
ar
X

iv
:0

81
0.

55
17

v2
 [

cs
.L

O
]

 1
8

Ja
n

20
10

Model checking memoryful linear-time logics over one-counter automata✩

Stéphane Demria, Ranko Lazićb, Arnaud Sangnierc

aLSV, ENS Cachan, CNRS, INRIA Saclay IdF, France
bDepartment of Computer Science, University of Warwick, UK

cLSV, ENS Cachan, CNRS & EDF R&D, France

Abstract

We study complexity of the model-checking problems for LTL with registers (also known as freeze LTL
and written LTL↓) and for first-order logic with data equality tests (written FO(∼, <,+1)) over one-counter
automata. We consider several classes of one-counter automata (mainly deterministic vs. nondeterministic)
and several logical fragments (restriction on the number of registers or variables and on the use of proposi-
tional variables for control states). The logics have the ability to store a counter value and to test it later
against the current counter value. We show that model checking LTL↓ and FO(∼, <,+1) over deterministic
one-counter automata is PSpace-complete with infinite and finite accepting runs. By constrast, we prove
that model checking LTL↓ in which the until operator U is restricted to the eventually F over nondetermin-
istic one-counter automata is Σ1

1-complete [resp. Σ0
1-complete] in the infinitary [resp. finitary] case even if

only one register is used and with no propositional variable. As a corollary of our proof, this also holds
for FO(∼, <,+1) restricted to two variables (written FO2(∼, <,+1)). This makes a difference with the
facts that several verification problems for one-counter automata are known to be decidable with relatively
low complexity, and that finitary satisfiability for LTL↓ and FO2(∼, <,+1) are decidable. Our results pave
the way for model-checking memoryful (linear-time) logics over other classes of operational models, such as
reversal-bounded counter machines.

Keywords: one-counter automaton, temporal logic, first-order logic, computational complexity

1. Introduction

Logics for data words. Data words are sequences in which each position is labelled by a letter from a
finite alphabet and by another letter from an infinite alphabet (the datum). This fundamental and simple
model arises in systems that are potentially unbounded in some way. Typical examples are runs of counter
systems [1], timed words accepted by timed automata [2] and runs of systems with unboundedly many
parallel components (data are component indices) [3]. The extension to trees makes also sense to model XML
documents with values, see e.g. [4, 5, 6]. In order to really speak about data, known logical formalisms for
data words/trees contain a mechanism that stores a value and tests it later against other values, see e.g. [7, 8].
This is a powerful feature shared by other memoryful temporal logics [9, 10]. However, the satisfiability
problem for these logics becomes easily undecidable even when stored data can be tested only for equality.
For instance, first-order logic for data words restricted to three individual variables is undecidable [7] and
LTL with registers (also known as freeze LTL) restricted to a single register is undecidable over infinite data
words [8]. By contrast, decidable fragments of the satisfiability problems have been found in [11, 7, 12, 8, 13]
either by imposing syntactic restrictions (bound the number of registers, constrain the polarity of temporal
formulae, etc.) or by considering subclasses of data words (finiteness for example). Similar phenomena
occur with metric temporal logics and timed words [14, 15]. A key point for all these logical formalisms is
the ability to store a value from an infinite alphabet, which is a feature also present in models of register

✩Supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

Preprint submitted to Elsevier January 18, 2010

http://arxiv.org/abs/0810.5517v2

automata, see e.g. [16, 17, 18, 19]. However, the storing mechanism has a long tradition (apart from its
ubiquity in programming languages) since it appeared for instance in real-time logics [20] (the data are time
values) and in so-called hybrid logics (the data are node addresses), see an early undecidability result with
reference pointers in [21]. Meaningful restrictions for hybrid logics can also lead to decidable fragments, see
e.g. [22].

Our motivations. In this paper, our main motivation is to analyze the effects of adding a binding
mechanism with registers to specify runs of operational models such as pushdown systems and counter
automata. The registers are simple means to compare data values at different points of the execution.
Indeed, runs can be naturally viewed as data words: for example, the finite alphabet is the set of control
states and the infinite alphabet is the set of data values (natural numbers, stacks, etc.). To do so, we enrich
an ubiquitous logical formalism for model-checking techniques, namely linear-time temporal logic LTL, with
registers. Even though this was the initial motivation to introduce LTL with registers in [12], most decision
problems considered in [12, 13, 8] are essentially oriented towards satisfiability. In this paper, we focus on
the following type of model-checking problem: given a set of runs generated by an operational model, more
precisely by a one-counter automaton, and a formula from LTL with registers, is there a run satisfying the
given formula? In our context, it will become clear that the extension with two counters is undecidable. It
is not difficult to show that this model-checking problem differs from those considered in [13, 12] and from
those in [23, 24, 25] dealing with so-called hybrid logics. However, since two consecutive counter values in a
run are ruled by the set of transitions, constraints on data that are helpful to get fine-tuned undecidability
proofs for satisfiability problems in [12, 8] may not be allowed on runs. This is precisely what we want to
understand in this work. As a second main motivation, we would like to compare the results on LTL with
registers with those for first-order logic with data equality tests. Indeed, LTL (with past-time operators) and
first-order logic are equivalently expressive by Kamp’s theorem, but such a correspondence in presence of
data values is not known. Our investigation about the complexity of model-checking one-counter automata
with memoryful logics include then first-order logic.

Our contribution. We study complexity issues related to the model-checking problem for LTL with
registers over one-counter automata that are simple operational models, but our undecidability results
can be obviously lifted to pushdown systems when registers store the stack value. Moreover, in order to
determine borderlines for decidability, we also present results for deterministic one-counter models that are
less powerful but remain interesting when they are viewed as a mean to specify an infinite path on which
model checking is performed, see analogous issues in [26].

We consider several classes of one-counter automata (deterministic, weakly deterministic and nonde-
terministic) and several fragments by restricting the use of registers or the use of letters from the finite
alphabet. Moreover, we distinguish finite accepting runs from infinite ones as data words. Unlike results
from [14, 15, 8, 13], the decidability status of the model checking does not depend on the fact that we
consider finite data words instead of infinite ones. In this paper, we establish the following results.

• Model checking LTL with registers [resp. first-order logic with data equality test] over deterministic
one-counter automata is PSpace-complete (see Sect. 3.3). PSpace-hardness is established by reducing
QBF and it also holds when no letters from the finite alphabet are used in formulae. In order to get
these complexity upper bounds, we translate our problems into model-checking first-order logic without
data equality test over ultimately periodic words that can be solved in polynomial space thanks to [26].

• Model checking LTL with registers over nondeterministic one-counter automata restricted to a unique
register and without alphabet is Σ1

1-complete in the infinitary case by reducing the recurrence problem
for Minsky machines (see Sect. 4). In the finitary case, the problem is shown Σ0

1-complete by reducing
the halting problem for Minsky machines. These results are quite surprising since several verification
problems for one-counter automata are decidable with relatively low complexity [27, 28, 29]. Moreover,
finitary satisfiability for LTL with one register is decidable [8] even though with non-primitive recursive
complexity. These results can be also obtained for first-order logic with data equality test restricted to
two variables by analysing the structure of formulae used in the undecidability proofs and by using [8].

Figure 1 contains a summary of the main results we obtained; notations are fully explained in Section 2. For
instance, MC(LTL)

ω
1 [X, F] refers to the existential model-checking problem on infinite accepting runs from

2

PSpace-completeness Σ0

1-completeness Σ1

1-completeness

for det. 1CA for 1CA for 1CA

MC(LTL)ω, MC(LTL)∗ MC(LTL)∗
1
[X, F] MC(LTL)ω

1
[X, F]

MC(LTL)ω[F], MC(LTL)∗[X, F] PureMC(LTL)∗
1
[X, F] PureMC(LTL)ω

1
[X, F]

MC(FO)ω, MC(FO)∗ MC(FO)∗
2
[∼, <] MC(FO)ω

2
[∼, <]

MC(FO)ω[∼, <]

Figure 1: Summary of main results

one-counter automata with freeze LTL restricted to the temporal operators “next” and “sometimes”, and
to a unique register. Similarly, MC(FO)

ω
2 [∼, <] refers to the existential model-checking problem on finite

accepting runs from one-counter automata with first-order logic on data words restricted to two individual
variables.

Plan of the paper. In Sect. 2, we introduce the model-checking problem for LTL with registers over
one-counter automata as well as the corresponding problem for first-order logic with data equality test. In
Sect. 3, we consider decidability and complexity issues for model checking deterministic one-counter au-
tomata. In Sect. 4, several model-checking problems over nondeterministic one-counter automata are shown
undecidable.

This paper is an extended version of [30] that also improves significantly the results about the PSpace upper
bounds and the undecidability results, in particular by considering first-order language over data words.

2. Preliminaries

2.1. One-counter automaton

Let us recall standard definitions and notations about our operational models. A one-counter automaton
is a tuple A = 〈Q, qI , δ, F 〉 where:

• Q is a finite set of states,

• qI ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states,

• δ ⊆ Q× L×Q is the transition relation over the instruction set L = {inc, dec, ifzero}.

A counter valuation v is an element of N and a configuration of A is a pair in Q×N. The initial configuration
is the pair 〈qI , 0〉. As usual, a one-counter automaton A induces a (possibly infinite) transition system
〈Q× N,−→〉 such that 〈q, n〉 −→ 〈q′, n′〉 iff one of the conditions below holds true:

1. 〈q, inc, q′〉 ∈ δ and n′ = n+ 1,
2. 〈q, dec, q′〉 ∈ δ and n′ = n− 1 (and n′ ∈ N),
3. 〈q, ifzero, q′〉 ∈ δ and n = n′ = 0.

A finite [resp. infinite] run ρ is a finite [resp. infinite] sequence ρ = 〈q0, n0〉 −→ 〈q1, n1〉 −→ · · · where 〈q0, n0〉
is the initial configuration. A finite run ρ = 〈q0, n0〉 −→ 〈q1, n1〉 −→ · · · −→ 〈qf , nf 〉 is accepting iff qf is
an accepting state. An infinite run ρ is accepting iff it contains an accepting state infinitely often (Büchi
acceptance condition). All these notations can be naturally adapted to multicounter automata.

A one-counter automaton A is deterministic whenever it corresponds to a deterministic one-counter
Minsky machine: for every state q,

• either A has a unique transition from q incrementing the counter,

• or A has exactly two transitions from q, one with instruction ifzero and the other with instruction
dec,

3

• or A has no transition from q (not present in original deterministic Minsky machines [1]).

In the transition system induced by any deterministic one-counter automaton, each configuration has at
most one successor. One-counter automata in full generality are understood as nondeterministic one-counter
automata.

