
ELSEVIER

Theoretical
Computer Science

Theoretical Computer Science 189 (1997) 149

Fundamental Study

Fixed point characterization of infinite behavior
of finite-state systems1

Damian Niwiriski*

Institute of Informatics, University of Warsaw, ul. Banucha 2, 02-097 Warsaw, Poland

Received November 1995; revised September 1996

Communicated by W. Thomas

Abstract

Infinite behavior of nondeterministic finite-state automata running over infinite trees or more
generally over elements of an arbitrary algebraic structure is characterized by a calculus of Jixed
point terms interpreted in powerset algebras. These terms involve the least and greatest fixed
point operators and disjunction as the only logical operation. A tight correspondence is established
between a hierarchy of Rabin indices of automata and a hierarchy induced by alternation of
the least and greatest fixed point operators. It is shown that, in the powerset algebra of trees
constructed from a set of functional symbols, the fixed point hierarchy is infinite unless all the
symbols are unary (i.e. trees are words). It is also shown that an interpretation of a closed fixed
point term in any powerset algebra can be factorized through the interpretation of this term in
the powerset algebra of trees, from which it is deduced that the question whether a term denotes
always 0 can be answered in polynomial time.

Keywords: Fixed points; Rabin automata; Powerset algebras

Contents

0 Introduction
1 Preliminaries

1.1 Trees . _. _.
I .2 Algebras . .
1.3 Automata .

2 Fixed point calculus .
2.1 Basic results .
2.2 The calculus . . .

3 Characterization , . .
3.1 From automata to fixed point terms

. .

.

. .

.

* E-mail: niwinski@mimuw.edu.pl.
’ Supported by Polish KBN grant No. 2 P301 009 06

0304-3975/97/$17.00 @ 1997 -Elsevier Science B.V. All rights reserved
PII s0304-3975(97)00039-x

.

........ 2

........ 4

........ 4

........ 7

........ IO

........ 20

........ 20

........ 26

........ 30

........ 30

D. Niwiliskil Theoretical Computer Science 189 (1997) Id9

3.2 From fixed point terms to automata
3.3 Iterative characterization of the fixed point definable tree languages.

4 Initiality of the powerset tree algebra.
4.1 Internalization ..
4.2 Nonemptiness problem

5 Hierarchy.. ..

6 Related formalisms ..
6.1 The fixed point calculus with intersection
6.2 Modal mu-calculus ..
6.3 Monadic second-order logic

Acknowledgements ...

References ..

.

.

38

43

47

. . . 49

50

51

63

63

64

66

. 67

67

0. Introduction

Nonterminating behavior of a finite state system is a mathematical abstraction of

a number of phenomena that occur in information processing, such as continuously

operating concurrent programs, network communication protocols or nonstabilizing

asynchronous digital circuits.

Formalisms that have been proposed for specifying and reasoning about nontermi-

nating behavior of programs can be roughly divided into three groups: various kinds

of automata, temporal and modal logics, and fixed point calculi, i.e. formalisms based

on explicit notation for inductive and co-inductive definitions. All of these are closely

related (see [49,8] for survey articles). Logics provide a nice tool for specification as

they are close to human thinking; on the other hand, the relative algorithmic issues,

as e.g. the problems of satisfiability and model checking, present some conceptual

difficulties that are usually solved by reducing these questions to the emptiness prob-

lems for suitable automata. Automata are usually better tractable algorithmically due to

a straightforward rather than inductive semantics; on the other hand, the automata nota-

tion does not always reflect the structural complexity of specified properties; therefore,

the use of automata as a specification formalism is limited. Fixed point calculi seem

to join the strong points of both logics and automata, since they provide an elegant

and well-structured mathematical notation inducing nice semantical hierarchies; on the

other hand, solutions to the relative algorithmic problems are usually already implicitly

present in the structure of these calculi, as computing the least (or, dually, the greatest)

fixed point is one of general paradigms of algorithms. It is the fixed point approach

on which we shall focus our interest in the present paper.

In all fixed point calculi, the main feature of the syntax consists in an explicit notation

for solutions of the fixed point equations x = Z(X). If x is supposed to range over

a complete lattice and the operation defined by z is monotone then, by the Knaster-

Tarski Theorem, there exists a least fixed point px.z(x) and a greatest fixed point

vx.z(x). Here r may depend on some arguments other than x that may be subjected to

further applications of fixed point operators which by this can be nested and alternated,

e.g. px.vy.z(x, y), vx.z(x,~y.ri(x, y)), etc.

