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Abstract

We consider concurrent two-player games with reachability objectives. In such
games, at each round, player 1 and player 2 independently and simultaneously
choose moves, and the two choices determine the next state of the game. The ob-
jective of player 1 is to reach a set of target states; the objective of player 2 is to
prevent this. These are zero-sum games, and the reachability objective is one of
the most basic objectives: determining the set of states from which player 1 can
win the game is a fundamental problem in control theory and system verification.
There are three types of winning states, according to the degree of certainty with
which player 1 can reach the target. From type-1 states, player 1 has a deterministic
strategy to always reach the target. From type-2 states, player 1 has a randomized
strategy to reach the target with probability 1. From type-3 states, player 1 has for
every real ε > 0 a randomized strategy to reach the target with probability greater
than 1− ε. We show that for finite state spaces, all three sets of winning states can
be computed in polynomial time: type-1 states in linear time, and type-2 and type-3
states in quadratic time. The algorithms to compute the three sets of winning states
also enable the construction of the winning and spoiling strategies.
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1 Introduction

We consider reachability games played between two players on a finite state space. The
games are played in an infinite sequence of rounds: at each round, the players select
moves; the moves, and the current state, determine the successor state. The goal for
player 1 consists in reaching a set R of target states; the goal for player 2 consists in
preventing the game from reaching R. Thus, the games are zero-sum, repeated games
[Sha53,OR94,FV97].

In computer science, reachability is a central problem in system verification: given
an initial state s and a target state t, can the system get from s to t? The dynamics
of a closed system, which does not interact with its environment, can be modeled
by a state-transition graph, and the reachability question reduces to graph reacha-
bility, which can be solved in linear time and is complete for Nlogspace [Jon75].
By contrast, the dynamics of an open system, which does interact with its environ-
ment, is best modeled as a game between the system and the environment. Game
reachability is also a central problem in control theory. The controller design problem
can be formulated as a game between two players, one modeling the controller, the
other modeling the system [RW89,PR89]. A winning strategy corresponds directly
to a control strategy, and the winning states constitute the controllable states, from
where the controller can ensure that the target set is reached.

Reachability games can be played in either turn-based or concurrent fashion. In turn-
based games, at each state, only one of the players has a choice of moves; such games
are also known as perfect-information games [OR94,FV97]. Reachability in turn-based
games corresponds to And-Or graph reachability, also known as alternating reacha-
bility. The vertices of an And-Or graph are partitioned into And vertices and Or
vertices. At the Or vertices, player 1 chooses an outgoing edge, and at the And
vertices, player 2 chooses an outgoing edge. The And-Or graph reachability ques-
tion (“given an initial vertex s and a target vertex t, can player 1 choose edges
at Or vertices so that the resulting path from s visits t regardless of which edges
player 2 chooses at And vertices?”) can be solved in linear time and is complete for
Ptime [Imm81].

In turn-based games, randomized strategies are no more powerful than determinis-
tic strategies. A deterministic strategy for a player maps every sequence of states
to a move played at the last state of the sequence; a randomized strategy maps ev-
ery sequence of states to a probability distribution on the move selected at the last
state of the sequence. It can be seen that the deterministic reachability question
(“does player 1 have a deterministic strategy so that for all deterministic strategies
of player 2, the game, if started in s, reaches t?”) has the same answer as the prob-
abilistic reachability question (“does player 1 have a randomized strategy so that
for all randomized strategies of player 2, the game, if started in s, reaches t with
probability 1?”).
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Fig. 1. Game left-or-right.

In concurrent games, at each state, both players choose their moves simultaneously
and independently: the chosen moves, along with the current state, determine the
next state of the game. Such games are also known as simultaneous games [OR94].
Concurrent games capture the interaction of a system with its environment: in many
concurrency models, in each state, both the system and the environment can inde-
pendently propose moves (input or output signals), and the parallel execution of the
moves determines the next state. Concurrent games also provide a natural model for
distributed systems in which the moves are not revealed until their combined effect
(the state transition) is apparent. Concurrent reachability games are special cases of
recursive games, where all absorbing states are equivalent from the point of view of
the reward [Eve57,Sec97]. Another application of concurrent reachability games are
the discrete-time pursuit-evasion games of [Isa65].

The concurrent case is more general than the turn-based one, and deterministic strate-
gies no longer tell the whole story about the reachability question. The fact that ran-
domized strategies can be more powerful than deterministic ones is illustrated by the
game left-or-right, depicted in Figure 1. Initially, the game is at state tthrow. At
each round, player 1 can choose to throw a snowball either at the left window (move
throwL) or at the right window (move throwR). Independently and simultaneously,
player 2 must choose to stand behind either the left window (move standL) or the
right window (move standR). If the snowball hits player 2, the game proceeds to the
target state thit; otherwise, another round of the game is played from state tthrow.

For each move of player 1, player 2 has a countermeasure. If we consider only deter-
ministic strategies, then for every strategy of player 1, there is (exactly one) strategy
of player 2 such that thit is never reached. Hence, if we base our definitions on deter-
ministic strategies, we obtain to answer No to the reachability question: player 1 has
no strategy that guarantees winning against all player 2 strategies.

This negative answer is rather counterintuitive. It seems evident that player 2 has no
way of guessing at which window player 1 will throw the snowball: in the long run,
we expect player 2 to be hit. This informal analysis can be formalized by considering

3



randomized strategies. If player 1 chooses at each round the window at which to throw
the snowball by tossing a coin, then player 2 will be hit with probability 1/2 at each
round, and eventually, she will be hit with probability 1, regardless of her strategy.

This example illustrates the value of randomized strategies for winning concurrent
reachability games. For every deterministic strategy of player 1, there is a player 2
strategy that prevents reaching the target. It does not matter how unlikely, intuitively,
it is that player 2 will choose the appropriate strategy: the definition of winning
requires player 1 to win against all player 2 strategies. In essence, the problem is
that if player 1 adopts a deterministic strategy, the moves he plays during the game
are completely determined by the history of the game. As the history of the game is
visible also to player 2, player 2 can counteract every move. Randomized strategies
postpone the choice of the move until the game is being played, precluding player 2
from having a strategy that counteracts every move.

An alternative way of thinking about randomized strategies is through the concept
of initial randomization. The choice of a randomized strategy is equivalent to the
choice of a probability distribution over the set of deterministic strategies [Der70]. By
choosing such a distribution, rather than a single strategy, player 1 prevents player 2
from tailoring her strategy to counteract the strategy chosen by player 1.

Another way to understand the role of randomization is via its connection to in-
formation theory. The act of choosing a move according to a probability distribution
corresponds to the act of creating information: for instance, if player 1 chooses among
two moves with equal probability, the choice of move has 1 bit of information content.
By stating that the choice of moves of player 2 are (statistically) independent from
the moves of player 1, we preclude the transfer of information between the players
when choosing the moves. Indeed, the main role of randomization in game theory is
arguably to capture the transfer of information between the players of a game. We
remark that the greater power of randomized strategies is a well-known fact in game
theory, and it has its roots in von Neumann’s minimax theorem [vN28].

Once we consider randomized strategies, we can answer the reachability question with
three kinds of affirmative answers. The first kind of answer is the answer Sure:

Player 1 has a strategy so that for all strategies of player 2, the game, if started
in s, always reaches t.

To establish this type of answer, it suffices to consider deterministic strategies only.
The second, weaker kind of answer is the answer Almost-Sure:

Player 1 has a strategy so that for all strategies of player 2, the game, if started
in s, reaches t with probability 1.

To establish this type of answer, it is necessary to consider randomized strategies, as
previously discussed. The third, yet weaker kind of answer is the answer Limit-Sure:

For every real ε > 0, player 1 has a strategy so that for all strategies of player 2,
the game, if started in s, reaches t with probability greater than 1 − ε.

The three kinds of answers form a proper hierarchy, in the sense that there are
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Fig. 2. Game hide-or-run.

cases in which Almost-Sure reachability holds whereas Sure reachability does not,
and cases in which Limit-Sure reachability holds whereas Almost-Sure reacha-
bility does not. Note that the second gap does not appear in reachability problems
over Markov chains, or Markov decision processes [KSK66,BT91]. While the game
left-or-right witnesses the first gap, the second gap is witnessed by the game
hide-or-run, adapted from [KS81] and depicted in Figure 2. The target state is
shome, and the interesting part of the game happens at state shide. At this state,
player 1 is hiding behind a small hill, while player 2 is trying to hit him with a snow-
ball. Player 1 can choose between hiding or running, and player 2 can choose between
waiting and throwing her only snowball. If player 1 runs and player 2 throws the
snowball, then player 2 is hit, and the game proceeds to state swet. If player 1 runs
and player 2 waits, then player 1 gets home, and the game proceeds to state shome. If
player 1 hides and player 2 throws the snowball, then player 1 is no longer in danger,
and the game proceeds to state ssafe. Finally, if player 1 hides and player 2 waits, the
game stays at state shide.

In this game, from state shide player 1 does not have a strategy (randomized or
deterministic) that ensures reaching shome with probability 1: in order to reach home
regardless of the strategy of player 2, player 1 may have to take a chance and run
while player 2 is still in possession of the snowball. On the other hand, by choosing an
appropriate strategy, player 1 can be sure of reaching shome with probability arbitrarily
close to 1 [KS81]: if player 1 runs with very small probability at each round, it becomes
very difficult for player 2 to time her snowball to coincide with the running of player 1,
and a badly timed snowball enables player 1 to reach shome. In particular, if player 1
runs at each round with probability p > 0, he is guaranteed to reach shome with
probability 1 − p. Hence, the answer to the reachability question is Limit-Sure but
not Almost-Sure.

It should be noted that Limit-Sure reachability captures the classical notion of
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winning used in game theory. This is because the answer to the reachability question
is Limit-Sure iff

sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3{t}) = 1,

where Πi is the set of randomized strategies for player i, and Prπ1,π2
s (3{t}) is the

probability that state t will be visited if the game starts at state s, player 1 plays
according to strategy π1, and player 2 plays according to strategy π2. The quantity

sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3{t})

is the value of the game. While a quantitative analysis of reachability games would
attempt to compute the value, we perform only a qualitative analysis: we wish to
check if the value is 1, and if so, whether the answer is Sure, Almost-Sure, or
Limit-Sure.

To sum up, in this paper, we provide algorithms for the qualitative analysis of con-
current reachability games. We consider strategies for the players that can be both
randomized and history-dependent. The game itself can be either deterministic, if
the current state and the players’ moves uniquely determine the successor state, or
probabilistic, if the current state and the players’ moves determine a probability dis-
tribution on the successor state. We will see that, since we perform only a qualitative
analysis, the actual values of transition probabilities is immaterial. Given two states
s and s′, a move a1 for player 1, and a move a2 for player 2, let p be the propability
that if in state s player 1 chooses a1 and player 2 chooses a2, then the successor state
is s′. For computing the qualitative answer to reachability questions, it suffices to
know whether p = 0 or 0 < p < 1 or p = 1. Thus, a qualitative answer to reachability
can be answered with a 3-valued probability model.

We provide efficient algorithms that, given a finite concurrent game and a set of target
states, determine the set of initial states for which the answer to the reachability
question is Sure, Almost-Sure, and Limit-Sure. The set from which the answer
is Sure can be determined in linear time using the methods of [AHK02]. By contrast,
the sets corresponding to answers Almost-Sure and Limit-Sure require quadratic
time. All three algorithms are formulated as nested fixed-point computations, and
can be implemented using symbolic state-space traversal methods [BCM+92]. Our
algorithms enable the effective construction of winning strategies for player 1, and
spoiling strategies for player 2, for the three types of answer. The relationship between
our algorithms for qualitative winning, and quantitative algorithms for computing the
value of a game, is detailed in Section 3.

We also characterize the three kinds of reachability in terms of the time (i.e., the
number of rounds) required to reach the target state, and in terms of the types of
winning and spoiling strategies available to the two players. In particular, while the
time to target is bounded (by the number of states) if the answer to the reachability
question is Sure, only the expected time to target can be bounded if the answer is
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Almost-Sure but not Sure. If the answer is Limit-Sure but not Almost-Sure,
neither the time to target nor the expected time to target are bounded. Memory-
less strategies suffice for winning all three kinds of reachability. However, we show
that the spoiling strategies for Almost-Sure reachability must in general have in-
finite memory, in contrast to the common situation for Markov decision processes
[Der70,HSP83,Var85,BT91], for Sure reachability, and for Limit-Sure reachability
[KS81,Sec97], where memoryless spoiling strategies exist.

The paper is organized as follows. In Section 2, we define concurrent reachability
games and the various solution concepts, and we provide a detailed summary of
our results. The related work is reviewed in Section 3. In Section 4, we present the
algorithms for computing the sets of states where the answer to the reachability
question is Sure, Almost-Sure, and Limit-Sure. For the sake of readability, the
section contains only intuitive justifications for most of the results; the formal proofs
are presented in Section 5.

