
Theoretical Computer Science 515 (2014) 96–122
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Robust synthesis for real-time systems ✩

Kim G. Larsen a, Axel Legay b, Louis-Marie Traonouez b,∗, Andrzej Wąsowski c

a Aalborg University, Science Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark
b IRISA/INRIA Rennes, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
c IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 June 2012
Received in revised form 19 July 2013
Accepted 22 August 2013
Communicated by P. Aziz Abdulla

Keywords:
Stepwise refinement
Timed I/O automata
Timed games
Specification theory
Robustness

Specification theories for real-time systems allow reasoning about interfaces and their
implementation models, using a set of operators that includes satisfaction, refinement,
logical and parallel composition. To make such theories applicable throughout the entire
design process from an abstract specification to an implementation, we need to reason
about the possibility to effectively implement the theoretical specifications on physical
systems, despite their limited precision. In the literature, this implementation problem has
been linked to the robustness problem that analyzes the consequences of introducing small
perturbations into formal models.
We address this problem of robust implementations in timed specification theories. We
first consider a fixed perturbation and study the robustness of timed specifications with
respect to the operators of the theory. To this end we synthesize robust strategies in timed
games. Finally, we consider the parametric robustness problem and propose a counter-
example refinement heuristic for computing safe perturbation values.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Component-based design is a software development paradigm well established in the software engineering industry. In
component-based design, larger systems are built from smaller modules that depend on each other in well delimited ways
described by interfaces. The use of explicit interfaces encourages creation of robust and reusable components.

Practice of component-based design is supported by a range of standardized middleware platforms such as CORBA [1],
OSGi [2] or WSDL [3]. These technologies are usually not expressive enough to handle intricate correctness properties of
safety-critical concurrent real-time software—a domain where component-based design would be particularly instrumental
to address the strict legal requirements for certification [4]. To aid these needs, researchers work on developing trustworthy
rigorous methods for component-oriented design. In the field of concurrency verification this includes compositional design
(specification theories, stepwise-refinement) and compositional model checking. Akin to algebraic specifications, specification
theories provide a language for specifying component interfaces together with operators for combining them, such as parallel
(structural) composition or conjunction (logical composition), along with algorithms for verification based on refinement
checking.

For real-time systems, timed automata [5] are the classical specification language. Designs specified as timed automata
are traditionally validated using model checking against correctness properties expressed in a suitable timed temporal logic

✩ The research presented in this paper has been supported by MT-LAB, a VKR Centre of Excellence for the Modeling of Information Technology.

* Corresponding author. Tel.: +33 299847456; fax: +33 299847171.
E-mail addresses: kgl@cs.aau.dk (K.G. Larsen), axel.legay@inria.fr (A. Legay), louis-marie.traonouez@inria.fr (L.-M. Traonouez), wasowski@itu.dk

(A. Wąsowski).
0304-3975/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.08.015

http://dx.doi.org/10.1016/j.tcs.2013.08.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:kgl@cs.aau.dk
mailto:axel.legay@inria.fr
mailto:louis-marie.traonouez@inria.fr
mailto:wasowski@itu.dk
http://dx.doi.org/10.1016/j.tcs.2013.08.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2013.08.015&domain=pdf


K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 97
Fig. 1. Timed specifications with timed I/O automata.

Fig. 2. Non-robust specification of a coffee machine.

[6]. Mature modeling and model-checking tools exist, such as Uppaal [7], that implement this technique and have been
applied to numerous industrial applications [8–12].

In [13], we have proposed a specification theory for real-time systems based on timed automata. A specification theory
uses refinement checking instead of model checking to support compositionality of designs and proofs from ground up.
We build on an input/output extension of timed automata model to specify both models and properties. The set of state
transitions of the timed systems is partitioned between inputs, representing actions of the environment, and outputs that
represent the behavior of the component. The theory is equipped with a game-based semantic. The two players, Input
and Output, compete in order to achieve a winning objective—for instance safety or reachability. These semantics are used
to define the operations of the theory, including satisfaction (can a specification be implemented), refinement (how two
specifications compare), logical composition (superposition of two specifications), structural composition (combining smaller
components into larger ones), and quotient (synthesizing a component in a large design).

Let us illustrate the main concepts with an example. Fig. 1(a) displays a specification of a coffee machine that receives an
input coin? and outputs either coffee (cof!) or tea (tea!). It can be composed with the specification of a researcher in Fig. 1(b)
by synchronizing input with output labeled with the same channel name (cof and tea). In Fig. 1(b) the researcher specifies
that if tea arrives after 15 time units, she enters into an error state lu. We can say that if there exists an environment
for these two specifications that avoids reaching this error state then the two specifications are compatible [14]. In this
particular example, such an environment simply needs to provide coin? sufficiently often. In general deciding existence
of safe environments is reduced to establishing whether there exists a winning strategy in the underlying timed safety
game.

Besides compatibility checking, the theory of [13] is equipped with a consistency check to decide whether a specification
can indeed be implemented. Unfortunately, this check does not take limitations and imprecision of the physical world into
account. This is best explained with an example. Consider the refined specification of the coffee machine in Fig. 2. This
machine first proposes to make a choice of a drink, then awaits a coin, and, after receiving the payment, delivers the coffee.
If the payment does not arrive within six time units, the machine aborts the drink selection and returns to the initial
state, awaiting a new choice of a beverage. Already in this simple example it is quite hard to see that implementing a
component satisfying this specification is not possible due to a subtle mistake. Suppose that the environment makes the
choice? action in the Idle location, waits six time units, and then provides the coin? action. In such execution the system
reaches the location Serving with clock y at value 6. The invariant y � 6 in the Serving location requires now that any valid
implementation must deliver the coffee (cof!) immediately, in zero time units. No physical system would permit this, so we
say that this state is not robustly consistent.



98 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
The above example can be fixed easily by adding another reset to clock y, when the coin? message is received. It
is probably the intended behavior of the specification that the serving should take six time units from the insertion of
the coin, and not from the choice of the drink. After all the machine does not control how much time passes between
the choice of the drink and the payment. An alternative simple fix is to allow the timeout abort transition to be taken
earlier—for example after four time units. This would guarantee at least two time units for brewing the coffee. Despite
both corrections being quite simple, it is clear that subtle timing mistakes like this one are very difficult to spot. Finding
such errors in specifications is even harder in larger designs as non-robust timing can emerge in the compositions of
multiple specifications, as a result of combing behaviors that themselves are robust. Examples exist where independent
components appear compatible, but their compatibility requires infinitely precise execution platform or an infinitely fast
environment.

The timing precision errors in specifications are not handled in any way in idealized interface theories such as [13,15].
These and similar issues have led to a definition of the timing robustness problem that checks if a model can admit some
timing perturbations while preserving a desired property. The robustness problem has been studied in various works for
timed automata. Providing a solution to this problem in the setting of timed I/O specifications is the objective of this paper:

• We propose a notion of implementation of a specification that is robust with respect to a given perturbation in the delay
before an action. The concept of robust implementation is lifted to a robust satisfaction relation that takes variations of
timed behaviors into account when checking whether the implementation matches the requirement of the specification.
• Classical compositional design operators are lifted to the robust setting. One of the remarkable features of this new

theory is that this does not require modifications to the definitions of the operators themselves and that all the good
properties of a specification theory (including independent implementability) are maintained—the only effort requires
is reproving the properties of the operators in a non-idealized setting.
• We propose a consistency check for robust satisfaction. This new check relies on an extension of the classical timed

I/O game to the robust setting. In [16], Chatterjee et al. show that problems on robust timed games can be reduced to
classical problems on an extended timed game. We modify the original construction of [16] to take the duality of inputs
and outputs into account. Then, we show how our new game can be used to decide consistency in a robust setting as
well as to synthesize a robust implementation from a given specification.
• Finally, we present a technique that computes the greatest admissible perturbations for the robustness problems. We

apply a counterexample abstraction refinement-like technique that analyzes parametrically the results of loosing timed
games in order to refine the value of the perturbation. This technique and the different constructions presented in the
paper are implemented in a prototype tool. We demonstrate the performance of the refinement heuristic against the
baseline of a simple binary search technique for finding an optimal precision value.

To the best of our knowledge, this paper presents the first theory for stepwise refinement and specification of timed
systems in a robust manner. While the presentation is restricted to the theory of [13], we believe that our methods work
for any timed specifications. Our experience with industrial projects shows that such realistic design theories are of clear
interest [17–19].

Organization of the paper. We proceed by summarizing the state of the art in Section 2 and introducing the background
on Timed Specifications (Section 3). In Section 4 we introduce methods for solving robust time games that arise in our
specification theory. These methods are used in Section 5 to reason about consistency, conjunction, parallel composition, in
order to synthesize robust implementations of real-time components. In Section 6 we develop a counterexample refinement
technique to measure the maximum imprecision allowed by the specifications. Finally in Section 7 we present a prototype
that implements some of the functionalities of the tool ECDAR, extended with the robustness concepts presented in this
paper. We demonstrate this tool on three experiments.

2. State of the art

In the literature the robustness problem has been considered for timed automata using logical formulas as specifica-
tions (and neglecting compositional design operators). The robust semantics for timed automata with clock drifts has been
introduced by Puri [20]. The problem has been linked to the implementation problem in [21], which introduced the first
semantics that modeled the hardware on which the automaton is executed. In this work, the authors proposed a robust
semantics of Timed Automata called AASAP semantics (for “Almost As Soon As Possible”), that enlarges the guards of an au-
tomaton by a delay �. This work has been extended in [22] to propose another robust semantics with both clock drifts and
guard enlargement. Extending [20] they solve the robust safety problem, defined as the existence of a non-null value for the
imprecision. They show that in terms of robust safety the semantics with clock drifts is just as expressive as the semantics
with delay perturbation. We extend the work of [21,22] by considering compositional design operators, stepwise-refinement,
and reasoning about open systems (only closed system composition were considered so far).

We solve games for consistency and compatibility using a robust controller synthesis technique inspired by Chatterjee
et al. [16], who provide synthesis techniques for robust strategies in games with parity objectives. Driven by the fact that
consistency and compatibility are safety games, we restrict ourselves to safety objectives, but we extend [16] by allowing
negative perturbation of delays.



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 99
Our paper is also similar to the works in [23,24] that show how one can synthesize from any timed automaton an
equivalent robust automaton. We also synthesize robust components, but we start from the specification and we apply a
controller synthesis methods to the specification, rather than modifying an existing implementation.

Robustness is defined in [22] as the existence of a positive value for the imprecision of a timed automaton. The papers
shows that this problem is decidable, but it does not show how to synthesize the value. A bound on the value is computed in
[25]. Finally a quantitative analysis is performed in [26] that computes the greatest admissible value for the perturbation, but
the method is restricted to timed automata without nested loops. We propose an approximation technique that computes
this value in our timed specifications context, with no major restrictions on syntax of the specifications.

There is presently no alternative specification theory for timed systems with support for robustness. A preliminary ver-
sion of this paper has appeared in [27]. This version differs from the short version by including proofs of theorems, by
adding two entirely new sections presenting parametric methods for robustness (Sections 6–7). The algorithms of [27]
merely check whether a given specification is robust with respect to a given timing precision parameter. The new methods
compute the maximum value of the precision for which the specification is robustly consistent (or two specifications are
robustly compatible). We also add an experimental evaluation of the performance of the proposed methods.

3. Background on timed I/O specifications

We now recall the definition of timed I/O specifications [13]. We use N for the set of all natural numbers, R for the set
of all real numbers, and R�0 (resp. R>0) for the non-negative (resp. strictly positive) subset of R. Rational numbers are
denoted by Q, and their subsets are denoted analogously. For x ∈ R�0, let �x� denote the integer part of x and 〈x〉 denote
its fractional part. Given a function f on a domain D and a subset C of D , we denote by f |C the restriction of f to C .

3.1. Timed I/O transitions systems and timed I/O automata

In the framework of [13], specifications and their implementations are semantically represented by Timed I/O Transition
Systems (TIOTS) that are nothing more than timed transition systems with input and output modalities on transitions. Later
we shall see that input represents the behaviors of the environment in which a specification is used, while output represents
behaviors of the component itself.

3.1.1. Timed I/O transitions systems

Definition 1. A Timed I/O Transition System is a tuple S = (StS , s0,Σ
S ,→S ), where

• StS is an infinite set of states,
• s0 ∈ StS is the initial state,
• Σ S =Σ S

i 	Σ S
o is a finite set of actions partitioned into inputs Σ S

i and outputs Σ S
o ,

• and →S : StS × (Σ S ∪R�0)× StS is a transition relation.

We write s a−→ S s′ when (s,a, s′) ∈→S , and use i?, o! and d to range over inputs, outputs and R�0, respectively.

In what follows, we assume that any TIOTS satisfies the following conditions:

• time determinism: whenever s d−→ S s′ and s d−→ S s′′ then s′ = s′′ ,
• time reflexivity: s 0−→ S s for all s ∈ StS ,

• time additivity: for all s, s′′ ∈ StS and all d1,d2 ∈R�0 we have s
d1+d2−−−−→ S s′′ iff s

d1−−→ S s′ and s′ d2−−→ S s′′ for s′ ∈ StS .

A run ρ of a TIOTS S from its state s1 is a sequence s1
a1−−→ S s2

a2−−→ S . . . sn−1
an−1−−−→ S sn

an−−→ . . . such that for all 1 � i � n,
si

ai−→ S si+1 with ai ∈Σ S ∪ R�0. We write Runs(s1, S) for the set of runs of S starting in s1 and Runs(S) for Runs(s0, S).
We write States(ρ) for the set of states reached in ρ , and if ρ is finite then we denote the last state occurring in ρ by
last(ρ).