D. NiwiriskilTheoretical Computer Science 189 (1997) l-69 3

The role of alternation of least and greatest fixed point operators as a source of
a sharp expressive power for the fixed point calculus has been recognized in early
1980s. Park in his studies on the semantics of parallelism [40] observed that what he
considered as a fair merge of two infinite sequences2 can be adequately character-
ized only using both extremal fixed point operators. Flon and Suzuki [151 and later
Emerson and Clarke [9] gave insighting fixed point characterizations of several cor-
rectness properties of parallel programs including freedom from deadlock, invariance,
and inevitability under fair scheduling assumptions. Arnold and Nivat [l] proposed
the greatest fixed points as semantics for nondeterministic recursive programs, and
Niwinski [34] has extended their approach to alternated fixed points in order to cap-
ture the infinite behavior of context-free grammars. Kozen [23] introduced the modaZ
,u-calculus, which is a propositional modal logic extended by the least fixed point oper-
ator. This logic has subsequently received much studies; now it is known to subsume
most of the known propositional logics of programs and yet to be decidable in the
exponential time [lo]; it also possess a natural complete proof system [54].

Another notation of p-terms (called fixed point terms in the present paper) has been
introduced by this author in [35,36]; it simply extends the usual notation of first-
order terms by the least and greatest fixed point operators, and a binary operator V as
the only logical operator. Fixed point terms can be interpreted in algebras with com-
pletely ordered universes, under the assumption that the basic operations are monotonic
(justification of this semantics comes from the Knaster-Tarski theorem, and no conti-
nuity requirements are needed). Important examples of such algebras can be obtained
by the powerset construction applied to arbitrary algebraic structures. It turns out that
a rather simple notation of fixed point terms, when interpreted in the powerset algebra
of trees, has precisely the same expressive power as Rabin automata. Consequently,
by the results of Rabin [41], it captures the expressive power of monadic second-order
logic over a tree structure which is known to be one of the most expressive among
the decidable mathematical theories. The proof of this result, first announced in [38],
will be presented in details in the present paper. Actually, the characterization will
be proved on a more general level: rather than automata on trees, we shall consider
automata running over arbitrary algebraic structures; this concept will subsume, in par-
ticular, alternating automata on trees. We would like to point out that a computation of
an automaton may be infinite even if the underlying algebraic structure is finite. The
aforementioned generalization will be useful especially in solving the nonemptiness
problem for fixed point terms (that is, the question whether a term has a nonempty
denotation), as it will allow to confine it to a particularly simple powerset algebra
actually equivalent to the Boolean algebra (0, 1). This will induce a polynomial-time
algorithm for the problem. As for the powerset algebra of trees, it will be shown to
play the role of an initial structure in the class of all powerset algebras.

* By Park, the fair merge of two infinite sequences of O’s and of l’s is the set of sequences where both

bits occur infinitely often. It can be characterized by the term vy.p.0~ V Ix V Oly.

D. NiwiriskiITheoretical Computer Science I89 (1997) Id9

A tight correspondence will be established between the hierarchy of indices of Rabin

automata and a hierarchy of alternation of the least and greatest fixed point operators.

It will be exhibited that both hierarchies may be finite or infinite varying from one

interpretation to another. In particular, in a powerset algebra of trees constructed from

function symbols of a given signature, the hierarchy is infinite if the signature contains

at least two symbols of which at least one has the arity at least 2.

The paper is organized as follows. In the preliminary Section 1, we present basic

concepts concerning trees, powerset algebras and automata. We introduce our concept

of automata running in arbitrary algebras which is a straightforward generalization of

automata on infinite trees. The subsequent Section 2 is an introduction to the cal-

culus of fixed point terms. In Section 3, we prove a fine equivalence between the

fixed point terms and Rabin automata. This result is completed by a discussion of

an alternative characterization of the same hierarchy, by means of two iteration op-

erators. Section 4 presents the aforementioned initiality result of the powerset alge-

bra of trees and discusses the nonemptiness (or satisfiability) problem for fixed point

terms. Section 5 is devoted to the hierarchy problem. Finally, in Section 6 we dis-

cuss relations between our fixed point calculus and other formalisms considered in the

literature.