2.2. LTL over data words

Formulae of the logic LTL↓,Σ [8] where Σ is a finite alphabet are defined as follows:

φ ::= a | ↑r | ¬φ | φ ∧ φ | φUφ | Xφ | ↓r φ

where a ∈ Σ and r ranges over N \ {0}. We write LTL↓ to denote LTL with registers for some unspecified
finite alphabet. An occurrence of ↑r within the scope of some freeze quantifier ↓r is bound by it; otherwise
it is free. A sentence is a formula with no free occurrence of any ↑r. Given a natural number n > 0, we write
LTL↓,Σ

n to denote the restriction of LTL↓,Σ to registers in {1, . . . , n}. Models of LTL↓,Σ are data words. A
data word σ over a finite alphabet Σ is a non-empty word in Σ∗ or Σω, together with an equivalence relation
∼σ on word indices. We write |σ| for the length of the data word, σ(i) for its letters where 0 ≤ i < |σ|. Let
Σ∗(∼) [resp. Σω(∼)] denote the sets of all such finite [resp. infinite] data words. We denote by Σ∞(∼) the
set Σ∗(∼) ∪ Σω(∼) of finite and infinite data words.

A register valuation v for a data word σ is a finite partial map from N\{0} to the indices of σ. Whenever
v(r) is undefined, the formula ↑r is interpreted as false. Let σ be a data word in Σ∞(∼) and 0 ≤ i < |σ|,
the satisfaction relation |= is defined as follows (Boolean clauses are omitted).

σ, i |=v a
def
⇔ σ(i) = a

σ, i |=v ↑r
def
⇔ r ∈ dom(v) and v(r) ∼σ i

σ, i |=v Xφ
def
⇔ i+ 1 < |σ| and σ, i + 1 |=v φ

σ, i |=v φ1Uφ2
def
⇔ for some i ≤ j < |σ|, σ, j |=v φ2

and for all i ≤ j′ < j, we have σ, j′ |=v φ1

σ, i |=v ↓r φ
def
⇔ σ, i |=v[r 7→i] φ

v[r 7→ i] denotes the register valuation equal to v except that the register r is mapped to the position i. In
the sequel, we omit the subscript “v” in |=v when sentences are involved. We use the standard abbreviations
for the temporal operators (G, F, G+, F+, . . .) and for the Boolean operators and constants (∨, ⇒, ⊤, ⊥,
. . .). The finitary [resp. infinitary] satisfiability problem for LTL with registers, noted ∗-SAT-LTL↓ [resp.
ω-SAT-LTL↓], is defined as follows:

Input: A finite alphabet Σ and a formula φ in LTL↓,Σ;

Question: Is there a finite [resp. an infinite] data word σ such that σ, 0 |= φ?

Theorem 1. [8, Theorem 5.2] ∗-SAT-LTL↓ restricted to one register is decidable with non-primitive recur-
sive complexity and ω-SAT-LTL↓ restricted to one register is Π0

1-complete.

Given a one-counter automaton A = 〈Q, qI , δ, F 〉, finite [resp. infinite] accepting runs of A can be viewed
as finite [resp. infinite] data words over the alphabet Q. Indeed, given a run ρ, the equivalence relation ∼ρ

is defined as follows: i ∼ρ j iff the counter value at the ith position of ρ is equal to the counter value at
the jth position of ρ. In order to ease the presentation, in the sequel we sometimes store counter values in
registers, which is an equivalent way to proceed by slightly adapting the semantics for ↑r and ↓r, and the
values stored in registers (data).

The finitary [resp. infinitary] (existential) model-checking problem over one-counter automata for LTL
with registers, noted MC(LTL)

∗
[resp. MC(LTL)

ω
], is defined as follows:

Input: A one-counter automaton A = 〈Q, qI , δ, F 〉 and a sentence φ in LTL↓,Q;

4

Question: Is there a finite [resp. infinite] accepting run ρ of A such that ρ, 0 |= φ? If the answer is “yes”,
we write A |=∗ φ [resp. A |=ω φ].

In this existential version of model checking, this problem can be viewed as a variant of satisfiability in which
satisfaction of a formula can be only witnessed within a specific class of data words, namely the accepting
runs of the automata. Results for the universal version of model checking will follow easily from those for
the existential version.

We write MC(LTL)
α
n to denote the restriction of MC(LTL)

α
to formulae with at most n registers. Very

often, it makes sense that only counter values are known but not the current state of a configuration, which
can be understood as an internal information about the system. We write PureMC(LTL)αn to denote the
restriction of MC(LTL)

α
n (its “pure data” version) to formulae with atomic formulae only of the form ↑r.

Given a set O of temporal operators, we write MC(LTL)
α
n [O] [resp. PureMC(LTL)

α
n [O]] to denote the

restriction of MC(LTL)αn [resp. PureMC(LTL)αn] to formulae using only temporal operators in O.

Example 1. Here are some properties that can be stated in LTL↓,Q
2 along a run.

• “There is a suffix such that all the counter values are different”:

FG(↓1 G
+¬ ↑1).

• “Whenever state q is reached with current counter value n and next current counter value m, if there
is a next occurrence of q, the two consecutive counter values are also n and m”:

G(q ⇒↓1 X ↓2 XG(q ⇒↑1 ∧ X ↑2)).

Observe also that we have chosen as alphabet the set of states of the automata. Alternatively, it would
have been possible to add finite alphabets to automata, to label each transition by a letter and then consider
as data words generated from automata the recognized words augmented with the counter values. This choice
does not change our main results but it improves the readability of some technical details.

2.3. First-order logic over data words

Let us introduce the second logical formalism considered in the paper. Formulae of FOΣ(∼, <,+1) [7]
where Σ is a finite alphabet are defined as follows:

φ ::= a(x) | x ∼ y | x < y | x = y+ 1 | ¬φ | φ ∧ φ | ∃ x φ

where a ∈ Σ and x ranges over a countably infinite set of variables. We write FO(∼, <,+1) to denote
FOΣ(∼, <,+1) for some unspecified finite alphabet and FO(<,+1) to denote the restriction of FO(∼, <,+1)
without atomic formulae of the form x ∼ y. Given a natural number n > 0, we write FOΣ

n (∼, <,+1) to
denote the restriction of FOΣ(∼, <,+1) to variables in {x1, . . . , xn}. A variable valuation u for a data word
σ is a finite partial map from the set of variables to the indices of σ. Let σ be a data word in Σ∞(∼), the
satisfaction relation |= is defined as follows (Boolean clauses are again omitted):

σ |=u a(x)
def
⇔ u(x) is defined and σ(u(x)) = a

σ |=u x ∼ y
def
⇔ u(x) and u(y) are defined and u(x) ∼σ u(y)

σ |=u x < y
def
⇔ u(x) and u(y) are defined and u(x) < u(y)

σ |=u x = y+ 1
def
⇔ u(x) and u(y) are defined and u(x) = u(y) + 1

σ |=u ∃ x φ
def
⇔ there is i ∈ N such that 0 ≤ i < |σ| and σ |=u[x 7→i] φ

u[x 7→ i] denotes the variable valuation equal to u except that the variable x is mapped to the position i. In
the sequel, we omit the subscript “u” in |=u when sentences are involved.

The finitary [resp. infinitary] (existential) model-checking problem over one-counter automata for the
logic FOΣ(∼, <,+1), noted MC(FO)

∗
[resp. MC(FO)

ω
] is defined as follows:

5

Input: A one-counter automaton A and a sentence φ in FOQ(∼, <,+1);

Question: Is there a finite [resp. infinite] accepting run ρ of A such that ρ |= φ? If the answer is “yes”, we
write A |=∗ φ [resp. A |=ω φ].

We write MC(FO)αn to denote the restriction of MC(FO)α to formulae with at most n variables. We
write PureMC(FO)

α
n to denote the restriction of MC(FO)

α
n (its “pure data” version) to formulae with no

atomic formulae of the form a(x).
Extending the standard translation from LTL into first-order logic, we can easily establish the result

below.

Lemma 2. Given a sentence φ in LTL↓,Σ
n , there is a first-order formula φ′ in FOΣ(∼, <,+1) that can be

computed in linear time in |φ| such that

1. φ′ has at most max(3, n+ 1) variables,
2. φ′ has a unique free variable, say y0,
3. for all data words σ, register valuations v and i ≥ 0, we have σ, i |=v φ iff σ |=u φ′, where for
r ∈ {1, . . . , n}, v(r) = u(xr) and u(y0) = i.

Proof. We build a translation function T which takes as arguments a formula in LTL↓,Σ
n and a variable,

and which returns the wanted formula in FOΣ(∼, <,+1). Intuitively the variable, which is given as argu-
ment, is used to represent the current position in the data word. Then, we use the variables x1, . . . , xr to
characterize the registers. We add to this set of variables three variables y0, y1 and y2. In the sequel, we
write y to represent indifferently y0 or y1 or y2. Furthermore the notation yi+1 stands for y(i+1)mod(3) and
yi+2 stands for y(i+2)mod(3). The function T , which is homomorphic for the Boolean operators, is defined
inductively as follows, for i ∈ {0, 1, 2}:

• T (a, y) = a(y),

• T (↑r, y) = y ∼ xr,

• T (Xφ, yi) = ∃ yi+1 (yi+1 = yi + 1 ∧ T (φ, yi+1)),

• T (φUψ, yi) = ∃ yi+1 (yi ≤ yi+1 ∧ T (ψ, yi+1) ∧ ∀ yi+2 (yi ≤ yi+2 < yi+1 ⇒ T (φ, yi+2)),

• T (↓r φ, y) = ∃ xr (xr = y ∧ T (φ, y)).

Then if φ is a formula in LTL↓,Σ
n and y0 is the variable chosen to characterize the current position in the

word, the formula T (φ, y0) satisfies the three conditions given in the above lemma. In order to ensure the
first condition, we use the fact that we can recycle the variables. More details about this technique can be
found in [31]. �

The decidability borderline for FO(∼, <,+1) is between two and three variables.

Theorem 3. [7, Theorem 1, Propositions 19 & 20] Satisfiability for FO(∼, <,+1) restricted to 3 variables
is undecidable and satisfiability for FO2(∼, <,+1) is decidable (for both finitary and infinitary cases).

In Section 3 we will use Theorem 4 below in an essential way.

Theorem 4. [26, Proposition 4.2] Given two finite words s, t ∈ Σ∗ and a sentence φ in FOΣ(<,+1),
checking whether s · tω |= φ can be done in space O((|s| + |t|)× |φ|2).

6

2.4. Purification of the model-checking problem

We now show how to get rid of propositional variables by reducing the model-checking problem over
one-counter automata to its pure version. This amounts to transform any MC(LTL) instance into a
PureMC(LTL) instance.

Lemma 5 (Purification for LTL↓). Given a one-counter automaton A and a sentence φ in LTL↓,Q
n , one

can compute in logarithmic space in |A|+ |φ| a one-counter automaton AP and a formula φP in LTL↓,∅
max(n,1)

such that A |=∗ φ [resp. A |=ω φ] iff AP |=∗ φP [resp. AP |=ω φP]. Moreover, A is deterministic iff AP is
deterministic.

The idea of the proof is simply to identify states with patterns about the changes of the unique counter
that can be expressed in LTL↓,∅.