A TIOTS S is deterministic iff the action or delay fully determines the next state: ∀a ∈Σ S ∪R�0, whenever s a−→ S s′ and
s a−→ S s′′ , then s′ = s′′ . It is input-enabled iff there is an input transition for every input action in each of its states s ∈ StS :
∀i? ∈Σ S

i .∃s′ ∈ StS . s i?−→ S s′ .
A TIOTS is output urgent iff whenever an output transition is possible, no further delaying is allowed:

∀s, s′, s′′ ∈ StS if ∃o! ∈Σ S
o .∃d � 0.s o!−→ S s′ and s d−→ S s′′ then d= 0

Output urgency captures predictability of timing of system’s reactions. Finally, we say that a TIOTS S satisfies the indepen-
dent progress condition iff it can always evolve using delays and outputs, regardless whether the environment collaborates



100 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
providing inputs or not. This is not a limiting assumption—in real systems, when the environment does not interact, the
time is simply passing, and so it should be possible in the models of systems. Formally, for each state s we have either
(∀d � 0.∃s′s d−→ S s′) or (∃d ∈ R�0.∃o! ∈ Σ S

o .∃s′, s′′ ∈ StS .
d−→ S s′ and s′ o!−→ S s′′). The property guarantees that the environ-

ment cannot block progress of time.

3.1.2. Timed I/O automata
TIOTS are syntactically represented by Timed I/O Automata (TIOA). Let Clk be a finite set of clocks. A clock valuation over

Clk is a mapping Clk �→ R�0 (thus an element of RClk
�0). Given a valuation u and d ∈ R�0, we write u + d for the valuation

in which for each clock x ∈ Clk we have (u+ d)(x)= u(x)+ d. For λ⊆ Clk, we write u[λ] for a valuation agreeing with u on
clocks in Clk \ λ, and giving 0 for clocks in λ.

Let B(Clk) denote all clock constraints ϕ generated by the grammar ϕ ::= x≺ k | x− y ≺ k | ϕ ∧ ϕ , where k ∈Q, x, y ∈ Clk
and ≺∈ {<,�,>,�}. By U(Clk) ⊂ B(Clk), we denote the set of constraints restricted to upper bounds and without clock
differences. For constraint ϕ ∈ B(Clk) and u ∈ RClk

�0, we write u |� ϕ if u satisfies ϕ . If Z ⊆ RClk
�0, we write Z |� ϕ if u |� ϕ

for all u ∈ Z . We write �ϕ� to denote the set of valuations {u ∈ RClk
�0 | u |� ϕ}. A subset Z ⊆ RClk

�0 is a zone if Z = �ϕ�

for some ϕ ∈ B(Clk). Let Clk′ ⊂ Clk and Z ⊆ RClk
�0 be a zone. We define the projection of Z on the subset of clocks Clk′ as

Z |Clk′ = {u′ ∈RClk′
�0 | ∃u ∈ Z .u′ = u|Clk′ }.

Definition 2. A Timed I/O Automaton is a tuple A= (Loc,q0,Clk, E,Act, Inv), where

• Loc is a finite set of locations,
• q0 ∈ Loc is the initial location,
• Clk is a finite set of clocks,
• E ⊆ Loc× Act×B(Clk)× 2Clk × Loc is a set of edges,
• Act= Acti 	 Acto is a finite set of actions, partitioned into inputs (Acti) and outputs (Acto),
• Inv : Loc �→ U(Clk) is a set of location invariants.

Without loss of generality we assume that the guards are satisfiable and that the invariants are always satisfied by the
incoming edges. Formally, let e = (q,a,ϕ,λ,q′) ∈ E , we assume that �ϕ� �= ∅ and that ∀u ∈ �ϕ�.u[λ] |� Inv(q′).

A universal location, denoted lu, in a TIOA accepts every input and can produce every output at any time. Formally lu
is such that, ∀a ∈ Act.∃(lu,a,�,∅, lu) ∈ E , where � is the clock constraints such that ��� = RClk

�0. We assume that every
TIOA contains a universal location, even if it is not drawn on the graph. The universal location will be used to model an
unpredictable behavior of a component.

Example 1. Fig. 1(b) on page 97 depicts an example of a TIOA that admits two input actions cof? and tea?, and one output
action pub!. Edges are labeled with an action, a guard and a set of reset clocks. Edges with input action are drawn with plain
arrows, while Edges with output action are drawn with dashed arrows. Location are labeled with a name and an invariant
constraint. lu is the universal location.

The semantics of a TIOA A = (Loc,q0,Clk, E,Act, Inv) is a TIOTS �A�sem = (Loc × RClk
�0, (q0,0),Act,→), where 0 is a

constant function mapping all clocks to zero, and → is the largest transition relation generated by the following rules:

• Each edge (q,a,ϕ,λ,q′) ∈ E gives rise to (q, u)
a−→ (q′, u′) for each clock valuation u ∈ RClk

�0 such that u |� ϕ and u′ =
u[λ].
• Each location q ∈ Loc with a valuation u ∈RClk

�0 gives rise to a transition (q, u)
d−→ (q, u+d) for each delay d ∈R�0 such

that u + d |� Inv(q).

Example 2. In the example of Fig. 1(b) a possible run starting from initial location Idle is

(
Idle, (0)

) cof?−−→ (
C, (0)

) 2.6−−→ (
C, (2.6)

) pub!−−→ (
Idle, (0)

)
Let X be a set of states in �A�sem. For a ∈ Act the a-successors and a-predecessors of X are defined respectively by:

Posta(X)= {(
q′, u′

) ∣∣ ∃(q, u) ∈ X . (q, u)
a−→ (

q′, u′
)}

Preda(X)= {
(q, u)

∣∣ ∃(q′, u′
) ∈ X . (q, u)

a−→ (
q′, u′

)}
The timed successors and predecessors of X are respectively defined by:



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 101
X↗= {
(q, u+ d) | (q, u) ∈ X, d ∈R�0

}
X↙= {

(q, u− d) | (q, u) ∈ X, d ∈R�0
}

The safe timed predecessors of X with respect to a set of unsafe states Y are the set of timed predecessors of X such that
the states of Y are avoided along the path:

Predt(X, Y )= {
(q, u) | ∃d ∈R�0. (q, u)

d−→ (q, u+ d) and (q, u + d) ∈ X and ∀d′ ∈ [0,d]. (q, u+ d′
)

/∈ Y
}

These operations can be implemented symbolically on zones using Difference Bound Matrices (DBMs) [28].

3.1.3. Symbolic abstractions
Since TIOTSs are infinite size they cannot be directly manipulated by computations. Usually symbolic representations, such

as region graphs [5] or zone graphs, are used as data structures that finitely represent semantics of TIOAs. A symbolic state is a
pair (q, Z) that combines all concrete states (q, u) such that u ∈ Z , where q ∈ Loc and Z ⊆RClk

�0. Usually symbolic states are
formed combining locations with special kinds of sets of valuations: regions and zones. Recall that zones are sets expressed
by clock constraints in TIOAs. We now define regions.

Let M be the integer constant with the greatest absolute value among constants appearing in the guards and invariants
of a TIOA.1 A clock region is an equivalence class of the relation ∼ on clock valuations such that u ∼ v iff the following
conditions hold:

• ∀x ∈ Clk, either �u(x)� = �v(x)� , or u(x) > M and v(x) > M ,
• ∀x, y ∈ Clk, ∀k ∈ [−M, M], u(x)− u(y) � k iff v(x)− v(y) � k,
• ∀x ∈ Clk if u(x) � M then 〈u(x)〉 = 0 iff 〈v(x)〉 = 0.

We write r↗ for the region that is the unique direct time successor of region r, if such exists. Formally, r↗ is the regions
such that ∀u ∈ r.∃d > 0.(u + d ∈ r↗ ∧ ∀d′ < d.u + d′ ∈ r ∪ r↗). For a clock valuation u, we write [u] to denote the unique
region containing u.

The region graph of a TIOA A is a triple GA = (RA, r0,−→ ), where RA = {(q, [u]) | (q, u) ∈ St�A�sem } is the set of
symbolic states, r0 = (q0, [0]) is the initial symbolic state, and −→ ⊆RA × (Act ∪ {τ })×RA , such that (q, r) τ−→ (q, r↗) iff
r↗ |� Inv(q), and (q, r) a−→ (q′, r′) iff (q, u)

a−→ (q′, u′) for some u ∈ r and u′ ∈ r′ .
The zone graph G′A = (ZA, X0,−→ ) is defined analogously, but using zones instead of regions. It provides a coarser

abstraction, in which only discrete transitions are observed. There, ZA is the set of reachable symbolic states: (q, Z) ∈ZA
if Z is a zone of RClk

�0. The initial symbolic state is defined by X0 = {(q0,0↗∩ �Inv(q0)�)}. For action a ∈ Act there is an edge

(q, Z)
a−→ (q′, Z ′) iff (q,a,ϕ,λ,q′) ∈ E with Z ′ = ((Z ∩ �ϕ�)[λ])↗∩ �Inv(q′)�.

3.2. Basics of the timed specification theory

In [13], timed specifications and implementations are both represented by TIOAs satisfying additional conditions:

Definition 3. A specification S is a TIOA whose semantics �S�sem is deterministic and input-enabled. An implementation I is
a specification whose semantics �I�sem additionally satisfies the output urgency and the independent progress conditions.

Example 3. The TIOA in Fig. 1(b) is a specification of a researcher. It accepts either coffee (cof) or tea in order to produce
publications (pub). If tea is served after a too long period the researcher falls into an error state, represented by the universal
state lu.

An implementation of this specification is presented in Fig. 3. It is output urgent since it produces pub exactly 3 time
units after receiving cof and 6 time units after receiving tea. The location Blocked is an implementation of the universal
location that never produces pub.

In specification theories, a refinement relation plays a central role. It allows to compare specifications, and to relate
implementations to specifications. In [13], as well as in [14,29,30], refinement is defined in the style of alternating (timed)
simulation:

Definition 4 (Refinement). An alternating timed simulation between two TIOTS T = (StT , t0,Σ,→T ) and S = (StS , s0,Σ,→S)

is a relation R ⊆ StT × StS such that (t0, s0) ∈ R and for every (t, s) ∈ R

• If ∃i? ∈Σi .∃s′ ∈ StS .s i?−→ S s′ , then ∃t′ ∈ StT .t i?−→T t′ and (t′, s′) ∈ R .
• If ∃o! ∈Σo.∃t′ ∈ StT .t o!−→T t′ , then ∃s′ ∈ StS .s o!−→ S s′ and (t′, s′) ∈ R .
• If ∃d � 0.∃t′ ∈ StT .t d−→T t′ , then ∃s′ ∈ StS .s d−→ S s′ and (t′, s′) ∈ R .

1 The region graph of an automaton with rational constants can be built by scaling all constants of the automaton to work only with integers.



102 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
Fig. 3. Implementation for a researcher.

Fig. 4. Refinement between specifications: T � S , but U �� S .

We write T � S if there exists an alternating simulation between T and S . For two TIOAs T and S , we say that T refines S ,
written T � S , iff �T �sem � �S�sem.

Example 4. We illustrate the concept of refinement between three simple specifications presented in Fig. 4. T refines S ,
because it can only delay up to x = 6 and performs a! between [5,6]. However, U does not refine S (and S does not
refine U ), because when c? is received at x= 0, the states (q,0) from S and (q2,0) from U must be in relation, which is
not possible because (q2,0)

b!−→U (q3,0) is not allowed at (q,0) by S .

Definition 5 (Satisfaction). An implementation I satisfies a specification S , denoted I sat S , iff �I�sem � �S�sem. We write
�S�mod for the set of all implementations of S:

�S�mod = {I | I sat S and I is an implementation}

Definition 6. A specification S is consistent iff there exists an implementation I such that I sat S .

The reader might find it surprising that in a robust specification theory we refrain from adjusting the refinement to
account for imprecision of implementations when comparing specifications. Our basic assumption is that specifications are
precise mathematical objects that are not susceptible to imprecision of execution. In contrary, implementations can behave
imprecisely when executed, so in Section 4 we will introduce an extension of Definition 5 that takes this into account. It
is a fortunate property of Definition 4 that we do not need to modify it in order to reason about robust implementations
(Property 3 in Section 4).

In [13], we have reduced refinement checking to finding winning strategies in timed games. In the reminder of this
section, we recall the definition of such games and show how they can be used to check consistency. Timed games also
underly other operations such as conjunction, composition, and quotient [13], which will be illustrated in Section 5.

3.3. Timed games for timed I/O specifications

TIOAs are interpreted as two-player real-time games between the output player (the component) and the input player (the
environment). The input player plays with actions in Acti and the output player plays with actions in Acto. A strategy for
a player is a function that defines her move at any given time (either delaying or playing a controllable action). The delay
chosen by one player is implicitly defined by the time until a controllable action is chosen. A strategy is called memoryless
if the next move depends solely on the current state. We only consider memoryless strategies, as these suffice for safety



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 103
Fig. 5. Consistent specification with error states.

games [31]. For simplicity, we only define strategies for the output player (i.e. output is the verifier). Definitions for the
input player are obtained symmetrically.

Definition 7. A memoryless strategy fo for the output player on the TIOA A is a partial function St�A�sem �→ Acto ∪ {delay},
such that

• Whenever fo(s) ∈ Acto then s
fo(s)−−−→ s′ for some s′ .

• Whenever fo(s)= delay then s d−→ s′′ for some d > 0 and state s′′ , and fo(s′′)= delay.

The game proceeds as a concurrent game between the two players, each proposing its own strategy. The restricted
behavior of the game defines the outcome of the strategies.

Definition 8. Let A be a TIOA, fo and f i be two strategies over A for the output and input player, respectively, and s be a
state of �A�sem. Outcome(s, fo, f i) is the subset of Runs(s, �A�sem) defined inductively by:

• s ∈Outcome(s, fo, f i),
• if ρ ∈Outcome(s, fo, f i), then ρ ′ = ρ a−→ s′ ∈Outcome(s, fo, f i) if ρ ′ ∈ Runs(s, �A�sem) and one the following conditions

hold:
1. a ∈ Acto and fo(last(ρ))= a,
2. a ∈ Acti and f i(last(ρ))= a,
3. a ∈R�0 and ∀d ∈ [0,a[.∃s′′. last(ρ)

d−→ s′′ and ∀k ∈ {o, i} fk(s′′)= delay.
• ρ ∈Outcome(s, fo, f i) if ρ is infinite and all its finite prefixes are in Outcome(s, fo, f i).

