence |α0| ≤ Gα(n�) since n� ≥ n by (48). If i > 0, then

|αi| = |Pni−1 (αi−1)|
≤ GPni−1 (αi−1)(ni−1) by Lemma A.10 since ni−1 ≥ n > 0

< Gαi−1 (ni−1) by (47)
≤ Gα(ni−1) since αi−1 ≺ni−1 α by (49)
≤ Gα(n�) since ni−1 ≤ n� by (48). �

The restriction to n > 0 in Lemma A.11 is not a big issue: either h(0) = 0 and then
hα(0) = 0 or h(0) > 0 and then hγ+ωβ

(0) = hγ (h(0)), and we can proceed from γ instead
of γ + ωβ as initial ordinal of our computation.

A.7.4. Wrapping Up. To conclude, each of the � ≤ hα(n) steps of a Hardy computation
for hα(n) needs to compute

—αi, in time p(Gα(hα(n))) since |αi| ≤ Gα(hα(n)) and p was assumed monotone, and
—ni, in time e(hα(n)) since h(ni−1) ≤ hα(n) and e was assumed to be monotone.

This yields the following statement.

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

3:32 S. Schmitz

PROPOSITION A.12. The Hardy function hα can be computed in time

O
(
hα(n) · (

p(Gα(hα(n))) + e(hα(n))
))

.

REFERENCES

Parosh A. Abdulla, Karlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. 2000. Algorithmic analysis
of programs with well quasi-ordered domains. Information and Computation 160, 1–2, 109–127.
DOI:http://dx.doi.org/10.1006/inco.1999.2843

Parosh A. Abdulla and Giorgio Delzanno. 2006. On the coverability problem for constrained multiset rewrit-
ing. In Proceedings of the 2006 AVIS Conference.

Parosh A. Abdulla, Giorgio Delzanno, and Laurent Van Begin. 2011. A classification of the expres-
sive power of well-structured transition systems. Information and Computation 209, 3, 248–279.
DOI:http://dx.doi.org/10.1016/j.ic.2010.11.003

Parosh A. Abdulla and Bengt Jonsson. 1996. Verifying programs with unreliable channels. Information and
Computation 127, 2, 91–101. DOI:http://dx.doi.org/10.1006/inco.1996.0053

Parosh A. Abdulla and Aletta Nylén. 2001. Timed Petri nets and BQOs. In Applications and
Theory of Petri Nets 2001. Lecture Notes in Computer Science, Vol. 2075. Springer, 53–70.
DOI:http://dx.doi.org/10.1007/3-540-45740-2_5

Sergio Abriola, Santiago Figueira, and Gabriel Senno. 2015. Linearizing well-quasi orders and bound-
ing the length of bad sequences. Theoretical Computer Science 603, 3–22. DOI:http://dx.doi.org/
10.1016/j.tcs.2015.07.012

Rajeev Alur and David L. Dill. 1994. A theory of timed automata. Theoretical Computer Science 126, 2,
183–235. DOI:http://dx.doi.org/10.1016/0304-3975(94)90010-8

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the
verification problem for weak memory models. In Proceedings of the 2010 POPL Conference. ACM, New
York, NY, 7–18. DOI:http://dx.doi.org/10.1145/1706299.1706303

Pablo Barceló, Diego Figueira, and Leonid Libkin. 2013. Graph logics with rational relations. Logical Methods
in Computer Science 9, 3, Article No. 1. DOI:http://dx.doi.org/10.2168/LMCS-9(3:1)2013

Arnold Beckmann. 2001. Exact bounds for lengths of reductions in typed λ-calculus. Journal of Symbolic
Logic 66, 3, 1277–1285. DOI:http://dx.doi.org/10.2307/2695106

Michel Blockelet and Sylvain Schmitz. 2011. Model-checking coverability graphs of vector addition systems.
In Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, 6907. Springer,
108–119. DOI:http://dx.doi.org/10.1007/978-3-642-22993-0_13

Rémi Bonnet, Alain Finkel, Serge Haddad, and Fernando Rosa-Velardo. 2010. Comparing Petri Data Nets and
Timed Petri Nets. Research Report LSV-10-23. LSV, ENS Cachan. http://lsv.fr/Publis/rrpublis?onlykey=
rr-lsv-10-23