Proof. Let A = 〈Q, qI , δ, F 〉 with Q = {q1, . . . , qm} and φ be an LTL↓,Q formula. In order to define AP ,
we identify states with patterns about the changes of the unique counter. Let AP be 〈QP , qI , δP , FP 〉 with
QP = Q ⊎Q′ and Q′ is defined below:

Q′ =
{

q1i , q
2
i , q

3
i , q

4
i , q

5
i , qi,F | i ∈ {1, . . . ,m}

}

∪
{

qi,j , q
′
i,j | i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m+ 1} and i 6= j

}

∪
{

q0i,i, qi,i, q
1
i,i, q

2
i,i | i ∈ {1, . . . ,m}

}

.

Figure 2 presents the set of transitions δP associated with each state qi of Q (providing a pattern). Further-

more, for all i, j ∈ {1, . . . ,m}, qi,F
a
−→ qj ∈ δP iff qi

a
−→ qj ∈ δ. The sequence of transitions associated to each

qi ∈ Q is a sequence of m + 2 picks and among these picks, the first pick is the only one of height 3, the
i-th pick is the only one of height 2, and the height of all the other picks is 1. Observe that this sequence
of transitions has a fixed length and it is composed of exactly 9 + 2(m+ 1) states.

qi

q1i

q2i

q3i

q4i

q5i

q′i,1

qi,1

q′i,2

qi,2

q′i,3 q0i,i

q1i,i

qi,i

q2i,i

q′i,i+1

qi,i+1

. q′i,m+1

qi,m+1

qi,F

inc

dec

Figure 2: Encoding qi by a pattern made of m+ 2 picks and of length 9 + 2(m + 1)

Finally, the set of accepting states of AP is defined as the set {qi,F | qi ∈ F}. In order to detect the first
pick of height 3 which characterizes the beginning of the sequence of transitions associated to each state
belonging to Q, we build the two following formulae in LTL↓,∅

1 :

• ϕ¬3/7 which expresses that “among the 7 next counter values (including the current counter value),
there are no 3 equal values”,

• ϕ0∼6 which expresses that “the current counter value is equal to the counter value at the 6th next
position”.

These two formulae can be written as follows:

ϕ¬3/7 = ¬
(

↓1
(
∨

i6=j∈{1,...,6}(X
i ↑1 ∧Xj ↑1)

)

∨X ↓1
(
∨

i6=j∈{1,...,5}(X
i ↑1 ∧Xj ↑1)

)

∨X2 ↓1
(
∨

i6=j∈{1,...,4}(X
i ↑1 ∧Xj ↑1)

)

∨X3 ↓1
(
∨

i6=j∈{1,2,3}(X
i ↑1 ∧Xj ↑1)

)

∨X4 ↓1
(
∨

i6=j∈{1,2}(X
i ↑1 ∧Xj ↑1)

))

ϕ0∼6 = ↓1 (X
6 ↑1)

7

We write STA to denote the formula ϕ¬3/7 ∧ ϕ0∼6.
Let ρ be a run of AP and j be such that 0 ≤ j < |ρ|. We show that (1) ρ, j |= STA iff (2) (ρ, j |= q

for some q ∈ Q and j + 6 < |ρ|). In the sequel, we assume that j + 6 < |ρ| since otherwise it is clear that
ρ, j 6|= STA. By construction, it is clear that (2) implies (1). In order to prove that (1) implies (2), we show
that if ρ, j |= q for some q ∈ QP \Q and j+6 < |ρ|, then ρ, j 6|= STA. We perform a systematic case analysis
according to the type of q (we group the cases that require similar arguments):

1. If q is of the form q2i with i ∈ {2, . . . ,m}, then ρ, j 6|= ϕ0∼6. When q is q21 , ρ, j 6|= ϕ¬3/7.
2. If q is of the form q3i with i ∈ {1, . . . ,m}, then ρ, j 6|= ϕ0∼6.
3. If q is of the form q4i with i ∈ {1, . . . ,m} \ {2}, then ρ, j 6|= ϕ0∼6. When q is q42 , ρ, j 6|= ϕ¬3/7.
4. If q is of the form qi,i with i ∈ {2, . . . ,m−1}, then ρ, j 6|= ϕ0∼6. When q is qm,m and an incrementation

is performed after qm,F , we have ρ, j 6|= ϕ¬3/7. If another action is performed, then we also have
ρ, j 6|= ϕ0∼6.

5. If q is of the form either q1i or q5i with i ∈ {1, . . . ,m}, then ρ, j 6|= ϕ¬3/7.
6. If q is of the form either q0i,i or q1i,i with i ∈ {1, . . . ,m}, then ρ, j 6|= ϕ¬3/7.
7. If q is of the form q2i,i with i ∈ {1, . . . ,m}, then ρ, j 6|= ϕ¬3/7 (the case i = m requires a careful

analysis).
8. If q is of the form qi,k for some i ∈ {1, . . . ,m}, k ∈ {1, . . . ,m− 1} such that either |i− k| > 2 or k > i,

then ρ, j 6|= ϕ¬3/7.
9. If q is of the form qi,i−1 with i ∈ {2, . . . ,m}, then ρ, j 6|= ϕ¬3/7.

10. If q is of the form qi,i−2 with i ∈ {3, . . . ,m}, then ρ, j 6|= ϕ¬3/7.
11. If q is of the form qi,m with i ∈ {1, . . . ,m− 1}, then ρ, j 6|= ϕ¬3/7.
12. If q is of the form qi,m+1 with i ∈ {1, . . . ,m} and an action different from decrementation is performed

after qi,F , then ρ, j 6|= ϕ0∼6. When a decrementation is performed after qi,F , we get ρ, j |= ϕ0∼6 ∧
¬ϕ¬3/7.

13. If q is of the form q′i,k for some i ∈ {1, . . . ,m}, k ∈ {1, . . . ,m− 1} such that either |i− k| > 2 or k > i,
then ρ, j 6|= ϕ¬3/7.

14. If q is of the form q′i,i−1 with i ∈ {2, . . . ,m}, then ρ, j 6|= ϕ¬3/7.
15. If q is of the form q′i,i−2 with i ∈ {3, . . . ,m}, then ρ, j 6|= ϕ¬3/7.
16. If q is of the form q′i,m with i ∈ {1, . . . ,m}, then ρ, j 6|= ϕ¬3/7.
17. If q is of the form q′i,m+1 with i ∈ {1, . . . ,m}, then ρ, j 6|= ϕ0∼6. Indeed, the 6th next position, if any,

is of the form q3k for some k ∈ {1, . . . ,m}. The counter value at such a position is strictly greater than
the one at the position j whatever is the action performed after qi,F .

18. If q is of the form qi,F with i ∈ {1, . . . ,m} and the action performed after qi,F is not a decrementation,
then ρ, j 6|= ϕ0∼6. When a decrementation is performed after qi,F , we get ρ, j |= ϕ0∼6 ∧ ¬ϕ¬3/7.

For i ∈ {1, . . . ,m}, let us define the formula φi = X6+2(i−1) ↓1 X
2¬ ↑1. One can check that in the run of

AP , STA ∧ φi holds true iff the current state is qi and there are at least 6 following positions.
Let φ be a formula in LTL↓,Q

n . We define φP as the formula T(φ) such that the map T is homomorphic
for Boolean operators and ↓r, and its restriction to ↑r is identity. The rest of the inductive definition is as
follows.

• T(qi) = φi,

• T(Xφ) = X9+2(m+1)+1T(φ),

• T(φUφ′) =
(

STA ⇒ T(φ)
)

U
(

STA ∧ T(φ′)
)

.

Observe that φ and φP have the same amount of registers unless φ has no register. For each accepting
run in A, there exists an accepting run in AP and conversely for each accepting run in AP , there exists an
accepting run in A. Furthermore the sequence of counter values for the configurations of each of these runs
which have a state in Q match. �

Lemma 6 (Purification for FO(∼, <,+1)). Given a one-counter automaton A and an FOQ(∼, <,+1) sen-
tence φ with n variables, one can compute in logarithmic space in |A| + |φ| a one-counter automaton AP

and φP in FO∅(∼, <,+1) with at most n+2 variables such that A |=∗ φ [resp. A |=ω φ] iff AP |=∗ φP [resp.
AP |=ω φP]. Moreover, A is deterministic iff AP is deterministic.

8

Proof. The proof follows the lines of the proof of Lemma 5 by considering the first-order formulae
corresponding to the formulae STA and φi and the same automaton construction. In order to make this
construction feasible, we need to use formulae of the form x = y + k. In fact, the formulae of the form
x = y + 1 are translated into formulae of the form x = y + 9 + 2(m + 1) (this case is identical to the case
of the formulae of the form Xφ). Typically, encoding x = y + k for the constant k requires two auxiliary
variables. For instance we can encode the formula x = y+ 4 as follows:

∃ y2 x = y2 + 1 ∧ (∃ y1 y2 = y1 + 1 ∧ (∃ y2 y1 = y2 + 1 ∧ y2 = y+ 1))

Here again, we recycle the variables y1 and y2. �

3. Model checking deterministic one-counter automata

In this section, we show that MC(LTL)
∗

and MC(LTL)
ω

restricted to deterministic one-counter automata
is PSpace-complete.

3.1. PSpace lower bound

We show below a PSpace-hardness result by taking advantage of the alphabet of states by means of a
reduction from QBF (“Quantified Boolean Formula”) that is a standard PSpace-complete problem.

Proposition 7. PureMC(LTL)
∗

and PureMC(LTL)
ω

restricted to deterministic one-counter automata are
PSpace-hard problems. Furthermore, for PureMC(LTL)∗ [resp. PureMC(LTL)ω] this results holds for
formulae using only the temporal operators X and F [resp. F].

Proof. Consider a QBF instance φ: φ = ∀p1 ∃p2 · · · ∀p2N−1 ∃ p2N Ψ(p1, ..., p2N) where p1,...,p2N are
propositional variables and Ψ(p1, . . . , p2N) is a quantifier-free propositional formula built over p1, . . . , p2N .
The fixed deterministic one-counter automaton A below generates the sequence of counter values (01)ω.

q0 q1

inc

dec

Let ψ be the formula in LTL↓,∅ defined from the family ψ1, . . . , ψ2N+1 of formulae with ψ =↓2N+1 ψ1.

• ψ2N+1 = Ψ(↑1⇔↑2N+1, . . . , ↑2N⇔↑2N+1),

• for i ∈ {1, ..., N}, ψ2i = F(↓2i ψ2i+1) and ψ2i−1 = G(↓2i−1 ψ2i).

One can show that φ is satisfiable iff A |=ω ψ.
To do so, we proceed as follows. For i ∈ {0, 2, 4, 6, . . . , 2N}, let φi be

φi = ∀pi+1 ∃pi+2 · · · ∀p2N−1 ∃ p2N Ψ(p1, ..., p2N).

So φ0 is precisely φ. Similarly, for i ∈ {1, 3, 5, . . . , 2N − 1}, let φi be

φi = ∃pi+1 ∀pi+2 · · · ∀p2N−1 ∃ p2N Ψ(p1, ..., p2N).