A winning condition for a player in the TIOA A is a subset of Runs(�A�sem). This player is then called the veri-
fier, whereas the other player tries to prevent her from winning, and therefore is called the spoiler. In safety games
the winning condition is to avoid a set Bad ⊆ St�A�sem of “bad” states. Formally, the winning condition for output is
Wo(Bad) = {ρ ∈ Runs(�A�sem) | States(ρ) ∩ Bad = ∅}. A strategy fo is a winning strategy from state s if and only if, for
all strategies f i of input, Outcomeo(s, fo, f i)⊆W o(Bad). On the contrary, a strategy f i for input is a spoiling strategy of fo

if and only if Outcome(s, fo, f i) � W o(Bad). A state s is winning for output if there exists a winning strategy from s. The
game (A, W o(Bad)) is winning if and only if the initial state is winning. Solving this game is decidable [32,28,13]. We only
consider safety games in this paper, and without lost of generality we assume these “bad” states are specified by a set of
entirely “bad” locations (in the sense that all states in which such a location participates are bad).

Strategies in timed games as operators on timed specifications. We sketch how timed games can be used to establish consistency
of a timed specification.

An immediate error occurs if the specification disallows progress of time and output transitions in a given state—such a
specification will break if the environment does not send an input. For a specification S we define the set of immediate
error states errS ⊆ St�S�sem as:

errS = {
s | (∃d. s

d
�) and ∀d ∀o! ∀s′. s d−→ s′ implies s′ o!

�
}

It follows that no immediate error states can occur in implementations, since they verify independent progress. In [13] we
show that S is consistent (see Definition 6) iff there exists a winning strategy for output in the safety game (S, W o(errS )).

Consider the example specification of another coffee machine on Fig. 5. There is a unique reachable error state
errS = {(Blocked,0)}. Now let us take a strategy for the output player, fo , such that fo((Serving,4)) = coff!, and
∀y �= 4. fo((Serving, y)) = delay. It can be translated into an implementation of the coffee machine, in which tea is never
served. Thus this specification is consistent.



104 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
Fig. 6. Illustration of the �-perturbation of an implementation I by �= 1.

4. Robust timed I/O specifications

We now define a robust extension of our specification theory. An essential requirement for an implementation is to
be realizable on a physical hardware, but this requires admitting small imprecisions characteristic for physical components
(computer hardware, sensors and actuators). The requirement of realizability has already been linked to the robustness prob-
lem in [21] in the context of model checking. In specification theories the small deficiencies of hardware can be reflected in
a strengthened satisfaction relation, which introduces small perturbations to the timing of implementation actions, before
they are checked against the requirements of a specification. This ensures that the implementation satisfies the specification
even if its behavior is perturbed.

We first formalize the concept of perturbation. Let the constraint ϕ ∈ B(X) be a guard over the set of clocks X . For all
� ∈Q�0, the enlarged guard �ϕ�� is constructed according to the following rules:

• Any term x≺ k of ϕ with ≺ ∈ {<,�} is replaced by x≺ k+�,
• Any term x� k of ϕ with � ∈ {>,�} is replaced by x� k−�.

Similarly, the restricted guard �ϕ�� is using the two following rules:

• Any term x≺ k of ϕ with ≺ ∈ {<,�} is replaced by x≺ k−�,
• Any term x� k of ϕ with � ∈ {>,�} is replaced by x� k+�.

Notice that for a clock valuation u and a guard ϕ , we have that u |� ϕ implies u |� �ϕ�� , and u |� �ϕ�� implies u |� ϕ , and
��ϕ���� = ��ϕ���� = ϕ .

4.1. Perturbed implementation and robust timed I/O specifications

We lift the perturbation to implementation TIOAs. Given a jitter �, the perturbation means a �-enlargement of invariants
and of output edge guards. Guards on the input edges are restricted by �:

Definition 9. For an implementation I = (Loc,q0,Clk, E,Act, Inv) and � ∈ Q�0, the �-perturbation of I is the TIOA I� =
(Loc,q0,Clk, E ′,Act, Inv′), such that:

• Every edge (q,o!,ϕ,λ,q′) ∈ E is replaced by (q,o!, �ϕ��,λ,q′) ∈ E ′ ,
• Every edge (q, i?,ϕ,λ,q′) ∈ E is replaced by (q, i?, �ϕ��,λ,q′) ∈ E ′ ,
• ∀q ∈ Loc. Inv′(q)= �Inv(q)�� ,
• ∀q ∈ Loc. ∀i? ∈ Acti there exists and edge (q, i?,ϕu,∅, lu) ∈ E ′ with

ϕu =¬
( ∨

(q,i?,ϕ,λ,q′)∈E

�ϕ��
)

I� is not necessarily action deterministic, as output guards are enlarged. However it is input-enabled, since by construc-
tion (last case in the previous definition), any input not accepted after restricting input guards is redirected to the universal
location lu. Also I0 equals I . An illustration of this transformation is presented in Fig. 6.

In essence, we weaken the constraints on output edges, and strengthen the constraints on input edges. This is consistent
with the game semantics of specifications: perturbation makes the game harder to win for the verifier. Since the gaps
created by strengthening input guards are closed by edges to the universal location, the implementation becomes less
predictable. If an input arrives close to the deadline, the environment cannot be certain it will be handled precisely as
specified. Enlargement of output guards has a similar effect. The environment of the specification has to be ready that
outputs will arrive slightly after the deadlines.



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 105
Such considerations are out of place in classical robustness theories for model checking, but are crucial when moving to
models, where input and output transitions are distinguished. For example, in [21] the authors propose a robust semantics
for timed automata. Their maximal progress assumption is equivalent to the output urgency condition of our implementations.
However, in [21] both input and output guards are increased, which is suitable for the one-player setting, but incompat-
ible with the contravariant nature of two-player games. Such enlargement would not be monotonic with respect to the
alternating refinement (Definition 4), while the perturbation of Definition 9 is monotonic.

We are now ready to define our notion of robust satisfaction:

Definition 10. An implementation I robustly satisfies a specification S for a given delay � ∈ Q�0, denoted I sat� S , iff
I� � S . We write �S��

mod for the set of all �-robust implementations of S , such that

�S��
mod = {I | I sat� S ∧ I is an implementation}

Property 1 (Monotonicity). Let I be an implementation and 0 � �1 � �2 . Then:

I � I�1 � I�2

Proof. First, observe that for any clock valuation u and guard ϕ , if u |� �ϕ��1 then u |� �ϕ��2 , and conversely if u |� �ϕ��2

then u |� �ϕ��1 . We now check the refinement between �I�1 �sem and �I�2 �sem. Let R = {(s1, s2) ∈ St�I�1 �sem × St�I�2 �sem |
s1 = (q, u) = s2} be a candidate alternating simulation relation. We prove by co-induction that R satisfies Definition 4.
Consider any state (q, u) such that (q, u)R(q, u).

1. If (q, u)
d−→ I1 (q, u + d) for some d ∈R�0, then (q, u)

d−→ I2 (q, u+ d), since u+ d |� �Inv(q)��1 ⇒ u + d |� �Inv(q)��2 .

2. If (q, u)
o!−→ I1 (q′, u′), then (q, u)

o!−→ I2 (q′, u′), since u |� �ϕ��1 ⇒ u |� �ϕ��2 (where ϕ is the guard of the edge that
fires o!), and, similarly, u′ |� �Inv(q′)��1 ⇒ u′ |� �Inv(q′)��2 .

3. If (q, u)
i?−→ I2 (q′, u′) then (q, u)

i?−→ I1 (q′, u′), since u |� �ϕ��2 ⇒ u |� �ϕ��1 (where ϕ is the guard of the edge that
fires i?). Besides u |� ϕ and therefore we assume that u′ |� Inv(q′), which implies that u′ |� �Inv(q′)��1 .

Clearly, both transition systems �I�1 �sem and �I�2 �sem share the same initial state s0 and s0 Rs0, which concludes the
proof. The argument that I � I�1 proceeds similarly with the same witness relation R . �

In addition, we obtain these properties by transitivity of alternating simulation:

Property 2. Let S be a specification and �1 � �2 . Then:

�S��2
mod ⊆ �S��1

mod ⊆ �S�mod

Property 3. Let S and T be specifications and 0 � �. Then:

S � T �⇒ �S��
mod ⊆ �T ��

mod

The definition of robust satisfaction naturally induces a notion of robust consistency (implementability):

Definition 11. Let S be a specification and � ∈Q>0, then S is �-robust consistent iff there exists an implementation I such
that I sat� S .

Like in the non-robust case, deciding consistency is reducible to solving games. But now, we will need to make the games
aware of the robustness conditions. In the rest of this section, we propose a definition for such games. Then, in Section 5
we show how they can be used to perform classical operations on specifications.

Example 5. Fig. 7 presents a �-perturbation of the researcher implementation presented in Fig. 3. This implementation
robustly satisfies the specification of Fig. 1(b) for any � ∈]0,1]. However, for � = 2 the following run is possible in the
perturbed implementation:

(
Idle, (0)

) cof?−−→ (
C, (0)

) 5−→ (
C, (5)

)
but it cannot be matched by the specification because it exceeds the invariant of the location corresponding to C in Fig. 1(b).



106 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
Fig. 7. �-perturbation of the researcher implementation.

4.2. Robust timed games for timed I/O specifications

As we have seen timed specifications are interpreted as timed games. Solving games is used to analyze and synthesize
real-time components. Now that we add imprecision to models, we need a notion of suitable games that can be used to
synthesize robust components. Therefore we extend timed games with �-perturbations, and study the synthesis of robust
timed strategies. Note that it is not enough to restrict the specifications in order to synthesize robust components, since
the behaviors removed might still happen after the �-perturbation and could lead to error states. However we propose a
construction that encodes a robust game into a classical timed game.

De Alfaro et al. show [31] that timed games can be solved using region strategies, where the players only need to
remember the sequence of locations and clock regions, instead of the sequence of states used in Definition 7. Consequently
timed games can be solved through symbolic computations performed on symbolic graphs (either the region graph or the
zone graph) using for instance the algorithm presented in [28]. The following definition formalizes the notion of a symbolic
strategies, which can be represented using symbolic states only:

Definition 12. A symbolic strategy F for the output player is a function Z �→ Acto ∪ {delay}, where Z is a set of symbolic

states, such that whenever F ((q, Z)) ∈ Acto then for each u ∈ Z we have (q, u)
F ((q,Z))−−−−−→ (q′, u′) for some (q′, u′). A symbolic

strategy for the input player is defined analogously.

A symbolic strategy F corresponds to the set of (non-symbolic explicit) strategies f such that whenever F ((q, Z)) = a
then f ((q, u))= a for some u ∈ Z .

Syntactic outcomes. The following construction represents the outcome of applying a symbolic strategy to a TIOA as another
timed automaton. It decorates a region graph with clocks, guards and invariants. We exploit the region graph construction
in the definition, but any stable partitioning of the state-space could serve this purpose, and would be more efficient in
practice.

Definition 13. Let A = (Loc,q0,Clk, E,Act, Inv) be a TIOA and F a symbolic strategy over A for output. The TIOA AF =
(RA, (q0, r0),Clk, Ê,Act ∪ {τ }, Înv) representing the outcome of applying F to A is built by decorating the region graph
GA = (RA,−→G) of A. For each region r in location q, the incident edges and the invariant are defined as follows:

• ((q, r), τ , r↗,∅, (q, r↗)) ∈ Ê iff (q, r) τ−→G(q, r↗).
• For each edge (q, i?,ϕ,λ,q′) ∈ E , ((q, r), i?,ϕ,λ, (q′, r′)) ∈ Ê , iff (q, r) i?−→G(q′, r′).
• If F ((q, r))= delay then Înv(q, r)= Inv(q)∧ (r ∨ r↗).
• If F ((q, r))= o!, then Înv(q, r)= r, and for each edge (q,o!,ϕ,λ,q′) ∈ E , ((q, r),o!,ϕ,λ, (q′, r′)) ∈ Ê , iff (q, r) o!−→G(q′, r′).

In a robust timed game we seek strategies that remain winning after perturbation by a delay �. The perturbation is
defined on the syntactic outcome of the strategy, by enlarging the guards for the actions of the verifier, so that each action
can happen within � time of what the strategy originally prescribes. We write �A�o� (respectively �A�i�) for the TIOA
where the guards of the output (resp. input) player and the invariants have been enlarged by �—so every guard ϕ has been
replaced by �ϕ�� and every invariant γ by �γ �� .

Definition 14. For a timed game (A, W o(Bad)), a symbolic strategy F for output is �-robust winning if it is winning when
the moves of output are perturbed, i.e. Runs(��AF �o��sem)⊆W o(Bad).

In the rest of this section we describe a technique to find these robust strategies by modifying the original game au-
tomaton.



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 107
Fig. 8. Illustration of the construction of the robust game automaton A�
rob, from an automaton A, with one location q and incident edges e =

(q,o!,ϕo, λo,q1) and (q, i?,ϕi , λi ,q2).

4.3. Robust game automaton

Robust timed games for a bounded delay can be reduced to classical timed games by a syntactic transformation of
the game automaton [16]. Below in Definition 15, we propose an extended version of the construction presented in [16].
We admit both positive and negative perturbations of the player moves. In the original construction of [16] only delayed
executions of actions were treated, but premature execution of communication may also lead to a safety violation in a
specification theory, so we have to account for them. Then we show, in Theorem 1, how this construction can be used to
find robust strategies as defined in Definition 14.

Let (A, W o(Bad)) be a timed game, where A= (Loc,q0,Clk, E,Act, Inv) and Bad ∈ Loc. We assume that all the constants
in A are integers and we consider a perturbation � ∈N.

Definition 15. The robust game automaton A�
rob = (L̃oc,q0,Clk ∪ {y}, Ẽ, Ãct, Ĩnv) is constructed from A, with an additional

clock y, input actions Ãcti = Acti ∪ Acto, and output actions Ãcto = {τo! | o! ∈ Acto}, according to the following rules. For
each location q ∈ Loc, and for each edge e = (q,o!,ϕ,λ,q′) ∈ E:

• q ∈ L̃oc, and two locations qα
e and qβ

e are added in L̃oc. The invariant of q is unchanged; the invariants of qα
e and qβ

e are
both y � �.
• Each edge e′ = (q, i?,ϕ,λ,q′) ∈ E gives rise to the following edges in Ẽ: (q, i?,ϕ,λ,q′), (qα

e , i?,ϕ,λ,q′) and

(qβ
e , i?,ϕ,λ,q′).