Notations
The set of natural numbers 0, 1, . . . , or, equivalently, the first infinite ordinal, is

denoted by o. For a set X, p(X) is the potverset of X, i.e. the set of all subsets of

X; X” is the Cartesian product of n copies of X; 1x1 is the cardinality of X. The

symbol < is used with several meanings: depending on the context, it may stand for

the standard ordering of natural numbers (or ordinals), the initial segment orderings of

words, as well as an abstract partial ordering in an abstract poset. Once the meaning

of < is understood, the symbols 3, <, have their usual meaning.

Throughout the paper, we largely use vector notation: generally, a tuple (al,. . . , a,)
may be abbreviated a’. This notation is also applied in more complex terms and for-

mulas, e.g., in writing @,E] instead of (tl [q/xl,. . . ,sm/xm], . . . , &[sJxl,. . . , s,,Jx,J), or

a’< b’ to mean “al < bl and . . . and a,, <b,“, and also X L F to mean “XI C Yi and . . .

and X, C_ Y,“.

1. Preliminaries

1.1. Trees

For a set X, X* denotes the free monoid generated by X, i.e., the set of all fi-

nite words that can be written with X as an alphabet, including the empty word E.

A word w E X* can be uniquely decomposed in w = xi . . . xk, where xi,. . . ,xk E X; the

number k is called the length of w, and denoted by /WI (in particular I&l= 0). The con-

catenation of two words w =x1 . . .xk and v= yi . . . y,,, is the word xi ‘. .xkyl . .. y,,,

D. Niwiriskil Theoretical Computer Science 189 (1997) l-69 5

denoted by WV. The similar notation will be applied to sets of words: if L, K C X*,
LK = {uv 1 u EL, v E K}. Note that L(E) = {E}L = L, while LO = @L = 0.

The initial segment relation 6 is defined by u <w iff there exists v such that uv = w.

Note that E is the least element of X* with respect to 6.

Any nonempty subset T of X* closed under initial segments is called a tree. The

elements of T are usually called nodes. The word a, which belongs to every tree, is

called the root. The 6 -maximal elements of T are called leaves. If Z.J E T, x E X, and

ux E T then ux is an immediate successor of u in T. A finite or infinite sequence

wo,w,..., W,,... such that wg = E and, for each m, whenever w,+l is defined, it is

an immediate successor of w,, is called a path in T. A finite path wg, WI,. . . , w, is

complete if w, has no immediate successors. We recall the celebrated Kiinig’s Lemma.

If T LX* is an infinite tree and each w E T has only a finite number of immediate

successors in T then T has an infinite path.

A tree with no infinite path is called well-founded. We note a fundamental property of

trees that we shall refer to as Tree Induction Principle (cf., e.g., [26]).

Let T be a well-founded tree and let S be a subset of T such that, for all

w E T, if all immediate successors of w are in S, so is w. Then S = T.

Now let S be an arbitrary set. If T is a tree then a mapping t : T -+ S is called

an S-valued tree or shortly an S-tree; in this context T is called the domain of t

and denoted by T = dom t. We say “root of t”, “path in t”, etc., referring to the

corresponding objects in dom t. For a node v E dom t, the subtree of t induced by v is

the S-tree denoted by t.v and defined by

l dom t.v = {w) VW E dom t},

l t.v(w) = t(vw), for w E dom t.v.

We shall be often interested in the set of values that occur infinitely often along

a path in a tree. Let t be an S-tree and let P=(wo,wl,. . .) be an infinite path in t.

We let

Inf(t, P) = {s E S: t(wm) = s for infinitely many m}.

Observe that if S is finite then Inf(t,P) is always nonempty and there is some mo,
such that (Vm arno) t(wm) E Inf(t, P).

A basic construction that is frequently used for trees is substitution. Suppose A C

dam(t) is an antichain with respect to < (i.e., any two elements of A are incompa-

rable), and let f be a function associating an S-tree f(w) with each w E A. Then the

substitution tree t[f] is the S-tree defined by

l dom t[f I= UwEA wdomf(w) U {wEdomt:Vw’<w,w’$A},

. t[fl(u)=

{

t:[$)(n) ifu=T, weA,
otherwise.

