
DOI: 10.1007/s00224-006-1312-0

Theory Comput. Systems 40, 355–377 (2007) Theory of
Computing

Systems
© 2007 Springer Science+Business Media, Inc.

Dynamic Complexity Theory Revisited

Volker Weber and Thomas Schwentick

Fachbereich Informatik, Universität Dortmund,
D-44227 Dortmund, Germany
{Volker.Weber,Thomas.Schwentick}@udo.edu

Abstract. Dynamic complexity investigates the required effort to maintain knowl-
edge about a property of a structure under changing operations. This article intro-
duces a refined notion of dynamic problems which takes the initial structure into ac-
count. It develops the basic structural complexity notions accordingly. It also shows
that the dynamic version of the LOGCFL-complete problem D2LREACH(acyclic)
can be maintained with first-order updates.

1. Introduction

For a set S, the static decision problem asks whether a given input I is an element of
S. Classical static complexity theory studies the inherent computational effort to answer
this question. However, I often undergoes small changes, and information about its
membership in S should be available after each change. As an example let us consider
the problem REACH consisting of all triples (G, s, t), where G is a graph and s and t are
nodes such that t is reachable from s in G. Changes could be insertion and deletion of
edges. Another typical example is a view in a database with tuple insertions and deletions
to the base relations. Obviously, there are many other situations of this kind.

Of course, in many cases one can expect that if I ′ results from I by applying a small
change, whether I ′ ∈ S might be closely related to whether I ∈ S. In particular, it should
often be simpler to maintain information about membership in S under small changes
than to recompute it from scratch for each new instance. This might involve auxiliary
data structures that are updated accordingly.

These considerations are the starting point of dynamic complexity theory which was
initiated in [MSVT] and [PI]. This theory has been focusing on two lines of research,
structural results about complexity classes of dynamic problems, including suitable re-
duction concepts and complete problems, and upper bounds for concrete problems. Both

356 V. Weber and T. Schwentick

lines consider problems with a very low update complexity, especially with updates
expressible in first-order logic (or, equivalently, by uniform families of constant-depth,
polynomial-size circuits with unbounded fan-in, aka AC0). This class is called DynFO
in [PI].

In [HI], low-level reductions for dynamic problems are defined and a complete
problem (CSSCV) for DynFO is presented. Although this was an important step, there
remained some steps to be done. First, as the authors pointed out, it is still a challenge to
find natural complete problems for dynamic classes. Second, in the construction of the
complete problem a technical difficulty arose that was caused by the role of the initial
structure of a dynamic problem in the setting of [PI] and [HI]. Further, the reductions seem
hard to use for more natural problems. Also, the class DynFO itself does not distinguish
between problems of quite different static complexity, e.g., between LOGSPACE and
PTIME.

Concerning upper bounds, the dynamic versions of many problems inside NL have
been shown to be in DynFO [PI], e.g., reachability in directed, acyclic graphs or in undi-
rected graphs. The technically most demanding result was that reachability in directed
(possibly cyclic) graphs is in DynTC0, i.e., the dynamic class with updates computable
by constant-depth threshold circuits [H].

It is natural to ask for the highest complexity of a (static) problem, such that its
dynamic version allows for first-order updates. The answer to this question has two
facets. It was shown in [MSVT] and [PI] that there are even P-complete problems in
DynFO. Nevertheless, these problems are very artificial, containing structures that are
highly redundant.1 Concerning non-redundant problems the complexity-wise highest
problems in DynFO known so far are complete for NL.

Contributions. This article contributes to both lines of research mentioned above. First,
by taking the complexity of the initial instance I into account in a very simple fashion,
we define more refined complexity classes and corresponding reduction concepts. More
precisely, our classes are of the form Dyn(C, C ′), where C is the complexity of computing
the auxiliary data structure for the initial input I and C ′ is the complexity of the updates.

We show that these classes and reductions behave nicely and that the results of [PI],
[H], and [HI] translate in a straightforward way. The new classes allow a more precise
classification of problems. We show that most of the problems mentioned above are in the
respective class Dyn(C,FO), where C is the complexity of the underlying static problem.
Nevertheless, optimality with respect to the initial input complexity is not automatic, e.g.,
it is not clear whether the dynamic reachability problem is in Dyn(NL,TC0).

The technically most difficult result of this article contributes to the other line
of research. It presents a (non-redundant) LOGCFL-complete problem with first-order
updates, more precisely, in Dyn(LOGCFL,FO).

Related work. In a series of papers (e.g., [DS1]–[DS4] and [DLW]) first-order incre-
mental evaluation systems have been studied, which are basically the analogue of DynFO
for database queries. In [LW1] and [LW2] SQL was used as update language.

1 Basically, this redundancy implies that a change to a structure requires a series of identical changes,
thus allowing to compute the updates in a series of simple subcomputations. A more precise account can be
found in Section 7.

Dynamic Complexity Theory Revisited 357

There is a huge body of work on algorithms for dynamic problems, e.g., [HdLT]
and [RZ] and in Online Algorithms [FW].

Organization. In Section 2 we give the basic definitions of dynamic problems and
complexity classes. Some precise upper bounds are provided in Section 3. Reductions
between dynamic problems are addressed in Section 4, complete problems in Section 5.
Connections to static complexity theory are the focus of Section 6. In Section 7 we
exhibit a LOGCFL-complete problem that is in Dyn(LOGCFL,FO). We conclude in
Section 8.

2. Definitions

In this section we define our notions of dynamic problems and dynamic complexity
classes. They depart considerably from [PI]. We discuss the relationship between the
definitions at the end of this section.

Intuitively, in our view, a dynamic problem D is induced by a static problem S, i.e.,
a set of structures and a set of operations. A pair (A, w) consisting of a structure A and a
sequence w of operations is in D if the structure resulting from A after applying w is in
S. As an example, in dynREACH, the dynamic version of REACH, A is a triple (G, s, t)
and w is a sequence of instructions of the form insert(i, j) and delete(i, j), where
i and j are elements of G.

We turn to the formal definitions. We write STRUCn(τ) for the class of structures
with n elements over vocabulary τ . For example, if τ = {E} and E is a binary (edge)
relation symbol then STRUC5(E) denotes all graphs with 5 vertices. For simplicity, we
assume the universe of a structure always to be [n] := {0, . . . , n− 1}. We only consider
vocabularies with relation and constant symbols.

In general, we use operation symbols σ from a finite set 	 with an associated arity
arity(σ). Thus, for dynREACH, arity(insert) = arity(delete) = 2. An operation
on a structureA ∈ STRUCn(τ) is simply a tuple σ(a1, . . . , am)with ai ∈ [n], for i ≤ m
and m = arity(σ). We denote the set of operations with symbols from	 over structures
from STRUCn(τ) by 	n .

The semantics of operations is given by an update function g which maps a pair
(A, σ (a1, . . . , am)) from STRUCn(τ) × 	n to a structure σ g(a1, . . . , am)(A) from
STRUCn(τ). We usually write σ(a1, . . . , am)(A) for this structure. For a string w =
w1 · · ·wm of operations and a structure A we write w(A) for wm(· · · (w1(A) · · ·).

Definition 2.1. Let τ be a vocabulary, S a set of τ -structures, 	 a set of operation
symbols, and g an update function. The dynamic problem D(S, 	, g) associated with S,
	, and g is the set of pairs (A, w), where, for some n > 0, A ∈ STRUCn(τ), w ∈ 	∗n ,
and w(A) ∈ S. We call S the underlying static problem of D.

To simplify notation, we often do not mention g explicitly and denote dynamic
problems simply by D(S,).