Observe that the free propositional variables in φi are exactly p1, . . . , pi and φi is obtained from φ by
removing the i first quantifications. Given a propositional valuation v : {p1, . . . , pi} → {⊤,⊥} for some
i ∈ {1, . . . , 2N}, we write v to denote a register valuation such that its restriction to {1, . . . , i, 2N + 1}
satisfies: v(pj) = ⊤ iff v(j) = 0 for j ∈ {1, . . . , i} and v(2N + 1) = 0. One can show by induction that for
k ≥ 0, v |= φi−1 (in QBF) iff ρωA, k |=v ψi, where ρωA denotes the unique infinite run for A. Consequently,
if v |= φ for some propositional valuation, then ρωA, 0 |=v ψ. Similarly, if ρωA, 0 |=v ψ, then there is a
propositional valuation v′ such that v′ = v and v′ |= φ.

For the finitary problem PureMC(LTL)∗, the above proof does not work because the occurrences of G
related to universal quantification in the QBF formula might lead to the end of the run, leaving no choice
for the next quantifications. Consequently, one need to use another deterministic one-counter automaton
with 4N + 1 states such that the sequence of counter values from the accepting run is (01)2N0 (again we
omit useless ifzero transitions). Let us consider the deterministic counter automaton A′ below.

9

q1

q′1
inc

q2

dec
q′2

inc

q3

dec

. q2N

q′2N
inc

qF

dec

We shall build another formula ψ in LTL↓,∅ defined from the formulae below with ψ =↓2N+1 ψ1.

• ψ2N+1 = Ψ(↑1⇔↑2N+1, . . . , ↑2N⇔↑2N+1),

• for i ∈ {1, ..., N}:

– ψ2i = F
(

(X4N−4i+2 ⊤)∧ ↓2i ψ2i+1

)

and

– ψ2i−1 = G
(

(X4N−4i+4 ⊤) ⇒↓2i−1 ψ2i

)

.

Herein, ⊤ holds for the truth value that can be encoded with ↓1 ∨¬ ↓1 (remember there are no
propositional variables in the pure version of the model-checking problems).

Using a similar proof by induction as the one done for the infinite case, we obtain that φ is satisfiable iff
A′ |=∗ ψ. �

Observe that in the reduction for PureMC(LTL)ω, we use an unbounded number of registers (see Theo-
rem 14) but a fixed deterministic one-counter automaton.

By Lemmas 6 and 2, we obtain the following corollary.

Corollary 8. PureMC(FO)∗ and PureMC(FO)ω restricted to deterministic one-counter automata are PSpace-
hard problems.

3.2. Properties on runs for deterministic automata

Any deterministic one-counter automaton A has at most one infinite run, possibly with an infinite amount
of counter values. If this run is not accepting, i.e. no accepting state is repeated infinitely often, then for no
formula φ, we have A |=ω φ. We show below that we can decide in polynomial-time whether A has accepting
runs either finite or infinite. Moreover, we shall show that the infinite unique run has some regularity.

Let ρωA be the unique infinite run (if it exists) of the deterministic one-counter automaton A represented
by the following sequence of configurations

〈q0, n0〉 〈q1, n1〉 〈q2, n2〉 . . .

Lemma 9 below is a key result to show the forthcoming PSpace upper bound. Basically, the unique run
of deterministic one-counter automata has regularities that can be described in polynomial size.

Lemma 9. Let A be a deterministic one-counter automaton with an infinite run. There are K1,K2,Kinc

such that K1 +K2 ≤ |Q|3, Kinc ≤ |Q| and for every i ≥ K1, 〈qi+K2
, ni+K2

〉 = 〈qi, ni +Kinc〉.

Hence, the run ρωA can be encoded by its first K1 +K2 configurations. It is worth noting that we have
deliberately decided to keep the three constants K1, K2 andKinc in order to provide a more explicit analysis.

Proof. (Lemma 9) We write ZERO(A) to denote the set of positions of ρωA where a zero-test has been
successful. By convention, 0 belongs to ZERO(A) since in a run we require that the first configuration is

the initial configuration of A with counter value 0. Hence, ZERO(A)
def

= {0} ∪ {i > 0 : ni = ni+1 = 0}. Let
us first establish Lemma 10 below.

Lemma 10. Let i < j be in ZERO(A) for which there is no i < k < j with k ∈ ZERO(A). Then,
(j − i) ≤ |Q|2.

10

The proof essentially establishes that the counter cannot go beyond |Q| between two positions with
successful zero-tests.

Proof. (Lemma 10) First observe that there are no i < k < k′ < j such that qk = qk′ and nk ≤ nk′ .
Indeed, if it is the case since there is no successful zero-tests in 〈qi+1, ni+1〉 · · · 〈qk, nk〉 · · · 〈qk′ , nk′〉 and A
is deterministic we would obtain from 〈qk′ , nk′〉 an infinite path with no zero-test, a contradiction with the
existence of 〈qj , nj〉. Hence, if there are i < k < k′ < j such that qk = qk′ , then nk′ < nk. Now suppose
that there is i < k < j such that nk ≥ |Q|. We can extract a subsequence 〈qi0 , ni0〉 · · · 〈qis , nis〉 from
〈qi, ni〉 · · · 〈qnk

, nk〉 such that i0 = i, is = k and for 0 ≤ l < s, nil+1
= nil + 1. Consequently, there are

l, l′ such that qil = qil′ and nil < nil′ , which leads to a contradiction from the above point. Hence, for
k ∈ {i, . . . , j}, nk ≤ |Q| − 1. Since A is deterministic, this implies that (j − i) ≤ |Q| × |Q|. �

Let us come back to the rest of the proof.
First, suppose that ZERO(A) is infinite. Let i0 < i1 < i2 < . . . be the infinite sequence composed of

elements from ZERO(A) (i0 = 0). There are l, l′ ≤ |Q| such that 〈qil , nil〉 = 〈qil′ , nil′ 〉. By Lemma 10,
il′ ≤ |Q| × |Q|2 . Take K1 = il and K2 = il′ − il.

Second, suppose that ZERO(A) is finite, say equal to {0, i1, . . . , il} for some l ≤ |Q| − 1 (if l ≥ |Q| we
are in the first case). By Lemma 10, il ≤ (|Q| − 1)× |Q|2. For all il ≤ k < k′, if qk = qk′ , then nk ≤ nk′ (if
it were not the case, there would eventually be another zero-test in the path starting with 〈qil , nil〉). Now
there are il ≤ k < k′ ≤ il + |Q| such that qk = qk′ and consequently nk ≤ nk′ . Take K1 = k, K2 = k′ − k

and Kinc = nk′ − nk. We have Kinc ≤ |Q| because k′ − k ≤ |Q|. �

ρωA has a simple structure: it is composed of a polynomial-size prefix

〈q0, n0〉 · · · 〈qK1−1, nK1−1〉

followed by the polynomial-size loop 〈qK1
, nK1

〉 · · · 〈qK1+K2−1, nK1+K2−1〉 repeated infinitely often. The
effect of applying the loop consists in adding Kinc to every counter value. Testing whether A has an infinite
run or ρωA is accepting amounts to check whether there is an accepting state in the loop, which can be done
in cubic time in |Q|. In the rest of this section, we assume that ρωA is accepting. Similarly, testing whether
A has a finite accepting run amounts to check whether an accepting state occurs in the prefix or in the loop.

When Kinc = 0 and A has an infinite run, ρωA is exactly

〈q0, n0〉 · · · 〈qK1−1, nK1−1〉(〈qK1
, nK1

〉 · · · 〈qK1+K2−1, nK1+K2−1〉)
ω .

It is then possible to apply a polynomial-space labelling algorithm à la CTL for model checking LTL↓,Q

formulae on A. However, one needs to take care of register valuations, which explains why unlike the
polynomial-time algorithm for model checking ultimately periodic models on LTL formulae (see e.g., [26]),
model checking restricted to deterministic automata with Kinc = 0 is still PSpace-hard (see the proof of
Proposition 7).

3.3. A PSpace symbolic model-checking algorithm

In this section, we provide decision procedures for solving MC(FO)∗ and MC(FO)ω restricted to deter-
ministic one-counter automata. Let us introduce some notations. Let ρωA = 〈q0, n0〉 〈q1, n1〉 〈q2, n2〉 . . . be
the unique run of the deterministic one-counter automaton A.

We establish that whenever Kinc > 0, two positions with identical counter values are separated by a
distance that is bounded by a polynomial in |Q|.

Let us introduce a few constants related to the one-counter automaton A when Kinc > 0.

• Let β1, β2 ≥ 0 be the smallest natural numbers such that for every i ∈ [K1,K1 + K2 − 1], ni ∈
[nK1

− β1, nK1
+ β2].

• Let γ be the greatest value amongst {n0, . . . , nK1−1}.

• L = 1 + γ +
⌈

β1+β2

Kinc

⌉

where ⌈·⌉ denotes the ceiling function.

11

Intuitively, the constant LK2 is greater than any distance between two positions belonging to the loop
of the unique infinite run of A which have the same counter value. The next lemma formalizes this idea.

Lemma 11. Suppose Kinc > 0 and let i, j be in N.

1. If i, j ≥ K1 and |i− j| ≥ LK2, then ni 6= nj.
2. If i < K1 and j ≥ K1 + LK2, then ni 6= nj.

Proof. (1) Assume that i, j ≥ K1 and (i − j) ≥ LK2. By using the Euclidean division, we introduce
the following values: ri = (i − K1) mod (K2), rj = (j − K1) mod (K2) and the quotients ai and aj such
that i − K1 = aiK2 + ri and j − K1 = ajK2 + rj . Note that 0 ≤ ri, rj < K2 and since (i − j) ≥ LK2,
we necessarily have ai − aj > L − 1. Using the definition of the constants β1 and β2, we know that
nri+K1

, nrj+K1
∈ {nK1

−β1, . . . , nK1
+β2}. Since i = aiK2+ ri+K1 and j = ajK2+ rj +K1, by Lemma 9,

we have ni = nri+K1
+ aiKinc and nj = nrj+K1

+ ajKinc. We obtain the following inequalities:

nK1
− β1 + aiKinc ≤ ni ≤ nK1

+ β2 + aiKinc

nK1
− β1 + ajKinc ≤ nj ≤ nK1

+ β2 + ajKinc

Consequently,
−β1 − β2 + (ai − aj)Kinc ≤ ni − nj ≤ β1 + β2 + (ai − aj)Kinc

Considering that (ai − aj) > L− 1 and using the definition of L, we obtain:

0 ≤ γKinc < ni − nj

Hence ni 6= nj . The same proof can be done when we initially assume that (j − i) ≥ LK2.