The above definition of substitution can be naturally extended to the case when f
is a mapping associating a set of S-trees f(w) with each w E A; in this case the result

6 D. Niwiriskil Theoretical Computer Science I89 (1997) I-69

of substitution is a set of S-trees. More specifically, we call f’ a choice function for

f if, for each w EA, f’(w) is a tree in f(w). (Observe that a choice function may fail

to exist if some f(w) = 0.) We set

t[f] =df {t[f’]: f’ is a choice function for f}.

In the case A is finite, say A = {WI,. . . , wk}, we shall often express f explicitly, writing,

for example, t[wl t tl, . . . , wk c tk], in vector notation t[i; c a. This notation will be

extended to sets of S-trees, say LI, . . . ,Lk by

GWl +-Ll,. ..,Wkf-&j={t[W1 +-t ,,..., wk+tk]: tl EL1 ,..., tkE&}.

We say that two infinite paths, P = (wg, ~1, . . .) in t and P’ = (w& w{ , . . .) in t’ are

cofinal, if, roughly speaking, from some moments on, “they look the same”; more

specifically, if there exist a sequence of words ug, ~1,. . . , and ml, m2 CO, such that
I

Wml+k =wm,vk, w,,+k = wh20k, and moreover t(w,,+k) = t(~k~+~), for k < w. Clearly,

if P and P’ are cofinal then Inf(t, P) = Inf(t’, P’). Observe that, if t[f] is a substitution

tree, then every path in any f(u) is cofinal with some path in t[f]. We shall often

make implicit use of this and other easily noted properties in the sequel.

We also introduce a concept of limit. Suppose to, tl,. . . is a sequence of S-trees such

that dom to C dom tl 2. . ., and, for each w E U,,, dom t,,, there is some m(w) such

that Vm>m(w), t,(w) =tm(,,,)(w). Then we define the S-tree t by

l domt= &_domt,,

l t(w) = tmcw)(w), for w E dom t.

By hypothesis, t is well-defined. We call it the limit of the sequence t,, and denote it

by lim tn.

Now let Sig be a finite signature, i.e., a finite set of function symbols, each f E Sig

given with a finite arity p(f) 20. The symbols of arity 0 are also called constant

symbols. A syntactic tree over Sig is a Sig-tree t: dam(t) + Sig, where dam(t) is

included in o* (recall that w denotes the set of natural numbers) and the following

condition is satisfied: if t(w) is a symbol of arity k then w has exactly k immediate

successors in dam(t) which are wl, . . . , wk. Note that a node of a syntactic tree is

a leaf if and only if it is labeled by a constant symbol. Clearly, the set of syntactic

trees is closed under the substitution and limit operations.

The collection of all syntactic trees over Sig is denoted by Tsig.
For syntactic trees, we shall often consider some special kind of substitution. Let

cl,. . . , cm be some constant symbols in Sig and let L1, . . . , L, C Tsiq. Let t E Tsig and

A = {w E dam(t): t(w) E {cl,. . , cm}}. Clearly, A is an antichain in dom t. Then we

define t[cl CL,,..., cm t L,] as t[f 1, where f is mapping that sends each w E A with

t(w) = ci onto Li. This notation will be also extended to a set of trees K C Tsis by

K[q +-LI,..., c,+L,]=df{t[c, +L,,...,C,+L,]: ~EK}

Remark. It is apparent and well-known that finite syntactic trees can be identified with

closed terms over the signature Sig. Therefore, syntactic trees may be viewed as an

D. NiwiliskilTheoretical Computer Science 189 (1997) 149 I

infinitary extension of terms. This point of view has been developed in the theory of

algebraic semantics of programs, see, e.g., [17].

1.2. Algebras

We now present the kinds of algebraic structures to be considered in our study.

An obvious requirement of models of fixed point calculi is the existence of definable

fixed points. This is provided by a concept of a p-algebra in which the universe is

a complete lattice and the basic operations are monotonic. As we shall be interested

in a fixed point characterization of automata operating on algebraic structures, our

main focus will be on a class of p-algebras that can be obtained by a powerset con-

struction from arbitrary algebras or, more generally, from what we shall call semi-

algebras.

Complete lattices

A partially ordered set (L, <) is a lattice if for any two elements a, b E L, there

exists their least upper bound in L, denoted a V b, and their greatest lower bound,

a A b. A lattice is said to be complete, whenever each subset A of L has a least

upper bound in L; we denote it by v A. Note that consequently each A CL has also

a greatest lower bound, which is the least upper bound of the set of lower bounds

of A, it will be denoted A A. In particular, L itself has extremal elements V L and

r\ L, also denoted by T and -I-. A k-ary function f : Lk -+ L is said to be monotonic

if f(al,. . . ,ak) <f(bl,. . . , bk), whenever ai < bi holds for all i = 1,. . . , k.