The computations we want to model are of the following kind: First, from the input
structure A an auxiliary data structure B is computed. Afterward, for each operation

358 V. Weber and T. Schwentick

wi this auxiliary structure is updated in order to reflect the changes of A. The auxiliary
structure can be used to compute whether w1 · · ·wi (A) is in S. In our framework for
dynamic complexity classes we consider the costs for the initial computation and the
updates separately. There is a trade-off between these costs, and the interesting case is,
of course, where the costs for updates are very low. In this case the costs of the initial
computation cannot be better than the complexity of S itself. More precisely, Dyn(C, C ′)
is the class of problems for which the initial computation can be done within complexity
class C and the updates within C ′.

Definition 2.2. Let τ be a fixed vocabulary and let C and C ′ be complexity classes.
Dyn(C, C ′) is the class of all dynamic problems D = D(S, 	, g) satisfying the following
conditions:

• There is a vocabulary ρ, a set S′ of ρ-structures, and a C-computable function
f : STRUC[τ]→ STRUC[ρ] such that
– f (A) ∈ STRUCn[ρ] for all A ∈ STRUCn[τ];
– f (A) ∈ S′ if and only if A ∈ S.
• There is a C ′-computable function f ′ mapping tuples (B, σ, a1, . . . , aarity(σ)),

where, for some n, B is from STRUCn[ρ] and σ(a1, . . . , aarity(σ)) ∈ 	n , to
structures in STRUCn[ρ] such that for each n, each A ∈ STRUCn[τ] and each
operation sequence w ∈ 	∗n :

w(A) ∈ S ⇐⇒ f ′(f (A), w) ∈ S′,

where f ′ is extended to sequences of operations in the obvious way.
• S′ ∈ C ′.

We are mainly interested in the case where C ′ is the very weak complexity class
AC0 [V]. As AC0 contains exactly the problems that can be characterized by first-
order formulas with built-in arithmetic2 and as in the context of mathematical structures
logical formulas are the natural means to express function f ′, we usually refer to C ′ by
its corresponding logic [I2], [L], e.g., in Dyn(C,FO).

Remarks 2.3.

• We do not pose any restriction on the update function g. Therefore, it is in general
not possible to infer the complexity of the dynamic problem from the complex-
ity of the underlying static problem. This situation changes when we consider
canonical dynamic problems as in Section 6.

On the other hand, of course all problems in a class Dyn(C,C’) are based on
static problems in C.
• Viewed more abstractly, Definition 2.2 imposes a kind of reduction from a dy-

namic problem D to a dynamic problem D′. Actually, it is a 1-bounded (C, C ′)-
reduction in the notation below.

2 Throughout this article, circuit classes AC0 and TC0 are always DLOGTIME-uniform (see [BIS]
and [V]).

Dynamic Complexity Theory Revisited 359

• In general, the notion of C-computable functions is not unambiguously defined.
However, for the cases of interest in this paper, the connection between function
and language classes is obvious, the class of P-computable functions is FP, the
class of L-computable functions is FL, and the class of NL-computable functions
is FNL = FLNL.
• We follow [PI] in that we do not allow operations that delete or insert elements

into structures. On the other hand, that the auxiliary structure f (A) has the same
size as A is not a severe restriction, as all auxiliary structures of polynomial size
p(n) can be encoded over the universe of A.

The main difference between our definitions and the setting of [PI] and [HI] is
that our definition includes structures and arbitrary operations, whereas [PI] talks about
static problems extended by a restricted set of operations (corresponding to the canonical
dynamic problems of Section 6) and [HI] defines dynamic problems by sequences of
operations only.

To be more precise, in [HI] a dynamic problem is an infinite sequence D = {Dn ⊆
	∗n | n = 1, 2, . . .}of regular languages, where the elements of	n are the operations with
parameters from {0, . . . , n − 1}. Dynamic complexity classes are defined via dynamic
machines, which are uniform sequences of deterministic finite automata. The class DynC
consists of all problems accepted by a dynamic machine whose initial state, transition
function, and final state set are C-computable. The class where a polynomial-time initial
computation is allowed is called DynC+.

Nevertheless, there is obviously a close correspondence between dynamic problems
in their and our setting. Consider a dynamic problem D in our model. If we fix a uniform
sequence I = (In)n≥0 of initial structures and consider those sequences of operations
that lead to acceptance when applied to a structure from I , we get a dynamic problem
in the sense of [HI].3 We call this problem D|I . Therefore, we might state that

Dyn(C, C) ⊆ DynC and Dyn(P, C) ⊆ DynC+,
because these inclusions are independent of the choice of the sequence of initial struc-
tures, which only has to be C-uniform or P-uniform, respectively.

For the latter inclusion we can even prove equality if we pose an additional restriction
on the dynamic problems. We call a dynamic problem polynomially connected if for each
pair A, A′ of structures of size n there is a polynomial-size sequence w of operations
such that w(A) = A′ and w can be computed from A and A′ in time polynomial in n.

Proposition 2.4. Let C ⊆ P be a static complexity class. If a dynamic problem D is
polynomially connected and D|I is in DynC+ for some sequence of initial structures I ,
then D is in Dyn(P, C).

Proof. Consider a dynamic machine showing that D|I is in DynC+. The sequence of
initial states of this machine is the sequence of auxiliary data structures for I , computable
in polynomial time by assumption and because I is P-uniform. The transition function
tells us how to update these data structures with complexity C.

3 In fact, all dynamic problems presented in [HI] are defined in this way.

360 V. Weber and T. Schwentick

Dyn(FO,FO)

Dyn(LOGSPACE,FO)

Dyn(NL,FO)

Dyn(LOGCFL,FO)

Dyn(P,FO)

DynFO

DynFO
+ =

�=
�=

Fig. 1. The relationship of our dynamic complexity classes to that of [PI], [HI]. Note that these classes
are based on a different definition of dynamic problems and that the equality only holds for polynomially
connected problems.

It only remains to show how to compute the auxiliary data structure for an arbitrary
input structure A of size n in polynomial time. This can be done by first computing the
auxiliary data structure Xn for In . Because D is polynomially connected, we can compute
a polynomial length sequence of operations w such that A = w(In). By applying the
transformations induced byw to Xn according towwe obtain an initial auxiliary structure
for A. All steps can be carried out in polynomial time by assumption.

Altogether, we have proven that D is in Dyn(P, C).

The restriction to polynomially connected problems certainly rules out some dy-
namic problems. On the other hand, all dynamic problems mentioned in this article are
polynomially connected.

We summarize all inclusions stated above, in the case of first-order updates, in
Figure 1.

3. Some Precise Upper Bounds

In this section, we show membership in Dyn(C,FO) for various dynamic problems,
where the underlying static problem is complete for C. In the following, all dynamic
graph problems have insertion and deletion of edges as operations.

Theorem 3.1.

(a) The dynamic PARITY problem4 dynPARITY, with operations that set or unset
one bit, is in Dyn(ACC0[2],FO).

(b) The dynamic deterministic reachability problem dynREACHd , which asks for
a path on which every node has outdegree 1, is in Dyn(LOGSPACE,FO).

(c) dynREACH for undirected graphs is in Dyn(LOGSPACE,FO).
(d) Dynamic 2-colorability for undirected graphs is in Dyn(LOGSPACE,FO).
(e) dynREACH for acyclic graphs is in Dyn(NL,FO).

4 For concreteness, a string is in PARITY if its number of 1-symbols is even.

Dynamic Complexity Theory Revisited 361

Proof (Sketch). (a) requires only one auxiliary bit, the parity bit itself. (c) and (d) follow
directly by analyzing the proofs in [PI]. They require the construction of a spanning tree,
but SL = LOGSPACE [R] allows the contruction of the lexicographically least spanning
tree within logarithmic space. (b) and (e) can be concluded from [DS2].