(2) Let us assume that i < K1 and j ≥ K1 + LK2. Let aj , rj be defined as for the case (1). By using
the same method, we obtain the following inequality:

nK1
− β1 + ajKinc ≤ nj ≤ nK1

+ β2 + ajKinc

Sine β2 ≥ 0, we have:
nK1

− β1 − β2 + ajKinc − ni ≤ nj − ni

Moreover, since j ≥ K1 + LK2, we get aj ≥ L. Consequently,

nK1
− β1 − β2 + LKinc − ni ≤ nj − ni

Using the definition of L, we get

nK1
− β1 − β2 + (1 + γ)Kinc + β1 + β2 − ni ≤ nK1

− β1 − β2 + LKinc − ni ≤ nj − ni

Since γ ×Kinc ≥ ni, we get
nK1

+Kinc ≤ nj − ni

Consequently, nj > ni. �

Let us introduce the intermediate sets P 1
∼ and P 2

∼:

P 1
∼ = {〈i, j〉 ∈ {0, . . . ,K1 + LK2 − 1}2 | ni = nj and i ≤ j}

P 2
∼ = {〈i, j〉 ∈ {0, . . . ,K1 + LK2 − 1}2 | ni = nj + LKinc and j < i}

In the sequel, we write P∼ to denote the set P 1
∼ ∪ P 2

∼. We will now characterize the positions of ρωA using
the set P∼ and the constants L, K1, K2 and Kinc introduced before.

Lemma 12. Suppose Kinc > 0 and let j ≥ i be in N. Then, ni = nj iff one the conditions below is true.

12

1. 〈i, j〉 ∈ P 1
∼.

2. i, j ≥ K1, 〈K1 + (i−K1) mod (LK2),K1 + (j −K1) mod (LK2)〉 ∈ P∼ and (j − i) < LK2.

Proof. Let i, j ∈ N such that i ≤ j. If (1) is satisfied, then by definition of P 1
∼, we get ni = nj .

If (2) is satisfied, then let ri = (i − K1) mod (LK2), rj = (j − K1) mod (LK2) and ai,aj be quotients
such that i − K1 = aiLK2 + ri and j − K1 = ajLK2 + rj . By Lemma 9, we have ni = nri+K1+aiLK2

=
nri+K1

+ aiLKinc and nj = nrj+K1+ajLK2
= nrj+K1

+ ajLKinc. Since (j − i) < LK2, we have (aj −
ai)LK2 + (rj − ri) < LK2. Furthermore, we have by hypothesis 〈K1 + ri,K1 + rj〉 ∈ P∼. We then
distinguish two cases. First if 〈K1 + ri,K1 + rj〉 ∈ P 1

∼, we deduce that ri ≤ rj and consequently ai = aj .
Hence ni = nj . Second if 〈K1 + ri,K1 + rj〉 ∈ P 2

∼, we deduce that rj < ri and consequently aj = ai + 1.
Hence nj = nrj+K1

+ (ai + 1)LKinc and since nrj+K1
+ LKinc = nri+K1

, we obtain ni = nj .
We now suppose that ni = nj and we perform the following case analysis.

• Assume that i < K1 and j < K1. By definition of P 1
∼, we have 〈i, j〉 ∈ P 1

∼ and the condition (1) is
therefore satisfied.

• Assume that i, j ≥ K1. By Lemma 11, we have (j− i) < LK2 (otherwise we would have ni 6= nj). Let
ri = (i−K1) mod (LK2), rj = (j−K1) mod (LK2) and ai,aj be quotients such that i−K1 = aiLK2+ri
and j − K1 = ajLK2 + rj . By Lemma 9, we have ni = nri+K1+aiLK2

= nri+K1
+ aiLKinc and

nj = nrj+K1+ajLK2
= nrj+K1

+ ajLKinc. We consider then two cases, according to the satisfaction of
ai = aj .

– Suppose ai = aj . Consequently, nri+K1
= nrj+K1

and since i ≤ j, we have ri ≤ rj . Condition
(2) is therefore satisfied.

– Suppose ai 6= aj . Since (j−i) < LK2, necessarily, aj = ai+1. Hence nrj+K1
= ni−(ai+1)LKinc,

and since (aj − ai)LK2 + (rj − ri) < LK2, we also have rj < ri from which we can conclude that
condition (2) is again satisfied (we also have nrj+K1

+ LKinc = nri+K1
).

• Assume that i < K1 and j ≥ K1. By Lemma 11, we have j < K1+LK2, and consequently 〈i, j〉 ∈ P 1
∼,

hence condition (1) is satisfied.

All the values for i, j are covered by the above analysis. �

We show below how to reduce an instance of the model-checking problem (restricted to deterministic one-
counter automata) to an instance of the problem mentioned in Theorem 4 by taking advantage of Lemma 12.
First let us build finite words s, t over some finite alphabet Σ. By Lemma 6, we can assume that the formula
φ belongs to the pure fragment of FO(∼, <,+1).

• Σ = {0, . . . ,K1 + LK2 − 1}.

• s = {0} · {1} · · · · {K1 − 1}.

• t = {K1} · {K1 + 1} · · · · {K1 + LK2 − 1}.

Given a sentence φ in FO(∼, <,+1) let us define a sentence T (φ) in FOΣ(<,+1) according to the definition
below:

• T is the identity for atomic formulae of the form x < y and x = y+ 1.

• T is homomorphic for Boolean connectives and first-order quantification.

• T (x ∼ y) =
(

x ≤ y ∧ T1(x, y)
)

∨
(

y ≤ x ∧ T1(y, x)
)

and T1(x, y) is equal to

(y− x) < LK2 ∧
(

x < K1 ⇒
∨

〈I,J〉∈P 1
∼

I(x) ∧ J(y)
)

∧
(

x ≥ K1 ⇒
∨

〈I,J〉∈P∼

I(x) ∧ J(y)
)

13

Observe that the formula of the form (y − x) < LK2 is a shortcut for a formula in FOQ(<,+1) of
polynomial size in |A|. For instance, when x ≥ K1 ∧ y ≥ K1 ∧ y > x holds, (y− x) < LK2 is equivalent to a
formula with at most 3 variables, namely

¬

K1+LK2−1
∧

I=K1

∃ z x ≤ z < y ∧ I(z).

Lemma 13. A |=ω φ iff s · tω |= T (φ).

Proof. The proof is by structural induction. We show that for each subformula ψ of φ and for each variable
valuation u, A |=ω

u ψ iff s · tω |=u T (ψ). Since the formula φ belongs to the pure fragment of FO(∼, <,+1)
the only case that needs to be checked is for atomic formulae of the form x ∼ y. Before giving the rest of the
proof, we remark that since σ is an infinite word s · tω built over the alphabet Σ = {0, . . . ,K1 + LK2 − 1},
for all i ≥ K1, we have σ(i) = K1 + (i − K1) mod (LK2). Let u be a variable valuation such that u(x)
and u(y) are defined (if u(x) or u(y) is not defined, then it is easy to show that A 6|=ω

u x ∼ y and that
s · tω 6|=u T (x ∼ y)).

First we suppose that A |=ω
u x ∼ y, this means that the unique infinite accepting run ρωA of A satisfies

ρωA |=u x ∼ y. Hence, we have nu(x) = nu(y). We show that s · tω |=u T (x ∼ y). We suppose u(x) ≤ u(y) (the
proof is similar for the case u(y) ≤ u(x)). We proceed by a case analysis using Lemma 12 and the definition
for T (x ∼ y):

• If u(x) < K1, then necessarily (u(y) − u(x)) < LK2, hence σ(u(x)) = u(x) and σ(u(y)) = u(y),
furthermore by Lemma 12 〈u(x), u(y)〉 ∈ P 1

∼, so we have σ |=u T (x ∼ y).

• If u(x) ≥ K1, again we have (u(y) − u(x)) < LK2 and also σ(u(x)) = K1 + (i − u(x)) mod (LK2)
and σ(u(y)) = K1 + (i− u(y)) mod (LK2). Using Lemma 12, we have 〈σ(u(x)), σ(u(y))〉 ∈ P∼, which
implies σ |=u T (x ∼ y).

Now, let us suppose that s · tω |=u T (x ∼ y). Again, we perform a case analysis and we suppose that
u(x) ≤ u(y) (the proof for the case u(y) ≤ u(x) is the same):

• If u(x) < K1 then u(y) < K1 + LK2. Hence σ(u(x)) = u(x) and σ(u(y)) = u(y). Since 〈u(x), u(y)〉 ∈
P 1
∼, we have nu(x) = nu(y).

• If u(x) ≥ K1 then (u(y) − u(x)) < LK2 and 〈σ(u(x)), σ(u(y))〉 ∈ P∼. Since σ(u(x)) = K1 + (i −
u(x)) mod (LK2) and σ(u(y)) = K1 + (i− u(y)) mod (LK2), we obtain using Lemma 12 that nu(x) =
nu(y).

�

This allows us to characterize the complexity of model checking.

Theorem 14. MC(FO)
ω

restricted to deterministic one-counter automata is PSpace-complete.

Proof. Let A be a one-counter automaton and φ be a pure formula in FO(∼, <,+1). If either A has no
infinite run or its infinite run is not accepting, then this can be checked in polynomial-time in |A|. In that
case A |=ω φ does not hold. Moreover, observe that if A has no infinite run, then the length of the maximal
finite run is in O(|Q|3) by using arguments from Lemma 9.

In the caseA has an infinite accepting run andKinc > 0, as shown previously the prefixes s, t as well as the
formula T (φ) can be computed in in polynomial time in |A|+ |φ|. Moreover, by Theorem 4 [26], s ·tω |= T (φ)
can be checked in polynomial space in |s|+ |t|+ |T (φ)|. In the case Kinc = 0, the prefixes s and t are defined
as follows with Σ = {0, . . . ,K1+K2−1}: s = {0}·{1} · · ··{K1−1} and t = {K1}·{K1+1} · · ··{K1+K2−1}.
The map T (·) is defined as previouly except that T (x ∼ y) =

∨

〈I,J〉∈P 3
∼

I(x) ∧ J(y) with P 3
∼ = {〈i, j〉 ∈

{0, . . . ,K1 +K2 − 1}2 | ni = nj}.
Hence, PureMC(FO)ω is in polynomial space. Using the Purification Lemma 6, we deduce that MC(FO)ω

is also in polynomial space. The PSpace-hardness is a consequence of the PSpace-hardness of MC(LTL)
ω

(since there is an obvious logspace translation from LTLQ into FOQ(∼, <,+1)). �

14

Theorem 15. MC(FO)
∗

restricted to deterministic one-counter automata is PSpace-complete.

Proof. Let A be a one-counter automaton and φ be a pure formula in FO(∼, <,+1). If A has an infinite
run, then the finite words s and t are computed as in the infinitary case. We then need another intermediate
set PF which will characterize the positions of the unique run labelled with an accepting state:

PF = {i ∈ {0, . . . ,K1 + LK2 − 1} | qi ∈ F}

The pure formula φ is then translated into

∃ xend (
∨

I∈PF

I(xend)) ∧ T
′(φ),

where T ′(φ) is defined as T (φ) for the infinitary case except that the clause for first-order quantification be-
comes T ′(∃ x ψ) = ∃ x x ≤ xend ∧T

′(ψ) (relativization). As in the proof of Theorem 14, we get the PSpace

upper bound for MC(FO)
∗
. In the case A has no infinite run, then the lengh K of the maximal finite run is in

O(|Q|3) and it can therefore be computed in polynomial-time. The prefixes s and t are defined as follows with
Σ = {0, . . . ,K − 1,⊥}: s = {0} · {1} · · · · {K − 1} and t = {⊥}. The map T (·) is defined as previouly except
that T (x ∼ y) =

∨

〈I,J〉∈P 4
∼

I(x) ∧ J(y) with P 4
∼ = {〈i, j〉 ∈ {0, . . . ,K − 1}2 | ni = nj}. The pure formula φ

is translated into ∃ xend (
∨

I∈P ′

F
I(xend))∧¬ ⊥ (xend)∧T

′(φ), with P ′
F = {i ∈ {0, . . . ,K−1} | qi ∈ F}. The

formula T ′(φ) is defined as T (φ) for the infinitary case except that the clause for first-order quantification
becomes T ′(∃ x ψ) = ∃ x x ≤ xend ∧ T

′(ψ). �

This improves the complexity bounds from [30]. Using the translation from LTL↓ into FO(∼, <,+1)
from Lemma 2, we deduce the following corollary.