Patricia Bouyer, Nicolas Markey, Joël O. Ouaknine, Philippe Schnoebelen, and James B. Worrell. 2012. On
termination and invariance for faulty channel machines. Formal Aspects of Computing 24, 4–6, 595–607.
DOI:http://dx.doi.org/10.1007/s00165-012-0234-7

Davide Bresolin, Dario Della Monica, Angelo Montanari, Pietro Sala, and Guido Sciavicco. 2012. Interval
temporal logics over finite linear orders: The complete picture. In Proceedings of the 2012 ECAI Confer-
ence. 199–204. DOI:http://dx.doi.org/10.3233/978-1-61499-098-7-199

Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. 1996. Unreliable channels are easier to ver-
ify than perfect channels. Information and Computation 124, 1, 20–31. DOI:http://dx.doi.org/10.1006/
inco.1996.0003

Pierre Chambart and Philippe Schnoebelen. 2007. Post embedding problem is not primitive recur-
sive, with applications to channel systems. In FSTTCS 2007: Foundations of Software Technology
and Theoretic Computer Science. Lecture Notes in Computer Science, Vol. 4855. Springer, 265–276.
DOI:http://dx.doi.org/10.1007/978-3-540-77050-3_22

Pierre Chambart and Philippe Schnoebelen. 2008a. The ω-regular post embedding problem. In Foundations
of Software Science and Computational Structures. Lecture Notes in Computer Science, Vol. 4962.
Springer, 97–111. DOI:http://dx.doi.org/10.1007/978-3-540-78499-9_8

Pierre Chambart and Philippe Schnoebelen. 2008b. The ordinal recursive complexity of lossy chan-
nel systems. In Proceedings of the 2008 LICS Conference. IEEE, Los Alamitos, CA, 205–216.
DOI:http://dx.doi.org/10.1109/LICS.2008.47

E. Adam Cichoń and Elias Tahhan Bittar. 1998. Ordinal recursive bounds for Higman’s theorem. Theoretical
Computer Science 201, 1–2, 63–84. DOI:http://dx.doi.org/10.1016/S0304-3975(97)00009-1

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1016/j.ic.2010.11.003
http://dx.doi.org/10.1006/inco.1996.0053
http://dx.doi.org/10.1007/3-540-45740-2_5
http://dx.doi.org/10.1016/j.tcs.2015.07.012
http://dx.doi.org/10.1016/j.tcs.2015.07.012
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.2168/LMCS-9(3:1)2013
http://dx.doi.org/10.2307/2695106
http://dx.doi.org/10.1007/978-3-642-22993-0_13
http://lsv.fr/Publis/rrpublis?onlykey=rr-lsv-10-23
http://lsv.fr/Publis/rrpublis?onlykey=rr-lsv-10-23
http://dx.doi.org/10.1007/s00165-012-0234-7
http://dx.doi.org/10.3233/978-1-61499-098-7-199
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1007/978-3-540-77050-3_22
http://dx.doi.org/10.1007/978-3-540-78499-9_8
http://dx.doi.org/10.1109/LICS.2008.47
http://dx.doi.org/10.1016/S0304-3975(97)00009-1

Complexity Hierarchies beyond Elementary 3:33

Peter Clote. 1986. On the finite containment problem for Petri nets. Theoretical Computer Science 43, 99–105.
DOI:http://dx.doi.org/10.1016/0304-3975(86)90169-6

Peter Clote. 1999. Computation models and function algebras. In Handbook of Computability Theory, E.
R. Griffor (Ed.). Studies in Logic and the Foundations of Mathematics, Vol. 140. Elsevier, 589–681.
DOI:http://dx.doi.org/10.1016/S0049-237X(99)80033-0

M. Dauchet and S. Tison. 1990. The theory of ground rewrite systems is decidable. In Proceedings of
the 1990 LICS Conference. IEEE, Los Alamitos, CA, 242–248. DOI:http://dx.doi.org/10.1109/LICS.1990.
113750

Dick H. J. de Jongh and Rohit Parikh. 1977. Well-partial orderings and hierarchies. Indagationes Mathe-
maticae 39, 3, 195–207. http://dx:doi:org/10:1016/1385-7258(77)90067-1

Normann Decker and Daniel Thoma. 2015. On Freeze LTL with ordered attributes. Preprint. Available at
http://arxiv.org/abs/1504.06355