From [H] we can conclude dynREACH ∈ Dyn(P,TC0); whether this is optimal
remains open. From this result one also gets dyn2SAT ∈ Dyn(P,TC0), where the allowed
operations are insertion and deletion of clauses.

4. Reductions

Reductions are the key tool of computational complexity. In this section we introduce
dynamic reductions that suit our dynamic complexity classes.

Given an instance (A, w) of a dynamic problem D, a reduction from D to D′

has to map A to an initial structure A′. Further, every operation wi has to be mapped
to one or more operations of D′. In principle, one could allow the image of wi to
depend on the previous operationsw1, . . . , wi−1 and on A. However, as we are interested
in a weak notion of reductions, we follow [HI] and require that each wi is mapped
independently.

Definition 4.1. Let D = D(S,) and D′ = D(S′, 	′) be dynamic problems over
vocabularies τ and τ ′, respectively. A reduction from D to D′ is a pair (f, h) of mappings
with the following properties:

• For each n ∈ N, f maps τ -structures of size n to τ ′-structures of size n′, where
n′ = p(n) for some polynomial p.
• For each n ∈ N, h is a string homomorphism from 	∗n to 	′∗n′ .
• For each τ -structure A, and each sequence w of operations on A,

(f (A), h(w)) ∈ D′ ⇐⇒ (A, w) ∈ D.

If f and h can be computed in complexity C and C ′, respectively, we say that the reduction
is a (C, C ′)-reduction and write D ≤C,C′ D′.

Note that if (f, h) is a reduction from D(S,) to D′ = D(S′, 	′) then, in particular,
f is a reduction from S to S′.

Note also that although we require that h(σ)(f (A)) ∈ D′ ⇐⇒ σ(A) ∈ D, this
does not imply h(σ)(f (A)) = f (σ (A)). In fact, if the latter holds, for each A and w,
(f, h) is called a homomorphism.5

A reduction is k-bounded if |h(s)| ≤ k for each s ∈ ⋃∞
i=1	i . It is bounded if it is

k-bounded for some k. Observe that |h(s)| refers to the number of operations, not to the
length of their encoding. We write ≤b for bounded reductions.

We are mainly interested in the case where C is LOGSPACE or FO and C ′ = FO.

5 In [HI] the term homomorphism was used for what we call a reduction.

362 V. Weber and T. Schwentick

Example 4.2. dynPARITY ≤b
FO,FO dynREACHd [HI]: Here, f maps a string x =

x1 · · · xn to the graph with nodes (i, j), where i ∈ [n+ 1] and j ∈ {0, 1}. If xi = 0 there
are edges from (i−1, 0) to (i, 0) and from (i−1, 1) to (i, 1). Otherwise, there are edges
from (i − 1, 0) to (i, 1) and from (i − 1, 1) to (i, 0). Clearly, x is in PARITY iff there
is a path from (0, 0) to (n, 0). Each operation on the string is mapped to at most four
operations in the graph in a straightforward manner.

The following propositions, which are easy to prove, show that our dynamic reduc-
tions and dynamic complexity classes fit together.

Proposition 4.3. The relations ≤b
LOGSPACE,FO and ≤b

FO,FO are transitive.

Proposition 4.4. Let C and C ′ be closed under functional composition, FO ⊆ C and
FO ⊆ C ′. Then Dyn(C, C ′) is closed under bounded (FO,FO)-reductions.

Proposition 4.4 also holds for bounded (LOGSPACE,FO)-reductions ifC is required
to be closed under logspace-reductions.

5. Complete Problems

In [HI] a complete problem for DynFO under bounded first-order homomorphisms was
established. We show next that the problem can be translated into our setting and, further-
more, it can be adapted to obtain complete problems for classes of the type Dyn(C,FO).

The dynamic problem single step circuit value (SSCV) of (possibly cyclic) circuits
is defined in [HI]. It has operations to change the type of a gate—“and”, “or”, or “nand”—
to add and delete wires between gates, and to set the current value of a gate. There is
also an operation that propagates values one step through the circuit. A sequence of such
operations belongs to SSCV if its application to a circuit of unconnected “and” gates of
value “0” results in a circuit with gate 0 having value “1”.

To translate SSCV to our setting, we have to add an underlying static problem. The
most natural choice would be the set of all such circuits whose gate 0 has value “1”.
That is, SSCV is the set of all pairs consisting of a circuit and a sequence of operations,
such that gate 0 of the resulting circuit has value “1”. However, this problem has very
low complexity. More precisely, it is in Dyn(FO,FO).

Proposition 5.1. For every class C containing FO, SSCV is complete for
Dyn(C,FO) under bounded (C,FO)-reductions.

Proof. First-order updates to SSCV are possible with an auxiliary data structure con-
taining only the relations needed to describe the circuit [HI], i.e., no computation is
needed to obtain the auxiliary data structure.

We can describe a bounded (C,FO)-reduction (f, h) from an arbitrary dynamic
problem D in Dyn(C,FO) to SSCV based on the proof of Theorem 7.4 in [HI]. They
describe a first-order definable circuit whose main components are an array of latches,

Dynamic Complexity Theory Revisited 363

meant to hold the auxiliary data structure for D, and circuits for all operations of D that
use this array of latches to get their input from, as well as to write their output to. The
latter circuits exist because there are first-order updates to D by assumption. There are
also some additional gates used to control the computation. For more details we refer
to [HI].

We use f to construct this circuit as well as to compute the auxiliary data structure
corresponding to the given instance of D and to store it in the array of latches. This can
be done because this auxiliary data structure is C-computable as D is in Dyn(C,FO). The
operations can be mapped by h as in [HI], i.e., the circuit corresponding to an operation
is selected and stepped through, writing the updated auxiliary data structure to the array
of latches.

To obtain a dynamic problem complete for a larger class, e.g., Dyn(P,FO), under
weaker reductions, such as bounded (FO,FO)-reductions, we have to choose a static
problem that is complete for P. We use a modification of the generic complete problem
for P. To this end, let S be the set of all tuples (c, x, 1m) such that c encodes a Turing
machine (TM) that on input x computes within m steps a circuit whose gate 0 evaluates
to “1”. The dynamic problem SSCVP is defined by adding the operations from above to
S, i.e., we substitute the circuits of SSCV by instructions to build a circuit. It should be
stressed that the operations change the circuit, not the TM.

Theorem 5.2. SSCVP is complete for Dyn(P,FO) under bounded (FO,FO)-reductions.

Proof. Let D=D(S,) be a problem in Dyn(P,FO). We describe a bounded (FO,FO)-
reduction (f, h) from D to SSCVP.

An instance (A, w) of D is mapped by f to a coding of a TM M and an input x for
M . M is basically a combination of two other TMs, one to compute the auxiliary data
structure to the given instance A of D and one that outputs the circuit described in the
proof of Theorem 7.4 in [HI], which we described above. The latter one is first-order
definable, and the first one is fixed since A can be given as input x . Therefore, we can
describe in first order a TM M that has the circuit of [HI] with respect to the operations
of D as output, with the auxiliary data structure for A stored in the array of latches.

The operations can be mapped as before.

An analogous result can be obtained for other dynamic complexity classes like
Dyn(NL,FO) and Dyn(LOGSPACE,FO) as well as to classes of the form Dyn(C,TC0).

6. Connections to Static Complexity

Now, we establish some connections between static and dynamic problems.
To transfer properties from static problems to dynamic problems, the dynamic prob-

lems need to depend in a uniform way on their underlying static problems.
Most of the problems studied in earlier work (e.g., [PI], [DS2], [E], and [H]) have

essentially the same operations: insertion and deletion of tuples and setting constants.