• e gives rise to the following edges in Ẽ: (q, τo!,ϕ, {y},qα
e ), (qα

e , τo!, {y = �}, {y},qβ
e ), (qα

e ,o!,ϕ ∧ Inv(q), λ,q′),

(qβ
e ,o!,ϕ ∧ Inv(q), λ,q′), (qα

e ,o!,¬(ϕ ∧ Inv(q)),∅,Bad) and (qβ
e ,o!,¬(ϕ ∧ Inv(q)),∅,Bad).

Actions τo! are considered as silent actions, and consequently they will be concealed from the runs of the automaton.

Technically speaking, since in a TIOA guards must be convex, the two transitions to the Bad location (drawn in red on
Fig. 8) may be split into several copies, one for each convex guard in ¬ϕ .

The construction is illustrated in Fig. 8. Intuitively, whenever the output player wants to fire a transition induced by an
edge (q,o!,ϕo, λo,q1) in the original automaton, from a state (q, u), after elapsing d time units, in the robust automaton the
input player is allowed to perturb the timing of this action. Consider the following traces on the robust game automaton
that explain the construction.

1. Output proposes to play action o! after a delay d with the following sequence of transitions:

(q, u)
d−�−−−→ (q, u + d−�)

τo!−→ (
qα

e , u + d−�
)

�−→ (
qα

e , u + d
) τo!−→ (

qβ
e , u + d

)
Note that this forbids output to play any action with a reaction time smaller than �. More precisely, any strategy for
output found in the robust game automaton A�

rob will effectively correspond to a non-zeno strategy in A.
2. Input can perturb this move with d′ � �, such that action o! is performed with either a smaller delay:(

qα
e , u + d−�

) d′−→ (
qα

e , u + d−�+ d′
) o!−→ (

q1, u + d−�+ d′
)



108 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
or a greater delay:(
qβ

e , u + d
) d′−→ (

qβ
e , u + d+ d′

) o!−→ (
q1, u + d+ d′

)
3. In locations q, qα

e and qβ
e , the original input edge (q, i?,ϕi, λi,q1) may still be fired. So while the execution of the

output o! is delayed control can be intercepted by an arriving input.
4. If output reaches a state (qα

e , u) or (qβ
e , u), with u �|� ϕo , then input has a winning strategy with one of the following

moves: (qα
e , u)

o!−→ (Bad, u) or (qβ
e , u)

o!−→ (Bad, u), that denote the late firing of action o!.

Let F : RA�
rob
�→ Ãcto ∪ {delay} be a winning symbolic strategy for output in the robust game (A�

rob, W o(Bad)). We

construct a strategy Frob :RA �→ Acto ∪ {delay} for the game (A, W o(Bad)) in the following manner. For each (q, r) ∈RA ,

• Frob((q, r))= o! if there exists an edge e ∈ E and a region (qα
e , r̃) ∈RA�

rob
, such that r = r̃|Clk and F ((qα

e , r̃))= τo! .
• Otherwise Frob((q, r))= delay.

Theorem 1. The robust game automaton is a sound construction to solve robust timed games in the following sense: if F is a winning
strategy for output in the game (A�

rob, W o(Bad)), then Frob (constructed above) is a �-robust winning strategy for output in the game
(A,Wo(Bad)).

Proof. We consider the automaton AFrob representing the outcome of applying Frob to A. We must prove that
Runs(��AFrob�o��sem)⊆W o(Bad), where W o(Bad)= {ρ ∈ Runs(�A�sem) | States(ρ)∩ Bad= ∅}.

First, we map each run ρ̂ of �AFrob�o� to a run ρ of A. We use an induction on the length of the runs. We assume that
the property holds for runs of length i: if ρ̂i is a run of Runs(��AFrob�o��sem) such that last(ρ̂i) = ((qi, ri), ui), then there
exists a run ρi in Runs(�A�sem), such that last(ρi)= (qi, ui).

Let ρ̂i+1 = ρ̂i
a−→ ((qi+1, ri+1), ui+1). We prove the inductive step, splitting into cases:

1. If a ∈ Acti , then there exists an edge ê = ((qi, ri),a,ϕ,λ, (qi+1, ri+1)) in AFrob . By construction, there also exists an edge
e = (qi,a,ϕ,λ,qi+1) in A. Since ê is firable, ui |� ϕ , and therefore e and ẽ are also firable.
So ρi+1 = ρi

a−→ (qi+1, ui+1) is a run of A.
2. If a ∈ Acto , then there exists ê = ((qi, ri),a,ϕ,λ, (qi+1, ri+1)) in AFrob and by construction, e = (qi,a,ϕ,λ,qi+1) in A.

Since ê is firable, ui |� �ϕ�� and ui |� �ri�� that is the enlarged invariant of (qi, ri). By construction also Frob((qi, ri))=
a, which implies that there exists r̃i such that ri = r̃i |Clk and F ((qα

i , r̃i))= a. Since ui |� �ri�� , ∃δ ∈ [−�,�]. ui + δ |� ri .
Let ui = (ui1, ui2, . . . , uin), then ui + δ = (ui1 + δ, ui2 + δ, . . . , uin + δ). By definition of the projection this implies that
ũiδ = (ui1 + δ, ui2 + δ, . . . , uin + δ,�) ∈ r̃i . Now in the automaton A�

rob, F is a winning strategy, which implies that
∀δ′ ∈ [−�,�]. ũiδ + δ′ |� ϕ ∧ Inv(qi) (otherwise input as a spoiling strategy).
This proves that ui |� ϕ ∧ Inv(qi) and therefore that e is firable. So ρi+1 = ρi

a−→ (qi+1, ui+1) is a run of A.
3. If a ∈R�0, either the strategy Frob prescribes that output can delay infinitely in ((qi, ri), ûi). This implies that Inv(qi) is

unbounded, and that proves immediately that ρi+1 ∈ Runs(�A�sem).
Otherwise output has a strategy that eventually performs an action. This is represented by the following sequence of
edges in AFrob : (qi, ri)

τ−→ (qi, ri1)
τ−→ (qi, ri2) . . . (qi, rin)

o!−→ (q′i, r′i). We consider that a is the maximum delay firable

from ρ̂i , thus ρ̂i+1 = ρ̂i
a1−−→ ((qi, ri1), ui +a1)

τ−→ ((qi, ri2), ui +a1)
a2−−→ ((qi, ri2), ui +a1+a2)

τ−→ . . . ((qi, rin), ui +a)
o!−→

((q′i, r′i), u′i), such that a =∑n
j=1 a j . Then ui + a |� �rin�� . and as in the previous case we can prove that ui + a |�

ϕ ∧ Inv(qi). This proves that ρi+1 ∈ Runs(�A�sem).

We now prove that all the states in �AFrob�o� are safe, by mapping the runs of AFrob with the ones of A�
rob.

We use another induction on the length on the run. Let assume that ρ̂i ∈ Runs(��AFrob�o��sem) is mapped to a run
ρ̃i ∈ Runs(�A�

rob �sem), such that if last(ρ̂i) = ((qi, ri), ui), then last(ρ̃i) = (qi, ũi), ui = ũi|Clk , and (qi, ũi) is a winning state
for the strategy F .

1. Either in ((qi, ri), ui) the strategy Frob allows delaying infinitely, and consequently the strategy F allows delaying
infinitely in A�

rob without reaching an unsafe state. For any delay d ∈ R�0, all the input actions i? firable from a

state ((qi, r′i), ui + d) are also firable in (qi, ũi + d) since the guards are the same. Therefore, ((qi, r′i), ui + d)
i?−→

((qi+1, ri+1), ui+1), and (qi, ũi + d)
i?−→ (qi+1, ũi+1). Additionally, (qi+1, ũi+1) is also a winning state, since it is an out-

come of the strategy F , and ũi+1 = ui+1, since the same clocks are reset. This proves the induction hypothesis.
2. Otherwise, output has a strategy that eventually performs an action o! after a delay a. Let ρ̂i+1 = ρ̂i

a−→ ((qi, r′i), ui +
a)

o!−→ ((qi+1, ri+1), ui+1) (concealing τ transitions). This implies that there exists an edge e ∈A that fires o! in qi+1,
the following edges exists in A�

rob: (qi, τo!,ϕ,λ ∪ {y},qα
ie
), (qi, τo!, {y = �}, {y},qβ

ie
), (qα

ie
,o!, {y � �}, {y},qi+1) and

(qβ
,o!, {y � �}, {y},qi+1). Since o! is firable in ((qi, r′), ûi + a), this means that Frob((qi, r′)) = o! and ui + a |� �r′�� .
ie i i i



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 109
Fig. 9. Specification with 1-robust implementation, but with no robust strategy in the robust game automaton.

Then by construction of Frob, F (qα
ie
, r̃′i) = τo! , and there exists b ∈ R�0 s.t. (qi, ũi)

b−→ (qi, ũi + b) (concealing τo! tran-

sitions), and ũi + b ∈ r̃′i . Additionally, ∀δ ∈ [−�,�].(qi, ũi)
b+δ−−−→ (qi, ũi + b + δ)

o!−→ . This is in particular the case for

b+δ = a since a ∈ ���[]r′i . Therefore (qi, ũi)
a−→ o!−→ (qi+1, ũi+1), and (qi+1, ũi+1) is winning since it is an outcome of F ,

and ũi+1 = ui+1, since the same clocks are reset. To finish the induction step, the same argument as in the first case is
used to demonstrate that any input action firable from ((qi, ri), ui) after some delay d is also firable from (qi, ũi). �

This construction shall serve as a tool for deciding robust consistency, synthesizing a robust implementation, and other
operations of the specification theory with robustness which are detailed in next section.

Remark on completeness. The robust game automaton is not a complete technique to solve robust timed games. Indeed, our
notion of robustness introduces perturbations on the syntax of the automaton, whereas the robust game automaton modifies
the semantics of the game. Therefore there exist specifications that can be robustly implemented, although they will be
judged as non-robust using the robust game automaton construction. For instance, the specification S in Fig. 9(a) is 1-robust
consistent and it can be robustly implemented with the implementation I in Fig. 9(b) (the �-perturbation I1 corresponds to
the same TIOA as S). But for �= 1 no robust strategy exists in the robust game automaton. Indeed, since clock x is not reset
by the edge from q0 to q1, the following run is possible in the semantics of I1: (q0,0)

2−→I(q0,2)
a!−→I(q1,2)

b!−→I(q2,2).
Therefore in this run action b! must happen immediately. This is not robust according to the robust game automaton, as it
cannot be perturbed.

5. Robust consistency and robust compatibility

5.1. Robust consistency

We now provide a method to decide the �-robust consistency of a specification and synthesize robust implementations
by solving a robust timed safety game, in which the output player must avoid a set of immediate error states. From there,
the computation of a robust strategy described in the previous section provides a method to synthesize an implementation
of the specification that is robust with respect to outputs enlargement.

To account for input restrictions, we increase the set of error states errS . Intuitively a specification is �-robust with
respect to input i?, if between enabling of any two i? edges at least 2� time passes, during which the reaction to i? is
unspecified. So, if the two actions trigger �-too-late and �-too-early (respectively), there is no risk that the reaction is
resolved non-deterministically in the specification.

In our input-enabled setup, lack of reaction is modeled using transitions to the universal (unpredictable) state. Formally,
we say that �-robust specifications should admit �-latency of inputs. A state (q, u) satisfies the �-latency condition for
inputs, iff for each edge e = (q, i?,ϕ, c,q′), where q′ �= lu and e is enabled in (q, u) we have:

∀d ∈ [0,2�].∀e′ = (
q, i?,ϕ, c,q′′

)
if e′ �= e and (q, u)

d−→ (q, u+ d) and e′ is enabled in (q, u + d) then q′′ = lu

Definition 16. For a specification S and � ∈R�0, the set errS� of error states for �-robust consistency is such that (q, u) ∈
errS� iff one the following conditions is verified:

• Violates independent progress: (∃d ∈R�0. (q, u)
d
�) and (∀d.∀o!. (q, u)

d−→ (q, u + d)⇒ (q, u + d)
o!
�).

• Violates �-latency of inputs: ∃e = (q, i?,ϕ, c,q′), with q′ �= lu, enabled in (q, u), such that ∃d ∈ [0,2�].(q, u)
d−→

(q, u+ d) and ∃e′ = (q, i?,ϕ, c,q′′) enabled in (q, u + d), with e′ �= e and q′′ �= lu.

Observe that errS ⊆ errS� , because the error condition with robustness is weaker than in the classical case (cf. p. 103).
The �-robust consistency game (S,Wo(errS�)) can be solved using the construction of Definition 15. This synthesizes a

robust strategy F and its syntactic outcome SF . Then we build the robust implementation IF by applying the following
transformation to SF :

• When we apply a �-perturbation on IF , a state ((q, r), u) can be reached even if u /∈ r∨ r↗. However due to the region
partitioning, the inputs edges available in IF might not be firable from r ∨ r↗. Then, in order to enforce the robust



110 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
satisfaction relation between (IF )� and S , we add additional input edges to IF : for each location (q, r) in IF , for each
edge e = ((q, r), i?,ϕ,λ, (q∗, r∗)) (with q∗ �= lu), and for each location (q′, r′) that can be reach from (q, r) by a sequence
of τ transitions, we add an edge e′ = ((q′, r′), i?,ϕ,λ, (q∗, r∗)).
• To support restriction of input guards in (IF )� , we replaced in IF all guards ϕ of edges e = ((q, r), i?,ϕ,λ, (q′, r′))

with q′ �= lu by their enlargement �ϕ�� . Guards on edges to the lu location are adjusted in order to maintain action
determinism and input-enableness.

Note that this construction adds many input edges to the implementation, out of which many are never enabled. This simpli-
fies the construction and the proof of correctness. In practice, to efficiently synthesize implementations, coarser abstractions
like zones should be used that do not include τ transitions, thus avoiding the multiplication of input edges.