Semi-algebras

Recall [161 that an algebra over a signature Sig (briefly Sig-algebra), usually pre-

sented by d= (A,{f&: f ESig}), consists of a set A called the universe of G? and

a family of (basic) operations of d which, for each f E Sig, comprises an interpreta-

tion of f, that is a mapping fd : Ap(f) -+ A.

(The convention that a Roman capital letter stands for a universe of a structure

denoted by the corresponding calligraphic letter will be maintained in the sequel.)

A more general concept is that of a partial algebra [161, in which the operations

need not to be everywhere defined. In our considerations, it is natural to introduce

a yet more general notion of a semi-algebra over Sig, in which the operations may be

also over-defined. A semi-algebra is a structure of the form W = (B, {fB: f E Sig})
where, for each f E Sig of arity p(f), f a is a p(f) + 1 ary relation over B, that

is, f92F’(f)+‘. We shall write b-f(b,,...,b,(f,) to mean (bl,...,b,(,-,,b)E f@.
A (partial) algebra d can be viewed as a semi-algebra if we identify a function f d
with its graph.

Our two basic examples concern trees. It is well-known that the set of closed

terms over Sig can be organized into an algebra which is a free algebra in the

class of all algebras over Sig with the empty set of generators [161. This structure

can be further extended to an algebra of all syntactic trees over Sig that will be

8 D. NiwiriskiITheoretical Computer Science 189 (1997) 149

presented by 9& = (Tsig, {f%‘g) f E Sig}), where, for f E Sig and ti , . . . , tp(f) E Tsig,

f ytl , . . . , tp(f ,) is the unique Sig-tree t satisfying the following conditions:

l domt={a}U ldomti U...Up(f)domtp(f),

l t(a)=f,
l t(iw) = ti(w), for i E { 1,. . . , p(f)} and w E dom ti.

On the other hand, any tree t E Tsig can be itself considered as a semi-algebra t =

(dam(t), -V’ I f E W)) such that for all f E Sig, ff = ((~1,. . . , wp(f), w): t(w) = f }.
Note that in general t is not even a partial algebra (in the sense of [16]), since

a constant symbol c may be interpreted as a set of nodes (those for which t(w) = c),

rather than a single node.

We call a semi-algebra 9? operationally complete if any b E B is in the image of

some operation, that is, there is some f E Sig, and bl, . . b,(f) E B, such that b 1 f 1
(b 1,. . . , bk) (if p(f) = 0, this condition means simply b = fg).

For technical reasons, it is convenient to make the following assumption.

Proviso I

All semi-algebras considered in this paper are operationally complete.

Remark. It is natural to consider a mapping h : A -+ B a homomorphism from a semi-

algebra d to a semi-algebra g if, for each f E Sig and al,. . . , a,(f), a E A, (a,, . . . ,

u,(f), a) E f d implies (h(al), . . . , h(a,(f)), h(a)) E fa. This notion coincides with the

usual concept of homomorphism if _CZZ and g are ordinary algebras. Then, for any tree

t E T,ig, a mapping h: dam(t) -+ Tsig, given by w ++ t.w is a homomorphism from the

semi-algebra t to the algebra 9&s.

p-Algebras
A ,u-algebra over signature Sig is a pair (-Pe, <d), where & = (A, {f &: f E Sig})

is a Sig-algebra and <d is an ordering on A such that (A, ,<d) is a complete lattice

and all the operations f I, f E Sig, are monotonic.

It may be sometimes convenient to include the lattice operations V and A, or one

of them, to the family of basic operations of a p-algebra. We reserve the symbols V

and A for this purpose, they are always considered as binary and interpreted in the

standard way, whenever .x2 is a p-algebra. If V, A $! Sig, we abbreviate the signature

Sig U {V} by Sig,, Sig U {A} by Sig,,, and Sig U {V, A} by Sig,,. .

If d is a p-algebra over Sig, we define a p-algebra ~2” over Sig, as the enrich-

ment of d by the operation V&, interpreted as the least upper bound in (A, d .d).
The p-algebras ~9,, and dv,., are defined similarly.