364 V. Weber and T. Schwentick

Therefore, we now study dynamic problems with these operations. For a static problem
S ⊆ STRUC[τ] we define the set 	can(S) of canonical operations by

	can(S) = {insertR,deleteR | for all relation symbols R ∈ τ }
∪ {setc | for all constant symbols c ∈ τ }.

Thus, an operation is of one of the forms insertR(u, v), deleteR(u, v) or
setc(u) where the letter has the effect of assigning u to c.

We call Dcan(S) := D(S, 	can(S), gcan) the canonical dynamic problem of S, where
gcan is the update function corresponding to the intended meaning of the operation
symbols from 	can.

Obviously, there is a close correspondence between static and dynamic complexity
classes in the case of canonical dynamic problems. If S is a static problem and C a static
complexity class, we have

S ∈ C ⇐⇒ Dcan(S) ∈ Dyn(C, C).

An interesting question is the dynamic complexity of NP-problems. One might
assume that if some NP-complete problem has polynomial dynamic complexity (i.e.,
is in Dyn(C,P) for some class C) then P = NP. Of course, this holds for C = P,
but we cannot prove it for more powerful classes C. Nevertheless, we can show the
following result which draws a simple but interesting connection between dynamic and
non-uniform complexity.

Theorem 6.1. Let S be NP-complete. Then NP ⊆ P/poly if and only if there is a class
F of functions such that Dcan(S) ∈ Dyn(F,P).

Proof. For the if direction, as P/poly is closed under reductions, it suffices to show
that S is in P/poly if its canonical dynamic version is in Dyn(F,P). For each n, let En

denote the τ -structure of size n with empty relations and all constants set to 0.
The advice Bn for size-n inputs is just the auxiliary structure for En . Whether a

structure A of size n is in S can be tested by applying, for each t ∈ R an operation
insertR(t) to En and for each constant c = u, an operation setc(u). The order of
these applications is arbitrary. Whether A ∈ S can be derived by another polynomial-time
computation from the final result of this process.

For the only if direction, assuming S ∈ NP ⊆ P/poly, let Cn denote the polynomial
advice for S for inputs of size n. The auxiliary structure for a structure A basically
is (A,Cn). The update operations only change the A part of the auxiliary structure.
Clearly, updates can be done in polynomial time and checking membership of (A,Cn)

is in polynomial time by assumption.

The definition of reductions between dynamic problems already requires that there
is a reduction between the underlying static problems. The following result shows that

Dynamic Complexity Theory Revisited 365

for a homomorphism between dynamic problems one can say more. In a bounded FO-
reduction (bfo) each tuple of the source structure affects only a bounded number of tuples
in the target structure, i.e., if a tuple in the source structure is changed only a bounded
number of tuples in the target structured needs to be changed to get the image of the new
source structure [PI].

Theorem 6.2. Let S and T be static problems. For every bounded (FO,FO)-homo-
morphism (f, h) from Dcan(S) to Dcan(T), f is a bfo-reduction from S to T .

Proof. By definition, f is an FO-reduction from S to T . We have to show that f is
bounded in the abovementioned sense.

Let τ be the signature of S and let A and A′ be two τ -structures that differ only in a
single tuple t , say, A′ = insert(t)(A). Because (f, h) is a homomorphism, f (A) and
f (A′) differ only in the tuples and constants affected by the operations in h(insert(t)).
The number of these operations is bounded and each operation affects only one tuple or
constant. Since h does not depend on A and A′, we can conclude that f is bounded and
therefore a bfo-reduction.

This theorem enables us to draw some conclusions concerning the completeness of
canonical dynamic problems for dynamic complexity classes. As stated in [HI], canonical
dynamic problems cannot be complete for dynamic complexity classes in the general
setting. However, this no longer holds if we restrict to classes of canonical dynamic
problems.

By Theorem 6.2, problems complete for a class of canonical dynamic problems
under bounded (FO,FO)-homomorphisms must be based on problems complete under
bfo-reductions. However, we know from [PI] that REACH is not complete for NL under
bfo-reductions. Their proof shows that there is no bfo-reduction from CLIQUE-ONLY,
the set of graphs that are the union of a co-clique (a graph without edges) and a clique
with the same number of nodes [BRS], to REACH. The canonical dynamic problem for
CLIQUE-ONLY is easily seen to be in Dyn(TC0,FO). Therefore, we get the following
corollary, where Dyncan(C, C ′) denotes the restriction of Dyn(C, C ′) to canonical dynamic
problems.

Corollary 6.3. Dcan(REACH) is not Dyncan(TC0,FO)-hard under bounded (FO,FO)-
homomorphisms.

Therefore, Dcan(REACH) cannot be complete for Dyncan(NL,FO) under bounded
(FO,FO)-homomorphisms. This result can be extended to other problems and classes,
e.g., Dcan(REACHd) and Dyncan(LOGSPACE,FO).

On the other hand, there are some results on completeness under bfo-reductions in
[PI]: REACHa and CIRVAL are complete for P, COLOR-REACH for NL and
COLOR-REACHd for LOGSPACE. They carry over to canonical dynamic problems,
e.g., Dcan(CIRVAL) is complete for Dyncan(P,P) and Dcan(COLOR-REACH) is com-
plete for Dyncan(NL,NL) under bounded (FO,FO)-homomorphisms. Unfortunately, no
efficient updates are known for these problems.

366 V. Weber and T. Schwentick

7. A LOGCFL-Complete Problem with First-Order Dynamic Complexity

In this section we turn to the question of the maximum possible static complexity of
a problem with first-order updates. In dealing with this question one has to distinguish
between “redundant” and “non-redundant” problems.

It was observed in [MSVT] and [PI] that by blowing up the encoding of a problem
its dynamic complexity can be decreased and that each problem in Phas a padded version
in Dyn(P,FO). To be more precise, let, for a (string) problem S, PAD(S) be its padded
version PAD(S) = {w|w| | w ∈ S}. If it is a set of graphs then instances of PAD(S)
consist of n disjoint n-vertex graphs. It was shown in [PI] that PAD(REACHa), the
padded version of the alternating reachability problem is in Dyn(P,FO). Note that, for
graphs with n nodes it needs n operations to make a significant change, i.e., this result
is basically a restatement of the fact that REACHa is in FO[n] [I1].

As noted by the authors in [MSVT], the latter result depends on the redundant
encoding. They defined a notion of non-redundant problems by completeness under
a certain kind of reduction. However, this notion does not seem to be applicable to
complexity classes below P.

We are interested in first-order updates to non-redundant problems. The complexity-
wise highest problems known so far to have such updates are complete for NL, e.g., the
reachability problem on acyclic graphs.

In this section we improve this result by establishing first-order updates for a non-
redundant problem complete for LOGCFL.

The class LOGCFLconsists of all problems that are logspace-reducible to a context-
free language and is placed between NL and AC1. More on LOGCFL can be found
in [GLS].

The problem we consider is the canonical dynamic problem for a reachability prob-
lem on labeled, acyclic graphs: D2LREACH(acyclic). The labels are symbols drawn
from 	 = {a, b, ā, b̄}. Each edge has a unique label and there is at most one edge from
a node u to a node v. The problems asks for a path between two nodes s and t that is
labeled by a string in D2, the Dyck language with two types of parentheses defined by
the following context-free grammar:

D2: S→ aSāS | bSb̄S | ε.

Proposition 7.1. D2LREACH(acyclic) is complete for LOGCFL.

Proof. LOGCFLcan be characterized by non-deterministic auxiliary pushdown au-
tomata (NAuxPDA) first studied by Cook [C]. An auxiliary pushdown automaton is
basically a TM with read-only input tape and several work tapes. One of these work
tapes can only be used as a pushdown store but it is not affected by space constraints
on the other work tapes. Sudborough proved that the class of languages accepted by
non-deterministic AuxPDA in polynomial time and logarithmic space on the work tapes
is LOGCFL [S].