Theorem 2. Let S be a specification. If F is a robust winning strategy in the �-robust consistency game, then IF sat� S and S is
�-robust consistent.

Proof. S is �-robust consistent if it admits a �-robust implementation. IF satisfies the independent progress condition
since it corresponds to the outcome of the strategy F that avoids the inconsistent states in S . For the same reason it also
verifies the �-latency condition, which permits to increase guards on input edges without adding non-determinism. Since
F is a symbolic strategy it may authorize small delays in the regions where an output action must be fired, and therefore
IF may not be output urgent. However, any point in these regions can be freely chosen to concretely implement IF .

We check now that IF sat� S with the following relation

R = {((
(q, r), u

)
, (q, u)

) ∈ �(IF )��sem × �S�sem
}

Note that since F is a robust winning strategy, the runs of �SF �o� (and by construction the ones of (IF )�) also belong to S .
Finally we assume that S can accept τ transitions in any state as output transitions. Let consider (((q, r), u), (q, u)) ∈ R:

1. If ((q, r), u)
d−→(I F )� ((q, r), u + d) for some d ∈ R�0, then since the runs of (IF )� are included into the ones of S , it is

also the case that (q, u)
d−→ S (q, u + d).

2. If ((q, r), u)
o!−→ (I F )� ((q′, r′), u′) for some o! ∈ Acto , then there exists an edge ((q, r),o!,ϕ,λ, (q′, r′)) in IF and also in

SF . It also means that there exists a similar edge (q,o!,ϕ,λ,q′) in S . And since the runs of (IF )� are included into the
ones of S , it implies that (q, u)

o!−→ S(q′, u′).
3. If ((q, r), u)

τ−→(I F )� ((q, r′), u) then by assumption (q, u)
τ−→ S(q, u).

4. If (q, u)
i?−→ S (q′, u′) for some i? ∈ Acti , then there exists an edge e = (q, i?,ϕ,λ,q′) such that u |� ϕ . There also exists an

edge (q, [u]) i?−→G(q′, [u′]) in the region graph of S . If u ∈ r then this edge also exists in IF . Otherwise u ∈ �r ∨ r↗�� .
This means that there exists a sequence of τ transitions in IF between r and [u], and by construction the input edge
is copied in each location along this sequence, including (q, r). u |� ϕ implies that u |� ��ϕ���� , which proves that it
is firable. Therefore ((q, r), u)

i?−→ I�((q′, [u′]), u′). �
5.2. Conjunction

A conjunction of two specifications captures the intersection of their implementation sets. The following conjunction
operator has been proposed in [13]:

Definition 17. Let S = (LocS ,qS
0 ,ClkS , E S ,Act, InvS) and T = (LocT ,qT

0 ,ClkT , E T ,Act, InvT ) be specifications that share the
same alphabet of actions Act.

We define their conjunction, denoted S ∧ T , as the TIOA (Loc,q0,Clk, E,Act, Inv) where Loc= LocS × LocT , q0 = (qS
0 ,qT

0 ),
Clk= ClkS 	 ClkT , Inv((qs,qt))= Inv(qs)∧ Inv(qt), and the set of edges is defined according to the following rule:(

(qs,qt),a,ϕs ∧ ϕt, λs ∪ λt,
(
q′s,q′t

)) ∈ E iff
(
qs,a,ϕs, λs,q′s

) ∈ E S and
(
qt,a,ϕt , λt,q′t

) ∈ E T

It turns out that this operator is robust, in the sense of precisely characterizing also the intersection of the sets of robust
implementations. So not only conjunction is the greatest lower bound with respect to implementation semantics, but also
with respect to the robust implementation semantics. More precisely:

Theorem 3. For specifications S , T and � ∈Q>0:

�S ∧ T ��
mod = �S��

mod ∩ �T ��
mod

Proof. The theorem is a direct extension of Theorem 6 in [13], but now for robust implementations. By definition of the
robust implementation,



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 111
Fig. 10. Diagram for the parallel composition of a coffee machine and a researcher.

I ∈ �S ∧ T ��
mod ⇔ I� � S ∧ T

According to Theorem 6 in [13], items 1 and 2,

I� � S ∧ T ⇔ I� � S ∧ I� � T
And the last terms correspond to the definition of robust implementations. �

We remark that due to the monotonicity of the refinement (Property 1), we can use two different delays �1 and �2,
such that:

�S��1
mod ∩ �S��2

mod ⊇ �S ∧ T �
max(�1,�2)

mod

So requirements with different precision can be conjoined, by considering the smaller jitter. Robustness of the operator in
Definition 17 is very fortunate. Thanks to this, large parts of implementation of theory of [13] can be reused.

5.3. Parallel composition and robust compatibility

Composition is used to build systems from smaller units. Two specifications S , T can be composed only iff ActSo ∩
Acto

T = ∅. Parallel composition is obtained in [13] by a product, where the inputs of one specification synchronize with the
outputs of the other:

Definition 18. Let S = (LocS ,qS
0 ,ClkS , E S ,ActS , InvS ) and T = (LocT ,qT

0 ,ClkT , E T ,ActT , InvT ) be two composable specifica-
tions.

We define their parallel composition, denoted S ‖ T , as the TIOA (Loc,q0,Clk, E,Act, Inv), where Loc = LocS × LocT ,
q0 = (qS

0 ,qT
0 ), Clk= ClkS 	ClkT , Act= Acto ∪Acti with Acto = Acto

S 	Acto
T and Acti = (Acti

S \Acto
T )∪ (Acti

T \Acto
S ),

Inv(qs,qt)= Inv(qs)∧ Inv(qt), and the set of edges is defined by the three following rules:

• Let a ∈ ActS\ActT , for each qt ∈ LocT , ((qs,qt),a,ϕs, λs, (q′s,qt)) ∈ E , iff (qs,a,ϕs, λs,q′s) ∈ E S .
• Let a ∈ ActT \ActS , for each qs ∈ LocS , ((qs,qt),a,ϕt , λt , (qs,q′t)) ∈ E , iff (qt ,a,ϕt , λt,q′t) ∈ E T .
• Let a ∈ ActS ∩ ActT , ((qs,qt),a,ϕs ∧ ϕt, λs ∪ λt , (q′′s ,q′t)) ∈ E iff (qs,a,ϕs, λs,q′s) ∈ E S and (qt ,a,ϕt, λt ,q′t) ∈ E T .

We also recall the definition of the parallel product for two TIOTS S = (StS , s0,Σ
S ,→S ) and T = (StT , t0,Σ

T ,→T ).
S ⊗ T = (StS × StT , (s0, t0),Σ

S⊗T ,→S⊗T ), such that:

s a−→ S s′ a ∈Σ S\Σ T

(s, t) a−→ S⊗T (s′, t)
indep-l

t a−→T t′ a ∈Σ T \Σ S

(s, t) a−→ S⊗T (s, t′)
indep-r

s a−→ S s′ t a−→T t′ a ∈R�0 ∪Σ S⊗T
i ∪ (Σ S

i ∩Σ T
o )∪ (Σ S

o ∩Σ T
i )

(s, t) a−→ S⊗T (s′, t′)
sync

Example 6. The two timed specifications in Fig. 1(a) and 1(b) can be composed together by synchronizing the outputs cof
and tea of the Machine with the inputs of the Researcher. The resulting TIOA is a timed specification whose input is coin
and outputs are pub, cof and tea. This composition scheme is illustrated in the diagram of Fig. 10.

In the input-enableness setting we model incompatibility by introducing a predicate describing undesirable states, here
denoted by a set und. It should in general contain the universal location lu. For example, a communication failure can be
modeled by redirecting an input edge to an undesirable location. In general any reachability objective, for example given by
a temporal logic property, can serve as the set of undesirable behaviors und. It is important that such behaviors are avoided
during the composition. For doing so, we propose to follow the optimistic approach to composition introduced in [14] that
is two specifications can be composed if there exists at least one environment in which they can work together. In the robustness
setting we consider imprecise environments by applying a �-perturbation to their outputs. Then, in what follows, we say
that a specification is �-robust useful if there exists an imprecise environment E that avoids the undesirable states, whatever
the specification does.



112 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
Definition 19. A specification S is �-robust useful if there exists an environment E such that no undesirable states are
reached in ��E�o� ‖ S�sem.

Remark that, contrary to robust implementations, we only apply a perturbation to the outputs of the environment. Indeed
since the environment is a complement of the system, its inputs correspond to the output of the system, and therefore they
are not perturbed to achieve robust compatibility.

Property 4 (Monotonicity). Given �1 � �2 , if S be a �2-robust useful specification, then S is �1-robust useful.

Proof. If S is �2-robust useful this means that there exists an environment E such that no undesirable states is reached
in ��E�o�2

‖ S�sem. Then for �1 � �2, ��E�o�1
�sem ⊆ ��E�o�2

�sem. This implies that ��E�o�1
‖ S�sem ⊆ ��E�o�2

‖ S�sem, which
proves that S is also �1-robust useful. �

To check robust usefulness we solve the robust game (S, W i(und)), and determine if the input player has a robust
strategy F that avoids the undesirable states. Let SF be the syntactic outcome of F in S . We build from SF a robust
environment EF by permuting the input and output players, such that each input in SF becomes an output, and conversely.

Theorem 4. Let S be a specification. If F is a robust winning strategy in the �-robust usefulness game, then S is �-robust useful in
the environment EF .

Proof. The theorem directly follows from the definition of the robust strategy. ��SF �i��sem ⊆ �S�sem which implies that
�EF �o� synchronizes with every action of S in their parallel composition. Therefore, only the states belonging to ��SF �i��sem
can be reached in the composition, and by definition they are not undesirable. �

Finally, two specifications are compatible if their composition is useful.

Definition 20. Two composable specifications S and T are �-robust compatible if and only if S ‖ T is �-robust useful.

We now study the impact of adding �-perturbations introduced in previous section over parallel composition. It is
important that the robust theory does not modify the definition of the operations themselves. This means that all the
important properties of composition introduced in [13] remain valid. Moreover, robustness distributes over parallel compo-
sition in the following fashion:

Lemma 1. For any implementations I , J and a delay � ∈Q>0:

(I ‖ J )� � I� ‖ J�

Proof. In the following, we denote by (Lock,qk
0,Clkk, Ek,Actk, Invk), with k ∈ {I, J , I ‖ J }, the TIOAs corresponding to

I,J , or I ‖ J , respectively, and by (Stk, (qk
0,0),Actk,→k), with k ∈ {I, J , I ‖ J }, their semantics, and with k ∈ {I�, J�, [I ‖

J ]�}, their perturbed semantics.
First let recall Theorem 11 from [13] that states that �I� ‖J��sem = �I��sem ⊗ �I��sem. Then we need to prove the

refinement �(I ‖J )��sem � �I��sem ⊗ �J��sem by witnessing the following relation:

R = {((
(qi,q j), uij

)
,
(
(̂qi, ui), (̂q j, u j)

)) ∈ St[I‖ J ]� × (
StI� × St J�

) ∣∣(
(qi = q̂i ∧ ui = uij|ClkI )∨ q̂i = lu

)∧ (
(q j = q̂ j ∧ u j = uij|Clk J )∨ q̂ j = lu

)}
We prove by coinduction that R is a timed alternating relation. Let (((qi,q j), uij), ((̂qi, ui), (̂q j, u j))) ∈ R .

1. If ((qi,q j), uij)
d−→[I‖ J ]�((qi,q j), uij+d) for some d ∈R�0, then by definition uij |� �Inv(qi,q j)�� . By construction of the

parallel composition �Inv(qi,q j)�� = �Inv(qi)∧ Inv(q j)�� = �Inv(qi)�� ∧ �Inv(q j)�� . Then, we can deduce that ui + d |�
�Inv(qi)�� and u j + d |� �Inv(q j)�� . This implies that (qi, ui)

d−→ I�(qi, ui + d) and (q j, u j)
d−→ J�(q j, u j + d). Besides, by

definition of the universal state, for any valuation u of a TIOA is always true that (lu, u)
d−→ (lu, u + d).

By definition of the sync rule from �I��sem ⊗ �J��sem,(
(̂qi, ui), (̂q j, u j)

) d−→ I�⊗ J�
(
(̂qi, ui + d), (̂q j, u j + d)

)
and the relation R is trivially preserved in the next states.



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 113
2. If ((qi,q j), uij)
o!−→ [I‖ J ]�((q′i,q′j), u′i j), then ∃e ∈ E I‖ J .e = ((qi,q j),o!,ϕ, c, (q′i,q′j)) such that uij |� �ϕ�� and u′i j |�

�Inv(q′i,q′j)�� ,

2.1. And if o ∈ ActI
o\Act J

i (or conversely, if o ∈ Act J
o \ActI

i ; this case is similar, so we will not consider it), then ∃ei ∈
E I . ei = (qi,o!,ϕi, ci,q′i), and q′j = q j , ϕ = ϕi , c = ci , and u′

i j|Clk J = u j . Consequently, ui |� �ϕi�� and u′i = u′
i j|ClkI |�

�Inv(q′i)�� , which proves that (qi, ui)
o!−→ I�(q′i, u′i). Besides, by definition of the universal state, (lu, ui)

o!−→ I�(lu, ui).

Then, according to the indep-l rule, (( q̂i, ui), ( q̂ j, u j))
o!−→ I�⊗ J�(( q̂ ′i , u′i), ( q̂ j, u j)). Moreover, either q̂i = qi and then

q̂ ′i = q′i , or q̂i = lu = q̂ ′i , which proves that the relation R is preserved.

2.2. If o ∈ ActI
o ∩ Act J

i (the reverse case o ∈ Act J
o ∩ ActI

i is similar), then ∃ei ∈ E I . ei = (qi,o?,ϕi, ci,q′i) and ∃e j ∈ E J . e j =
(q j,o!,ϕ j, c j,q′j) and ϕ = ϕi ∧ ϕ j , c = ci ∪ c j . On the side of I , since uij |� �ϕ�� and u′i j |� �Inv(q′i,q′j)�� , we get

that ui |� �ϕi�� and u′i = u′
i j|ClkI |� �Inv(q′i)�� , which implies that (qi, ui)

o!−→ I�(q′i, u′i).