2 Reachability Games

For a finite set A, a probability distribution on A is a function p : A 7→ [0, 1] such that∑
a∈A p(a) = 1. We denote the set of probability distributions on A by D(A). Given a

distribution p ∈ D(A), we denote by Supp(p) = {x ∈ A | p(x) > 0} the support of p.

A (two-player) game structure G = 〈S,Moves , Γ1, Γ2, p〉 consists of the following
components:

• A finite state space S.
• A finite set Moves of moves.
• Two move assignments Γ1, Γ2 : S 7→ 2Moves \ ∅. For i ∈ {1, 2}, assignment Γi asso-

ciates with each state s ∈ S the non-empty set Γi(s) ⊆ Moves of moves available
to player i at state s. For technical convenience, we assume that Γi(s) ∩ Γj(t) = ∅
unless i = j and s = t, for all i, j ∈ {1, 2} and s, t ∈ S. 2

• A probabilistic transition function p : S × Moves × Moves 7→ D(S), which asso-
ciates with every state s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s) a probability
distribution p(s, a1, a2) ∈ D(S) for the successor state.

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and
independently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the
successor state t with probability p(s, a1, a2)(t), for all t ∈ S. For all states s ∈ S and
moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), we indicate by

δ(s, a1, a2) = Supp(p(s, a1, a2))

the set of possible successors of s when moves a1, a2 are selected. A path of G is an

2 As the names of the moves do not play a role in how the game is played, we can always
rename the moves so that player 1 and player 2 have distinct sets of moves.
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infinite sequence s = s0, s1, s2, . . . of states in S such that for all k ≥ 0, there are
moves ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) such that sk+1 ∈ δ(sk, a

k
1, a

k
2). We denote by Ω the

set of all paths.

A reachability game (or game, for short) G = 〈〈S,Moves , Γ1, Γ2, p〉, R〉 consists of
a game structure G and a set R ⊆ S of target states; the set R itself is called
the target set. The goal of player 1 in the game G is to reach a state in the target
set R, and the goal of player 2 is to prevent this. In the following, we consider a
game G = 〈〈S,Moves , Γ1, Γ2, p〉, R〉, unless otherwise noted.

To simplify the presentation of the results, we assume that the target set R is absorb-
ing ; that is, we assume that for every state s ∈ R and for all moves a1 ∈ Γ1(s) and
a2 ∈ Γ2(s), we have δ(s, a1, a2) ⊆ R. If R is not absorbing, it is trivial to obtain an
equivalent game with an absorbing target set, by modifying the transition function
at the target states.

We define the size of the game G to be equal to the number of entries of the transition
function p: specifically,

|G| =
∑

s∈S

∑

a1∈Γ1(s)

∑

a2∈Γ2(s)

|δ(s, a1, a2)| .

Note that this definition of size assumes that each transition probability can be rep-
resented in a constant amount of space. Note also that this definition of size is not
affected by our assumption that the moves available to different players or at different
states are distinct.

2.1 Special Classes of Reachability Games

We distinguish the following subclasses of game structures (and, accordingly, of
games):

• A game structure G is deterministic if |δ(s, a1, a2)| = 1 for all s ∈ S and all
a1 ∈ Γ1(s), a2 ∈ Γ2(s).

• A game structure G is turn-based if at every state at most one player can choose
among multiple moves; that is, for every state s ∈ S there exists at most one
i ∈ {1, 2} with |Γi(s)| > 1.

• A game structure G is one-player if one of the two players has only one possible
move at every state, i.e. if for some i ∈ {1, 2} we have |Γi(s)| = 1 at all s ∈ S. One-
player game structures are equivalent to Markov decision processes [Der70,Ber95].

2.2 Strategies

A strategy for player i ∈ {1, 2} is a mapping πi : S+ 7→ D(Moves) that associates
with every nonempty finite sequence σ ∈ S+ of states, representing the past history
of the game, a probability distribution π1(σ) used to select the next move. Thus,
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the choice of the next move can be history-dependent and randomized. The strategy
πi can prescribe only moves that are available to player i; that is, for all sequences
σ ∈ S∗ and states s ∈ S, we require that Supp(πi(σs)) ⊆ Γi(s). We denote by Πi the
set of all strategies for player i ∈ {1, 2}.

Given a state s ∈ S and two strategies π1 ∈ Π1 and π2 ∈ Π2, we define
Paths(s, π1, π2) ⊆ Ω to be the set of paths that can be followed by the game,
when the game starts from s and the players use the strategies π1 and π2. For-
mally, s0, s1, s2, . . . ∈ Paths(s, π1, π2) if s0 = s and if for all k ≥ 0 there exist moves
ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) such that

π1(s0, . . . , sk)(a
k
1) > 0, π2(s0, . . . , sk)(a

k
2) > 0, p(sk, a

k
1, a

k
2)(sk+1) > 0.

Once the starting state s and the strategies π1 and π2 for the two players have been
chosen, the game is reduced to an ordinary stochastic process. Hence, the probabilities
of events are uniquely defined, where an event A ⊆ Ω is a measurable set of paths. 3

For an event A ⊆ Ω, we denote by Prπ1,π2
s (A) the probability that a path belongs to

A when the game starts from s and the players use the strategies π1 and π2. Similarly,
for a measurable function f that associates a number in IR ∪ {∞} with each path,
we denote by Eπ1,π2

s {f} the expected value of f when the game starts from s and
the strategies π1 and π2 are used. For k ≥ 0, we also let Xk be the random variable
denoting the k-th state along a path. Formally, Xk : Ω 7→ S is the (measurable)
function that associates with each path s = s0, s1, s2, . . . the state sk. Given a subset
U ⊆ S of states, we denote the event of reaching U by

(3U) = {s0, s1, s2, . . . ∈ Ω | ∃k . sk ∈ U} ,

and we denote the random time of first passage in U by T3U = min{k | Xk ∈ U}
(where the “time” is the number of rounds of the game).

We distinguish the following types of strategies:

• A strategy π is deterministic if for all σ ∈ S+ there exists a ∈ Moves such
that π(σ)(a) = 1. Thus, deterministic strategies are equivalent to functions
S+ 7→ Moves .

• A strategy π is counting if π(σ1s) = π(σ2s) for all s ∈ S and all σ1, σ2 ∈ S∗ with
|σ1| = |σ2|; that is, the strategy depends only on the current state and the number
of past rounds of the game.

• A strategy π is finite-memory if the distribution chosen at every state s ∈ S depends
only on s itself, and on a bounded number of bits of information about the past
history of the game.

3 To be precise, we should define events as measurable sets of paths sharing the same initial

state, and we should replace our events with families of events, indexed by their initial state
[KSK66]. However, our (slightly) improper definition leads to more concise notation.
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• A strategy π is memoryless if π(σs) = π(s) for all s ∈ S and all σ ∈ S+. Thus,
memoryless strategies are equivalent to functions S 7→ D(Moves).

2.3 Classification of Winning States

A winning state of game G is a state from which player 1 can reach the target set R
with probability arbitrarily close to 1. We distinguish three classes of winning states:

• The class Sure(R) of sure-reachability states consists of the states from which
player 1 has a strategy to reach R:

Sure(R) =
{
s ∈ S

∣∣∣ ∃π1 ∈ Π1 . ∀π2 ∈ Π2 . Paths(s, π1, π2) ⊆ (3R)
}

.

• The class Almost(R) of almost-sure-reachability states consists of the states from
which player 1 has a strategy to reach R with probability 1:

Almost(R) =
{
s ∈ S

∣∣∣ ∃π1 ∈ Π1 . ∀π2 ∈ Π2 . Prπ1,π2
s (3R) = 1

}
.

• The class Limit(R) of limit-sure-reachability states consists of the states such that
for every real ǫ > 0, player 1 has a strategy to reach R with probability at least
1 − ǫ:

Limit(R) =
{
s ∈ S

∣∣∣ sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3R) = 1

}
.

Clearly, Sure(R) ⊆ Almost(R) ⊆ Limit(R). There are games for which both in-
clusions are strict. The strictness of the inclusion Sure(R) ⊆ Almost(R) follows
from the well-known fact that randomized strategies are more powerful than de-
terministic strategies [vN28,BO82], and is witnessed by the state tthrow of the game
left-or-right. The strictness of the inclusion Almost(R) ⊆ Limit(R) is witnessed
by the state shide of the game hide-or-run [KS81]. For a state s ∈ S, the quantity

v(s) = sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3R)

is the value of the reachability game at s. Hence, the class Limit(R) consists of the
states where the value of the game is 1.

2.4 Winning and Spoiling Strategies

The winning strategies of a reachability game are the strategies that enable player 1
to win the game whenever possible. We define three types of winning strategies,
corresponding to the three classes of winning states:

• A winning strategy for sure reachability is a strategy π1 for player 1 such that, for
all states s ∈ Sure(R) and all strategies π2 of player 2, we have Paths(s, π1, π2) ⊆
(3R).
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• A winning strategy for almost-sure reachability is a strategy π1 for player 1 such that
for all states s ∈ Almost(R) and all strategies π2 of player 2, we have Prπ1,π2

s (3R) =
1.

• A winning strategy family for limit-sure reachability is a family {π1(ε) | ε > 0} of
strategies for player 1 such that for all reals ε > 0, all states s ∈ Limit(R), and all
strategies π2 of player 2, we have Prπ1(ε),π2

s (3R) ≥ 1 − ε.

The spoiling strategies of a reachability game are the strategies that enable player 2
to prevent player 1 from winning the game whenever it cannot be won. Again, we
distinguish three types of spoiling strategies:

• A spoiling strategy for sure reachability is a strategy π2 for player 2 such that, for
all states s 6∈ Sure(R) and all strategies π1 of player 1, we have Paths(s, π1, π2) 6⊆
(3R).

• A spoiling strategy for almost-sure reachability is a strategy π2 for player 2 such that
for all states s 6∈ Almost(R) and all strategies π1 of player 1, we have Prπ1,π2

s (3R) <
1.

• A spoiling strategy for limit-sure reachability is a strategy π2 for player 2 such that
there exists a real q > 0 such that for all states s 6∈ Limit(R) and all strategies π1

of player 1, we have Prπ1,π2
s (3R) ≤ 1 − q.

We will show that for all three types of reachability, winning and spoiling strategies
always exist. This result constitutes a determinacy result for the sure, almost-sure,
and limit-sure winning modes.

2.5 Time to Reachability

For a state s ∈ S and an integer t ≥ 0, we say that the time from s to target R is
bounded by t if there exists a strategy π1 for player 1 such that for all strategies π2 of
player 2, and all paths s ∈ Paths(s, π1, π2), we have T3R(s) ≤ t. If the time from s to
R is not bounded by any integer t, we say that the time from s to R is unbounded.
We say that the expected time from s to R is bounded if there exists a strategy π1 for
player 1 such that for all strategies π2 of player 2, we have Eπ1,π2

s {T3R} < ∞. Given a
subset U ⊆ S of states, we generalize these definitions to U : the time (or the expected
time) to R is bounded from U iff it is bounded from all s ∈ U .

2.6 Overview of Our Results

In Figure 3 we present an overview of the main results on reachability games that
are presented in this paper. The first row lists the complexity of the algorithms for
computing the sets of winning states with respect to the three types of reachability.
The second and the third row list the types of winning and spoiling strategies available
to the players. For each type of reachability, we list the tightest class of strategies
that surely contains at least one such winning and spoiling strategy (according to the
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Sure

Reachability

Almost-Sure

Reachability

Limit-Sure

Reachability

Complexity linear quadratic quadratic

Winning strategies deterministic and
memoryless

memoryless memoryless

Spoiling strategies memoryless counting memoryless

Time to target bounded unbounded unbounded

Expected time

to target
bounded bounded unbounded

Fig. 3. Overview of results about sure, almost-sure, and limit-sure reachability.

classification of Section 2.2). The last two rows state whether the time to the target,
and the expected time to the target, are in general bounded on the sets of winning
states. In the paper, we also present several refinements of the results given in the
table, corresponding to special classes of games. We also show that, for games that
are both deterministic and turn-based, we have

Sure(R) = Almost(R) = Limit(R)

while for turn-based (but not necessarily deterministic) games we have

Sure(R) ⊆ Almost(R) = Limit(R) .

3 Related Work

3.1 Sure Reachability

Since Sure reachability can be studied by considering deterministic strategies only,
the standard algorithms developed for deterministic, turn-based reachability (and
safety) games enable the computation of the set Sure(R) in linear time in the size of
the game; see, e.g., [AHK02].

3.2 Markov Decision Processes

The reachability goal can be reduced to a total-reward goal: to this end, it suffices
to modify the target states so that, as soon as they are entered, the game proceeds
to a new absorbing state; the target states are then assigned reward 1, and all other
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states reward 0. For one-player games, or Markov decision processes, this reduction
establishes the existence of optimal strategies, implying Almost(R) = Limit(R). The
reduction also enables the computation of the value of the game at each state via
linear programming, with pseudo-polynomial time complexity [Der70,Ber95]. From
the values, we immediately obtain the set Almost(R) = Limit(R).