We can easily construct a NAuxPDA for D2LREACH(acyclic) working basically
like a non-deterministic logspace TM for the reachability problem, i.e., it guesses a
path from s to t . When using an edge labeled with a or b, this symbol is put on the

Dynamic Complexity Theory Revisited 367

pushdown store. Whenever an edge labeled ā or b̄ is used, it checks the top symbol on
the pushdown store and removes it if it fits. Otherwise it rejects immediately. It accepts
only if t is reached with empty pushdown store.

Completeness can be shown by a reduction similar to the one in [GHR] for the P-
completeness of D2LREACH. Let L be a language in LOGCFLand M a NAuxPDA for L
using logarithmic space on its work tapes and accepting in polynomial time. Without loss
of generality we may assume that M uses just the symbols a and b on its pushdown store
and has a single accepting configuration. Furthermore, M accepts only if the pushdown
store is empty.

We will now use M to reduce L to D2LREACH(acyclic) by constructing a labeled
graph Gx , where x = x1 · · · xn is an input to M . The nodes of Gx are the configurations
of M with an additional time stamp but without considering the pushdown store. Each
node can be represented by a tuple (p, i, k, t), where p is a state of M , i is a position
on M’s input tape, and k is a representation of the work tapes of M . The time stamp t
is needed to obtain an acyclic graph. Observe that there is just a polynomial number of
configurations.

We add an edge from node (p, i, k, t) to node (p′, i ′, k ′, t + 1) labeled with α ∈
{a, b, ā, b̄}+ if and only if M can make a step from configuration (p, i, k) to (p′, i ′, k ′)
removing σ ∈ {a, b} from the pushdown store and pushing β ∈ {a, b}∗, where α = σ̄ β.
Whenever an edge is labeled by a string α of length more than one, new nodes are added
and α is distributed over several edges.

Finally, let s be the initial configuration and t the unique accepting configuration of
M . Thus, Gx is in D2LREACH(acyclic) if and only if x is accepted by M , i.e., we have
reduced L to D2LREACH(acyclic).

The construction above can be carried out by a logspace transducer. Therefore, we
have proved that D2LREACH(acyclic) is complete for LOGCFLunder logspace reduc-
tions.

We represent D2LREACH(acyclic) as a set of structures over vocabulary
〈R2

a, R2
ā, R2

b, R2
b̄
, s, t〉, i.e., for each symbol σ ∈ 	 there is a binary relation R2

σ and
we allow insertion and deletion of tuples in these relations as well as setting the con-
stants.

We have to be a bit careful with the insertion operation, as we want the graph
to remain acyclic and every edge to carry a unique label. Hence, the semantics of a
insertion operation is to insert an edge, if it is not already present (with another label)
and does not cause a cycle. Both conditions can be checked by a first-order formula,
therefore we will ignore them in the following to simplify presentation. We call the
resulting dynamic problem dynD2LREACH(acyclic). It should be noted that, besides
the restriction on insertions, dynD2LREACH(acyclic) is the canonical dynamic problem
of D2LREACH(acyclic).

We can now state the main theorem of this section.

Theorem 7.2. dynD2LREACH(acyclic) is in Dyn(LOGCFL,FO).

We sketch the proof in the remainder of this section. First, we introduce the auxiliary
data structure we are going to use. Insertion and deletion of edges is considered afterward.

368 V. Weber and T. Schwentick

0 1 2 3 4 5 6
a b ā b̄ ā

Fig. 2. Example of a labeled graph.

7.1. An Auxiliary Data Structure

One might be tempted to use as auxiliary structure the set of pairs (u, v) such that there
is a D2-labeled path from u to v. As the example in Figure 2 indicates, this information
is not sufficient. In this example, the data structure would contain only the tuples (u, u)
for u ∈ {0, . . . , 6}. This does not help to recognize new paths, e.g., the path from 0 to 6
after insertion of an edge (2, 3) labeled a.

A more helpful information is that the concatenation of the labels on the paths from
0 to 2 and from 4 to 6 is in D2. This is exactly the kind of information we are going to
store. More precisely, we maintain a relation P of arity four which contains the tuples
(u1, v1, u2, v2) such that there are paths from u1 to v1 labeled s1 and from u2 to v2 labeled
s2 with s1s2 ∈ D2.

We also maintain the transitive closure T of the graph, ignoring the labels. Therefore,
our auxiliary data structure is over vocabulary

τ = 〈R2
a, R2

b, R2
ā, R2

b̄, P4, T 2, s, t〉.

The relation P stores information about concatenations of labels of two paths.
To update P during insertion and deletion of edges, we will need the corresponding
information for three or even four paths. Fortunately, this information can be extracted
from P by a first-order formula.

Lemma 7.3. For every k ≥ 1, there is a first-order formula πk over vocabulary τ , such
that πk(u1, v1, . . . , uk, vk) holds if and only if there are paths from ui to vi labeled with
strings si for i ≤ k, respectively, and s1 · · · sk ∈ D2.

Proof. The proof is by induction on k. Of course, we can take π1(u1, v1) = P(u1, v1,

u1, u1) and π2(u1, v1, u2, v2) = P(u1, v1, u2, v2).
Let p1, . . . , pk be paths in a graph G such that the concatenation s1 · · · sk of their

label sequences is in D2. To construct πk for k > 2 we will distinguish two cases. Either
for every a and b in s1 the corresponding ā or b̄ is in s1 or in s2 or there is a symbol in
s1 with corresponding closing symbol in some si , i > 2.

In the first case, s2 can be split into w1w2 such that w1 ends6 with the last closing
symbols corresponding to a symbol in s1 and s1w1 and w2s3 · · · sk are in D2. This can
be checked by the following formula using πk−1:

∃x(π2(u1, v1, u2, x) ∧ πk−1(x, v2, u3, v3, . . . , uk, vk)). (1)

In the second case, let σ be the last opening symbol in s1 whose corresponding
symbol is in a substring si with i > 2. Hence, s1 = w1σw2 and si = w3σ̄w4 and we

6 Observe that w1 = ε covers the case where all closing symbols for s1 are already in s1.

Dynamic Complexity Theory Revisited 369

u1 x v1 u2 z v2 ui y vi uk vk
.

w1σ w2 w3 σ̄w4

Fig. 3. The paths considered by formula (2).

must have w1σ σ̄w4si+1 · · · sk ∈ D2 and w2s2 · · · si−1w3 ∈ D2. The first property can be
checked by πk−i+2 where k − i + 2 < k. However, the second expression might have
k factors, so we have to split it again. By the choice of σ , for every a and b in w2 the
corresponding ā or b̄ is either in w2 or in s2. Thus, we can treat w2s2 · · · si−1w3 like in
the first case resulting in the following formula illustrated in Figure 3:

∃x, y, z(πk−i+2(u1, x, y, vi , . . . , uk, vk) ∧ π2(x, v1, u2, z)

∧ πi−1(z, v2, . . . , ui , y)). (2)

We observe that by setting i to k and assigning u1 to x and vk to y in formula (2),
we get formula (1). Consequently, we use only formula (2) to construct πk :

πk(u1, v1, . . . , uk, vk)

≡ ∃x, y, z(πk−1(u1, x, y, v3, . . . , uk, vk)

∧ π2(x, v1, u2, z) ∧ π2(z, v2, u3, y))

∨∃x, y, z(πk−2(u1, x, y, v4, . . . , uk, vk)

∧ π2(x, v1, u2, z) ∧ π2(z, v2, . . . , u4, y))

...

∨∃x, y, z(π3(u1, x, y, vk−1, uk, vk) ∧ π2(x, v1, u2, z)

∧ πk−2(z, v2, . . . , uk−1, y))

∨∃x, y, z(π2(u1, x, y, vk) ∧ π2(x, v1, u2, z) ∧ πk−1(z, v2, . . . , uk, y)).