Stéphane Demri and Ranko Lazić. 2009. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic 10, 3, Article No. 16. DOI:http://dx.doi.org/10.1145/1507244.
1507246

J. Michael Dunn and Greg Restall. 2002. Relevance logic. In Handbook of Philosophical Logic, D. M. Gabbay
and F. Guenthner (Eds.), Vol. 6. Kluwer, 1–128. DOI:http://dx.doi.org/10.1007/978-94-017-0460-1_1

Jacob Elgaard, Nils Klarlund, and Anders Møller. 1998. MONA 1.x: New techniques for WS1S and
WS2S. In Computer Aided Verification. Lecture Notes in Computer Science, Vol. 1427. Springer, 516–
520. DOI:http://dx.doi.org/10.1007/BFb0028773

Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. 1968. Counter machines and counter languages.
Mathematical Systems Theory 2, 3, 265–283. DOI:http://dx:doi:org/10:1007/BF01694011

Matthew V. H. Fairtlough and Stanley S. Wainer. 1992. Ordinal complexity of recursive definitions. Informa-
tion and Computation 99, 2, 123–153. DOI:http://dx.doi.org/10.1016/0890-5401(92)90027-D

Matthew V. H. Fairtlough and Stanley S. Wainer. 1998. Hierarchies of provably recursive functions. In
Handbook of Proof Theory, S. Buss (Ed.). Studies in Logic and the Foundations of Mathematics, Vol. 137.
Elsevier, 149–207. DOI:http://dx.doi.org/10.1016/S0049-237X(98)80018-9

Solomon Feferman. 1962. Classification of recursive functions by means of hierarchies. Transactions
of the American Mathematical Society 104, 101–122. DOI:http://dx.doi.org/10.1090/S0002-9947-1962-
0142453-3

Diego Figueira. 2012. Alternating register automata on finite words and trees. Logical Methods in Computer
Science 8, 1, Article No. 22. DOI:http://dx.doi.org/10.2168/LMCS-8(1:22)2012

Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. 2011. Ackermannian and
primitive-recursive bounds with Dickson’s lemma. In Proceedings of the 2011 LICS Conference. IEEE,
Los Alamitos, CA, 269–278. DOI:http://dx.doi.org/10.1109/LICS.2011.39

Diego Figueira, Piotr Hofman, and Sławomir Lasota. 2015. Relating timed and register automata. Mathe-
matical Structures in Computer Science. To appear. DOI:http://dx.doi.org/10.1017/S0960129514000322

Diego Figueira and Luc Segoufin. 2009. Future-looking logics on data words and trees. In Mathematical
Foundations of Computer Science 2009. Lecture Notes in Computer Science, Vol. 5734. Springer, 331–
343. DOI:http://dx:doi:org/10:1007/978-3-642-03816-729

Alain Finkel. 1987. A generalization of the procedure of Karp and Miller to well structured transition
systems. In Automata, Languages and Programming. Lecture Notes in Computer Science, Vol. 267.
Springer, 499–508. DOI:http://dx.doi.org/10.1007/3-540-18088-5_43

Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems everywhere! Theoretical
Computer Science 256, 1–2, 63–92. DOI:http://dx.doi.org/10.1016/S0304-3975(00)00102-X

Harvey M. Friedman. 1999. Some decision problems of enormous complexity. In Proceedings of the 1999
LICS Conference. IEEE, Los Alamitos, CA, 2–13. DOI:http://dx.doi.org/10.1109/LICS.1999.782577

Andrzej Grzegorczyk. 1953. Some classes of recursive functions. Rozprawy Matematyczne 4, 1–46. http://
matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf.

Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. 2014. The power of priority channel sys-
tems. Logical Methods in Computer Science 10, 4, Article No. 4. DOI:http://dx.doi.org/10.2168/LMCS-
10(4:4)2014

Michel Hack. 1976. The equality problem for vector addition systems is undecidable. Theoretical Computer
Science 2, 1, 77–95. DOI:http://dx.doi.org/10.1016/0304-3975(76)90008-6

Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen. 2012. The ordinal-recursive complexity of timed-
arc Petri nets, data nets, and other enriched nets. In Proceedings of the 2012 LICS Conference. IEEE,
Los Alamitos, CA, 355–364. DOI:http://dx.doi.org/10.1109/LICS.2012.46

Matthew Hague. 2014. Senescent ground tree rewriting systems. In Proceedings of the 2014 CSL-LICS
Conference. ACM, New York, NY, Article No. 48. DOI:http://dx.doi.org/10.1145/2603088.2603112

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

http://dx.doi.org/10.1016/0304-3975(86)90169-6
http://dx.doi.org/10.1016/S0049-237X(99)80033-0
http://dx.doi.org/10.1109/LICS.1990.113750
http://dx.doi.org/10.1109/LICS.1990.113750
http://dx:doi:org/10:1016/1385-7258(77)90067-1
http://arxiv.org/abs/1504.06355
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1007/978-94-017-0460-1_1
http://dx.doi.org/10.1007/BFb0028773
http://dx:doi:org/10:1007/BF01694011
http://dx.doi.org/10.1016/0890-5401(92)90027-D
http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1090/S0002-9947-1962-0142453-3
http://dx.doi.org/10.1090/S0002-9947-1962-0142453-3
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1017/S0960129514000322
http://dx:doi:org/10:1007/978-3-642-03816-729
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1109/LICS.1999.782577
http://matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf
http://matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf
http://dx.doi.org/10.2168/LMCS-10(4:4)2014
http://dx.doi.org/10.2168/LMCS-10(4:4)2014
http://dx.doi.org/10.1016/0304-3975(76)90008-6
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1145/2603088.2603112

3:34 S. Schmitz

Joseph Y. Halpern and Yoav Shoham. 1991. A propositional modal logic of time intervals. Journal of the ACM
38, 4, 935–962. DOI:http://dx.doi.org/10.1145/115234.115351

Piotr Hofman and Patrick Totzke. 2014. Trace inclusion for one-counter nets revisited. In Reachability
Problems. Lecture Notes in Computer Science, Vol. 8762. Springer, 151–162. DOI:http://dx.doi.org/
10.1007/978-3-319-11439-2_12

Petr Jančar. 1995. Undecidability of bisimilarity for Petri nets and some related problems. Theoretical
Computer Science 148, 2, 281–301. DOI:http://dx.doi.org/10.1016/0304-3975(95)00037-W

Petr Jančar. 2001. Nonprimitive recursive complexity and undecidability for Petri net equivalences. Theo-
retical Computer Science 256, 1–2, 23–30. DOI:http://dx.doi.org/10.1016/S0304-3975(00)00100-6

Marcin Jurdziński and Ranko Lazić. 2011. Alternating automata on data trees and XPath satisfiability.
ACM Transactions on Computational Logic 12, 3, Article No. 19. DOI:http://dx:doi:org/10:1145/1929954:
1929956

Prateek Karandikar and Sylvain Schmitz. 2013. The parametric ordinal-recursive complexity of Post em-
bedding problems. In Foundations of Software Science and Computation Structures. Lecture Notes in
Computer Science, Vol. 7794. Springer, 273–288. DOI:http://dx.doi.org/10.1007/978-3-642-37075-5_18

Prateek Karandikar and Philippe Schnoebelen. 2012. Cutting through regular post embedding problems. In
Computer Science—Theory and Applications. Lecture Notes in Computer Science, Vol. 7353. Springer,
229–240. DOI:http://dx.doi.org/10.1007/978-3-642-30642-6_22

S. Rao Kosaraju. 1982. Decidability of reachability in vector addition systems. In Proceedings of the 1982
STOC Conference. ACM, New York, NY, 267–281. DOI:http://dx.doi.org/10.1145/800070.802201

Ron Koymans. 1990. Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 4,
255–299. DOI:http://dx.doi.org/10.1007/BF01995674

Joseph B. Kruskal. 1972. The theory of well-quasi-ordering: A frequently discovered concept. Journal of
Combinatorial Theory, Series A 13, 3, 297–305. DOI:http://dx.doi.org/10:1016/0097-3165(72)90063-5

Jean-Luc Lambert. 1992. A structure to decide reachability in Petri nets. Theoretical Computer Science 99,
1, 79–104. DOI:http://dx.doi.org/10.1016/0304-3975(92)90173-D

Sławomir Lasota and Igor Walukiewicz. 2008. Alternating timed automata. ACM Transactions on Compu-
tational Logic 9, 2, Article No. 10. DOI:http://dx.doi.org/10.1145/1342991.1342994

Ranko Lazić, Tom Newcomb, Joël O. Ouaknine, Andrew W. Roscoe, and James B. Worrell. 2008. Nets with
tokens which carry data. Fundamenta Informaticae 88, 3, 251–274.