Corollary 16. MC(LTL)
∗

and MC(LTL)
ω

are PSpace-complete.

4. Model checking nondeterministic one-counter automata

In this section, we show that several model-checking problems over nondeterministic one-counter au-
tomata are undecidable by reducing decision problems for Minsky machines by following a principle intro-
duced in [11]. Undecidability is preserved even in presence of a unique register. This is quite surprising
since ∗-SAT-LTL↓ restricted to one register and satisfiability for FO2(∼, <,+1) are decidable [7, 8].

In order to illustrate the significance of the following results, it is worth recalling that the halting
problem for Minsky machines with incrementing errors is reducible to finitary satisfiability for LTL with
one register [8]. We show below that, if we have existential model checking of one-counter automata instead
of satisfiability, then we can use one-counter automata to refine the reduction in [8] so that runs with
incrementing errors are excluded. More precisely, in the reduction in [8], we were not able to exclude
incrementing errors because the logic is too weak to express that, for every decrement, the datum labelling
it was seen before (remember that we have no past operators). Now, the one-counter automata are used to
ensure that such faulty decrements cannot occur.

Theorem 17. MC(LTL)
∗
1 restricted to formulae using only the temporal operators X and F is Σ0

1-complete.

Proof. The Σ0
1 upper bound is by an easy verification since the existence of a finite run (encoded in N)

verifying an LTL↓,Q
1 formula (encoded in first-order arithmetic) can be encoded by a Σ0

1 formula. So, let us
reduce the halting problem for two-counter automata to MC(LTL)

∗
1 restricted to {X, F}. Let A = 〈Q, qI , δ, F 〉

be a two-counter automaton: the set of instructions L is {inc, dec, ifzero} × {1, 2}. Without any loss of
generality, we can assume that all the instructions from qI are incrementations. We build a one-counter

automaton B = 〈Q′, q′I , δ
′, F ′〉 and a sentence φ in LTL↓,Q′

1 such that A reaches an accepting state iff B |=∗ φ.

15

For each run in A of the form




qI
c01 = 0
c02 = 0





inst
0

−−→





q1

c11
c12





inst
1

−−→ . . .





qN

cN1
cN2





where the insti’s are instructions, we associate a run in B of the form below:

(

qI
0

)

⋆
−→

(

〈qI , inst
0, q1〉

n1

)

⋆
−→

(

〈q1, inst1, q2〉
n2

)

. . .

(

〈qN−1, instN−1, qN 〉
nN

)

where
⋆
−→ hides steps for updating the counter according to the constraints described below. The set of states

Q′ will contain the set of transitions δ from A.
We first define the one-counter automaton B = 〈Q′, q′I , δ

′, F ′〉. In order to ease the presentation, the
construction of B is mainly provided graphically.

• Q′ is the following set of states:

Q′ = δ ⊎ {qI} ⊎ {i0}
⊎{ilastt , i¬last

t | t = 〈q, inc, c, q′〉 ∈ δ}
⊎{dlastt , d¬last

t | t = 〈q, dec, c, q′〉 ∈ δ}
⊎{zdown

t | t = 〈q, ifzero, c, q′〉 ∈ δ}
⊎{zq | q ∈ Q} ⊎Qaux

where Qaux is a set of auxiliary states that we do not specify (but which can be identified as the states
with no label in Figures 4, 5 and 6),

• F ′ is the set of states {zq | q ∈ F}.

• The transition relation δ′ is the smallest transition relation satisfying the conditions below:

– The transitions in Figure 3 belong to δ′.

– For each incrementation transition t = 〈qI , inc, c, q〉, the transitions in Figure 4 belong to δ′.

– For each decrementation transition t = 〈qI , dec, c, q〉, the transitions in Figure 5 belong to δ′.

– For each zero-test transition t = 〈qI , ifzero, c, q〉, the transitions in Figure 6 belong to δ′.

qI

i0
inc

zqI

dec

Figure 3: Initial transitions in δ′

In runs of B, we are only interested in configurations whose state belongs to δ. The structure of B ensures
that the sequence of transitions in A is valid assuming that we ignore the intermediate (auxiliary or busy)
configurations

Before defining the formula φ, let us introduce a few intermediate formulae that allow us to check whether
the current configuration has a state belonging to a specific set. For each counter i ∈ {1, 2}, we define the
formulae below:

• Ii is the disjunction of i0 with all the transitions t that increment the counter i in A, hence Ii =
i0 ∨

∨

{t∈δ|t=〈q,inc,i,q′〉} t.

16

zq

ilastt

inc

i¬last
t

inc

inc

inc

t
inc

dec

dec

zq′
ifzero

Figure 4: Gadget in B for encoding an incrementation from A

zq

dlastt

inc

d¬last
t

inc

inc

inc

t
inc

dec

dec

zq′
ifzero

Figure 5: Gadget in B for encoding a decrementation from A

zq
inc

inc

inc inc

t
inc

zdown
t

dec

dec zq′
ifzero

Figure 6: Gadget in B for encoding a zero-test from A

17

• Di is the disjunction of i0 with all the transitions t that decrement the counter i in A, hence Di =
i0 ∨

∨

{t∈δ|t=〈q,dec,i,q′〉} t.

• I lasti is the disjunction of all states of the form ilastt where t is a transition that increments the counter
i, hence I lasti =

∨

{t∈δ|t=〈q,inc,i,q′〉} i
last
t .

• I¬last
i is the disjunction of all states of the form i¬last

t where t is a transition that increments the
counter i, hence I¬last

i =
∨

{t∈δ|t=〈q,inc,i,q′〉} i
¬last
t .

• Dlast
i is the disjunction of all states of the form dlastt where t is a transition that decrements the counter

i, hence Dlast
i =

∨

{t∈δ|t=〈q,dec,i,q′〉} d
last
t .

• D¬last
i is the disjunction of all states of the form d¬last

t where t is a transition that decrements the
counter i, hence D¬last

i =
∨

{t∈δ|t=〈q,dec,i,q′〉} d
¬last
t .

• Zi is the disjunction of all the transitions t that test to zero the counter i in A, hence Zi =
∨

{t∈δ|t=〈q,ifzero,i,q′〉} t.

• Zdown
i is the disjunction of the states of the form zdown

t where t is a zero-test on the counter i, hence
Zdown
t =

∨

{t∈δ|t=〈q,ifzero,i,q′〉} z
down
t .

In order to define φ, we take advantage of the structure of B so that to match runs of B with runs of
A. A crucial idea consists in associating to each action on one of the two counters, a natural number so
that an incrementation gets a new value. Moreover, we require that the natural number associated to an
incrementation is obtained by increasing by one the natural number associated to the previous incrementa-
tion. We satisfy a similar property for the natural numbers associated to decrementations except that these
values should not exceed the value associated to the previous incrementation. In this way, we guarantee
that there are no more decrementations than incrementations. In order to simulate the zero-test, we reach
a value above all the values that have been used so far. Then we check that for all the smaller values that
are associated to an incrementation, it is also associated to a decrementation (for the same counter).

In the following formulae, we use G+ and F+ to represent the formulae XG and XF, respectively. We also
omit the subscript “1” in ↓1 and ↑1 because we assume that we always use the same register. For each
counter i ∈ {1, 2}, we define the following formulae:

(i) After each configuration satisfying Ii, there is no strict future configuration satisfying Ii with the same
data value:

G
(

Ii ⇒↓ G+(Ii ⇒ ¬ ↑)
)

(ii) After each configuration satisfying Di, there is no strict future configuration satisfying Di with the
same data value:

G
(

Di ⇒↓ G+(Di ⇒ ¬ ↑)
)

(iii) After each configuration satisfying Di, there is no strict future configuration satisfying Ii with the
same data value:

G
(

Di ⇒↓ G+(Ii ⇒ ¬ ↑)
)

(iv) When a new data value is needed for an incrementation of the counter i, the chosen value is exactly
the next value after the greatest value used so far for an incrementation of the counter i:

G
(

Ii ⇒ (↓ F(I¬last
i ∧ ↑) ⇒↓ F(I lasti ∧ ↑))

)

∧G
(

(I lasti ∨ I¬last
i) ⇒↓ G+(Ii ⇒ ¬ ↑)

)

(v) When a new data value is needed for a decrementation of the counter i, the chosen value is exactly
the next value after the greatest value used so far for a decrementation of the counter i:

G
(

Di ⇒ (↓ F(D¬last
i ∧ ↑) ⇒↓ F(Dlast

i ∧ ↑))
)

∧G
(

(Dlast
i ∨D¬last

i) ⇒↓ G+(Di ⇒ ¬ ↑)
)

18

(vi) The data value associated to a decrementation of the counter i is never strictly greater than the
greatest previous value used in incrementations of the counter i:

G
(

Ii ⇒ (↓ F(D¬last
i ∧ ↑) ⇒↓ F(I lasti ∧ ↑))

)

∧G
(

Ii ⇒ (↓ F(Dlast
i ∧ ↑) ⇒↓ F(I lasti ∧ ↑))

)

∧G
(

D¬last
i ⇒↓ G+(I lasti ⇒ ¬ ↑)

)

(vii) For each configuration satisfying Zi, the associated data value is always strictly greater than the
greatest previous value used in incrementations of the counter i :

G
(

Ii ⇒↓ G(Zi ⇒ ¬ ↑)
)

(viii) When the automaton B is in the decrementing slope to encode a zero-test in A, which means when
the formula Zdown

i is satisfied, and when a data value already used for an incrementation is met, then
the same data value is used previously for a decrementation in B:

¬F
(

Ii∧ ↓ F(Zdown
i ∧ ↑) ∧ ¬ ↓ F(↑ ∧Di)

)

∧ ¬F
(

Zdown
i ∧ ↓ F(Di∧ ↑)

)

Let us recall the book-keeping of the values.

• A new value used for an incrementation is always one plus the greatest value used so far for an
incrementation (see (iv)). The first counter value for an incrementation is 2.

• A new value used for decrementation is always 1 + the greatest value used so far for a decrementation
(see (v)), and is always smaller or equal to the greatest value used so for a incrementation (see (vi)).
The first counter value for a decrementation is 2.

• Zero-tests consist in:

(1) going to a value strictly greater than any value used so far for incrementations (encoded in B and
see (vii)),

(2) then decrementing the counter to zero (encoded in B) and whenever a value is met that is used
for an incrementation, check that a corresponding decrementation has occured before (see (viii)).