It can be easily verified that πk also fulfills the “only if” part of the lemma.

7.2. Inserting Edges

After insertion of an edge (x, y) tuples might have to be added to P . Of course any new
tuple must depend on a path through (x, y). As such a tuple involves two paths, there
are three cases that are covered by the following lemma: the edge (x, y) may be used in
only the first, in only the second, or in both paths.

Lemma 7.4. For each σ ∈ 	 there are FO-formulas ϕσ1, ϕσ2, and ϕσ , such that

• ϕσ1(u1, v1, u2, v2, x, y) is true iff there are paths from u1 to x labeled s1, from y
to v1 labeled s2, and from u2 to v2 labeled s3 such that s1σ s2s3 is in D2.
• ϕσ2(u1, v1, u2, v2, x, y) is true iff there are paths from u1 to v1 labeled s1, from

u2 to x labeled s2, and from y to v2 labeled s3 such that s1s2σ s3 is in D2.

370 V. Weber and T. Schwentick

(a) u1 v1 u2 v2x y z z′
()

u1 v1 u2 v2x y z z′
()

(b) u1 v1 u2 v2x y z z′
()

(c) u1 v1 u2 v2x y z z′ x y z̃ z̃′
(())

u1 v1 u2 v2x y z z′ x y z̃ z̃′
(())

u1 v1 u2 v2x y x y z̃ z̃′ z z′
(())

Fig. 4. The different situations occurring at the insertion of edges labeled by opening parentheses.

• ϕσ (u1, v1, u2, v2, x, y) is true iff there are paths from u1 to x labeled s1, from y
to v1 labeled s2, from u2 to x labeled s3, and from y to v2 labeled s4 such that
s1σ s2s3σ s4 is in D2.

Proof. All three formulas are defined in a similar way: They guess the edge corre-
sponding to (x, y) and check for paths such that the labels between and outside of these
edges form words in D2. Of course, each formula depends on whether σ is an opening
or a closing symbol, but it is straightforward that the formulas are symmetric in that
respect. Furthermore, whether σ = a or σ = b does not make a significant difference.
Thus, we only consider the case σ = a.

The reasoning in constructing ϕa,1 and ϕa,2 is similar to that in Lemma 7.3. The
formula expresses that there is an edge (z, z′) labeled ā corresponding to a in the con-
catenation of two paths from u1 to v1 and from u2 to v2 which combine to a string
in D2.

For ϕa,1, there are two cases illustrated in Figure 4(a): (z, z′) might be on the path
from u1 to v1 behind (x, y) or on the path from u2 to v2. These considerations lead to
the following formula:

ϕa,1(u1, v1, u2, v2, x, y)

≡ ∃z, z′(Rā(z, z′) ∧ [(π3(u1, x, z′, v1, u2, v2) ∧ π1(y, z))

∨ (P(u1, x, z′, v2) ∧ P(y, v1, u2, z))]).

As illustrated in Figure 4(b), ϕa,2 has to deal with only one possible place for (z, z′):

ϕa,2(u1, v1, u2, v2, x, y) ≡ ∃z, z′(Rā(z, z′) ∧ [π3(u1, v1, u2, x, z′, v2) ∧ π1(y, z)]).

The construction of ϕa is a bit more complicated, as two edges (z, z′) and (z̃, z̃′) are
needed, corresponding to the two occurrences of (x, y). There are three possibilities to

Dynamic Complexity Theory Revisited 371

order these edges (Figure 4(c)), resulting in the following formula:

ϕa(u1, v1, u2, v2, x, y)

≡ ∃z, z′, z̃, z̃′(Rā(z, z′) ∧ Rā(z̃, z̃′)

∧ [(π1(y, z) ∧ π1(y, z̃) ∧ π4(u1, x, z′, v1, u2, x, z̃′, v2))

∨ (π1(y, z̃) ∧ P(y, v1, u2, z) ∧ π3(u1, x, z′, x, z̃′, v2))

∨ (π1(y, z̃) ∧ π3(y, v1, u2, x, z̃′, z) ∧ P(u1, x, z′, v2))]).

If (x, y) is labeled b, the formulas ϕb,1, ϕb,2, and ϕb can be obtained by replacing
Rā with Rb̄.

The edge (x, y) might also be labeled ā or b̄. The formulas for these cases are
constructed similarly:

ϕā,1(u1, v1, u2, v2, x, y)

≡ ∃x ′, y′(Ra(x
′, y′) ∧ [π1(y

′, x) ∧ π3(u1, x ′, y, v1, u2, v2)]),

ϕā,2(u1, v1, u2, v2, x, y)

≡ ∃x ′, y′(Ra(x
′, y′)

∧ [(P(u1, x ′, y, v2) ∧ P(y′, v1, u2, x)) ∨ (π1(y
′, x)

∧ π3(u1, v1, u2, x ′, y, v2))]),

ϕā(u1, v1, u2, v2, x, y)

≡ ∃z, z′, z̃, z̃′(Ra(z, z′) ∧ Ra(z̃, z̃′)

∧ [(π1(z
′, x) ∧ π1(z̃

′, x) ∧ π4(u1, z, y, v1, u2, z̃, y, v2))

∨ (π1(z
′, x) ∧ P(z̃′, v1, u2, x) ∧ π3(u1, z, y, z̃, y, v2))

∨ (π1(z̃
′, , x) ∧ π3(z

′, z̃, y, v1, u2, x) ∧ P(u1, z, y, v2))]).

Altogether, a tuple is in P after inserting (x, y) if it was in P before or if one of the
three formulas witnesses that it newly belongs to P . Thus, we get the update formulas
for insertRσ (x, y) as follows:

P ′(u1, v1, u2, v2) ≡ P(u1, v1, u2, v2) ∨ ϕσ1(u1, v1, u2, v2, x, y)

∨ϕσ2(u1, v1, u2, v2, x, y) ∨ ϕσ (u1, v1, u2, v2, x, y)

T ′(u, v) ≡ ∃x, y(T (u, v) ∨ [T (u, x) ∧ T (y, v)])

7.3. Deleting Edges

Maintaining P and T under deletion of edges is more complicated. Whenever the edge
to be deleted is used on a path, we have to check whether there is a path that avoids the
edges. We basically need the formulas described in the following lemma.

372 V. Weber and T. Schwentick

Lemma 7.5. For each σ ∈ 	 there are FO-formulas ψσ1, ψσ2, and ψσ , such that

• ψσ1(u1, v1, u2, v2, x, y) expresses the following implication: If there is an edge
(x, y) labeled σ and ϕσ1(u1, v1, u2, v2, x, y) is true, then there is a path from u1

to v1 that does not use (x, y) and a path from u2 to v2 so that the concatenation
of their labels is in D2.
• ψσ2(u1, v1, u2, v2, x, y) expresses the following implication: If there is an edge
(x, y) labeled σ and ϕσ2(u1, v1, u2, v2, x, y) is true, then there is a path from u1

to v1 and a path from u2 to v2 that does not use (x, y) so that the concatenation
of their labels is in D2.
• ψσ (u1, v1, u2, v2, x, y) is the following implication: If there is an edge (x, y)

labeled σ and ϕσ1(u1, v1, u2, v2, x, y) ∧ ϕσ2(u1, v1, u2, v2, x, y) is true, then
there are paths from u1 to v1 and from u2 to v2 that do not use (x, y) so that the
concatenation of their labels is in D2.

Proof. Again, we only consider the case σ = a as the other three cases are either
almost identical or symmetric.