For the case in which player 1 is the only player having non-singleton move sets, the
problem of computing Almost(R) = Limit(R) was shown to be solvable in strongly
polynomial time in [dA97]; the algorithm presented there can be seen to be a spe-
cial case of the algorithm presented here for computing the set of almost-sure win-
ning states. An improved algorithm, with sub-quadratic complexity, was presented in
[CJH03].

For the case in which player 2 is the only player having non-singleton move sets,
the problem of computing Almost(R) = Limit(R) is equivalent to the problem of
computing the set of states of a Markov decision process from which R is reached
with probability 1 under any strategy. This problem can be solved in linear time
using the algorithms of [HSP83,Var85,CY88].

3.3 Turn-Based Games

Due to their simpler structure and their ability to model interleaved concurrency,
turn-based games are commonly considered in computer science, as well as in game
theory; see, e.g., [Fil81].

As we will prove later, for deterministic turn-based games the three types of winning
states coincide; that is, Sure(R) = Almost(R) = Limit(R). As mentioned earlier, the
problem of computing Sure(R) is equivalent to the And-Or reachability problem,
which can be solved in linear time and is complete for Ptime [Imm81]. The existence
of memoryless deterministic winning and spoiling strategies follows from an analysis
of the algorithms.

Deterministic turn-based reachability games have “0-1 laws”; that is, for all states
s ∈ S of a turn-based game,

sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3R) ∈ {0, 1}. (1)

This 0-1 law only applies to deterministic, turn-based games. As an example of a
(non-turn-based) deterministic game without a 0-1 law, consider a one-round version
of the game left-or-right. After the only round, the game moves from the state
tthrow either to the state thit or to the state tmissed. Then,

sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
tthrow

(3{thit}) =
1

2
.

In the case of general reward structures, [ZP96] showed that the value of a determin-
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istic turn-based game can be computed in pseudo-polynomial time.

In the case of turn-based reachability games with probabilistic transition functions,
our results indicate that Almost(R) = Limit(R). The set Almost(R) = Limit(R)
can be computed in polynomial time [Yan98], and computing the value of the game
lies in NP ∩ co-NP [Con92]. A simple algorithm for computing the value at each
state is based on successive approximation through value iteration [VTRF83]: due
to the reduction to total-reward goals, probabilistic turn-based reachability games
are a special case of the switching-controller undiscounted games considered there.
The value-iteration algorithm may require an exponential number of iterations to
converge.

3.4 General Reachability Games

For general reachability games, the existence of memoryless ε-optimal strategies was
shown by [KS81,Sec97]; a purely combinatorial proof of this fact can be found in
[CdAH06b]. These results imply the existence of memoryless winning and spoiling
strategies for limit-sure reachability. A strategy-improvement approach for the con-
struction of ε-optimal strategies is presented in [CdAH06b].

Given two reals r and ε > 0, there exists a non-deterministic polynomial-time Turing
machine that is guaranteed to answer Yes if the value of a reachability game is less
than r−ε, and No if it is greater than r+ε [CdAH06a]. The best known upper bound
for deciding if the value is greater than r is Pspace [EY06]. The total reward of a
stochastic game with non-negative rewards can be computed using a value-iteration
method [TV87,FV97]. Since reachability games can be reduced to total-reward games,
this method enables the computation of successive approximations for the value of
the game at all states. However, so far no convergence criterion has been presented
for this approach.

The algorithms presented in this paper were recast in fixpoint calculus in [dAH00],
leading to a more succint presentation. The nested fixed-point computation for
the computation of Almost(R) (see Algorithm Almost-Sure) is typical in non-
probabilistic turn-based games with more general winning conditions. A general link
between probabilistic concurrent games and non-probabilistic turn-based games with
a more general fairness condition is studied in [JKH02]. In particular, it is shown
there that finding Almost(R) can be reduced to finding the set of states that are
surely winning for player 1 in a turn-based Büchi game.

The existence of winning and spoiling results for Limit-Sure reachability can
be proved from more general results about the determinacy of concurrent games
[Mar90,Mar98], even though the arguments are non-constructive.
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3.5 Beyond Reachability

The results of this paper have been extended to general ω-regular [Tho90] objec-
tives in [dAH00], where algorithms for the computation of the Almost-Sure and
Limit-Sure winning states of games with Büchi, co-Büchi, and parity objectives are
provided. The set of Sure winning states can be computed using either enumerative
[Tho95,Jur00,JPZ06] or symbolic [EJ91] algorithms. The value of games with parity
objectives can be computed using the value-iteration schemes proposed in [dAM04];
the complexity of these games is studied in [CdAH06a]. In the special case of turn-
based games, algorithms and complexity analyses are provided in [CJH04].

4 Computing the Winning States

In this section we present three algorithms for computing, respectively, the three sets
Sure(R), Almost(R), and Limit(R). The correctness proofs for the algorithms, as well
as the proofs of the theorems presented in this section, will be given in Section 5.

4.1 Building Blocks for the Algorithms

A move sub-assignment γi for player i ∈ {1, 2} is a mapping γi : S 7→ 2Moves that
associates with each state s ∈ S a subset γi(s) ⊆ Γi(s) of moves. We use move sub-
assignments to limit the set of moves from which the players can choose when trying
to accomplish a goal. We denote by ∆i the set of all move sub-assignments for player i.

The function Pre1 : 2S × ∆1 × ∆2 7→ 2S is defined by

Pre1(U, γ1, γ2) =
{
s ∈ S

∣∣∣ ∃a1 ∈ γ1(s) . ∀a2 ∈ γ2(s) . δ(s, a1, a2) ⊆ U
}

.

Intuitively, Pre1(U, γ1, γ2) is the set of states from which player 1 can be sure of
entering U in one round, regardless of the move chosen by player 2, given that player
i chooses moves only according to γi, for i ∈ {1, 2}. The function Pre2 : 2S×∆1×∆2 7→
2S is defined in a symmetrical way. The function Stay1 : 2S×∆1×∆2 7→ ∆1 is defined
such that for all states s ∈ S,

Stay1(U, γ1, γ2)(s) =
{
a1 ∈ γ1(s)

∣∣∣ ∀a2 ∈ γ2(s) . δ(s, a1, a2) ⊆ U
}
.

Note that if we regard both move sub-assignments as set of pairs in S ×Moves , then
Stay1(U, γ1, γ2) ⊆ γ1. Intuitively, Stay1(U, γ1, γ2) is the largest move sub-assignment
for player 1 that guarantees that the game stays in U for at least one round, regardless
of the move chosen by player 2, given that player i chooses moves only according to
γi, for i ∈ {1, 2}. The function Stay2 : 2S ×∆1×∆2 7→ ∆1 is defined in a symmetrical
way.
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For i ∈ {1, 2}, the function Safei : 2S × ∆1 × ∆2 7→ 2S associates with each U ⊆ S
and each γ1 ∈ ∆1, γ2 ∈ ∆2 the largest subset V ⊆ U such that Prei(V, γ1, γ2) ⊆ V .
Thus, the set V = Safei(U, γ1, γ2) represents the largest subset of U that player i can
be sure of not leaving at any time in the future, regardless of the moves chosen by the
other player, given that player i chooses moves only according to γi, for i ∈ {1, 2}.
This set can be computed in time linear in the size of the game using the following
well-known algorithm.

Algorithm 1 (Safe)
Input: Game structure G, subset U ⊆ S, two move sub-assignments γ1 and γ2 for
players 1 and 2, and i ∈ {1, 2}.
Output: Safei(U, γ1, γ2).

Initialization: Let V0 = U .
Repeat For k ≥ 0, let Vk+1 = Vk ∩ Pre i(Vk, γ1, γ2).
Until Vk+1 = Vk.
Return: Vk.

A näıve application of this algorithm runs in time quadratic in the size of the game.
However, using an appropriate data structure, as suggested in [Bee80,CS91], it can
be implemented to run in linear time. The algorithm can also be implemented sym-
bolically as a nested fixed-point iteration.

4.2 Sure-Reachability States

The set Sure(R) satisfies the fixed-point characterization given by the following the-
orem.

Theorem 1 Sure(R) is equal to the smallest subset U ⊆ S such that R ⊆ U and
Pre1(U, Γ1, Γ2) ⊆ U .

The set Sure(R) can be computed using the following algorithm.

Algorithm 2 (Sure)
Input: Reachability game G = 〈G, R〉.
Output: Sure-reachability set Sure(R).

Initialization: Let U0 = R.
Repeat For k ≥ 0, let Uk+1 = Uk ∪ Pre1(Uk, Γ1, Γ2).
Until Uk+1 = Uk.
Return: Uk.

The algorithm can be implemented to run in time linear in the size of the
game [AHK02]: the main idea consists in propagating backwards along the edges of
the probabilistic transition relation the information of which states have been added
to the result. The algorithm can also be implemented symbolically as a fixed-point
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computation. The theorem below summarizes some basic facts about the set Sure(R).

Theorem 2 For every reachability game with target set R:

(1) Algorithm Sure computes set Sure(R). The algorithm can be implemented to
run in time linear in the size of the game.

(2) Player 1 has a memoryless deterministic winning strategy for sure reachability;
this strategy can be computed in linear time in the size of the game.

(3) Player 2 has a memoryless spoiling strategy for sure reachability; this strategy
can be computed in linear time in the size of the game. This spoiling strategy
cannot in general be deterministic.

(4) For every state s ∈ Sure(R), the time from s to R is bounded by the size of the
state space.

Theorem 2(2) indicates that the consideration of deterministic strategies only is ap-
propriate for the logic ATL, whose semantics is based on sure reachability [AHK02].
For deterministic games, the existence of a memoryless deterministic winning strategy
for almost-sure or limit-sure reachability indicates that these two notions of reacha-
bility coincide with sure reachability. This result can be interpreted as a converse of
Theorem 2(2).

Theorem 3 Consider a deterministic reachability game with target set R.

(1) If player 1 has a memoryless deterministic strategy π for almost-sure reachability,
then Sure(R) = Almost(R), and π is also a winning strategy for sure reachability.

(2) If player 1 has a family of deterministic winning strategies for limit-sure reach-
ability, then Sure(R) = Limit(R) = Almost(R).

If the game is both deterministic and turn-based, then it is possible to strengthen
Theorem 2(3), obtaining the 0-1 law in equation (1).

Theorem 4 If a reachability game with target set R is both deterministic and turn-
based, then player 2 has a deterministic spoiling strategy π2 such that Prπ1,π2

s (3R) = 0
for all strategies π1 ∈ Π1 for player 1 and all states s 6∈ Sure(R).

As an immediate corollary, we obtain the equivalence of the three reachability criteria
for deterministic turn-based games.

Corollary 5 If a reachability game with target set R is both deterministic and turn-
based, then Sure(R) = Almost(R) = Limit(R).

The following theorem provides us with winning and spoiling strategies for sure reach-
ability.

Theorem 6 Given a reachability game G = 〈G, R〉, we can compute winning and
spoiling strategies for sure reachability as follows:

(1) Assume that Algorithm Sure terminates at iteration m, and let U0, . . . , Um be
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the sets of states computed during the execution of the algorithm.
Define h : Um \ R 7→ IN by h(s) = min{j ∈ {1, . . . , m} | s ∈ Uj} for each

s ∈ Um \R, and define γ : Um \R 7→ 2Moves such that, for all states s ∈ Um \R,
we have

γ(s) = Stay1(Uh(s)−1, Γ1, Γ2)(s) .

Let π∗
1 be a memoryless deterministic strategy for player 1 that at all s ∈ Um \R

deterministically chooses a move from γ(s) (note that γ(s) 6= ∅). At other states,
π∗

1 is defined arbitrarily. Then, π∗
1 is a winning strategy for sure reachability.

(2) Let π∗
2 be the memoryless strategy for player 2 that at every s ∈ S chooses a

move from Γ2(s) uniformly at random. Then, π∗
2 is a spoiling strategy for sure

reachability.

4.3 Almost-Sure-Reachability States

Given a subset U ⊆ S of states, denote by θU
1 = Stay1(U, Γ1, Γ2) the move sub-

assignment for player 1 that guarantees remaining in U for one round (note that
it may be θU

1 (s) = ∅ for some s ∈ S). The set Almost(R) satisfies the fixed-point
characterization given by the following theorem.

Theorem 7 Almost(R) is equal to the largest subset U ⊆ S such that:

Safe1(U, Γ1, Γ2) = U , Safe2(U \ R, θU
1 , Γ2) = ∅ . (2)

The set Almost(R) can be computed using the following algorithm. The algorithm has
running time quadratic in the size of the game, and it can be implemented symbolically
as a nested fixed-point computation.

Algorithm 3 (Almost-Sure)
Input: Reachability game G = 〈G, R〉.
Output: Almost-sure-reachability set Almost(R).

Initialization: Let U0 = S, γ0 = Γ1.
Repeat For k ≥ 0, let

Ck = Safe2(Uk \ R, γk, Γ2),

Uk+1 = Safe1(Uk \ Ck, γk, Γ2),

γk+1 = Stay1(Uk+1, γk, Γ2) .