In order to ease the comprehension, we explain why the rule (vi) ensures that the value associated to
a decrementation of the counter i is never strictly greater than the value used for the last incrementation
of the same counter i. First, we assume that the rules (i)–(vi) are satisfied and ad absurdum we suppose
that the value used for a decrementation is strictly greater than the value used for the last incrementation
of the counter i. If this value is greater of exactly one unit, then we are in the case of the second line of
the formula given by the rule (vi). Hence, there must exist an incrementation with the same value as the
one for the decrementation, and this incrementation necessarily happens between the first considered incre-
mentation and the decrementation, according to the rules (i)–(iii). This leads to a contradiction because
the first considered incrementation is not the last one. Secondly, suppose that the value associated to the
decrementation is greater of k units with k > 1. We are in the case of the first line of the formula given by
the rule (vi), and consequently there exists an incrementation after the first considered incrementation which
has an associated value greater of one unit. The last line of the formula of the rule (vi) ensures that this
incrementation occurs necessarily before the decrementation, which leads again to a contradiction, because
the first considered incrementation cannot be the last one.

Figure 7 gives an example of the beginning of a run of B which respects the rules (i)–(viii) and that encodes
the following sequence of instructions (inc, 1), (inc, 1), (dec, 1), (dec, 1), (ifzero, 1). In the decreasing part
after the position labeled by Z1, each value used in a previous incrementation can be matched with a value
associated to a decrementation. The formula φ is defined as the conjunction of (i)–(viii) plus (ix) that
specifies that a state in F ′ is reached. Now consider any run of B which satisfies (i)–(viii). For any counter
c ∈ {1, 2}, we can define its value as the number of It letters with t of the form 〈q, inc, c, q′〉 for which a

19

I1

I1

I1

D1

D1

Z1

(inc, 1) (inc, 1) (dec, 1) (dec, 1) (ifzero, 1)

Counter
Value

Figure 7: Run for B satisfying the rules (i)–(viii)

20

later letter 〈q1, dec, c, q
′
1〉 with the same value of the counter B has not yet occurred. We will now prove

that B |=∗ φ if and only if the automaton A has an accepting run.

Let ρ = 〈p0, 0〉
a0−→ 〈p1, n1〉

a1−→ 〈p2, n2〉 . . . 〈qm, nm〉 be a finite run of B satisfying the rules (i)–(viii) and such
that p0 = qI and pm = q for some q ∈ Q. We consider the sequence of indices i1, . . . , ik ∈ {0, . . . ,m} such
that for all j ∈ {1, . . . ,m}, pij ∈ δ and such that there is no i ∈ {1, . . . ,m} with pi ∈ δ and i 6∈ {i1, . . . , ik}.
We will show that the sequence pi1pi2 . . . pik induces a run of A. This means that there exist k configurations

c1, c2, . . . ck ∈ Q× N
2 such that 〈qI , 0, 0〉

pi1−→ c1
pi2−→ c2 . . .

pik−→ ck is a run of A.
The proof is by induction on k. If k = 1, then by construction of the automaton B, there exist i ∈ {1, 2}

and q′ ∈ Q such that pi1 = 〈q0, inc, i, q
′〉. This is simply due to the fact that we have assumed that any

instruction starting in qI is an incrementation. Since it is always possible to perform an incrementation,

there is a configuration c1 ∈ Q× N
2 such that 〈qI , 0, 0〉

pi1−→ c1.
We suppose that the property is true for k and we show that it also holds for k + 1.
First, let us write down the properties verified by the sequence

〈pi0 , ni0〉, . . . , 〈pik , nik〉

made of configurations of B. For each counter i ∈ {1, 2}, we write Inci to denote the set {j ∈ {1, . . . , k} |
pij is of the form 〈q, inc, i, q′〉} and Deci to denote the set {j ∈ {1, . . . , k} | pij is of the form 〈q, dec, i, q′〉}.
Let i be one of the counters in {1, 2}. The rule (i) ensures that for every j ∈ Inci, nij > 1, and for all
j, ℓ ∈ Inci, nij 6= niℓ . This is because i0 is a disjunct of Ii, the counter value in the state i0 is always 1 and
for all j ∈ Inci, pij satisfies Ii. Furthermore the rule (iv) implies that for all j, ℓ ∈ Inci such that j < ℓ, if
there is no j′ ∈ Inci such that j < j′ < ℓ, then necessarily niℓ = nij +1. Moreover, if j is the smallest index
of Inci then nij = 2. In fact, if j is the smallest index of Inci, then nij is greater or equal to 2 (because
the integer value in i0 is always 1). If nij is strictly greater than 2, then the run of B should reach a state
that satisfies I lasti or I¬last

i with a value equal to 2, but since j is the smallest index of Inci, the rule (iv)
would not be satisfied. To show the other property about the indices in Inci, this can be done by induction
on the indices of Inci by using again the rule (iv). Similarly, it can be proved that the set Deci verifies the
same properties. Hence, {nij | j ∈ Inci} = {2, . . . , |Inci| + 1} and {nij | j ∈ Deci} = {2, . . . , |Deci| + 1}.
Finally, the rule (vi) guarantees that for every j ∈ Deci, there is ℓ ∈ Inci such that iℓ ≤ ij and nij ≤ niℓ .
By combining these different properties, we deduce that |Deci| ≤ |Inci|.

We suppose that pik = 〈q, a′, i′, q′〉. By construction of B, we have pik+1
= 〈q′, a, i, q′′〉. If a is equal to inc,

then the property is satisfied because an incrementation can always be performed (unlike decrementations
and zero-tests). Now, suppose that a = dec. The transition pik+1

= 〈q′, a, i, q′′〉 is not firable only if
|Deci| = |Inci| (the number of incrementations is equal to the number of decrementations). This situation
cannot occur since ρ satisfies the rules (i)—(viii), and therefore nik+1

= niH +1 where H is the greatest index
of |Deci| and there exists h ∈ |Inci| such that ih ≤ ik+1 and nik+1

≤ nih . Hence, if |Deci| = |Inci|, according
to the previous properties, we would have that there exists j ∈ Deci such that nih = nij and consequently
niH + 1 ≤ nij which leads to a contradiction (by definition of H). Now, suppose that a = ifzero. The
transition pik+1

is not firable only if |Inci| > |Deci| (there are more incrementations than decrementations).
This situation cannot occur since ρ satisfies the rules (i)–(viii) and according to the rule (vii) and to the
properties verified by Inci, for all j ∈ Inci, nij < nik+1

. After the ik+1th configuration, the nik+1
next

configurations contain a state that satisfies Zdown
i . If |Inci| > |Deci| , then this means that there is an index

h ∈ Inci such that for all j ∈ Deci, nij < nih and there exists also l ∈ {ik+1, . . . , ik+1 + nik+1
} such that pl

satisfies Zdown
i and nl = nh, which is in contradiction with the rule (viii).

We conclude that if ρ is a finite run of B satisfying the rules (i)–(viii) and visiting a state zq in F ′ then
there is a corresponding run in the two-counter automaton A starting from the initial configuration 〈qI , 0, 0〉
and visiting the accepting state q.

Now, we consider a run of A of the form 〈qI , 0, 0〉
t0−→ c1

t1−→ ...
th−1

−−→ ch. We show how to build a run of the
one-counter automaton B, 〈p0, 0〉 −→ 〈p1, n1〉 −→ . . . −→ 〈pm, nm〉 with p0 = qI and pm = zq for some q ∈ Q.
We introduce similar notations as in the converse case. For such a run, we consider the sequence of indices
i1, . . . , ik ∈ {0, . . . ,m} such that for all j ∈ {1, . . . ,m}, pij ∈ δ and such that there is no i ∈ {1, . . . ,m} veri-
fying pi ∈ δ and i 6∈ {i1, . . . , ik}. For each counter i ∈ {1, 2}, we write Inci to denote the set {j ∈ {0, . . . , k} |

21

pij is of the form 〈q, inc, i, q′〉} and Deci to denote the set {j ∈ {0, . . . , k} | pij is of the form 〈q, dec, i, q′〉}.
Finally, we define the set Zeroi = {j ∈ {0, . . . , k} | pij is of the form 〈q, ifzero, i, q′〉}. We build a run ρ of
B such that the following properties are verified :

(a) k = h and for all j ∈ {1, . . . , k}, pij = tj−1,
(b) if j is the smallest index of Inci, then nij = 2,
(c) if j is the smallest index of Deci, then nij = 2,
(d) for all j, ℓ ∈ Inci such that j < ℓ, if there is no j′ ∈ Inci such that j < j′ < ℓ, then niℓ = nij + 1,
(e) for all j, ℓ ∈ Deci such that j < ℓ, if there is no j′ ∈ Inci such that j < j′ < ℓ,then niℓ = nij + 1,
(f) for all j ∈ Deci, there exists ℓ ∈ Inci such that iℓ < ij and nij ≤ niℓ ,
(g) for all j ∈ Zeroi, and for all ℓ ∈ Inci such that iℓ < ij , we have niℓ < nij and there is m ∈ Inci such

that im < ij and nij = nim + 1.

By construction of B, it is possible to build a run ρ of B that satisfies the properties (a)–(g).
Now, we suppose that ρ is a run of B verifying these properties and it remains to check that ρ satisfies

the rules (i)–(viii). First, we consider the rules (i)–(ii). These two rules are satisfied because all the elements
of Inci and of Deci are built with distinct values for incrementations and decrementations. The rule (iii) is
satisfied because of the properties (e) and (f). The rule (iv) is satisfied, because if the run is in a position ij
with j ∈ Inci and if there exists a position ℓ in the future which satisfies I¬last

i , then there exists a position
ij′ such that ℓ < ij′ with j′ ∈ Inci and nij′ > nij + 1 (by construction of B and by (d)). Moreover, the

definition of B implies there exists a position h such that ij < h < ℓ, h satisfies I lasti , nh = nij , qh+1 satisfies
Ii and nh+1 = nij +1 . Similar arguments are used to establish that the rule (v) is satisfied by using (c) and
(e). The rule (vi) is satisfied because of the property (f). Finally the rules (vii)–(viii) are satisfied by using
(g) and the properties about the sets Inci and Deci. Hence if there is a run of A leaving from 〈qI , 0, 0〉 and
visiting a state q in F , we can build a finite run ρ of B such that ρ |= φ.

Furthermore the formula φ uses only the temporal operators X and F (the operator G can be easily
obtained from F). �

Theorem 18. MC(LTL)
ω
1 restricted to {X, F} is Σ1

1-complete.

The proof is similar to the proof of Theorem 17 except that instead of reducing the halting problem for
Minsky machines, we reduce the recurrence problem for nondeterministic Minsky machines that is known
to be Σ1

1-hard [20]. The Σ1
1 upper bound is by an easy verification since an accepting run can be viewed as

a function f : N → N and then checking that it satisfies an LTL↓,Q
1 formula can be expressed in first-order

arithmetic. Another consequence of the Purification Lemma is the result below.