To build ψa1, we have to describe a path from u1 to v1 not using (x, y). To this end,
we make use of a technique from [PI]. Such a path exists if there is an edge (z, z′) different
from (x, y), such that there are a path from u1 to z, a path from z′ to v1, and a path from
z to x but no path from z′ to x . In our context, we also need that the concatenation of
labels along the path from u1 via (z, z′) to v1 and a path from u2 to v2 is in D2. This
can be done by ϕρ1, where ρ is the label of (z, z′). Since we do not know ρ, we have to
consider all four possibilities:

ψa,1(u1, v1, u2, v2, x, y)≡ (Ra(x, y) ∧ ϕa,1(u1, v1, u2, v2, x, y))

→ (∃z, z′[T (u1, z) ∧ T (z, x) ∧ ϕE (z, z′) ∧ ¬T (z′, x)

∧ T (z′, v1) ∧ (z �= x ∨ z′ �= y)

∧ ((Ra(z, z′) ∧ ϕa,1(u1, v1, u2, v2, z, z′))

∨ (Rā(z, z′) ∧ ϕā,1(u1, v1, u2, v2, z, z′))

∨ (Rb(z, z′) ∧ ϕb,1(u1, v1, u2, v2, z, z′))

∨ (Rb̄(z, z′)∧ϕb̄,1(u1, v1, u2, v2, z, z′)))]).

Here, ϕE (z, z′) expresses that there is an edge from z to z′.
The formula ψa,2 is completely analogous:

ψa,2(u1, v1, u2, v2, x, y) ≡ (Ra(x, y) ∧ ϕa,2(u1, v1, u2, v2, x, y))

→ (∃z,z′[T (u2, z)∧T (z, x)∧ϕE (z, z′)∧¬T (z′, x)

∧ T (z′, v2) ∧ (z �= x ∨ z′ �= y)

∧ ((Ra(z, z′) ∧ ϕa,2(u1, v1, u2, v2, z, z′))

∨ (Rā(z, z′) ∧ ϕā,2(u1, v1, u2, v2, z, z′))

∨ (Rb(z, z′) ∧ ϕb,2(u1, v1, u2, v2, z, z′))

∨(Rb̄(z, z′)∧ϕb̄,2(u1, v1, u2, v2, z, z′)))]).

Dynamic Complexity Theory Revisited 373

Let us now turn toψa . We have to avoid (x, y) on the path from u1 to v1 and between
u2 and v2. This is done as before, but possibly by two different edges (z, z′) and (z̃, z̃′)
labeled ρ and ρ̃. We have to find two proper labeled paths using these edges. If this can
be expressed by a formula ζ , we obtain ψa as before:

ψa(u1, v1, u2, v2, x, y) ≡ (Ra(x, y) ∧ ϕa,1(u1, v1, u2, v2, x, y)

∧ ϕa,2(u1, v1, u2, v2, x, y))

→ (∃z, z′ z̃, z̃′[T (u1, z)∧ϕE (z, z′)∧T (z′, v1) ∧ T (z, x)

∧ ¬T (z′, x) ∧ (z �= x ∨ z′ �= y) ∧ T (u2, z̃)

∧ ϕE (z̃, z̃′)∧T (z̃′, v2)∧T (z̃, x)∧¬T (z̃′, x)

∧ (z̃ �= x ∨ z̃′ �= y)

∧ ζ(u1, v1, u2, v2, z, z′, z̃, z̃′)]).

To build ζ we distinguish the cases given by the possible labelings of (z, z′) and
(z̃, z̃′). We define a formula for every case and get ζ as their disjunction:

ζ ≡ ζaa ∨ ζaā ∨ ζāa ∨ ζāā ∨ ζab ∨ ζab̄ ∨ ζāb ∨ ζāb̄ ∨ ζba ∨ ζbā ∨ ζb̄a ∨ ζb̄ā

∨ ζbb ∨ ζbb̄ ∨ ζb̄b ∨ ζb̄b̄.

For ρ, ρ̃ ∈ {a, b, ā, b̄}, we want ζρρ̃(u1, v1, u2, v2, z, z′, z̃, z̃′) to hold if and only
if there are edges (z, z′) and (z̃, z̃′) labeled ρ and ρ̃ and paths from u1 to z labeled s1,
from z′ to v1 labeled s2, from u2 to z̃ labeled s3, and from z̃′ to v2 labeled s4 such that
s1ρs2s3ρ̃s4 ∈ D2.

As in the case of inserting edges, the formulas guess the corresponding edges and
check whether there are proper labeled paths.

We consider four cases. The first is that both edges, (z, z′) and (z̃, z̃′), are labeled
a or b. By the position of the corresponding edges we can distinguish the three cases
shown in Figure 5(a). We give ζaa as an example, to obtain ζab, ζba , and ζbb only the
respective relation symbols have to be replaced:

ζaa(u1, v1, u2, v2, z, z′, z̃, z̃′)

≡ Ra(z, z′) ∧ Ra(z̃, z̃′)

∧ ∃c, d, e, f (Rā(c, d) ∧ Rā(e, f)

∧ [(π1(z
′, c) ∧ π1(z̃

′, e) ∧ π4(u1, z, d, v1, u2, z̃, f, v2))

∨ (P(z′, v1, u2, c) ∧ π1(z̃
′, e) ∧ π3(u1, z, d, z̃, f, v2))

∨ (π1(z̃
′, e) ∧ P(u1, z, d, v2) ∧ π3(z

′, v1, u2, z̃, f, c))]).

The second case is ζaā . It can be built similarly. However, we have to distinguish
more cases (Figure 5(b)). A special case is that (z, z′) and (z̃, z̃′)might be corresponding

374 V. Weber and T. Schwentick

(a) u1 v1 u2 v2z z′ z̃ z̃′c d e f
(())

u1 v1 u2 v2z z′ z̃ z̃′c d e f
(())

u1 v1 u2 v2z z′ z̃ z̃′ c de f
(())

(b) u1 v1 u2 v2z z′ z̃ z̃′c d e f
()) (

u1 v1 u2 v2z z′ z̃ z̃′c d e f
()) (

u1 v1 u2 v2z z′ z̃ z̃′c d e f
()) (

u1 v1 u2 v2z z′ z̃ z̃′ c de f
())(

u1 v1 u2 v2z z′ z̃ z̃′ c de f
())(

u1 v1 u2 v2z z′ z̃ z̃′c de f
())(

u1 v1 u2 v2z z′ z̃ z̃′c de f
())(

u1 v1 u2 v2z z′ z̃ z̃′
()

)(

(c) u1 v1 u2 v2z z′ z̃ z̃′c d e f
) (()

(d) u1 v1 u2 v2z z′ z̃ z̃′c d e f
))((

u1 v1 u2 v2z z′ z̃ z̃′c d e f
))((

u1 v1 u2 v2z z′ z̃ z̃′c de f
))((

Fig. 5. The different possible positions of the edges to delete, (z, z′) and (z̃, z̃′), and their corresponding
edges as considered in the construction of ζ .

edges:

ζaā(u1, v1, u2, v2, z, z′, z̃, z̃′)

≡ Ra(z, z′) ∧ Rā(z̃, z̃′)

∧ ∃c, d, e, f (Rā(c, d) ∧ Ra(e, f)

∧ [(π1(z
′, c) ∧ π1(f, z̃) ∧ π4(u1, z, d, v1, u2, e, z̃′, v2))

∨ (P(z′, v1, u2, c) ∧ π1(f, z̃) ∧ π3(u1, z, d, e, z̃′, v2))

∨ (π1(z
′, c) ∧ P(f, v1, u2, z̃) ∧ π3(u1, z, d, e, z̃′, v2))

Dynamic Complexity Theory Revisited 375

∨ (π1(f, z̃) ∧ π3(z
′, v1, u2, e, z̃′, c) ∧ P(u1, z, d, v2))

∨ (P(f, v1, u2, z̃) ∧ P(z′, e, z̃′, c) ∧ P(u1, z, d, v2))

∨ (π1(z
′, c) ∧ π3(f, z, d, v1, u2, z̃) ∧ P(u1, e, z̃′, v2))

∨ (P(z′, v1, u2, c) ∧ P(f, z, d, z̃) ∧ P(u1, e, z̃′, v2))

∨ (P(z′, v1, u2, z̃) ∧ P(u1, z, z̃′, v2))]).