Until Uk+1 = Uk.
Return: Uk.

The algorithm can be understood as follows. The set C0 is the largest subset of S \R
to which player 2 can confine the game. Player 1 must avoid entering C0 at all costs: if
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C0 is entered with positive probability, R will not be reached with probability 1. The
set U1 is the largest set of states from which player 1 can avoid entering C0. The move
sub-assignment γ1 then associates with each state the set of moves that player 1 can
select in order to avoid leaving U1. Since γ1 ⊆ Γ1, by choosing only moves from γ1,
player 1 may lose some of the ability to resist confinement. The set C1 is the largest
subset of U1 \ R to which player 2 can confine the game, under the assumption that
player 1 uses only moves from γ1. The set U2 is then the largest subset of U1 from
which player 1 can avoid entering C1, and the sub-assignment γ2 ⊆ γ1 guarantees that
player 1 never leaves U2. The computation of Ck, Uk+1, and γk+1, for k ≥ 0, continues
in this way, until we reach m > 0 such that:

• if player 1 chooses moves only from γm, the game will never leave Um;
• player 2 cannot confine the game to Um \ R, even if player 1 chooses moves only

from γm.

At this point, we have Um = Almost(R).

Theorem 8 For every reachability game with target set R:

(1) Algorithm Almost-Sure computes the set Almost(R). The algorithm can be
implemented to run in time quadratic in the size of the game.

(2) (a) Player 1 has a memoryless winning strategy for almost-sure reachability; this
strategy can be computed in quadratic time in the size of the game.

(b) This winning strategy cannot in general be deterministic.
(3) (a) Player 2 has a counting spoiling strategy for almost-sure reachability.

(b) This spoiling strategy cannot in general be deterministic, nor finite-memory.
(4) For every state s ∈ Almost(R), the expected time from s to target R is bounded.

Results 1, 2, and 3a follow from the correctness proof of of Algorithm Almost-Sure,
given in Section 5.2. Result 3b is proved by an analysis of the game hide-or-run,
considering the strategies available to the players at the state shide 6∈ Almost(R).
Result 4 then follows from result 2a, and from results about the stochastic shortest-
path problem [BT91]. Note also that

• For every state s 6∈ Sure(R), the time to R is unbounded, since not all paths reach
R.

• For every state s 6∈ Almost(R), the expected time to R is unbounded, since R is
reached with probability always smaller than 1.

If the game is turn-based, then by analyzing the spoiling strategies for player 2 we
can prove that Almost(R) = Limit(R). Moreover, in turn-based games deterministic
strategies are as powerful as randomized ones.

Theorem 9 If a reachability game with target set R is turn-based, then:

(1) Almost(R) = Limit(R).
(2) There is a memoryless and deterministic strategy that is winning for both almost-

sure and limit-sure reachability, and there is a memoryless and deterministic
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strategy that is spoiling for both almost-sure and limit-sure reachability.

The following theorem provides us with winning strategies for almost-sure reach-
ability. The construction of spoiling strategies for almost-sure reachability is more
involved, and is presented in Section 5.2.

Theorem 10 Assume that Algorithm Almost-Sure terminates at iteration m, and
let U0, . . . , Um and γ1, . . . , γm be the sequences of sets and move sub-assignments com-
puted by the algorithm. Let π∗

1 be the memoryless strategy for player 1 that at each state
s ∈ Um chooses uniformly at random a move in γm(s), and at each state s ∈ S \ Um

is defined arbitrarily. Then π∗
1 is a winning strategy for almost-sure reachability.

4.4 Limit-Sure-Reachability States

In this section we describe an algorithm for the computation of limit-sure reacha-
bility states. Given a reachability game, both Algorithm Almost-Sure and Algo-
rithm Limit-Sure iteratively compute two sequences of sets C0, C1, . . . , Cm and U0,
U1, . . . , Um. The difference between the two algorithms lies in the way the sets Ck are
computed, for 0 ≤ k ≤ m: in Algorithm Almost-Sure for almost-sure reachability,
these sets are computed with respect to safe escape; in the algorithm for limit-sure
reachability, they are computed with respect to limit escape.

4.4.1 Safe Escape

To illustrate the concept of safe escape, assume that Algorithm Almost-Sure ter-
minates at iteration m, after computing the sets C0, C1, . . . , Cm and U0, U1, . . . , Um.
Each set Ck, for 0 ≤ k ≤ m, is computed in two steps. First, the algorithm computes
the sub-assignment

γk = θUk
1 = Stay1(Uk, Γ1, Γ2) ,

consisting of all the moves that enable player 1 to remain in Uk for one round. Then,
to compute

Ck = Safe2(Uk \ R, θUk

1 , Γ2) (3)

the algorithm sets V0 = Uk \ R, and for j ≥ 0, it iteratively removes from Vj all the
states s ∈ Vj such that

s 6∈ Pre2(Vj , γk, Γ2) . (4)

If (4) holds, so that state s is removed, it means that player 2 has no single move at s
that can keep the game in Vk for all moves in γk(s) of player 1. Hence, if player 1 plays
at s all moves of γk(s) uniformly at random, he can leave Vj with positive probability,
regardless of the move chosen by player 2. Moreover, the escape from Vk is safe: it
involves no risk of leaving Uk, since it is achieved using only the moves in γk. We say
that a state s as above is safe-escape with respect to Vj and Uk.
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We now define safe-escape states formally. Given a state s, two probability distri-
butions ξ1 ∈ D(Γ1(s)) and ξ2 ∈ D(Γ2(s)), and a subset V of states, indicate by
p̃(s, ξ1, ξ2)(V ) the one-round probability of going from s to V when players 1 and 2
select the moves according to distributions ξ1 and ξ2, respectively. This probability
can be computed as

p̃(s, ξ1, ξ2)(V ) =
∑

a1∈Γ1(s)

∑

a2∈Γ2(s)

∑

t∈V

[
ξ1(a1) ξ2(a2) p(s, a1, a2)(t)

]
.

Given two subsets of states C and U such that C ⊆ U and a state s ∈ C, we say that
s is safe-escape with respect to C and U iff there is a distribution ξ1 ∈ D(Γ1(s)) such
that:

inf
ξ2∈D(Γ2(s))

p̃(s, ξ1, ξ2)(S \ C) > 0 (5)

sup
ξ2∈D(Γ2(s))

p̃(s, ξ1, ξ2)(S \ U) = 0 . (6)

If we think of C as the set from which we must escape, and of the set S \ U where
player 1 cannot win with probability 1 as a set where capture occurs, then safe-
escape states are the ones from which it is possible to escape with positive one-round
probability (bounded away from 0), while incurring no risk of capture. From (5) and
(6) we can check that s is safe-escape with respect to C and U iff

s 6∈ Pre2(C, θU
1 , Γ2) . (7)

From this characterization of safe-escape states, by comparison between (4) and (7)
we see that for each 1 ≤ k ≤ m, the set Ck computed in (3) is the largest subset of
Uk \ R that does not contain any safe-escape state with respect to Ck and Uk.

4.4.2 Limit Escape

Safe escape is at the basis of the algorithm for almost-sure reachability because, in
order to reach the target with probability 1, no risk, however small, can be taken.
On the other hand, if the goal is to reach the target with probability arbitrarily close
to 1, as is the case for limit reachability, then a small amount of risk of capture can
be tolerated, provided the ratio between the one-round probabilities of escape and
capture can be made arbitrarily high. We call this type of escape limit escape.

Before discussing limit escape in general, let us consider the situation of state shide

of game hide-or-run. As we mentioned in the introduction, shide ∈ Limit(R) \
Almost(R), where R = {shome} [KS81]. If we consider the execution of Algo-
rithm Almost-Sure on game hide-or-run, we see that C0 = {swet}, C1 = {shide},
and U1 = {shide, ssafe, shome}. While player 1 cannot escape from C0, he can escape
from C1 and reach shome with arbitrarily high probability by being “patient enough”
and playing move run with sufficiently low probability at each round. Precisely, for
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every 0 < ε < 1, define the distribution ξ1[ε] ∈ D(Γ1(s)) by:

ξ1[ε](run) = ε, ξ1[ε](hide) = 1 − ε . (8)

By using distribution ξ1[ε] and letting ε → 0, player 1 can make the ratio between
the probability of escape from C1 and the probability of capture in S \ U1, i.e., the
ratio between (5) and (6), diverge: in fact,

lim
ε→0

inf
ξ2∈D(Γ2(s))

p̃(s, ξ1[ε], ξ2)(S \ C1)

p̃(s, ξ1[ε], ξ2)(S \ U1)
= lim

ε→0
inf

0≤q≤1

ε(1 − q) + (1 − ε)q

εq
(9)

= lim
ε→0

1 − ε

ε
= ∞ .

The divergence of the ratio between the one-round probability of escape and the one-
round probability of capture enables player 1 to eventually escape with probability
arbitrarily close to 1. To verify this, let π1[ε] be the memoryless strategy for player 1
that uses distribution ξ1[ε] at state shide. Once π1[ε] is fixed, results on Markov de-
cision processes ensure that the optimal strategy for player 2 to avoid reaching R is
memoryless (and also deterministic) [Der70,Ber95]. Hence, simple calculations show
that [KS81]:

inf
π2∈Π2

Prπ1[ε],π2
shide

(3{shome}) = 1 − ε ,

so that

sup
π1∈Π1

inf
π2∈Π2

Prπ1[ε],π2
shide

(3{shome}) = lim
ε→0

(1 − ε) = 1 .

In the general case, limit escape is defined as follows. Consider two sets of states C
and U such that C ⊆ U , and a state s ∈ C. We say that s is limit-escape with respect
to C and U iff

sup
ξ1∈D(Γ1(s))

inf
ξ2∈D(Γ2(s))

p̃(s, ξ1, ξ2)(S \ C)

p̃(s, ξ1, ξ2)(S \ U)
= ∞ . (10)

Comparing this definition with (9), we see that state shide is limit-escape with respect
to C1 = {shide} and U1 = {shide, ssafe, shome}.

The key idea to obtain an algorithm for limit-sure reachability is to replace safe escape
with limit escape in the computation of the various sets Ck, for k ≥ 0. In the algorithm
for limit-sure reachability, for each k ≥ 0 we compute Ck as the largest subset of Uk\R
that does not contain any limit-escape state with respect to Ck and Uk. This intuition
will be justified by the correctness proof for the algorithm, presented in Section 5.3.

4.4.3 Computing Limit-Escape States

The following lemma provides an alternative characterization of limit-escape states,
which leads to an algorithm for their determination.
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Lemma 11 Given a state s and two sets of states C and U , with s ∈ C ⊆ U , let

E1 =
{
(a, b) ∈ Γ1(s) × Γ2(s)

∣∣∣ δ(s, a, b) 6⊆ C
}
, (11)

E2 =
{
(b, a) ∈ Γ2(s) × Γ1(s)

∣∣∣ δ(s, a, b) 6⊆ U
}
, (12)

and let A ⊆ Γ1(s) and B ⊆ Γ2(s) be the least sets such that:

(1) for all a ∈ Γ1(s), if {b | (b, a) ∈ E2} ⊆ B, then a ∈ A;
(2) for all b ∈ Γ2(s), if there is a ∈ A with (a, b) ∈ E1, then b ∈ B.

Then, s is limit-escape with respect to C and U iff B = Γ2(s).

From the lemma, we obtain the following algorithm for the determination of limit-
escape states.

Algorithm 4 (Limit-Escape)
Input: Game structure G, two sets C ⊆ U ⊆ S of states, and a state s ∈ C.
Output: Yes if s is limit-escape with respect to C and U , No otherwise.

Initialization: Let B−1 = ∅, and let E1 and E2 be defined as in (11) and (12).
Repeat For k ≥ 0, let

Ak =
{
a ∈ Γ1(s)

∣∣∣ ∀b ∈ Γ2(s) . if (b, a) ∈ E2 then b ∈ Bk−1

}
,

Bk =
{
b ∈ Γ2(s)

∣∣∣ ∃a ∈ Ak . (a, b) ∈ E1

}
.

Until Ak+1 = Ak and Bk+1 = Bk.
Return: Yes if Bk = Γ2(s), No otherwise.

If the above algorithm returns an affirmative answer with input s, C, and U , we
write lim-esc(s, C, U) = Yes; similarly, we write lim-esc(s, C, U) = No in case of
negative answer. The algorithm, and the lemma, can be understood as follows. First,
we construct a bipartite graph with sets of vertices Γ1(s) and Γ2(s) and sets of edges
E1 and E2. The sets of vertices correspond to the moves available to players 1 and 2
at s. There is an edge in E1 from a ∈ Γ1(s) to b ∈ Γ2(s) if a, b played together lead
to an escape from C with positive probability; there is an edge in E2 from b ∈ Γ2(s)
to a ∈ Γ1(s) if a, b played together lead outside U , i.e. to capture, with positive
probability. The graph corresponding to state shide of game hide-or-run, and sets
C = {shide}, U = {shide, ssafe, shome} is depicted in Figure 4.