Theorem 19. PureMC(LTL)
∗
1 restricted to {X, F} is Σ0

1-complete. PureMC(LTL)
ω
1 restricted to {X, F} is

Σ1
1-complete.

This refines results stated in [30].
Using Theorem 3.2(a) in [8], we can obtain the following corollary by a direct analysis of the formulae

involved in the proof of Theorem 17 (every temporal operator is prefixed by a freeze operator or can occur
equivalently in such a form).

Corollary 20. MC(FO)∗2 [resp. MC(FO)ω2] without the predicate +1 is Σ0
1-complete [resp. Σ1

1-complete] and
PureMC(FO)

∗
4 [resp. PureMC(FO)

ω
4] is Σ0

1-complete [resp. Σ1
1-complete].

The absence of the predicate +1 in the above corollary is due to the fact that in the proof of Theorem 17,
X occurs only to encode F+ and G+. The above-mentioned undecidability is true even if we restrict ourselves
to one-counter automata for which there are no transitions with identical instructions leaving from the same
state. A one-counter automaton A is weakly deterministic whenever for every state q, if 〈q, l, q′〉, 〈q, l′, q′′〉 ∈ δ,
we have l = l′ implies q′ = q′′. The transition systems induced by these automata are not necessarily
deterministic.

22

Theorem 21. PureMC(LTL)
∗
1 [resp. PureMC(LTL)

ω
1] restricted to weakly deterministic one-counter au-

tomata is Σ0
1-complete [resp. Σ1

1-complete].

Proof. In the proof of the Purification Lemma, weak determinisn of the one-counter automata is pre-
served. It is sufficient to show that given a one-counter automaton A and a sentence φ in LTL↓,Q, one can

compute a weakly deterministic automaton A′ and φ′ in LTL↓,Q′

(Q ⊆ Q′) such that A |=∗ φ [resp. A |=ω φ

] iff A′ |=∗ φ′ [resp. A′ |=ω φ′].
Figure 8 illustrates with examples how transitions from a state with identical instructions can be trans-

formed so that to obtain a weakly deterministic automaton. In Figure 8, we have omitted the transitions
labelled by a zero-test or a decrementation when they are never fired. This can be easily generalized to all
the transitions of A. The formula φ′ is defined as T(φ) with the map T that is homomorphic for Boolean
operators and ↓r, and its restriction to atomic formulae is identity. It remains to define the map for the
temporal operators, which corresponds to perform a relativization:

• T(φ1Uφ2) =
(

(
∨

q∈Q q) ⇒ T(φ1)
)

U
(
∨

q∈Q q ∧ T(φ2)
)

,

• T(Xψ) = X
(

(¬
∨

q∈Q q) U (
∨

q∈Q q ∧T(ψ))
)

.

It can be easily proved that A′ and φ′ satisfy the desired properties. �

5. Conclusion

In the paper, we have studied complexity issues related to the model-checking problem for LTL with
registers over one-counter automata. Our results are quite different from those for satisfiability. We have
shown that model checking LTL↓ restricted to the operators {X, F} and FO2(∼, <,+1) over one-counter
automata is undecidable, which contrasts with the decidability of many verification problems for one-counter
automata [27, 28, 29] and with the results in [7, 8]. For instance, we have shown that model checking
nondeterministic one-counter automata over LTL↓ restricted to a unique register and without alphabet
[resp. FO2(∼, <,+1)] is already Σ1

1-complete in the infinitary case. On the decidability side, the PSpace

upper bound for model checking LTL↓ and FO(∼, <,+1) over deterministic one-counter automata in the
infinitary and finitary cases is established by using in an essential way [26] (and simplifying the proofs
from [30]). In particular, we have established that the runs of deterministic one-counter automata admit
descriptions that require polynomial size only. Hence, our results essentially deal with LTL with registers but
they can be also understood as a contribution to refine the decidability border for problems on one-counter
automata.

Viewing runs as data words is an idea that can be pushed further. Indeed, our results pave the way
for model checking memoryful (linear-time) logics (possibly extended to multicounters) over other classes of
operational models that are known to admit powerful techniques for solving verification tasks. For instance,
the reachability relation is known to be Presburger-definable for reversal-bounded counter automata [32].
Nevertheless, model checking LTL↓ over this class of counter machines has been recently shown undecid-
able [33]; other subclasses of counter machines for which the reachability problem is decidable have been
considered in this recent work.

Acknowledgement: We would like to thank Philippe Schnoebelen for suggesting simplifications in the
proofs of Lemma 5 and Proposition 7 and Luc Segoufin for fruitful discussions that lead us to improve
significantly the results from [30].

[1] M. Minsky, Computation, Finite and Infinite Machines, Prentice Hall, 1967.
[2] R. Alur, D. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994) 183–235.
[3] H. Björklund, M. Bojanczyk, Shuffle expressions and words with nested data, in: MFCS’07, Vol. 4708 of Lecture Notes in

Computer Science, Springer, 2007, pp. 750–761.
[4] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, Two-variable logic on data trees and XML reasoning, J. ACM

56 (3).
[5] H. Björklund, M. Bojańczyk, Bounded depth data trees, in: ICALP’07, Vol. 4596 of Lecture Notes in Computer Science,

Springer, 2007, pp. 862–874.
[6] M. Jurdziński, R. Lazić, Alternation-free modal mu-calculus for data trees, in: LICS’07, IEEE, 2007, pp. 131–140.

23

q

q1

q2

q3

inc

inc

inc

q q11
inc

q21
dec q1

inc

q12

inc

q2
dec

q13

inc

q23
dec q3

dec

q

q1

q2

q3

dec

dec

dec

q q11
dec

q21
inc q1

dec

q22

inc

q32
dec q2

dec

q23

inc

q33
dec

q43
dec q3

dec

q

q1

q2

q3

ifzero

ifzero

ifzero

q q11
ifzero q1

ifzero

q12

inc

q22
dec q2

ifzero

q13

inc

q23
dec

q33
dec q3

ifzero

Figure 8: Weak determinization of one-counter automata

24

[7] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, C. David, Two-variable logic on words with data, in: LICS’06,
IEEE, 2006, pp. 7–16.

[8] S. Demri, R. Lazić, LTL with the freeze quantifier and register automata, ACM Trans. Comput. Log. 10 (3).
[9] F. Laroussinie, N. Markey, P. Schnoebelen, Temporal logic with forgettable past, in: LICS’02, IEEE, 2002, pp. 383–392.

[10] O. Kupferman, M. Vardi, Memoryful Branching-Time Logic, in: LICS’06, IEEE, 2006, pp. 265–274.
[11] C. David, Mots et données infinies, Master’s thesis, LIAFA, in French. 45 pages. (2004).
[12] S. Demri, R. Lazić, D. Nowak, On the freeze quantifier in constraint LTL: decidability and complexity, Information &

Computation 205 (1) (2007) 2–24.
[13] R. Lazić, Safely freezing LTL, in: FST&TCS’06, Vol. 4337 of Lecture Notes in Computer Science, 2006, pp. 381–392.
[14] J. Ouaknine, J. Worrell, On Metric Temporal Logic and faulty Turing machines, in: FOSSACS’06, Vol. 3921 of Lecture

Notes in Computer Science, Springer, 2006, pp. 217–230.
[15] J. Ouaknine, J. Worrell, On the decidability and complexity of metric temporal logic over finite words, Logical Methods

in Computer Science 3 (1:8) (2007) 1–27.
[16] P. Bouyer, A. Petit, D. Thérien, An algebraic approach to data languages and timed languages, Information & Computation

182 (2) (2003) 137–162.
[17] F. Neven, T. Schwentick, V. Vianu, Finite state machines for strings over infinite alphabets, ACM Trans. Comput. Log.

5 (3) (2004) 403–435.
[18] L. Segoufin, Automata and logics for words and trees over an infinite alphabet, in: CSL’06, Vol. 4207 of Lecture Notes in

Computer Science, Springer, 2006, pp. 41–57.
[19] H. Björklund, T. Schwentick, On notions of regularity for data languages, in: FCT’07, Vol. 4639 of Lecture Notes in

Computer Science, Springer, 2007, pp. 88–99.
[20] R. Alur, T. Henzinger, A really temporal logic, in: FOCS’89, IEEE, 1989, pp. 164–169.
[21] V. Goranko, Hierarchies of modal and temporal logics with references pointers, Journal of Logic, Language, and Information

5 (1996) 1–24.
[22] T. Schwentick, V. Weber, Bounded-variable fragments of hybrid logics, in: STACS’07, Vol. 4393 of Lecture Notes in

Computer Science, Springer, 2007, pp. 561–572.
[23] M. Franceschet, M. de Rijke, B.-H. Schlingloff, Hybrid logics on linear structures: Expressivity and complexity, in: TIME-

ICTL 2003, IEEE, 2003, pp. 164–171.
[24] M. Franceschet, M. de Rijke, Model checking hybrid logics (with an application to semistructured data), Journal of Applied

Logic 4 (3) (2006) 279–304.
[25] B. ten Cate, M. Franceschet, On the complexity of hybrid logics with binders, in: CSL’05, Vol. 3634 of Lecture Notes in

Computer Science, Springer, 2005, pp. 339–354.
[26] N. Markey, P. Schnoebelen, Model checking a path, in: CONCUR’03, Vol. 2761 of Lecture Notes in Computer Science,

Springer, 2003, pp. 251–261.
[27] P. Jančar, A. Kučera, F. Moller, Z. Sawa, DP lower bounds for equivalence-checking and model-checking of one-counter

automata, Information & Computation 188 (1) (2004) 1–19.
[28] O. Serre, Parity games played on transition graphs of one-counter processes, in: FOSSACS’06, Vol. 3921 of Lecture Notes

in Computer Science, Springer, 2006, pp. 337–351.
[29] S. Demri, R. Gascon, The effects of bounding syntactic resources on Presburger LTL (extended abstract), in: TIME’07,

IEEE, 2007, pp. 94–104.
[30] S. Demri, R. Lazić, A. Sangnier, Model checking freeze LTL over one-counter automata, in: FOSSACS’08, Vol. 4692 of

Lecture Notes in Computer Science, Springer, 2008, pp. 490–504, see also the technical report LSV-08-11, LSV (ENS
Cachan).

[31] D. M. Gabbay, Expressive functional completeness in tense logic, in: Aspects of Philosophical Logic, Reidel, 1981, pp.
91–117.

[32] O. Ibarra, Reversal-bounded multicounter machines and their decision problems, Journal of the ACM 25 (1) (1978)
116–133.

[33] S. Demri, A. Sangnier, When model checking freeze LTL over counter machines becomes decidable, in: FOSSACS’10, Vol.
6014 of Lecture Notes in Computer Science, Springer, 2010, to appear.

25

	1 Introduction
	2 Preliminaries
	2.1 One-counter automaton
	2.2 LTL over data words
	2.3 First-order logic over data words
	2.4 Purification of the model-checking problem

	3 Model checking deterministic one-counter automata
	3.1 PSpace lower bound
	3.2 Properties on runs for deterministic automata
	3.3 A PSpace symbolic model-checking algorithm

	4 Model checking nondeterministic one-counter automata
	5 Conclusion