On the side of J , we also get that u j |� �ϕ j�� and u′j |� �Inv(q′j)�� . If moreover u j |� �ϕ j�� , then as previously

it implies that (q j, u j)
o?−−→ J�(q′j, u′j). Otherwise, a reductio ab absurdum argument allows us to prove that there

exists no other edge e′j = (q j,o?,ϕ′j, c′j,q′′j ) ∈ E J such that u j |� �ϕ′j�� (since u j |� �ϕ j�� it implies that ∃ε ∈
[−�,�].u j + ε |� ϕ j , but in the same time it would be the case that u j + ε |� ϕ′j . This is a contradiction since J ,
as an implementation is supposed to be deterministic). However, by construction of � J��sem, input-enableness is
preserved by linking the unexpected input to a universal location lu. So (q j, u j)

o?−−→ J�(lu, u j).

Then, according to the sync rule, ((̂qi, ui), (̂q j, u j))
o!−→ I�⊗ J�((̂q′i, u′i), (̂q

′
j, u′j)), and as previously, by construction

we check that the relation is preserved.
3. Finally, if (( q̂i, ûi), ( q̂ j, û j))

i?−→ I�⊗ J�(( q̂ ′i , u′i), ( q̂ ′j, u′j)), for i ∈ ActI
i ∩ Act J

i (the cases i ∈ ActI
i \Act J

i or i ∈ Act J
i \ActI

i can
be proved similarly by considering that only one component reacts, while the other stay in the same state), then from
the definition of the composition:
• ( q̂i, ûi)

i?−→ I ( q̂ ′i , û′i), and

• ( q̂ j, û j)
i?−→ J ( q̂ ′j, û′j).

Besides, due to input-enableness, ((qi,q j), uij)
i?−→[I‖ J ]�((qi,q j), uij + d), which implies that:

• (qi, ui)
i?−→ I (q′i, u′i), with u′i = u′

i j|ClkI , and

• (q j, u j)
i?−→ J (q′j, u′j), with u′j = u′

i j|Clk J .

If q̂i = lu then q̂ ′i = lu, and in this case the relation R is always preserved (and similarly for q̂ j ). Otherwise q̂i = qi and
ûi = ui (and similarly for q̂ j). In this latter case, since �I��sem is deterministic, it implies that q̂ ′i = q′i and û′i = u′i ,
which also proves the induction for relation R . �

Finally, we show in Theorem 5 that the independent implementability property of [13] can be extended to robust imple-
mentability, which follows from Lemma 1 and Theorem 10 in [13].

Theorem 5. Let S and T be composable specifications and let I and J be �-robust implementations of S and T (resp.), i.e. I sat� S
and J sat� S . Then I ‖J sat� S ‖ T . Moreover if S and T are �-compatible then I and J are also �-compatible.

Proof. The first part of the theorem is deduced from previous results:

• Due to Lemma 1, �(I ‖J )��sem � �I��sem ⊗ �J��sem.
• Then, Theorem 10 from [13] proves that refinement is a pre-congruence with respect to parallel composition: if S1 � S2

and T is composable with S1, then S1⊗ T � S2 ⊗ T . Observe that since S and T are composable, so are I and J , and
their semantics. Thus we can apply it twice:

�I��sem � �S�sem⇒ �I��sem ⊗ �J��sem � �S�sem ⊗ �J��sem, and
�J��sem � �T �sem⇒ �S�sem ⊗ �J��sem � �S�sem ⊗ �T �sem.
• Finally Theorem 11 in [13] allows to lift the result to the composition of TIOA specifications: �S�sem ⊗ �T �sem =

�S ‖ T �sem.

Due to the transitivity of the refinement, we can concatenate the previous results, which proves that �(I ‖J )��sem �
�S ‖ T �sem, and therefore I ‖J sat� S ‖ T .

We now prove the second part of the theorem. Since S and T are �-compatible, there exists an environment E such
that �E�o� ‖ (S ‖ T ) avoids reaching any undesirable states. From Theorems 10 and 11 in [13], we get that I ‖ J � S ‖ T .
Again with Theorem 10 we get that (I ‖J ) ‖ �E�o� � (S ‖ T ) ‖ �E�o� . Consequently, since no undesirable states are reached
in (S ‖ T ) ‖ �E�o� this is also the case in (I ‖ J ) ‖ �E�o� , which proves that I ‖ J is �-useful and so I and J are
�-compatible. �



114 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
Additionally, due to the monotonicity of perturbations with respect to the refinement, two different delays can be used
to implement specifications S and T . For two implementations I sat�1 S and J sat�2 T of the parallel components, their
composition satisfies the composition of specifications with the smaller of the two precisions:

I ‖ J satmin(�1,�2) S ‖ T
5.4. Quotient

Quotient is a dual operator to composition, such that for two specifications T and S , T � S is the specification of the
components that composed with S will refine T . In other words, if T is the specification of a system, and S the specifi-
cation of a subsystem, T � S specifies the component that still needs to be implemented after having an implementation
of S , in order to build an implementation of T . One possible application is when T is a system specification, and S is
the plant, then a robust controller for a safety objective can be achieved by finding a �-consistent implementation of the
quotient T � S .

To apply quotienting, we require that ActS ⊆ ActT and ActS
o ⊆ ActT

o . The construction of a quotient requires the use of a
universal location lu, as well as an inconsistent location l∅ that forbids any outputs and forbids elapsing of time.

Definition 21. Let S = (LocS ,qS
0 ,ClkS , E S ,ActS , InvS) and T = (LocT ,qT

0 ,ClkT , E T ,ActT , InvT ) be two specifications, with
ActS ⊆ ActT and ActS

o ⊆ ActT
o .

Their quotient, denoted T � S , is the TIOA (Loc,q0,Clk, E,Act, Inv) where Loc= LocT × LocS ∪ {lu, l∅}, q0 = (qT
0 ,qS

0), Clk=
ClkT 	 ClkS 	 {xnew}, Act= Acti 	 Acto with Acti = Acti

T ∪ ActS
o ∪ {inew} and Acto = ActT

o \ ActS
o , Inv(qt ,qs)= Inv(lu)= true and

Inv(l∅)= {xnew � 0}, and the set E of edges is defined by the following rules:

• ((qt ,qs),a,¬InvS(qs), {xnew}, lu) ∈ E iff qt ∈ LocT ,qs ∈ LocS ,a ∈ Act.
• ((qt ,qs), inew ,¬Inv(qt)∧ Inv(qs), {xnew}, l∅) ∈ E iff qt ∈ LocT ,qs ∈ LocS .
• ((qt ,qs),a,ϕT ∧ ϕ S , λt ∪ λs, (q′t ,q′s)) ∈ E iff (qt ,a,ϕt, λt ,q′t) ∈ E T and (qs,a,ϕs, λs,q′s) ∈ E S .
• Let a ∈ ActS

o and G T =∨{ϕt | (qt ,a,ϕt , λt,q′t) ∈ E T }, ((qt ,qs),a,ϕ S ∧¬G T , {xnew}, l∅) ∈ E iff (qs,a,ϕs, λs,q′s) ∈ E S .
• Let a /∈ ActS , ((qt ,qs),a,ϕT , λt , (q′t ,q′s)) ∈ E iff ∀(qt ,a,ϕt, λt ,q′t) ∈ E T .
• Let a ∈ ActS

o and G S =∨{ϕs | (qs,a,ϕs, λs,q′s) ∈ E S}, ((qt ,qs),a,¬G S , {}, lu) ∈ E iff (qt ,a,ϕt, λt ,q′t) ∈ E T .
• (l∅,a, xnew = 0,∅, l∅) ∈ E iff a ∈ Acti .
• (lu,a, true,∅, lu) ∈ E iff a ∈ Act.

As stated in Theorem 12 of [13], the quotient gives a maximal (the weakest) specification for a missing component. This
theorem can be generalized to specifications that are locally consistent (see [13]), and used to argue for completeness of
the quotient construction in the robust case. It turns out that this very operator is also maximal for the specification of a
robust missing component, in the following sense:

Theorem 6. Let S and T be two specifications such that the quotient T � S is defined and let J be an implementation, then:

S ‖ J� � T iff J sat� T � S

Proof. First let remark that J� is a locally consistent specification, as defined in [13]. Then, we can apply Theorem 12 of
[13] to J� which proves:

S ‖ J� � T iff J� � T � S
According to the definition of �-robust satisfaction this proves the theorem. �
6. Counter strategy refinement for parametric robustness

In the previous sections we define and solve robustness problems for a fixed delay, and we study the properties of these
perturbations with respect to the different operators in the specification theory. Now we will propose a technique that
evaluates the greatest possible value of the perturbation. We follow a counterexample refinement approach, a technique
used for automatic abstraction refinement in [33]. In our setting counterexamples are spoiling strategies computed for a
given value of the perturbation. We replay these strategies on a parametric model of the robust game in order to refine the
value of the perturbation.

The robustness problems that we consider in this sections are the parametric extension of the previously defined prob-
lems:

Robust consistency. Given a specification S , determine the greatest value of � such that S is �-robust consistent.

Robust usefulness. Given a specification S , determine the greatest value of � such that S is �-robust useful.



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 115
6.1. Parametric timed games

When we consider � as a free parameter, the robust game automaton construction of Section 4 defines a Parametric
Timed I/O Automata, in a similar manner as Parametric Timed Automata are defined in [34,35]. We denote by B�(Clk) the
set of parametric guards with parameter � over a set of clocks Clk. Parametric guards in B�(Clk) are generated by the
following grammar ϕ ::= x≺ l | x− y ≺ l | ϕ ∧ ϕ , where x, y ∈ Clk, ≺∈ {<,�,>,�} and l = a+ b ∗� is a linear expression
such that a,b ∈Q.

Definition 22. A Parametric TIOA with parameter �, is a TIOA A such that guards and invariants are replaced by parametric
guards.

If A is a parametric TIOA and Wo(Bad) is a safety objectives, then (A, W o(Bad)) is parametric timed game. For a
given value δ ∈ Q of the parameter, we define the non-parametric TIOA Aδ obtained by replacing each occurrence of the
parameter � in the parametric guards of A by the value δ.

A parametric symbolic state X is a set of triples (q, u, δ), where δ is a valuation of the parameter � and (q, u) is a state
in �Aδ �sem. Operations on symbolic states can be extended to parametric symbolic states, such that X↗P , X↙P , PPosta(X),
PPreda(X) and PPredt(X, Y ) stands for the extensions of previously defined non-parametric operations. Formally:

X↗P = {
(q, u + d, δ)

∣∣ (q, u, δ) ∈ X, d ∈R�0
}

X↙P = {
(q, u − d, δ)

∣∣ (q, u, δ) ∈ X, d ∈R�0
}

PPosta(X)= {(
q′, u′, δ

) ∣∣ ∃(q, u, δ) ∈ X . (q, u)
a−→Aδ

(
q′, u′

)}
PPreda(X)= {

(q, u, δ)
∣∣ ∃(q′, u′, δ

) ∈ X .(q, u)
a−→Aδ

(
q′, u′

)}
PPredt(X, Y )= {

(q, u, δ)
∣∣ ∃d ∈R�0.(q, u)

d−→Aδ (q, u + d) and (q, u+ d) ∈ X and ∀d′ ∈ [0,d]. (q, u + d′, δ
)

/∈ Y
}

6.2. Parametric robustness evaluation

Let (A�
rob, W o(Bad)) be a parametric timed game that solve a robustness problem (either robust consistency or robust

usefulness). We define �max = Sup{� | (A�
rob, W o(Bad))has a winning strategy}. Computing �max would in general require

to solve a parametric timed game. This problem is undecidable as it has been shown that parametric model-checking
problem is undecidable [34]. In this paper we propose to compute an approximation of this maximum value. Due to the
monotonicity of the robustness problems (Properties 1 and 4), we can apply an iterative evaluation procedure that searches
for the maximum value until it belongs within a given precision interval. This basic procedure is describe in Algorithm 1
for the parametric game (A�

rob, W o(Bad)) for output (again it applies symmetrically to input).

Algorithm 1: Evaluation of the maximum robustness.

Input: (A�
rob, W o(Bad)): parametric robust timed game,

�init: initial maximum value,
ε: precision

Output: �good such that �max −�good � ε
1 begin
2 �good← 0
3 �bad←�init
4 while �bad −�good > ε do
5 (�good,�bad)← RefineValues(A�

rob,�good,�bad)

6 end
7 return �good

8 end

The algorithm assumes that the game (A0
rob, W o(Bad)) is won, and on contrary that (A�init

rob , W o(Bad)) is lost. If �max

is not infinite, then the maximum constant in the automaton can be used for �init . At the heart of the algorithm the
procedure RefineValues solves the game (Aδ

rob, W o(Bad)) for a value δ ∈ [�good,�bad]. It updates the variables �good and
�bad according to the result.



116 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
Different algorithms can be used to implement RefineValues. A basic method is binary search. In that case RefineValues

chooses the middle point �mid of the interval [�good,�bad] and solves the game (A�mid
rob , W o(Bad)). According to the results

it updates either �good or �bad . This algorithm has several drawbacks. First, the number of games it needs to solve heavily
depends on the precision parameter. Second, depending on the initial maximum value a high proportion of the games
played may be winning, which implies that they explore completely the state-graph of the model.

Correctness and termination. The algorithm is correct if two invariants are satisfied: �good is a lower bound for �max , and
�bad is an upper bound. These invariants must be preserved by the implementation of RefineValues.

The algorithm terminates if at each iteration RefineValues reduces the length of the interval [�good,�bad] by some fixed
minimum amount.

6.3. Counter strategy refinement

We propose an alternative method that analyzes the spoiling strategies computed when the game is lost and refine the
value of the variable �bad . With this algorithm only the last game is winning. The different steps are the following.

1. Solve the game (A�bad
rob , W o(Bad)).

2. If the game is won, return the values (�bad,�bad).
3. Else extract a counter strategy Fi for the input player.
4. Replay Fi on the parametric game using Algorithm 2; it returns the value �min = Inf{� | Fi is a spoiling strategy in

(A�
rob, W o(Bad))}.

5. If �min is not a minimum (Fi is not a spoiling strategy in (A�min
rob , W o(Bad))) and �bad −�min > ε , return the values

(�good,�min).
6. Else return the values (�good,�min − ε).