Once the graph is constructed, we let A0 ⊆ Γ1(s) be the set of moves for player 1
that are safe with respect to capture, i.e. that lead inside U regardless of the move
played by player 2. We let B0 be the set of moves for player 2 that, if played together
with some move in A0, enable the escape from C with non-zero one-round probability
(and zero risk of capture). From this, we see by comparison with (4) and (7) that s is
safe-escape with respect to C and U iff B0 = Γ2(s): we will later return to this point.
The construction of the sequences of sets A0,A1,A2, . . . and B0,B1,B2, . . . continues
then as follows. At round i > 0, we let Ai ⊆ Γ1(s) be the set of moves for player 1
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Fig. 4. Bipartite graph generated by Algorithm Limit-Escape for state shide of game
hide-or-run, with respect to C = {shide} and U = {shide, ssafe, shome}. The labels ℓ(·)
of the moves are written above the corresponding vertices.

whose incoming edges all originate from Bi−1. We then let Bi ⊆ Γ2(s) be the set of
moves for player 2 that have at least one incoming edge originating from Ai. The
construction continues until, for some k ≥ 0, no more moves can be added to Ak and
Bk.

We say that a move a ∈ Γ1(s) has been labeled if a ∈ Ak; if a has been labeled we
define ℓ(a) = min{i | a ∈ Ai} to be its label. Similarly, b ∈ Γ2(s) has been labeled if
b ∈ Bk, in which case its label is ℓ(b) = min{i | b ∈ Bi}. The algorithm declares state s
limit-escape w.r.t. U and C iff all the moves Γ2(s) for player 2 at s have been labeled.
The labeled graph for state shide of game hide-or-run is depicted in Figure 4.

To understand why the algorithm is correct, assume first that s is declared limit-
escape. By definition, this means that all moves of player 2 at s have been labeled,
implying that also all moves of player 1 have been labeled. The labels of the moves
for player 1 provide us with an ε-indexed family of distributions that make the ratio
(10) diverge. Given 0 < ε < 1/(2|Γ1(s)|), let ξ1[ε] be the distribution that plays
move a ∈ Γ1(s) with probability εℓ(a) if ℓ(a) > 0, and that plays all the moves in
{a ∈ Γ1(s) | ℓ(a) = 0} uniformly at random with the remaining probability. From
Figure 4, we see that the distribution constructed in this fashion for state shide of
game hide-or-run coincides with the one given in (8). To see that (10) holds, we
show that

lim
ε→0

inf
ξ2∈D(Γ2(s))

p̃(s, ξ1[ε], ξ2)(S \ C)

p̃(s, ξ1[ε], ξ2)(S \ U)
= ∞ . (13)

In fact, consider any move b ∈ Γ2(s) for player 2. Since b is labeled, there is a move
a ∈ Γ1(s) labeled with ℓ(a) = ℓ(b) with an edge from a to b. Hence, playing b will
cause to leave C with one-round probability at least proportional to the probability
with which a is played, or εℓ(b). On the other hand, all the moves a that played
together with b leave U have a label strictly greater than ℓ(b), since there is an edge
from b to all these moves. Hence, the one-round probability of leaving U will be
proportional at most to |Γ1(s)|ε

ℓ(b)+1. Since this reasoning can be repeated for all the
moves of player 2 at s, the ratio between the one round probabilities of leaving C
and of leaving U diverges as ε → 0, and (13) holds (a rigorous proof is presented in
Section 5.3).

Conversely, assume that s is not declared limit-escape. This implies that some of the
moves of player 2 at s have not been labeled. To see that in this case (10) does not
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hold, suppose that player 2 plays the unlabeled moves in Γ2(s) uniformly at random.
For each move a ∈ Γ1(s) of player 1, there are two cases, depending on whether a has
been labeled or not:

• If a has been labeled, then playing a will keep the game in C: in fact, if a move
b of player 2 leads outside of C when played with a, then (a, b) ∈ E1, so that b is
labeled and hence not played. Thus, (10) will not hold.

• If a has not been labeled, then there must be an unlabeled move b ∈ Γ2(s) with
an edge from a to b (or else a would have been labeled). Since b is played with
constant probability, the one-round probability of leaving U is proportional to the
probability of playing a; and of course the one-round probability of leaving C is
either 0, or proportional to the probability of playing a. In either case, we see that
the ratio between the probability of leaving C and that of leaving U cannot diverge,
so that (10) will again not hold.

The correctness of the algorithm then implies that of Lemma 11.

As we remarked earlier, the method (7) for the determination of safe-escape states is
equivalent to executing only the first round of Algorithm Limit-Escape, and check-
ing whether B0 = Γ2(s). Executing only the first round corresponds to computing
only A0 and B0, and using only the label 0. This equivalence is not a coincidence. For
safe escape, player 1 must keep the probability of risk equal to 0. Thus, playing moves
in Γ1(s) with probability that tends to 0 is not useful to player 1: either a move incurs
no risk, and it can be played at will, or it incurs some risk, and it cannot be played
at all. Hence, to establish whether a state is safe-escape, player 1 does not need to
consider distributions that play moves with probability εi with i > 0 as ε → 0, and
only the exponent 0 for ε must be considered.

4.4.4 Computing Limit-Sure Reachability States

Given two subsets of states W , U with W ⊆ U , we denote by Lim-safe(W, U) the
largest subset V ⊆ W that does not contain any limit-escape state with respect to V
and U . This set can be computed with the following algorithm.

Algorithm 5 (Lim-Safe)
Input: Game structure G, and two sets W ⊆ U ⊆ S of states.
Output: Lim-safe(W, U) ⊆ S.

Initialization: Let V0 = W .
Repeat For k ≥ 0, let Vk+1 = {s ∈ Vk | s not limit-escape w.r.t. Vk and U}.
Until Vk+1 = Vk.
Return: Vk.

As mentioned above, the set Limit(R) satisfies the fixed-point characterization given
by the following theorem.
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Theorem 12 Limit(R) is equal to the largest subset U ⊆ S such that

Safe1(U, Γ1, Γ2) = U Lim-safe(U \ R, U) = ∅ . (14)

The set Limit(R) can be computed using the following algorithm, obtained from Al-
gorithm Almost-Sure by replacing safe escape with limit escape in the computation
of the sets Ck, for k ≥ 0.

Algorithm 6 (Limit-Sure)
Input: Reachability game G = 〈G, R〉.
Output: Limit-sure-reachability set Limit(R).

Initialization: Let U0 = S, γ0 = Γ1.
Repeat For k ≥ 0, let

Ck = Lim-safe(Uk \ R, Uk),

Uk+1 = Safe1(Uk \ Ck, Γ1, Γ2).

Until Uk+1 = Uk.
Return: Uk.

For example, in the game hide-or-run Algorithm Limit-Sure computes C0 =
{swet}, U1 = {shide, ssafe, shome}, C1 = ∅, and finally, Limit(R) = U2 = U1 =
{shide, ssafe, shome}, in agreement with our previous analysis of the game.

4.4.5 Efficient Computation of Lim-safe

The above algorithms Lim-Safe and Limit-Sure do not yield the desired quadratic
running time in the size of the game structure. This is due to the fact that Algo-
rithm Lim-Safe is not a very efficient way of computing Ck, since it may invoke the
limit-escape test more than once for each state. To obtain a more efficient algorithm,
we rely on the following observations.

• To compute Ck, we initially set V := Uk \ R, and we progressively remove from V
the states that are limit-escape w.r.t. V and Uk. Consider a state s ∈ V , with its
related bipartite graph (Γ1(s), Γ2(s), E1(s), E2(s)), where

E1(s) =
{
(a, b) ∈ Γ1(s) × Γ2(s)

∣∣∣ δ(s, a, b) 6⊆ V
}
, (15)

E2(s) =
{
(b, a) ∈ Γ2(s) × Γ1(s)

∣∣∣ δ(s, a, b) 6⊆ Uk

}
. (16)

Suppose that state t ∈ V \ {s} is eliminated from V , and let V ′ = V \ {t}. If
E ′

1(s) is defined similarly to (15) but with respect to V ′ instead of V , we have
E1(s) ⊆ E ′

1(s). Hence, as we remove limit-escape states from V , the sets of edges
E1(·) for the remaining states in V increase monotonically.

• Given Γ1(s), Γ2(s) and the two sets of edges E1(s) and E2(s), let A(s) and B(s) be
the sets of moves satisfying the fixed-point characterization given by Lemma 11.
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Suppose that new edges are added to E1(s), yielding E ′
1(s). The new sets A′(s)

and B′(s) computed with respect to E ′
1(s) and E2(s) are such that A(s) ⊆ A′(s)

and B(s) ⊆ B′(s). Jointly with the previous observation, this indicates that as we
remove limit-escape states from V , the sets of labeled moves at the other states in
V increase monotonically.

These observations lead to the following improved algorithm for the computation of
Ck = Lim-safe(Uk \ R, Uk).

Algorithm 7 (Fast-Lim-Safe)
Input: Game structure G, and two sets W ⊆ U ⊆ S of states.
Output: Fast-Lim-safe(W, U) ⊆ S.

Initialization: Set V := W . For each s ∈ V , construct the sets of edges

E1(s) :=
{
(a, b) ∈ Γ1(s) × Γ2(s)

∣∣∣ δ(s, a, b) 6⊆ V
}
,

E2(s) :=
{
(b, a) ∈ Γ2(s) × Γ1(s)

∣∣∣ δ(s, a, b) 6⊆ U
}
,

and let A(s) and B(s) be the least subsets of Γ1(s), Γ2(s) respectively that satisfy:
(1) for all a ∈ Γ1(s), if {b | (b, a) ∈ E2(s)} ⊆ B(s), then a ∈ A(s);
(2) for all b ∈ Γ2(s), if there is a ∈ A(s) with (a, b) ∈ E1(s), then b ∈ B(s).
While there is t ∈ V such that B(t) = Γ2(t) do:
(1) Let V ′ := V \ {t}.
(2) For each s ∈ V ′, let

E ′
1(s) := E1(s) ∪

{
(a, b) ∈ Γ1(s) × Γ2(s)

∣∣∣ δ(s, a, b) ⊆ V ∧ δ(s, a, b) 6⊆ V ′
}
.

(3) For each s ∈ V ′, update the sets A(s) and B(s) by labeling additional moves,
until the resulting sets A′(s) and B′(s) are the least sets satisfying Properties
1 and 2 above with respect to the sets of edges E ′

1(s) and E2(s).
(4) Rename V := V ′, and for all s ∈ V rename E1(s) := E ′

1(s), A(s) := A′(s),
and B(s) := B′(s).

Return: V .

From the above considerations, it is not difficult to see that Fast-Lim-safe(Uk \
R, Uk) = Lim-safe(Uk \ R, Uk). By introducing appropriate bookkeeping in Algo-
rithm Fast-Lim-Safe, we can ensure that the changes in the sets of edges and
labeled moves are propagated gradually. Specifically, whenever a state t is removed
from V , the removal can be propagated (by tracking backwards the combinations
of moves that can lead to t), yielding the additional edges described in Step 2 of
the algorithm. In turn, the introduction of the new edges can be used to trigger the
propagation of move labelings in Step 3. Finally, once a state t has B(t) = Γ2(t),
the state becomes a candidate for removal from V at some following iteration. We
can implement this propagation process so that no move, edge, or state has to be
considered more than once, leading to an algorithm with linear running time in the
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size of the game. By using Algorithm Fast-Lim-Safe in place of Lim-Safe in Algo-
rithm Limit-Sure, and by using the above bookkeeping, we obtain an algorithm for
the computation of the limit-sure winning states exhibiting quadratic running time
in the size of the input game structure.

Theorem 13 For every reachability game with target set R:

(1) Algorithm Limit-Sure computes set Limit(R). The algorithm can be imple-
mented to run in time quadratic in the size of the game.

(2) Player 1 has a family of memoryless winning strategies for limit-sure reachability.
Given ε > 0, a member π1(ε) of the family can be computed in quadratic time in
the size of the game. These winning strategies cannot in general be deterministic.

(3) Player 2 has a memoryless spoiling strategy for limit-sure reachability. A spoiling
strategy can be computed in time quadratic in the size of the game. This spoiling
strategy cannot in general be deterministic.

Result 1 is proved through a detailed analysis of Algorithms Limit-Escape, Lim-
Safe, and Limit-Sure. In particular, to obtain a version of the algorithm that runs
in quadratic time it is necessary to optimize the implementation of Algorithm Lim-
Safe. The optimized version is given as Algorithm Lim-Safe-Alt2 of Section 5.3.

Results 2 and 3 are from [KS81]. However, while previous results were concerned
only with the existence of particular types of winning and spoiling strategies
[Eve57,KS81,Sec97], our algorithms provide methods for the effective computation of
such strategies. These methods are presented in Theorems 19 and 20 of Section 5.3.