Ranko Lazić, Joël O. Ouaknine, and James B. Worrell. 2013. Zeno, Hercules and the Hydra: Downward ra-
tional termination is Ackermannian. In Mathematical Foundations of Computer Science. Lecture Notes
in Computer Science, Vol. 8087. Springer, 643–654. DOI:http://dx.doi.org/10.1007/978-3-642-40313-2_57

Ranko Lazić and Sylvain Schmitz. 2015. Non-elementary complexities for branching VASS, MELL, and ex-
tensions. ACM Transactions on Computational Logic 16, 3, Article No. 20. DOI:http://dx.doi.org/10.1145/
2733375

Jérôme Leroux. 2011. Vector addition system reachability problem: A short self-contained proof. In Pro-
ceedings of the 2011 POPL Conference. ACM, New York, NY, 307–316. DOI:http://dx.doi.org/10.1145/
1926385.1926421

Jérôme Leroux and Sylvain Schmitz. 2015. Demystifying reachability in vector addition systems. In Pro-
ceedings of the 2015 LICS Conference. IEEE, Los Alamitos, CA, 56–67. DOI:http://dx.doi.org/10.1109/
LICS.2015.16

Richard J. Lipton. 1976. The Reachability Problem Requires Exponential Space. Technical Report 62. De-
partment of Computer Science, Yale University, New Haven, CT. http://www.cs.yale.edu/publications/
techreports/tr63.pdf.

Martin H. Löb and Stanley S. Wainer. 1970. Hierarchies of number theoretic functions, I. Archive for Math-
ematical Logic 13, 39–51. DOI:http://dx.doi.org/10.1007/BF01967649

Ernst W. Mayr. 1981. An algorithm for the general Petri net reachability problem. In Proceedings of the 1981
STOC Conference. ACM, Los Alamitos, CA, 238–246. DOI:http://dx.doi.org/10.1145/800076.802477

Ernst W. Mayr and Albert R. Meyer. 1981. The complexity of the finite containment problem for Petri nets.
Journal of the ACM 28, 3, 561–576. DOI:http://dx.doi.org/10.1145/322261.322271

Kenneth McAloon. 1984. Petri nets and large finite sets. Theoretical Computer Science 32, 1–2, 173–183.
DOI:http://dx.doi.org/10.1016/0304-3975(84)90029-X

Albert R. Meyer. 1975a. The inherent computational complexity of theories of ordered sets. In Proceedings
of the International Congress of Mathematicians. 477–482. http://www.mathunion.org/ICM/ICM1974.2/
Main/icm1974.2.0477.0482.ocr.pdf.

Albert R. Meyer. 1975b. Weak monadic second order theory of successor is not elementary-recursive. In
Logic Colloquium. Lecture Notes in Mathematics, Vol. 453. Springer, 132–154. DOI:http://dx.doi.org/
10.1007/BFb0064872

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1007/978-3-319-11439-212
http://dx.doi.org/10.1007/978-3-319-11439-212
http://dx.doi.org/10.1016/0304-3975(95)00037-W
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx:doi:org/10:1145/1929954:1929956
http://dx:doi:org/10:1145/1929954:1929956
http://dx.doi.org/10.1007/978-3-642-37075-5_18
http://dx.doi.org/10.1007/978-3-642-30642-6_22
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10:1016/0097-3165(72)90063-5
http://dx.doi.org/10.1016/0304-3975(92)90173-D
http://dx.doi.org/10.1145/1342991.1342994
http://dx.doi.org/10.1007/978-3-642-40313-2_57
http://dx.doi.org/10.1145/2733375
http://dx.doi.org/10.1145/2733375
http://dx.doi.org/10.1145/1926385.1926421
http://dx.doi.org/10.1145/1926385.1926421
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1109/LICS.2015.16
http://www.cs.yale.edu/publications/techreports/tr63.pdf
http://www.cs.yale.edu/publications/techreports/tr63.pdf
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1145/322261.322271
http://dx.doi.org/10.1016/0304-3975(84)90029-X
http://www.mathunion.org/ICM/ICM1974.2/Main/icm1974.2.0477.0482.ocr.pdf
http://www.mathunion.org/ICM/ICM1974.2/Main/icm1974.2.0477.0482.ocr.pdf
http://dx.doi.org/10.1007/BFb0064872
http://dx.doi.org/10.1007/BFb0064872