The goal of Algorithm 2 is to replay the spoiling strategy Fi on the parametric game and compute the maximum value of
� such that this strategy becomes unfeasible. It takes as inputs the parametric game automaton A�

rob, the symbolic graph

(Z�bad
A , X0,−→ ) computed for the game (A�bad

rob , W o(Bad)), and the spoiling strategy Fi . It returns the infimum of the values

�bad such that Fi is a spoiling strategy in the game (A�bad
rob , W o(Bad)).

The algorithm is similar to the timed game algorithm proposed in [28] and implemented in the tool TIGA [36]. However
only the backward analysis is applied on parametric symbolic states, starting from the “bad” locations. Additionally the
algorithm only explores the states that belongs to the outcome of Fi . Since Fi is a spoiling strategy in a safety game, its
outcome contains a set of finite runs that eventually reach the “bad” locations. This ensures that a backward exploration
restricted to this set of finite runs will terminate.

Formally, we define the outcome of a symbolic spoiling strategy Fi for input. First, for a symbolic state X ∈ Z�bad
A , we

define its timed successors restricted by the symbolic strategy Fi as:

X↗Fi = {
(q, u+ d)

∣∣ (q, u) ∈ X, d ∈R�0,∀d′ ∈ [0,d].

if ∃(q, Z) ∈Z�bad
A . ∃(q, Z ′

) ∈Z�bad
A . u+ d ∈ Z . u + d′ ∈ Z ′

then Fi
((

q, Z ′
))= Fi

(
(q, Z)

)∨ Fi
((

q, Z ′
))= delay

}
X↗Fi is computed by taking the intersection of the timed successors of X with the symbolic states on which is defined the
strategy. Outcome(Fi) is the subset of runs in the symbolic graph defined inductively by:

• (q0, X0↗Fi ) ∈Outcome(Fi),
• if ρ ∈ Outcome(Fi) and last(ρ) = (q, Z), then ρ ′ = ρ −→ (q′, Z ′) ∈ Outcome(Fi) iff ∃(q,a,ϕ,λ,q′) ∈ E and one of the

following condition holds:
1. either a ∈ Acti and ∃Z ′′.Fi((q, Z ′′))= a and (q′, Z ′)= Post a((q, Z ∩ Z ′′))↗Fi ,
2. or a ∈ Acto and ∃Z ′′.Fi((q, Z ′′))= delay and (q′, Z ′)= Post a((q, Z ∩ Z ′′))↗Fi .

The backward exploration ends when the set of winning states PWin[X0] contains the initial state. Then, the projection
(PWin[X0] ∩ (q0,0))|� computes the set of all the valuations of � such that the strategy Fi is winning. The algorithm
returns the infimum of these valuations.



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 117
Algorithm 2: Counter strategy refinement.

Input: (A�
rob, W o(Bad)): parametric robust timed game,

(Z�bad
A , X0,−→ ): symbolic graph computed for (A�bad

rob , W o(Bad))

Fi: spoiling strategy for input in (A�bad
rob ,Wo(Bad))

Output: Infimum of the values �bad such that Fi is a spoiling strategy in (A�bad
rob , W o(Bad))

1 begin
/* Initialization */

2 Waiting←∅
3 for X = (q, Z) ∈Z�bad

A do
4 if q ∈ Bad then
5 PWin[X]← (q, �Inv(q)�)

6 Waiting←Waiting ∪ {Y | ∃ρ.ρ −→Y −→ X ∈Outcome(Fi)}
7 else
8 PWin[X]← ∅
9 end

10 end
/* Backward exploration */

11 while (Waiting �= ∅)∧ (q0,0) /∈ PWin[X0]) do
12 X = (q, Z)← pop(Waiting)

13 PBad∗ ← (q,¬�Inv(q)�)∪ (
⋃

X
a∈Acti−−−−→Y

PPred a(Win[Y ]))
14 PGood∗ ←⋃

X
a∈Acto−−−−→Y

PPred a((q, �Inv(q)�) \ PWin[Y ])
15 PWin[X]← PPred t(PBad∗,PGood∗ \ PBad∗)
16 Waiting←Waiting ∪ {Y | ∃ρ.ρ −→Y −→ X ∈Outcome(Fi)}
17 end
18 return Inf((PWin[X0] ∩ (q0,0))|�)

19 end

Theorem 7 (Soundness). Algorithm 2 returns a value �inf ∈Q such that ∀� > �inf the game (A�
rob,Wo(Bad)) is lost.

Proof. Given a value � ∈Q, Algorithm 2 is similar to the timed games algorithm of TIGA described in [28], but with less
exploration steps since only the outcome of the spoiling strategy are explored. Therefore for that value PWin[X0] ⊆Win[X0].

By assumption, the game (A�bad
rob , W o(Bad)) is lost, so �bad ∈ (PWin[X0] ∩ (q0,0))|� .

Ab absurdo, if � > �inf is a good value, i.e. (A�
rob, W o(Bad)) is winning, then (q0,0) /∈Win[X0], and consequently (q0,0) /∈

PWin[X0]. This implies that (PWin[X0] ∩ (q0,0))|� = ∅, which is a contradiction. �
Theorem 7 ensures that RefineValues preserves the invariants of Algorithm 1.

7. Implementation and experiments

7.1. PyECDAR implementation

The specification theory described in [13] is implemented in the tool ECDAR [37]. In order to experiment with the
methods proposed in the present paper, we have built a prototype tool in Python that reimplements the main functionalities
of ECDAR and supports the analyses of the robustness of timed specifications [38]. Inside this tool, the theory presented in
Sections 4 and 5 is implemented as a set of model transformations:

1. Computation of I� , the �-perturbation of an implementation I for some � ∈Q�0.
2. Computation of the robust game automaton A�

rob.
3. In order to add rational perturbations on the models I� and A�

rob the tool scales all the constants in the TIOA.
4. Finally we transform the TIOA of a specification into a specific consistency game automaton (resp. usefulness game au-

tomaton), such that all non �-robust consistent (resp. non �-robust useful) states are observed by a single location.

By combining these transformations we can check in the tool the three problems: �-robust satisfaction, �-consistency and
�-usefulness. The algorithms used are respectively the alternating simulation algorithm presented in [28] and the on-the-fly
timed game algorithm presented in [30].



118 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
Table 1
Robust consistency of the university specifications.

Model Game size �init = 8 �init = 6 �init = 8 �init = 6
ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01

loc. edges CR BS CR BS CR BS CR BS

M 9 21 119 ms 314 ms 119 ms 262 ms 119 ms 438 ms 119 ms 437 ms
R 11 27 188 ms 303 ms 188 ms 299 ms 188 ms 419 ms 188 ms 523 ms
A 9 22 133 ms 316 ms 133 ms 287 ms 133 ms 441 ms 133 ms 483 ms
M ‖ A 41 158 10.1 s 10.1 s 10.1 s 9.6 s 10.4 s 17.5 s 10.4 s 17.6 s
R ‖ A 48 201 14.1 s 12.1 s 12.5 s 11 s 14.1 s 19.6 s 12.5 s 19.4 s
M ‖ R 44 152 10 s 15.5 s 9.81 s 15.8 s 10.3 s 22.9 s 9.78 s 29.2 s
M ‖ R ‖ A 180 803 54.4 s 56.3 s 54.6 s 112 s 55 s 58.8 s 55.7 s 216 s

Table 2
Robust compatibility between the university specifications.

Model Game size �init = 8 �init = 6 �init = 8 �init = 6
ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01

loc. edges CR BS CR BS CR BS CR BS

M ‖ R 21 90 2.64 s 4.34 s 1.72 s 4.02 s 2.64 s 5.5 s 1.72 s 5.45 s
M ‖ R ‖ A 75 399 48 s 65 s 42.7 s 74.2 s 48.2 s 78.1 s 42.9 s 120 s

To solve the parametric robustness problems we have implemented the heuristic presented in Section 6 that approxi-
mates the maximum solution through a counter strategy refinement, and we have implemented a binary search heuristic
to compare the efficiency. In Algorithm 2 operations on parametric symbolic states are handled with the Parma Polyhedra
Library [39]. We shall remark that using polyhedra increases the complexity of computations compared to Difference Bound
Matrices (DBMs), but this is necessary due to the form of the parametric constraints that are beyond the scope of classical
DBMs. This is not such a problem in our approach as parametric analysis is limited to spoiling strategies whose size is kept
as small as possible. Nevertheless an interesting improvement can be to use Parametric DBMs as presented in [35].

7.2. Experiments

We evaluate the performance of the tool to solve the parametric robustness problems on two examples. We compare
in these experiments the Counter strategy Refinement (CR) approach with the Binary Search (BS) method. We presents
benchmarks results for different values of the initial parameters �init and ε .

Specification of a university. The toy examples featured in this paper are extracted from [13]. They are part of an overall
specification of a university, composed by three specifications: the coffee machine (M) of Fig. 1(a), the researcher (R) of
Fig. 1(b), and the administration (A) (see [13]). We study the robust consistency and the robust compatibility of these
specifications and their parallel composition. The results are presented in Tables 1 and 2. The column game size displays the
size of the robust game automaton used in the analysis in terms of locations (loc.) and edges. The next columns display the
time spent to compute the maximum perturbation with different initial conditions. The analysis of these results first shows
that the Counter strategy Refinement method is not sensitive to the values of the two initial parameters �init and ε . This
is not the case for Binary Search: the precision ε determines the number of games that must be solved, and the choice of
�init change the proportion of games that are winning. Comparing the results of the two methods shows that for most of
the cases, especially the more complex one, the Counter strategy Refinement approach is more efficient.

Specification of a Milner scheduler. The second experiment studies a real-time version of Milner’s scheduler previously intro-
duced in [37]. The model consists in a ring of N nodes. Each nodes receives a start signal from the previous node to perform
some work and in the mean time forward the token to the next node within a given time interval. We check the robust
consistency of this model for different values of N and different initial parameters. The results are displayed in Table 3.
Like in previous experiment, the results show that the Counter strategy Refinement method is not sensitive to the initial
conditions and in general more efficient than Binary Search.

7.3. Interpretation

Previous results are summarized in Fig. 11 in order to compare the performance of the two methods on the most
complex examples.

The performance of the Binary Search method depends on the number of games that are solved and on the outcome
of these games. Games that are winning (or games that are losing but with a value of � close to the optimum value) are
harder to solve, since in these cases the (almost) complete symbolic state space must be explored. Reducing the precision
parameter ε implies that more games must be solved close to the optimum value, and therefore it increases the time of
analysis. Moreover, changing, even slightly, the initial maximum value �init may change the number of games, but most



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 119
Table 3
Robust consistency of Milner’s scheduler nodes.

Model Game size �init = 30 �init = 31 �init = 30 �init = 31
ε = 0.5 ε = 0.5 ε = 0.1 ε = 0.1

loc. edges CR BS CR BS CR BS CR BS

1 Node 13 35 0.97 s 0.68 s 1.09 s 0.72s 0.97 s 1.03 s 1.09 s 1.09s
2 Node s 81 344 10.7 s 10.3 s 11.2 s 12.6 s 10.5 s 15.8 s 11.1 s 19.4 s
3 Node s 449 2640 1m58 2m25 2m06 2m26 1m57 3m39 2m05 3m45
4 Node s 2305 17 152 17m38 24m12 17m38 27m46 17m41 37m57 17m37 41m50

Fig. 11. Comparisons of the performances between the two methods Counter strategy Refinement (CR) and Binary Search (BS).

important the outcome of these games, and therefore the proportion of winning games. For instance in the last experiment,
the expected result is 7.5. With an initial value of 30 the bisections performed by the Binary Search method arbitrarily imply
that only 1 game is winning out of 9 (for ε = 0.1). With 31 this proportion is 6 out of 9, which increases the complexity of
the analysis.

With the Counter strategy Refinement approach proposed in this paper only losing games are solved until one is winning.
The choice of �init modifies the number of games that are solved, but in general the first games for large values of � are
easily solved. Consequently, the choice of �init shows in the experiments almost no impact on the performances. With
the parametric approach the parameter ε is only used when the value �min computed by the refinement process is the
minimum of the bad values. In that case, the next iteration solves the game with the value �min − ε . The experiments
shows this has no impact on the performances.

7.4. Parking controller

In this final case study we analyze the robustness of a parking controller. This component is part of parking system,
described in [40], that model the behavior of a car park. The system is composed by an entry gate, an exit gate, a gate
controller and a payment machine. We study the implementation of the gate controller whose task is to deliver entry
tickets, whenever they are requested, and as long as the parking is not full.

The specification Controller of this components is given in Fig. 12 for a capacity Nmax of cars in the parking. It specifies
that tickets must be delivered at most 10 time units after accepting a request and the request is accepted only if the parking
is not full. It also specifies some assumptions about the environment by linking the unexpected behaviors to a universal
location lu. These assumptions are that a vehicle may exit only when the parking is not empty, that it may enter only after
receiving its entry tickets, and that tickets may be requested at least 6 time units after the previous one has been delivered.

We study the robust consistency of this specification in order to determine if we can implement it. The results are
given in Table 4. For an increasing number Nmax of vehicles we list the maximum allowed perturbation �max , and the
time needed to compute it with two values of precision for each methods. The results show that the robustness of the
specification decreases when the capacity of the parking increases. We also remark that the counterexample refinement
method is less efficient than binary search to analyze this model. Indeed on this model the counterexample refinement
method requires more games to determine that value of �max .

This low robustness can be a problem to implement the controller for large number of vehicles. We can analyze spoiling
strategies to find that the responsible executions involve a large number of vehicle exiting the parking within the short
time interval before the entry ticket is issued. However this is unrealistic and therefore we propose to fix the model.
We add an assumption on the environment that limits the number of vehicles that can exit within a given time interval.
This assumption is specified in a new specification Assumption shown in Fig. 13. It allows any behaviors, but, when a



120 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
Fig. 12. Specification of the parking controller.

Table 4
Robust consistency of the parking controller.