5 Proofs of the Results

In this section we provide the correctness proofs of the algorithms for the computation
of the sets Sure(R), Almost(R), and Limit(R), as well as the proofs of the theorems
presented in the previous sections. While proving the correctness of the algorithms,
we also describe how to construct the winning and spoiling strategies for the various
types of reachability. To simplify the notation, given a subset U ⊆ S of states, we
denote by U = S \ U its complement with respect to S.

5.1 Sure Reachability

Proof of Theorems 1, 2 and 6. Assume that Algorithm Sure terminates at
iteration m, and let U0, . . . , Um be the sets of states computed during the execution
of the algorithm.

Define h : Um \ R 7→ IN by h(s) = min{j ∈ {1, . . . , m} | s ∈ Uj} for each s ∈ Um \ R,
and let π∗

1, π∗
2 be the winning and spoiling strategies described in Theorem 6.

For s ∈ Um, consider any π2 ∈ Π2 and any path s = s0, s1, s2, . . . ∈ Paths(s, π∗
1, π2),
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with s0 = s. From the definition of π∗
1 , it is immediate to see that for all j ≥ 0, if

sj ∈ Um \R then sj+1 ∈ Um and either sj+1 ∈ R, or h(sj) > h(sj+1). This shows that
s ∈ (3R). Theorem 2(2,4) and Theorem 6(1) follow from this analysis.

In the other direction, if s 6∈ Um, then for all a ∈ Γ1(s) there is b ∈ Γ2(s) such
that δ(s, a, b) 6⊆ Um. Hence, for all s 6∈ Um and all strategies π1 ∈ Π1 there is
a path s ∈ Paths(s, π1, π

∗
2) such that s 6∈ (3Um), and therefore s 6∈ (3R). This

proves Theorem 6(2), and together with the above argument, also Theorem 2(1). The
correctness of Algorithm Sure also leads to the fixed-point characterization expressed
by Theorem 1.

To see that player 2 may not have a deterministic spoiling strategy, it suffices to
consider state tthrow of the left-or-right game. Clearly, tthrow 6∈ Sure(R); yet,
given any deterministic strategy π2 for player 2, we can construct a deterministic
strategy π1 for player 1 so that the target thit is reached surely in one round. This
proves Theorem 2(3). Theorem 2(4) follows from an analysis of Algorithm Sure. 2

Proof of Theorem 3. Consider a deterministic reachability game. For the first
part of the theorem, assume there is a memoryless deterministic winning strategy
π∗

1 for almost-sure reachability. From the point of view of player 2, the game under
strategy π∗

1 is equivalent to a directed graph (S, E) with set of edges

E = {(s, t) | ∃b ∈ Γ2(s) . t ∈ δ(s, as, b)} ,

where as ∈ Γ1(s) is the single move such that π∗
1(s)(as) = 1. Consider an arbitrary

state s; there are two cases:

• If there is an infinite path in (S, E) that originates from s and never enters R, then
player 2 has a (memoryless deterministic) strategy π2 to ensure that this path is
followed. Hence, Prπ∗

1 ,πs

s (3R) = 0. Since π∗
1 is a winning strategy for almost-sure

reachability, s 6∈ Almost(R), and s 6∈ Sure(R).
• If all infinite paths in (S, E) that originate from s eventually reach R, then all the

paths originating from s of length greater than |S| have a state in R. Using this fact,
it is not difficult to prove by comparison with Algorithm Sure that s ∈ Sure(R),
and hence s ∈ Almost(R).

These two cases together prove Sure(R) = Almost(R).

For the second part of the theorem, note that there is only a finite number of mem-
oryless deterministic strategies. Hence, there must be at least one of the winning
strategies for limit-sure reachability that is also a winning strategy for almost-sure
reachability. The result then follows from the first part of the theorem. 2

Proof of Theorem 4. Assume that the reachability game is deterministic and
turn-based, and let m ≥ 0 and U0, . . . , Um be as in the previous proof. Consider
s 6∈ Um. There are two cases, depending on which player’s turn it is at s. If it is
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player 1’s turn, i.e. if |Γ2(s)| = 1, then it must be δ(s, a, b) ∩Um = ∅ for all a ∈ Γ1(s)
and for the single b ∈ Γ2(s), or else s would be included in Um+1 and the algorithm
would not terminate at iteration m. Similarly, if it is player 2’s turn, i.e. if |Γ1(s)| = 1,
then there must be at least one b ∈ Γ2(s) such that δ(s, a, b) ∩ Um = ∅, for the single
a ∈ Γ1(s). In both cases, there is b ∈ Γ2(s) such that δ(s, a, b) ∩ Um = ∅ for all
a ∈ Γ1(s), and this leads immediately to the existence of a memoryless deterministic
spoiling strategy π2 for player 2 having the properties stated in the theorem. 2

5.2 Almost-Sure Reachability

Before proving the correctness of Algorithm Almost-Sure, we need the following
technical lemma. Consider a game in which the player 1 can only play moves from the
sub-assignments γ1, and player 2 plays moves from the sub-assignment γ2 uniformly
at random. The lemma states that, if V = Safe1(U, γ1, γ2), where V ⊆ U ⊆ S,
then player 1 will be forced out of U from all states in U \ V with positive bounded
probability in at most |U | steps. Moreover, if V = ∅, then player 1 will be eventually
forced out of U with probability 1.

Lemma 14 Let γ1, γ2 : S 7→ 2Moves \ ∅ be two non-empty move sub-assignments for
players 1 and 2. Let π2 ∈ Π2 be the memoryless strategy for player 2 that chooses
at every state s ∈ S a move from γ2(s) uniformly at random. Denote also with
Π1(γ1) ⊆ Π1 the set of strategies for player 1 that at each s ∈ S choose only moves
from γ1(s). For any U ⊆ S, let V = Safe1(U, γ1, γ2). The following statements hold:

(1) There is q > 0 such that for all s ∈ U \ V and all strategies π1 ∈ Π1(γ1) for
player 1, we have

Prπ1,π2
s

( |U |∨

i=0

Xi 6∈ U
)
≥ q .

(2) If V = ∅, then Prπ1,π2
s (3U) = 1 for all s ∈ U and all π1 ∈ Π1(γ1).

Similar statements hold if the roles of player 1 and player 2 are exchanged.

Proof. Under strategy π2, the game from the point of view of player 1 is a Markov
decision process [Der70]. The first statement can be proved by induction on the num-
ber of the iteration at which s has been removed from U during the execution of
Algorithm Safe. The second result follows by noting that the probability that a
path from s ∈ U has not left U in the first i rounds is no greater than (1 − q)⌊i/|U |⌋,
and by taking the limit for i → ∞. 2

Next, we describe how to construct spoiling strategies for limit-sure reachability. The
construction is slightly involved, since these strategies cannot be finite-memory, as
stated by Theorem 8(3b).
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Theorem 15 Assume that Algorithm Almost-Sure terminates at iteration m, and
let U0, . . . , Um and γ1, . . . , γm be the sequences of sets and move sub-assignments com-
puted by the algorithm. Let q0, q1, q2, . . . be an infinite sequence of real numbers such
that 0 < qj < 1 for all j ≥ 0, and

∏∞
j=0 qj = 1/2. Such a sequence can be constructed

by taking qi = 2(−1/2i+1), for i ≥ 0. Construct the counting strategy π∗
2 for player 2 as

follows:

(1) At s ∈ Ci, for 0 ≤ i < m (note that Cm = Safe2(Um \ R, γm, Γ2) = ∅), strategy
π∗

2 plays according to the number j of rounds played since the start of the game.
At round j, π∗

2 plays as follows:
(a) with probability qj, strategy π∗

2 plays uniformly at random a move from
Stay2(Ci, γi, Γ2)(s);

(b) with probability 1 − qj, strategy π∗
2 plays uniformly at random a move from

Γ2(s).
(2) At s ∈ S \

⋃m−1
i=0 Ci, strategy π∗

2 plays uniformly at random a move from Γ2(s).

Then, π∗
2 is a spoiling strategy for almost-sure reachability.

Proof of Theorem 8 (parts 1, 2, 3a), Theorem 10, and Theorem 15. Assume
that the algorithm terminates at iteration m, and let U0, . . . , Um and γ1, . . . , γm be the
sequences of sets and move sub-assignments computed by the algorithm. Let π∗

1 be the
memoryless strategy for player 1 described in Theorem 10, and let π∗

2 be the counting
spoiling strategy described in Theorem 15. Let also q0, q1, q2, . . . be the sequence of
probabilities used to construct π∗

2 in Theorem 15.

First, we prove that Um ⊆ Almost(R). Since the algorithm terminates at iteration
m, we have Safe2(Um \ R, γm, Γ2) = ∅. Hence, by the second part of Lemma 14, for
s ∈ Um and all π2 ∈ Π2 we have Prπ1,π2

s (3(Um ∪ R)) = 1. Note that, under strategy
π∗

1, once the game is in Um it will never leave Um, regardless of the strategy used by
player 2. Hence, we conclude that Prπ1,π2

s (3R) = 1 for all s ∈ Um and π2 ∈ Π2, as
was to be proved.

To prove that Almost(R) ⊆ Um, we prove by complete induction on i, for 0 ≤ i < m,
that if s ∈ Ui \ Ui+1 then for all π1 ∈ Π1 we have

Prπ1,π∗

2
s (3R) < 1 .

Consider an arbitrary strategy π1 for player 1. For each 0 ≤ i < m there are two
cases, depending whether s ∈ Ci or s ∈ Ui \ (Ci ∪ Ui+1).

• If s ∈ Ci, then let

Ai =
{
t0, t1, t2, . . . ∈ Ω

∣∣∣ ∃k ≥ 0 .
[ k∧

j=0

tj ∈ Ci ∧ Supp(π1(t0, t1, . . . tk)) 6⊆ γi(tk)
]}

be the event of player 1 playing with non-zero probability a move selected outside
of γi while still in Ci.
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Assume first Prπ1,π∗

2
s (Ai) > 0. Then, there is a finite sequence σ : s = t0, t1, . . . , tk

of states of Ci such that:

Prπ1,π∗

2
s

( k∧

j=0

Xj = tj
)

> 0, Supp(π1(σ)) 6⊆ γi(tk) .

By definition of γi, if player 2 plays according to π∗
2 and player 1 at tk ∈ Ci ⊆ Ui

plays move a 6∈ γi(tk), the game leaves Ui with positive probability, since π∗
2 chooses

each move in Γ2(tk) with positive probability. Hence, a behavior from s has a
positive probability of leaving Ui, and the induction hypothesis leads to the desired
result.

If Prπ1,π∗

2
s (Ai) = 0, let (2Ci) = {t0, t1, t2, . . . | ∀k . tk ∈ Ci} be the event of being

confined to Ci. Since Prπ1,π∗

2
s (Ai) = 0, as long as the game is in Ci player 1 never

chooses a move outside of γi. Hence, by definition of γi, we have

Prπ1,π∗

2
s (2Ci) ≥ Prπ1,π∗

2
s

(
∀k . Supp(π∗

2(X0, . . . , Xk)) ⊆ Stay2(Ci, γi, Γ2)(Xk)
)

=
1

2
,

where the last equality is a consequence of the definition of π∗
2. This indicates

that if Prπ1,π∗

2
s (Ai) = 0, then a path from s is confined forever in Ci with positive

probability, which leads immediately to the desired result.
• If s ∈ Ui \(Ui+1∪Ci), then strategy π∗

2 in Ui \(Ui+1∪Ci) plays uniformly at random
from the sub-assignment Γ2. Since

Ui+1 = Safe1(Ui \ Ci, γi, Γ2) = Safe1(Ui \ Ci, Γ1, Γ2)

by Lemma 14 we have for all π1 ∈ Π1 that

Prπ1,π∗

2
s

(
3(Ci ∪ U i)

)
> 0 .

The induction hypothesis, jointly with the analysis of the previous case, leads then
to the result.

The above arguments prove Theorem 10 and Theorem 15, and thus also The-
orem 8(2a,3a). The lack of memoryless deterministic winning strategies (Theo-
rem 8(2b)) is witnessed by the behavior of game left-or-right from state tthrow.
Theorem 8(1) also follows from the above arguments, and from an analysis of Algo-
rithm Almost-Sure. 2

Proof of Theorem 8 (part 4). Consider again the winning strategy π∗
1 for

player 1 described in Theorem 6, and let K = |Almost(R)|. Under strategy π∗
1 the set

Almost(R), once entered, is never left, regardless of the strategy chosen by player 2.
By Lemma 14, there is q > 0 such that for all s ∈ Almost(R) and all π2 ∈ Π2 we have

Prπ∗

1 ,π2
s (

K∨

k=0

Xk ∈ R) ≥ q .
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Hence, from any s, the probability that the time to R is greater than n is at most
(1−q)⌊n/K⌋, and by standard arguments this yields the first part of Theorem 8(4). 2

Theorem 7 follows as a direct corollary of these results.