Complexity Hierarchies beyond Elementary 3:35

Albert R. Meyer and Dennis M. Ritchie. 1967. The complexity of loop programs. In Proceedings of the 1967
ACM Conference. ACM, New York, NY, 465–469. DOI:http://dx.doi.org/10.1145/800196.806014

Angelo Montanari, Gabriele Puppis, and Pietro Sala. 2010. Maximal decidable fragments of Halpern and
Shoham’s modal logic of intervals. In Automata, Languages and Programming. Lecture Notes in Com-
puter Science, Vol. 6199. Springer, 345–356. DOI:http://dx.doi.org/10.1007/978-3-642-14162-1_29

Piergiorgio Odifreddi. 1999. Classical Recursion Theory, Vol. II. Studies in Logic and the Foundations of
Mathematics, Vol. 143. Elsevier. DOI:http://dx:doi:org/10:1016/S0049-237X(99)80040-8

Eran Omri and Andreas Weiermann. 2009. Classifying the phase transition threshold for Ackerman-
nian functions. Annals of Pure and Applied Logic 158, 3, 156–162. DOI:http://dx:doi:org/10:1016/j:apal:
2007:02:004

Joël O. Ouaknine and James B. Worrell. 2006. On metric temporal logic and faulty Turing machines. In
Foundations of Software Science and Computation Structures. Lecture Notes in Computer Science,
Vol. 3921. Springer, 217–230. DOI:http://dx.doi.org/10.1007/11690634_15

Joël O. Ouaknine and James B. Worrell. 2007. On the decidability and complexity of metric tempo-
ral logic over finite words. Logical Methods in Computer Science 3, 1, Article No. 8. DOI:http://dx.
doi.org/10.2168/LMCS-3(1:8)2007

Charles Rackoff. 1978. The covering and boundedness problems for vector addition systems. Theoretical
Computer Science 6, 2, 223–231. DOI:http://dx.doi.org/10.1016/0304-3975(78)90036-1

Robert W. Ritchie. 1963. Classes of predictably computable functions. Transactions of the American Mathe-
matical Society 106, 1, 139–173. DOI:http://dx.doi.org/10.1090/S0002-9947-1963-0158822-2

Robert W. Ritchie. 1965. Classes of recursive functions based on Ackermann’s function. Pacific Journal of
Mathematics 15, 3, 1027–1044. DOI:http://dx.doi.org/10.2140/pjm.1965.15.1027

Fernando Rosa-Velardo. 2014. Ordinal Recursive Complexity of Unordered Data Nets. Technical Report TR-
4-14. Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid.
https://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/TR-04-14.pdf.

Harvey E. Rose. 1984. Subrecursion: Functions and Hierarchies. Oxford Logic Guides, Vol. 9. Clarendon
Press.

Sylvain Schmitz and Philippe Schnoebelen. 2011. Multiply-recursive upper bounds with Higman’s lemma.
In Automata, Languages and Programming. Lecture Notes in Computer Science, Vol. 6756. Springer,
441–452. DOI:http://dx.doi.org/10.1007/978-3-642-22012-8_35

Sylvain Schmitz and Philippe Schnoebelen. 2012. Algorithmic Aspects of WQO Theory. Retrieved December 9,
2016, from http://cel.archives-ouvertes.fr/cel-00727025.