Number of
vehicles Nmax

�max ε = 0.1 ε = 0.01

CR BS CR BS

1 5 78 ms 204 ms 78 ms 288 ms
2 2.5 376 ms 547 ms 367 ms 788 ms
5 1 2.82 s 1.71 s 2.82 s 2.58 s

10 0.5 7.05 s 3.78 s 13.3 s 6.29 s
15 0.33 12.9 s 5.62 s 35.6 s 10.9 s
20 0.25 14.74 s 10 s 59.44 s 19.1 s

Fig. 13. Assumption on the environment of the parking controller.

vehicle exit less than 10 time units before the previous one, it goes to the universal location. We add this assumption in
conjunction with the controller specification. We analyze the robustness of the new specification Controller ∧ Assumption,
and, as previously, we list the results in Table 5. It shows that the robustness now remains constant for any number of
vehicles.



K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122 121
Table 5
Robust consistency of the parking’s controller with assumption.

Number of
vehicles

�max ε = 0.1 ε = 0.01

CR BS CR BS

1 5 205 ms 619 ms 205 ms 883 ms
2 2.5 1.11 s 1.7 s 1.11 s 2.52 s
5 2.5 2.42 s 3.26 s 2.42 s 4.34 s

10 2.5 5.6 s 6.53 s 5.61 s 7.69 s
15 2.5 8.91 s 9.86 s 8.93 s 11.2s
20 2.5 12.7 s 14 s 12.7 s 15.5 s

8. Concluding remarks

We have presented a compositional framework for reasoning about robustness of timed I/O specifications. Our theory
builds on the results presented in [13] combined together with a new robust timed game for robust specification theories. It
can be used to synthesize an implementation that is robust with respect to a given specification, and to combine or compare
specifications in a robust manner. In our approach, robustness is achieved through syntactic transformations, which allows
reusing classical analysis technique and tools. In particular we extend the construction of [16] to the setting of specification
theories, to solve robust games by reducing them to problems on classical timed games.

As a new contribution from [27], we also study the parametric robustness problems and evaluate the maximum im-
precision allowed by specifications. To this end we propose a counterexample refinement approach that analyzes spoiling
strategies in timed games. These contributions have been implemented in a prototype tool that has been used to evaluate
the performances of our counter strategy refinement approach.

We have focused in this paper on solving robust consistency and robust compatibility problems. This provides a con-
structive approach to synthesize robust implementations. In a future version of our tool we would like to apply the
counterexample refinement approach on the alternating simulation game, in order to solve the parametric satisfaction prob-
lem for an existing implementation.

In future we plan to extend our approach to different models, like timed automata with stochastic semantics [41]. In this
context we could give a stochastic definition of robustness that would allow a more expressive quantitative analysis than
the worst case scenario used in this paper.

References

[1] O. M. Group, Corba 3.2, http://www.omg.org/spec/CORBA/3.2/, 2011.
[2] J. McAffer, P. VanderLei, S. Archer, OSGi and Equinox: Creating Highly Modular Java Systems, Addison–Wesley, Amsterdam, 2010.
[3] W3C, Web services description language (wsdl) version 2.0 part 1: Core language, http://www.w3.org/TR/wsdl20/, 2007.
[4] E. Standard, Functional safety of electrical/electronic/programmable electronic safety-related systems, IEC 61508-1:2010, DS/EN 61508, 2010.
[5] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (1994) 183–235.
[6] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for real-time systems, Inf. Comput. 111 (1994) 193–244.
[7] G. Behrmann, A. David, K.G. Larsen, P. Pettersson, W. Yi, Developing Uppaal over 15 years, Softw. Pract. Exp. 41 (2011) 133–142.
[8] A. Cimatti, Industrial applications of model checking, in: Modeling and Verification of Parallel Processes, in: Lect. Notes Comput. Sci., vol. 2067, Springer,

2001, pp. 153–168.
[9] B. Long, J. Dingel, T. Graham, Experience applying the spin model checker to an industrial telecommunications system, in: ICSE ’08, pp. 693–702.

[10] D. Keating, A. McInnes, M. Hayes, An industrial application of model checking to a vessel control system, in: Electronic Design, Test and Application
(DELTA), 2011, pp. 83–88.

[11] F. Kammüller, S. Preibusch, An industrial application of symbolic model checking, Inform. Forsch. Entwickl. 22 (2008) 95–108.
[12] S. Chandra, P. Godefroid, C. Palm, Software model checking in practice: an industrial case study, in: ICSE ’02, pp. 431–441.
[13] A. David, K.G. Larsen, A. Legay, U. Nyman, A. Wąsowski, Timed I/O automata: a complete specification theory for real-time systems, in: HSCC, ACM,

2010, pp. 91–100.
[14] L. de Alfaro, T.A. Henzinger, Interface automata, in: ESEC/SIGSOFT FSE, pp. 109–120.
[15] L. de Alfaro, T.A. Henzinger, M. Stoelinga, Timed interfaces, in: EMSOFT, in: Lect. Notes Comput. Sci., vol. 2491, Springer, 2002, pp. 108–122.
[16] K. Chatterjee, T.A. Henzinger, V.S. Prabhu, Timed parity games: Complexity and robustness, in: FORMATS, in: Lect. Notes Comput. Sci., vol. 5215,

Springer, Saint Malo, France, 2008, pp. 124–140.
[17] The COMBEST Consortium, Combest, http://www.combest.eu, 2008–2011.
[18] The SPEEDS Consortium, Speeds, http://www.speeds.eu.com, 2006–2010.
[19] E. Badouel, A. Benveniste, B. Caillaud, T. Henzinger, A. Legay, R. Passerone, Contract theories for embedded systems: A white paper, Research report,

IRISA/INRIA Rennes, 2009.
[20] A. Puri, Dynamical properties of timed automata, in: Formal Techniques in Real-Time and Fault-Tolerant Systems, in: Lect. Notes Comput. Sci., vol. 1486,

Springer, 1998, pp. 210–227.
[21] M.D. Wulf, L. Doyen, J.-F. Raskin, Almost ASAP semantics: from timed models to timed implementations, Form. Asp. Comput. 17 (2005) 319–341.
[22] M. Wulf, L. Doyen, N. Markey, J.-F. Raskin, Robust safety of timed automata, Form. Methods Syst. Des. 33 (2008) 45–84.
[23] P. Bouyer, K.G. Larsen, N. Markey, O. Sankur, C. Thrane, Timed automata can always be made implementable, in: CONCUR, Aachen, Germany, in: Lect.

Notes Comput. Sci., vol. 6901, Springer, 2011, pp. 76–91.
[24] O. Sankur, P. Bouyer, N. Markey, Shrinking timed automata, in: FSTTCS, Mumbai, India, in: Leibniz International Proceedings in Informatics, Leibniz-

Zentrum für Informatik, 2011, pp. 90–102.
[25] P. Bouyer, N. Markey, O. Sankur, Robust model-checking of timed automata via pumping in channel machines, in: FORMATS, Aalborg, Denmark, in:

Lect. Notes Comput. Sci., vol. 6919, Springer, 2011, pp. 97–112.

http://www.omg.org/spec/CORBA/3.2/
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib4F5347493A426F6F6Bs1
http://www.w3.org/TR/wsdl20/
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A6A6F75726E616C732F7463732F416C7572443934s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A6A6F75726E616C732F69616E64632F48656E7A696E6765724E53593934s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A6A6F75726E616C732F7370652F426568726D616E6E444C50593131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib43696D617474693031s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib43696D617474693031s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib4B656174696E673131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib4B656174696E673131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib4B616D6D756C6C65723038s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib446176696432303130s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib446176696432303130s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F656D736F66742F416C6661726F48533032s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F666F726D6174732F436861747465726A656548503038s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F666F726D6174732F436861747465726A656548503038s1
http://www.combest.eu
http://www.speeds.eu.com
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib5768697465s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib5768697465s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib5075726931393938s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib5075726931393938s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib57756C6632303035s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib57756C6632303038s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib424C4D53542D636F6E6375723131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib424C4D53542D636F6E6375723131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib53424D2D6673747463733131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib53424D2D6673747463733131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib424D532D666F726D6174733131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib424D532D666F726D6174733131s1


122 K.G. Larsen et al. / Theoretical Computer Science 515 (2014) 96–122
[26] R. Jaubert, P.-A. Reynier, Quantitative robustness analysis of flat timed automata, in: FOSSACS, in: Lect. Notes Comput. Sci., vol. 6604, Springer, 2011,
pp. 229–244.

[27] K.G. Larsen, A. Legay, L.-M. Traonouez, A. Wasowski, Robust specification of real time components, in: FORMATS, Aalborg, Denmark, in: Lect. Notes
Comput. Sci., vol. 6919, Springer, 2011, pp. 129–144.

[28] F. Cassez, A. David, E. Fleury, K.G. Larsen, D. Lime, Efficient on-the-fly algorithms for the analysis of timed games, in: CONCUR, in: Lect. Notes Comput.
Sci., vol. 3653, Springer, 2005, pp. 66–80.

[29] L. de Alfaro, T.A. Henzinger, Interface-based design, in: Engineering Theories of Software Intensive Systems, Marktoberdorf Summer School.
[30] P. Bulychev, T. Chatain, A. David, K.G. Larsen, Efficient on-the-fly algorithm for checking alternating timed simulation, in: FORMATS, in: Lect. Notes

Comput. Sci., vol. 5813, Springer, 2009, pp. 73–87.
[31] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, M. Stoelinga, The element of surprise in timed games, in: R.M. Amadio, D. Lugiez (Eds.), CONCUR,

in: Lect. Notes Comput. Sci., vol. 2761, Springer, 2003, pp. 142–156.
[32] O. Maler, A. Pnueli, J. Sifakis, On the synthesis of discrete controllers for timed systems (an extended abstract), in: STACS, pp. 229–242.
[33] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement, in: CAV, in: Lect. Notes Comput. Sci., vol. 1855,

Springer, 2000, pp. 154–169.
[34] R. Alur, T.A. Henzinger, M.Y. Vardi, Parametric real-time reasoning, in: STOC, pp. 592–601.
[35] T. Hune, J. Romijn, M. Stoelinga, F.W. Vaandrager, Linear parametric model checking of timed automata, J. Log. Algebr. Program. 52–53 (2002) 183–220.
[36] G. Behrmann, A. Cougnard, A. David, E. Fleury, K.G. Larsen, D. Lime, Uppaal-tiga: Time for playing games!, in: CAV, in: Lect. Notes Comput. Sci.,

vol. 4590, Springer, 2007, pp. 121–125.
[37] A. David, K.G. Larsen, A. Legay, U. Nyman, A. Wąsowski, ECDAR: An environment for compositional design and analysis of real time systems, in: ATVA,

in: Lect. Notes Comput. Sci., vol. 6252, Springer, Singapore, 2010, pp. 365–370.
[38] Python implementation of ECDAR, Pyecdar, https://project.inria.fr/pyecdar, 2011.
[39] R. Bagnara, P.M. Hill, E. Zaffanella, The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of

hardware and software systems, Sci. Comput. Program. 72 (2008) 3–21.
[40] J.-B. Raclet, B. Caillaud, D. Nickovic, R. Passerone, A. Sangiovanni-Vincentelli, T. Henzinger, K.G. Larsen, Contracts for the design of embed-

ded systems, Part I: Methodology and use cases, Technical Report, 2012, submitted for publication, http://www.irisa.fr/distribcom/benveniste/pub/
ProcIEEE_contractsPart1.pdf.

[41] A. David, K.G. Larsen, A. Legay, M. Mikucionis, D.B. Poulsen, J. van Vliet, Z. Wang, Statistical model checking for networks of priced timed automata, in:
FORMATS, Aalborg, Denmark, in: Lect. Notes Comput. Sci., vol. 6919, Springer, 2011, pp. 80–96.

http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F666F73736163732F4A617562657274523131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F666F73736163732F4A617562657274523131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F666F726D6174732F4C617273656E4C54573131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F666F726D6174732F4C617273656E4C54573131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib4344464C4C3035s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib4344464C4C3035s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib42756C796368657643444C3039s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib42756C796368657643444C3039s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F636F6E6375722F416C6661726F46484D533033s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F636F6E6375722F416C6661726F46484D533033s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F6361762F436C61726B65474A4C563030s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F6361762F436C61726B65474A4C563030s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A6A6F75726E616C732F6A6C702F48756E655253563032s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F6361762F426568726D616E6E4344464C4C3037s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F6361762F426568726D616E6E4344464C4C3037s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F617476612F44617669644C4C4E573130s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F617476612F44617669644C4C4E573130s1
https://project.inria.fr/pyecdar
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib70706Cs1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib70706Cs1
http://www.irisa.fr/distribcom/benveniste/pub/ProcIEEE_contractsPart1.pdf
http://www.irisa.fr/distribcom/benveniste/pub/ProcIEEE_contractsPart1.pdf
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F666F726D6174732F44617669644C4C4D5056573131s1
http://refhub.elsevier.com/S0304-3975(13)00639-7/bib44424C503A636F6E662F666F726D6174732F44617669644C4C4D5056573131s1

	Robust synthesis for real-time systems
	1 Introduction
	2 State of the art
	3 Background on timed I/O speciﬁcations
	3.1 Timed I/O transitions systems and timed I/O automata
	3.1.1 Timed I/O transitions systems
	3.1.2 Timed I/O automata
	3.1.3 Symbolic abstractions

	3.2 Basics of the timed speciﬁcation theory
	3.3 Timed games for timed I/O speciﬁcations

	4 Robust timed I/O speciﬁcations
	4.1 Perturbed implementation and robust timed I/O speciﬁcations
	4.2 Robust timed games for timed I/O speciﬁcations
	4.3 Robust game automaton

	5 Robust consistency and robust compatibility
	5.1 Robust consistency
	5.2 Conjunction
	5.3 Parallel composition and robust compatibility
	5.4 Quotient

	6 Counter strategy reﬁnement for parametric robustness
	6.1 Parametric timed games
	6.2 Parametric robustness evaluation
	6.3 Counter strategy reﬁnement

	7 Implementation and experiments
	7.1 PyECDAR implementation
	7.2 Experiments
	7.3 Interpretation
	7.4 Parking controller

	8 Concluding remarks
	References