ζbb̄ is again similar to ζaā , to build ζab̄ and ζbā we have to drop the last disjunct
because the two edges cannot be corresponding.

For ζāa , and as well for ζāb, ζb̄a , and ζb̄b, there is only one case to consider, as
illustrated in Figure 5(c):

ζāa(u1, v1, u2, v2, z, z′, z̃, z̃′) ≡ Rā(z, z′) ∧ Ra(z̃, z̃′)

∧ ∃c, d, e, f [Ra(c, d) ∧ Rā(e, f)

∧ π1(d, z) ∧ π1(z̃
′, e)

∧ π4(u1, c, z′, v1, u2, z̃, f, v2)].

Finally, both edges may be labeled ā or b̄. The four formulas are again similar,
corresponding to the cases shown in Figure 5(d). We spell out ζāā :

ζāā(u1, v1, u2, v2, z, z′, z̃, z̃′)

≡ Rā(z, z′) ∧ Rā(z̃, z̃′) ∧ ∃c, d, e, f (Ra(c, d) ∧ Ra(e, f)

∧ [(π1(d, z)) ∧ π1(f, z̃) ∧ π4(u1, c, z′, v1, u2, e, z̃′, v2))

∨ (π1(d, z) ∧ P(f, v1, u2, z̃) ∧ π3(u1, c, z′, e, z̃′, v2)

∨ (π1(d, z) ∧ π3(f, c, z′, v1, u2, z̃) ∧ P(u1, e, z̃′, v2)]).

Consequently, the updates necessary for an operation deleteRσ (x, y) for σ ∈ 	
can be described as follows, concluding the proof of Theorem 7.2:

P ′(u1, v1, u2, v2) ≡ P(u1, v1, u2, v2) ∧ ψσ1(u1, v1, u2, v2, x, y)

∧ψσ2(u1, v1, u2, v2, x, y) ∧ ψσ (u1, v1, u2, v2, x, y)

T ′(u, v) ≡ T (u, v)∧(¬T (u, x)∨¬T (y, v)∨∃z, z′[T (u, z)∧ϕE (z, z′)

∧ T (z′, v) ∧ T (z, x) ∧ ¬T (z′, x) ∧ (z �= x ∨ z′ �= y)]).

We end this section with the following corollary, which holds because the auxiliary
data structure for the empty graph can be described in first order.

Corollary 7.6. dynD2LREACH(acyclic) is in DynFO.

376 V. Weber and T. Schwentick

8. Conclusion

We have taken a step toward a dynamic complexity theory by presenting a more accurate
notion of dynamic problems and complexity classes. This allowed us to characterize
the complexity of several dynamic problems more precisely, thus clarifying the role of
precomputation in dynamic complexity, which was an open problem in [PI]. We pre-
sented a useful kind of reductions and gave complete problems for dynamic complexity
classes under these reductions. Finally, we presented first-order updates to a first “non-
redundant” LOGCFL-complete problem.

We want to give some directions for further research:

• It remains open whether there is a non-redundant problem complete for Pthat
allows efficient updates. D2LREACH might be a candidate. Note that the result
in [H] cannot be applied to D2LREACH in a straightforward way since one has
to consider paths of exponential length.
• As stated in [HI], canonical dynamic problems cannot be complete for dynamic

complexity classes in general. Therefore, it might be interesting to look for com-
plete problems for classes of canonical dynamic problems.
• A further issue is to establish connections between algorithmic results on dynamic

problems and dynamic complexity theory.

References

[BIS] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within nc. Journal
of Computer and System Sciences, 41(3):274–306, 1990.

[BRS] Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower bounds for read-k-times
branching programs. Computational Complexity, 3:1–18, 1993.

[C] Stephen A. Cook. Characterizations of pushdown machines in terms of time-bounded computers.
Journal of the ACM, 18(1):4–18, 1971.

[DLW] Guozhu Dong, Leonid Libkin, and Limsoon Wong. Incremental recomputation in local languages.
Information and Computation, 181(2):88–98, 2003.

[DS1] Guozhu Dong and Jianwen Su. First-order incremental evaluation of datalog queries. In Proc. of
DBPL-4, Workshops in Computing, pages 295–308. Springer, Berlin, 1993.

[DS2] Guozhu Dong and Jianwen Su. Incremental and decremental evaluation of transitive closure by
first-order queries. Information and Computation, 120(1):101–106, 1995.

[DS3] Guozhu Dong and Jianwen Su. Deterministic FOIES are strictly weaker. Annals of Mathematics
and Artificial Intelligence, 19(1-2):127–146, 1997.

[DS4] Guozhu Dong and Jianwen Su. Arity bounds in first-order incremental evaluation and definition
of polynomial time database queries. Journal of Computer and System Sciences, 557(3):289–308,
1998.

[E] Kousha Etessami. Dynamic tree isomorphism via first-order updates to a relational database. In
Proc. of the 17th PODS, pages 235–243. ACM Press, New York, 1998.

[FW] Amos Fiat and Gerhard J. Woeginger, editors. Online Algorithms, The State of the Art, volume 1442
of LNCS. Springer, Berlin, 1998.

[GHR] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, Oxford, 1995.

[GLS] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Computing LOGCFL certificates. Theo-
retical Computer Science, 270(1-2):761–777, 2002.

[H] William Hesse. The dynamic complexity of transitive closure is in DynT C0. Theoretical Computer
Science, 296(3):473–485, 2003.

Dynamic Complexity Theory Revisited 377

[HdLT] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. In Proc.
of the 30th ACM STOC, pages 79–89, 1998.

[HI] William Hesse and Neil Immerman. Complete problems for dynamic complexity classes. In Proc.
of the 17th LICS, pages 313–322. IEEE Computer Society Press, Los Alamitos, CA, 2002.

[I1] Neil Immerman. Languages that capture complexity classes. SIAM Journal on Computing,
16(4):760–778, 1987.

[I2] Neil Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer, New
York, 1999.

[L] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, New York, 2004.

[LW1] Leonid Libkin and Limsoon Wong. Incremental recomputation of recursive queries with nested sets
and aggregate functions. In Proc. of DBPL-6, volume 1369 of LNCS, pages 222–238. Springer,
Berlin, 1998.

[LW2] Leonid Libkin and Limsoon Wong. On the power of incremental evaluation in SQL-like languages.
In Proc. of DBPL-7, volume 1949 of LNCS, pages 17–30. Springer, Berlin, 2000.

[MSVT] Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia. Complexity
models for incremental computation. Theoretical Computer Science, 130(1):203–236, 1994.

[PI] Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity class. Journal of
Computer and System Sciences, 55(2):199–209, 1997.

[R] Omer Reingold. Undirected st-connectivity in log-space. In Proc. of the 37th ACM STOC,
pages 376–385, 2005.

[RZ] Liam Roditty and Uri Zwick. A fully dynamic reachability algorithm for directed graphs with an
almost linear update time. In Proc. of the 36th ACM STOC, pages 184–191, 2004.

[S] Ivan Hal Sudborough. On the tape complexity of deterministic context-free languages. Journal of
the ACM, 25(3):405–414, 1978.

[V] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoretical
Computer Science. An EATCS Series. Springer, New York, 1999.

Received in final form March 21, 2006. Online publication March 1, 2007.