Sylvain Schmitz and Philippe Schnoebelen. 2013. The power of well-structured systems. In CON-
CUR 2013—Concurrency Theory. Lecture Notes in Computer Science, Vol. 8052. Springer, 5–24.
DOI:http://dx.doi.org/10.1007/978-3-642-40184-8_2

Philippe Schnoebelen. 2002. Verifying lossy channel systems has nonprimitive recursive complexity. Infor-
mation Processing Letters 83, 5, 251–261. DOI:http://dx.doi.org/10.1016/S0020-0190(01)00337-4

Philippe Schnoebelen. 2010. Revisiting Ackermann-hardness for lossy counter machines and reset Petri
nets. In Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, Vol. 6281.
Springer, 616–628. DOI:http://dx.doi.org/10.1007/978-3-642-15155-2_54

Helmut Schwichtenberg. 1982. Complexity of normalization in the pure typed lambda-calculus. Stud-
ies in Logic and the Foundations of Mathematics 110, 453–457. DOI:http://dx.doi.org/10.1016/S0049-
237X(09)70143-0

Helmut Schwichtenberg and Stanley S. Wainer. 2012. Proofs and Computation. Cambridge University Press.
Richard Statman. 1979. The typed λ-calculus is not elementary recursive. Theoretical Computer Science 9,

1, 73–81. DOI:http://dx.doi.org/10.1016/0304-3975(79)90007-0
Larry J. Stockmeyer and Albert R. Meyer. 1973. Word problems requiring exponential time. In Proceed-

ings of the 1973 STOC Conference. ACM, New York, NY, 1–9. DOI:http://dx.doi.org/10.1145/800125.
804029

Tony Tan. 2010. On pebble automata for data languages with decidable emptiness problem. Journal of
Computer and System Sciences 76, 8, 778–791. DOI:http://dx:doi:org/10:1016/j:jcss:2010:03:004

Nikos Tzevelekos and Radu Grigore. 2013. History-register automata. In Foundations of Software Sci-
ence and Computation Structures. Lecture Notes in Computer Science, Vol. 7794. Springer, 273–288.
DOI:http://dx:doi:org/10:1007/978-3-642-37075-52

Alasdair Urquhart. 1984. The undecidability of entailment and relevant implication. Journal of Symbolic
Logic 49, 4, 1059–1073. DOI:http://dx.doi.org/10.2307/2274261

Alasdair Urquhart. 1999. The complexity of decision procedures in relevance logic II. Journal of Symbolic
Logic 64, 4, 1774–1802. DOI:http://dx.doi.org/10.2307/2586811

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

http://dx.doi.org/10.1145/800196.806014
http://dx.doi.org/10.1007/978-3-642-14162-1_29
http://dx:doi:org/10:1016/S0049-237X(99)80040-8
http://dx:doi:org/10:1016/j:apal:2007:02:004
http://dx:doi:org/10:1016/j:apal:2007:02:004
http://dx.doi.org/10.1007/11690634_15
http://dx.doi.org/10.2168/LMCS-3(1:8)2007
http://dx.doi.org/10.2168/LMCS-3(1:8)2007
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1090/S0002-9947-1963-0158822-2
http://dx.doi.org/10.2140/pjm.1965.15.1027
https://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/TR-04-14.pdf
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://cel.archives-ouvertes.fr/cel-00727025
http://dx.doi.org/10.1007/978-3-642-40184-8_2
http://dx.doi.org/10.1016/S0020-0190(01)00337-4
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1016/S0049-237X(09)70143-0
http://dx.doi.org/10.1016/S0049-237X(09)70143-0
http://dx.doi.org/10.1016/0304-3975(79)90007-0
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1145/800125.804029
http://dx:doi:org/10:1016/j:jcss:2010:03:004
http://dx:doi:org/10:1007/978-3-642-37075-52
http://dx.doi.org/10.2307/2274261
http://dx.doi.org/10.2307/2586811

3:36 S. Schmitz

Sergei Vorobyov. 2004. The most nonelementary theory. Information and Computation 190, 2, 196–219.
DOI:http://dx:doi:org/10:1016/j:ic:2004:02:002

Stanley S. Wainer. 1970. A classification of the ordinal recursive functions. Archive for Mathematical Logic
13, 3, 136–153. DOI:http://dx.doi.org/10.1007/BF01973619

Andreas Weiermann. 1994. Complexity bounds for some finite forms of Kruskal’s theorem. Journal of Sym-
bolic Computation 18, 5, 463–488. DOI:http://dx.doi.org/10.1006/jsco.1994.1059

Received September 2014; revised June 2015; accepted October 2015

ACM Transactions on Computation Theory, Vol. 8, No. 1, Article 3, Publication date: February 2016.

http://dx:doi:org/10:1016/j:ic:2004:02:002
http://dx.doi.org/10.1007/BF01973619
http://dx.doi.org/10.1006/jsco.1994.1059