Proof of Theorem 7. Let U∗ be the largest set satisfying conditions (2). Assume
that Algorithm Almost-Sure terminates at iteration m with output Um. To prove
that U∗ ⊆ Almost(R) we can repeat the argument used to show that Um ⊆ Almost(R)
in the proof of Theorem 8. Since Um also satisfies (2), we also have Almost(R) = Um ⊆
U∗, and this concludes the proof. 2

It is interesting to note that, while we can prove the containment U∗ ⊆ Almost(R)
without reference to Algorithm Almost-Sure, we have only been able to prove the
reverse containment Almost(R) ⊆ U∗ by analyzing Algorithm Almost-Sure.

To prove Theorem 8(3b), we first restate more precisely the definition of finite-memory
strategy. We say that a strategy π is finite-memory if there is a deterministic automa-
ton (Q, η, qin) with set of states Q, transition function η : Q × S 7→ Q, and initial
state qin ∈ Q, and a mapping π′ : Q × S 7→ D(Moves) such that for all σ ∈ S∗ we
have

π(σs) = π′(η∗(qin, σ), s) ,

where η∗ : Q×S∗ 7→ Q is the multi-step transition relation of the automaton, defined
as usual.

Proof of Theorem 8 (part 3b). Consider the game hide-or-run, and towards
the contradiction, assume that player 2 has a finite-memory spoiling strategy for
almost-sure reachability π2 ∈ Π2. Without loss of generality, we can assume that
the strategy π2 is based on a deterministic automaton (Q, η, qin) and on a mapping
π′

2 : S × Q 7→ D(Moves). Define the strategy π1 ∈ Π1 for player 1 by

π1(σshide)(hide) =
{

1 if π2(σshide)(throw) > 0

0 otherwise

π1(σshide)(run) = 1 − π1(σshide)(hide)

for all σ ∈ S∗. At states other than shide, the strategy is trivial, since it must always
choose the only available move. Note that π1 is a finite-memory strategy based on
the same automaton as π2, so that there is a mapping π′

1 : S × Q 7→ D(Moves) such
that π1(σs) = π′

1(s, η
∗(qin, σs)) for all σ ∈ S∗ and final states s ∈ S.

To reach the contradiction, we show that Prπ1,π2
shide

(3{shome}) = 1. By definition of π1,
the game when started from shide never reaches swet. Moreover, once π1 and π2 are
fixed, the game corresponds to a Markov chain with set of states S×Q and transition
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probabilities

Pr(〈s′, q′〉 | 〈s, q〉) =
∑

a∈Γ1(s)

∑

b∈Γ2(s)

p(s, a, b)(s′) π′
1(s, q)(a) π′

2(s, q)(b)

for all s, s′ ∈ S and q, q′ ∈ Q. When the automaton is presented with the infinite
input shide

ω, it will produce the infinite state sequence

qin, q1, . . . , qk, (qk+1, qk+2, . . . , qk+m)ω ,

for some m > 0. Whether the game reaches shome, or whether it remains forever
confined to shide, clearly depends on the behavior of the Markov chain on the set of
states {

〈shide, qk+1〉, 〈shide, qk+2〉, . . . , 〈shide, qk+m〉
}

.

By construction of π1, this set of states is not a closed recurrent class. Hence, the
game is confined to shide with probability 0, and reaches shome with probability 1.
This yields the desired contradiction, concluding the argument. 2

The results on almost-sure reachability for turn-based games can be proved as follows.

Proof of Theorem 9. Suppose that the game is turn-based, assume that Algo-
rithm Almost-Sure terminates at iteration m, and let U0, . . . , Um and γ1, . . . , γm

be the sequences of sets and move sub-assignments computed by the algorithm.

First, we prove that player 1 has a memoryless deterministic winning strategy for
almost-sure reachability by constructing a memoryless deterministic strategy π•

1 for
player 1 as follows. At s ∈ Um\R, strategy π•

1 plays deterministically one of the moves
that caused the elimination of s from Safe2(Um \R, γm, Γ2) = ∅ during the execution
of Algorithm Safe. At s ∈ R ∪ Um, strategy π•

1 is defined arbitrarily. Define the
move sub-assignment θ corresponding to π•

1 by θ(s) = Supp(π•
1(s)) for all s ∈ S. By

construction of π•
1, we see that Safe2(Um \R, θ, Γ2) = ∅. Hence, by the second part of

Lemma 14, for all s ∈ Um \ R and all π2 ∈ Π2 we have

Prπ•

1 ,π2
s (3(R ∪ Um)) = 1 .

From this, and from the fact that θ ⊆ γm = Stay1(Um, Γ1, Γ2), we conclude
Prπ•

1 ,π2
s (3R) = 1 for all s ∈ Um \ R and all π2 ∈ Π2. This indicates that π•

1 is a
winning strategy for almost-sure reachability.

To show the existence of a memoryless deterministic spoiling strategy for almost-sure
reachability, we construct the memoryless deterministic strategy π•

2 for player 2 as
follows:

• At s ∈ Ci, for 0 ≤ i < m (note that Cm = Safe2(Um \ R, γm, Γ2) = ∅), strategy π•
2

plays a move selected arbitrarily from Stay2(Ci, γi, Γ2)(s).

34



• At s ∈ Ui \ (Ui+1 ∪ Ci), for all 0 ≤ i < m, strategy π•
2 plays deterministically one

of the moves that caused the elimination of s from Safe1(Ui \Ci, γi, Γ2) during the
execution of Algorithm Safe.

• At s ∈ Um, strategy π•
2 is defined arbitrarily.

Proceeding as in the proof of Theorem 8(3a), we can prove that Prπ1,π•

2
s (3R) < 1

for all s 6∈ Um and all π1 ∈ Π1. The argument is again an induction by cases, with
the same inductive hypothesis used in the proof of Theorem 8(3a). The case for
s ∈ Ui \ (Ui+1 ∪ Ci), for 0 ≤ i < m, can be proved essentially in the same way.

If s ∈ Ci, for 0 ≤ i < m, we reason as follows. If player 1 plays a move in γi(s), then
the game will remain in Ci. If player 1 plays a move not in γi(s), then it must be
player 1’s turn to move, i.e. |Γ2(s)| = 1. By definition of γi, we know that the game
leaves Ui with non-zero probability. Jointly, these considerations prove that π•

2 is a
memoryless deterministic spoiling strategy for almost-sure reachability.

Finally, the fact that Almost(R) = Limit(R) is a direct consequence of the existence
of memoryless spoiling strategies. In fact, from the point of view of player 1, the
game under strategy π•

2 is equivalent to a Markov decision process. Hence, if player 2
uses strategy π•

2, there is a (memoryless) strategy π◦
1 for player 1 that maximizes

the probability of reaching R from every state [Der70,Ber95]. Therefore, for every
s ∈ S \ Almost(R), there is qs < 1 such that

max
π1∈Π1

Prπ1,π•

2
s (3R) = Prπ◦

1 ,π•

2
s (3R) = qs .

This yields directly that Almost(R) = Limit(R), together with the fact that strategies
π•

1 and π•
2 are winning and spoiling also for limit-sure reachability. 2

5.3 Limit-Sure Reachability

In order to prove Theorem 13, we must first show that Algorithm Limit-Escape
correctly determines whether a state is a limit-escape state. In fact, we provide a
stronger characterization of limit-escape states than that provided by (10). The proof
proceeds in two parts: first, we prove that if lim-esc(s, C, U) = Yes, then s satisfies
(10); next, we show that if lim-esc(s, C, U) = No, then the ratio in (10) is bounded
away from infinity. While proving these results, we also define some distributions that
are useful in the construction of the winning and spoiling strategies.

In these arguments, we are often interested in the behavior of parameterized strategies,
for the value of the parameter close to 0. To simplify the notation, we call we call
a right neighborhood of 0 an interval [0, d] for some d > 0. We indicate by λ a
generic right neighborhood of 0. Let also M = max{|Γi(s)| | i ∈ {1, 2} ∧ s ∈ S}
be the maximum number of moves available to a player at any state. For each a ∈
Moves , denote also by ξa the distribution that selects move a deterministically: these
distributions are called singular distributions.

Given s, C, and U such that lim-esc(s, C, U) = Yes and 0 ≤ ε ≤ 1/(2M), we con-
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struct a distribution evasion(s, C, U)[ε] ∈ D(Γ1(s)) that enables the limit-escape from
s as ε → 0. Let k be the number of iterations required for the call lim-esc(s, C, U)
to terminate, and let A0, . . . ,Ak and B0, . . . ,Bk be the sets of moves computed dur-
ing the iterative execution of the algorithm. All moves in Γ1(s) are labeled, since
lim-esc(s, C, U) = Yes: define ℓ(a) = min{j | a ∈ Aj} for each a ∈ Γ1(s). For all
a ∈ Γ1(s), we define evasion by

evasion(s, C, U)[ε](a) =






εℓ(a) if ℓ(a) > 0;
1

|Γ1(s) \ A0|

(
1 −

∑

a∈Γ1(s)\A0

εℓ(a)
)

otherwise.

The following lemma uses the above distribution to prove that Algorithm Limit-
Escape answers Yes only for limit-escape states. The lemma provides a stronger
characterization of limit-escape states than that provided by (10), which follows as a
corollary. The stronger characterization is used to prove Theorem 13.

Lemma 16 Assume that lim-esc(s, C, U) = Yes, and let ξ1[ε] = evasion(s, C, U)[ε],
for 0 ≤ ε ≤ 1/(2M). Then, there are constants α, β > 0 and a right neighborhood λ
of 0 such that for every distribution ξ2 ∈ D(Γ2(s)) there is 0 ≤ i ≤ M such that

p̃(s, ξ1[ε], ξ2)(C) ≥ αεi, (17)

p̃(s, ξ1[ε], ξ2)(U) ≤ βεi+1 (18)

for all 0 ≤ ε ≤ 1/(2M).

Proof. Let k be the number of iterations required for Algorithm Limit-Escape to
terminate, let E1, E2 be as computed in the initialization step of the algorithm, and
let A0, . . . ,Ak and B0, . . . ,Bk be the sets of moves computed during the iteration.
Since the algorithm terminates with an affirmative answer, we have Γ1(s) = Ak and
Γ2(s) = Bk. To establish the result, note that every distribution ξ2 ∈ D(Γ2(s)) can
be written as the convex combination of singular distributions:

ξ2 =
∑

b∈Γ2(s)

ξ2(b) ξb .

We first prove that the lemma holds for these singular distributions. Consider any
move b ∈ Γ2(s). Since b has been labeled, there is at least one a ∈ Γ1(s) with
(a, b) ∈ E1 and ℓ(a) = ℓ(b). Since (a, b) ∈ E1, when both a and b are played the game
leaves C with probability p̃(s, a, b)(C). Move a is played with one-round probability
εℓ(a) = εℓ(b) if ℓ(a) > 0, and with probability at least 1/(2M) if ℓ(a) = 0. Taking

αb =

{
1

2M
p̃(s, a, b)(C) if ℓ(b) = 0

p̃(s, a, b)(C) otherwise
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and noting that αb > 0, for all 0 ≤ ε ≤ 1/(2M) we have

p̃(s, ξ1[ε], ξ
b)(C) ≥ αbε

ℓ(b) .

Next, we consider the possibility of leaving U when move b is played. For a ∈ Γ1(s),
if δ(s, a, b) 6⊆ U , then (b, a) ∈ E2, which implies ℓ(a) > ℓ(b), so that ξ1[ε](a) ≤ εℓ(b)+1.
Summing over all moves in Γ1(s), for all 0 ≤ ε ≤ 1/(2M) we obtain

p̃(s, ξ1[ε], ξ
b)(U) ≤ Mεℓ(b)+1

Let α = min{αb | b ∈ Γ2(s)}/2, β = 2M and, for each ξ2 ∈ D(Γ2(s)), let i =
min{ℓ(b) | ξ2(b) > 0}. The inequalities (17) and (18) follow by noting that

p̃(s, ξ1[ε], ξ2)(C) =
∑

b∈Γ2(s)

ξ2(b) p̃(s, ξ1[ε], ξ
b)(C) ≥ αεi

p̃(s, ξ1[ε], ξ2)(U) =
∑

b∈Γ2(s)

ξ2(b) p̃(s, ξ1[ε], ξ
b)(U) ≤ βεi+1

for ε in a sufficiently small right neighborhood of 0. 2

Corollary 17 If lim-esc(s, C, U) = Yes, then (10) holds.

Proof. Assume that lim-esc(s, C, U) = Yes, and let ξ1[ε] = evasion(s, C, U)[ε], for
0 ≤ ε ≤ 1/(2M). By Lemma 16, there is κ = α/β > 0 and a right neighborhood λ of
0 such that for all ξ2 ∈ D(Γ2(s)) and all ε ∈ λ we have

p̃(s, ξ1[ε], ξ2)(C)

p̃(s, ξ1[ε], ξ2)(U)
≥

κ

ε
.

The result follows by taking the limit ε → 0. 2

Given s, C, and U such that lim-esc(s, C, U) = No, we construct a distribution
imprison(s, C, U,A,B) ∈ D(Γ2(s)) that enables player 2 to prevent a limit-escape
from state s. Let k be the number of iterations required for the lim-esc call to ter-
minate, and B0, . . . ,Bk be the subsets of B moves computed during the call. For all
b ∈ Γ2(s), define

imprison(s, C, U)(b) =






1

|Γ2(s) \ Bk|
if b ∈ Γ2(s) \ Bk

0 otherwise

Since lim-esc(s, C, U) = No implies Bk ⊂ B, the above is a well-defined distribu-
tion. The following lemma is the counterpart of Lemma 16, and shows that if Algo-
rithm Limit-Escape answers negatively the limit-escape question, then indeed the
ratio in (10) is bounded away from infinity.
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Lemma 18 Assume that lim-esc(s, C, U) = No, and let ξ2 = imprison(s, C, U).
Then, there is κ > 0 such that for all ξ1 ∈ D(Γ1(s)) we have

p̃(s, ξ1, ξ2)(U) ≥ κ p̃(s, ξ1, ξ2)(C) .

Proof. Let k be the number of iterations required for the call lim-esc(s, C, U) to
terminate, let E1, E2 be as computed in the initialization step of the algorithm, and
let A0, . . . ,Ak and B0, . . . ,Bk be the sets of moves computed during the iteration.

Consider a move a ∈ Γ1(s) that has been labeled (i.e. a ∈ Ak). For any b ∈ Γ2(s),
if δ(s, a, b) 6∈ C, then there is (a, b) ∈ E1, and b has been labeled by the algorithm.
Since ξ2 does not play any move that has been labeled, we have p̃(s, ξa, ξ2)(C) = 0.
Hence, for a general distribution ξ1 ∈ D(Γ1(s)), we have

p̃(s, ξ1, ξ2)(C) ≤
∑

a6∈Ak

ξ1(a) . (19)

Conversely, consider a move a ∈ Γ1(s) that has not been labeled. There must be an
unlabeled b ∈ Γ2(s) with (b, a) ∈ E2. This b is played with probability at least 1/M ,
and by definition of E2 we have δ(s, a, b) 6⊆ U . Thus, for αa = p̃(s, ξa, ξb)(U) > 0, we
have p̃(s, ξa, ξ2)(U) > αa/M . Hence, for a general distribution ξ1 ∈ D(Γ1(s)), letting
α = min{αa | a 6∈ Ak}, we have

p̃(s, ξ1, ξ2)(U) ≥
α

M

∑

a6∈Ak

ξ1(a) . (20)

The result then follows from (19) and (20) by taking κ = α/M . 2

From Lemmas 16 and 18, we obtain as a corollary the proof of Lemma 11.

Proof of Lemma 11. If Algorithm Lim-Safe terminates at iteration k, then Ak =
A and Bk = B, where Ak, Bk are the sets of moves computed by Algorithm Lim-
Safe, and A, B are the fixed-points mentioned by Lemma 11. The lemma is then an
immediate consequence of Lemmas 16 and 18. 2

In the following, to facilitate the analysis, we consider a slightly modified version
of Algorithm Lim-Safe, which removes the limit-escape states one at a time. The
modified algorithm is given below.

Algorithm 8 (Lim-Safe-Alt1)
Input: Game structure G, two sets W ⊆ U ⊆ S of states.
Output: Lim-safe ′(W, U) ⊆ S.

Initialization: Let V0 = W .
Repeat For k ≥ 0, let Lk = {s ∈ Vk | s limit-escape w.r.t. Vk and U}.
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If Lk = ∅, then let Vk+1 = Vk.
Otherwise, pick tk ∈ Lk and let Vk+1 = Vk \ {tk}.

Until Vk+1 = Vk.
Return: Vk.

Clearly, Lim-safe(W, U) = Lim-safe ′(W, U) for all W ⊆ U ⊆ S, since both algorithms
compute the largest subset C ⊆ W that does not contain any limit-escape state w.r.t.
C and U . We use this modified algorithm to define winning and spoiling strategies
for limit-sure reachability.

Theorem 19 Assume that Algorithm Limit-Sure terminates with output U .
Clearly, Lim-safe ′(U \R, U) = ∅: hence, we can write U \R = {t0, . . . , tk}, where t0,
. . . , tk are as selected by Algorithm Lim-Safe-Alt1 at iterations 0, . . . , k. Given
0 ≤ ε ≤ 1/(2M), define the memoryless strategy π∗

1[ε] ∈ Π1 for player 1 by taking,
for 0 ≤ i ≤ k,

π∗
1[ε](ti) = evasion(ti, {ti, ti+1, . . . , tk}, U)

[
ε[(M+2)i]

]
, (21)

and define π∗
1[ε] arbitrarily outside of U \ R. Then, {π∗

1[ε] | 0 < ε ≤ 1/(2M)} is a
family of winning strategies for limit-sure reachability.

Theorem 20 Assume that Algorithm Limit-Sure terminates at iteration m, and
let U0, . . . , Um and C0, . . . , Cm be the sets computed by the algorithm, with Cm = ∅.
Let π∗

2 ∈ Π2 be the memoryless strategy for player 2 defined as follows:

• At s ∈ Ci, for 0 ≤ i < m, we have π∗
2(s) = imprison(s, Ci, Ui).

• At s 6∈
⋃m−1

i=0 Ci, π∗
2 selects a move from Γ2(s) uniformly at random.

Then, π∗
2 is a spoiling strategy for limit-sure reachability.

Proof of Theorems 12, 13 (parts 2, 3), 19, 20. Assume that Algorithm Limit-
Sure terminates at iteration m, and let U0, . . . , Um and C0, . . . , Cm be the sets com-
puted by the algorithm, with Cm = ∅. Clearly, Lim-safe ′(Um \R, Um) = ∅: hence, we
can write Um \ R = {t0, . . . , tk}, where t0, . . . , tk are as selected by Algorithm Lim-
Safe-Alt1.

First, we show Um ⊆ Limit(R). For 0 < ε < 1/(2M), let π∗
1[ε] be the strategy

described by Theorem 19. Our goal is to show that for all s ∈ Um,

lim
ε→0

inf
π2∈Π2

Prπ∗

1 [ε],π2
s (3R) = 1 . (22)

Since strategy π∗
1[ε] is memoryless, the game from the point of view of player 2 is

equivalent to a Markov decision process. The results on Markov decision processes
mentioned in Section 3 ensure that there is a memoryless strategy π2[ε] realizing the
inf in (22). Hence, we can replace infπ2∈Π2 with infπ2∈ΠM

2
in (22), where ΠM

2 is the set
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βi ε
[(j+1)(M+2)i]

ti Um \ ViVi+1

αi ε
[j(M+2)i]

Um

1 − αi ε
[j(M+2)i] − βi ε

[(j+1)(M+2)i]

1 − κi+1 ε[(M+2)(i+1)]

Fig. 5. Worst-case transition probabilities for the escape from Vi = {ti} ∪ Vi+1 to Um \ Vi.

of memoryless strategies for player 2. For all 0 ≤ i ≤ k, define

P exit
i [ε] = inf

π2∈ΠM
2

min
0≤j≤k

Pr
π∗

1 [ε],π2

tj

(
3(Um \ {ti, ti+1, . . . , tk})

)
. (23)

The quantity P exit
i [ε] represents a lower bound on the probability of eventually leaving

{ti, ti+1, . . . , tk} and proceeding to Um \{ti, ti+1, . . . , tk}. Since R = U \{t0, t1, . . . , tk},
we can prove (22) by proving that limε→0 P exit

0 [ε] = 1. To prove the latter result, we
show that for every 0 ≤ i ≤ k there is κi > 0 such that, for ε in a right neighborhood
of 0,

P exit
i [ε] ≥ 1 − κi ε

[(M+2)i] . (24)

We prove (24) by induction on i, from i = k down to 0. As the base case is a simplified
version of the induction step, we concentrate on the latter. To simplify the notation,
we let Vi = {ti, ti+1, . . . , tk}, for 0 ≤ i ≤ k.

We now consider the worst-case escape scenario from Vi, for 0 ≤ i < k. By induction
hypothesis, the probability of eventual escape from Vi+1 to Um \ Vi+1 is at least

1 − κi+1 ε[(M+2)(i+1)] .

In the worst case, these escapes lead to ti, rather than to Um \ Vi. Denote by

ξi
1 = π∗

1(ti), ξi
2 = π2(ti)

the distributions used by players 1 and 2 at ti, respectively. By Lemmas 16 and 18
there are αi > 0, βi < ∞, and 0 ≤ j ≤ M such that

p̃(ti, ξ
i
1, ξ

i
2)(Um \ Vi) ≥ αi ε

[j(M+2)i] (25)

p̃(ti, ξ
i
1, ξ

i
2)(S \ Um) ≤ βi ε

[(j+1)(M+2)i] . (26)

The worst case is the one in which (25) and (26) hold with equality. Moreover, in the
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worst case the remaining probability

1 − αi ε
[j(M+2)i] − βi ε

[(j+1)(M+2)i]

corresponds to transitions to Vi+1, rather than also back to ti. The worst-case transi-
tion probabilities out of Vi+1 and ti are summarized in Figure 5. Thus, as ε → 0 we
can write

P exit
i [ε] ≥

(
1 − κi+1 ε[(M+2)(i+1)]

)
αi ε

[j(M+2)i]

1 −
(
1 − κi+1 ε[(M+2)(i+1)]

) (
1 − αi ε[j(M+2)i] − βi ε[(j+1)(M+2)i]

)

=
αi ε

[j(M+2)i] + O
(
ε[(M+2)(i+1)+j(M+2)i]

)

αi ε[j(M+2)i] + βi ε[(j+1)(M+2)i] + O
(
ε[(M+2)(i+1)]

)

=
αi + O

(
ε[(M+2)(i+1)]

)

αi + βi ε[(M+2)i] + O
(
ε[2(M+2)i]

) .

Finally, from the Taylor series expansion of the last fraction, for ε in a right neigh-
borhood of 0 we have

P exit
i [ε] ≥ 1 − 2βi ε

[(M+2)i] ,

which proves (24). This completes the proof of Um ⊆ Limit(R).

The proof of Limit(R) ⊆ Um follows the general lines of the proof of Theorem 8. For
all s ∈ S, let

Psup(s) = sup
π1∈Π1

Prπ1,π∗

2
s (3R)

where π∗
2 is the strategy described in Theorem 20. We prove that, for 0 ≤ i < m, if

s ∈ Ui \ Ui+1 then Psup(s) < 1. The proof proceeds by complete induction on i, for
0 ≤ i < m. Again, for each 0 ≤ i < m there are two cases, depending whether s ∈ Ci

or s ∈ Ui \ (Ci ∪ Ui+1).

• s ∈ Ci. At all t ∈ Ci, strategy π∗
2 plays with distribution imprison(t, Ci, Ui). For

each t ∈ Ci, let κt > 0 be the constant given for t by Lemma 18, and let κ =
min{κt | t ∈ Ci}. As a consequence of Lemma 18,

Prπ1,π∗

2
s (3U i) ≥ κ Prπ1,π∗

2
s (3Ci) .

Let q = max{Psup(t) | t ∈ U i}. Denoting by r = Prπ1,π∗

2
s (3Ci), we have

Prπ1,π∗

2
s (3R) ≤ r(1 − κ(1 − q)) ≤ 1 − κ(1 − q) .

Since κ > 0 and q < 1, we have 1− κ(1− q) < 1 and Psup(s) ≤ 1− κ(1− q), which
gives us the desired bound.
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• s ∈ Ui \ (Ci ∪ Ui+1). Note that in Ui \ (Ci ∪ Ui+1) strategy π∗
2 plays uniformly at

random moves from Γ2. Hence, the result follows easily by Lemma 14, and by the
induction hypothesis.

The above results prove immediately Theorems 19 and 20 on the winning and spoiling
strategies, and hence also Theorem 13(2,3). Theorem 12 follows easily from an analysis
of Algorithm Limit-Sure. 2

Proof of Theorem 13 (part 1). The correctness of Algorithm Limit-Sure is a
consequence of the previous arguments. To prove the result about the running time
of Algorithm Limit-Sure, we note that for each k ≥ 0, the set Ck = Lim-safe(Uk \
R, Uk) = Fast-Lim-safe(Uk \R, Uk) is computed in linear time in the size of the input
game structure by Algorithm Fast-Lim-Safe. The set Uk+1 = Safe1(Uk \Ck, Γ1, Γ2)
can also be computed in linear time [AHK02]. The fact that the algorithm terminates
after a number of iterations bounded by the size of the state space then yields the
desired result. 2
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[JKH02] M. Jurdziński, O. Kupferman, and T.A. Henzinger. Trading probability for
fairness. In Computer Science Logic, volume 2471 of Lect. Notes in Comp. Sci.,
pages 292–305. Springer-Verlag, 2002.

[Jon75] N.D. Jones. Space-bounded reducibility among combinatorial problems. J.

Computer and System Sciences, 11:68–75, 1975.
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