Powerset algebras
Let 39 = (B, {f 9: f E Sig}) be a semi-algebra over signature Sig. The powerset

algebra of 33 is an algebra over SigV of the form

P=@ = (@3(B), {U) U {f @: f E Sig}),

D. NiwiliskiITheoretical Computer Science 189 (1997) 149 9

where, U = VpB is the (binary) set union and, for each f E Sig, and L,, . . , L,(f) C B,

f@(L,,...,L P(f))={b: Wl EL1,...,3a,(f)ELP(f))f~(al,...,apcr,)-b},

Now the universe of ~99, p(B), can be considered as a complete lattice with the

subset ordering and clearly all the basic operations of &?JJ are monotonic. Therefore,

the pair (@98, C) forms a p-algebra; in the sequel, we shall identify the powerset

algebra ~98 with this p-algebra.

Our most important example of a powerset algebra will be the powerset algebra of

the aforementioned algebra of syntactic trees over a signature Sig, in symbols @9&,

If a signature is fixed in the context or irrelevant, we shall usually call this structure

a powerset tree algebra.

Powerset algebras with intersection

By definition, @&$, is an enrichment of $19 by the lattice operation A that in the

lattice (p(B), G) is the set intersection. This enrichment may be essential since n need

not be in general definable from other operations. We shall note, however, that it is

redundant in the class of all powerset algebras, namely, that ~2% can be identified

with some @@, where g’ is a suitable enrichment of g.

To this end, we need a concept of isomorphism between p-algebras. Let d and d’

be p-algebras over the same signature Sig. We say that a bijectiue mapping h :A + A’

is an isomorphism from d to d’, if

1. it is an isomorphism of lattices, that is a 6&b if and only if h(a) <d,h(b), for any

a,bEA;
2. it preserves the basic operations, that is, h(f &(a,,. . .,a,(f)) = fd’(h(al), . . .,

h(a,(f))), for all f ESig and al,...,a,(f)EA.
Clearly, in this case the inverse mapping h-’ : A’ -+ A is an isomorphism from d’ to

d, which justifies the saying that the p-algebras A? and d’ are isomorphic .

Now let 63 be an arbitrary semi-algebra over a signature Sig. Without loss of gener-

ality we may assume that the symbol A is not in Sig. We shall consider a semi-algebra

69’ over the signature Sig,, such that B’ = B and f @’ = f 9, for all f E Sig, while A”’

is a (partial) operation defined by

aAa=a

a A b undefined for a # b.

Note that we have momentarily suspended our convention about the use of A since B
is not a lattice and so A”’ is not a greatest lower bound in any sense. However, if we

proceed to the powerset algebra of W’, we have obviously

L, A@@ L2 = L1 n L2

for any Ll, L2 5 B’ = B. Hence, the following is immediate.

10 D. Niwiriskil Theoretical Computer Science 189 (1997) 149

Proposition 1.1. The p-algebras (over signature Sig,,.) @L??$, and p&J’ are
isomorphic.

1.3. Automata

We are going to present the concept of a finite-state automaton which can have in-

finite yet successful computations. Traditionally, automata of that kind are considered

as running over infinite objects, e.g. infinite words or trees with infinite paths (cf. His-

torical note on automata below). In the present framework, we allow an automaton

to run over elements of an arbitrary semi-algebra. Classical automata on trees fit that

concept as a typical case. We remark that a computation of an automaton may be

infinite also if the underlying algebra is finite.

Informal description

Essentially, an automaton consists of a set of transitions and a global acceptance

condition. Transitions are equations of the form x = f(xl , . . . , Xk), where f E Sig. Here,

x,x1,. . . ,xk are the automaton’s states. A computation of an automaton in a semi-

algebra 98 can be described as a process running in discrete, possibly infinite time.

Initially, one copy of the automaton examines some element of the semi-algebra as-

suming an initial state. At each moment, a number of elements of 98 will be examined

by a number of copies (not excluding that many copies can examine the same ele-

ment), but all these copies operate independently, without any communication. Suppose

that a copy of the automaton examines an element b E B assuming a state x. Then it

tries to decompose b according to some transition x = f (xl,. . . ,xk), that is, to find

some b ,,...,bkEB, such that b-fB(b 1,. . . , bk). If this attempt succeeds, our copy

splits into k new copies that are sent to the elements bl, . . . , bk, assuming the states

Xl,..., Xk, respectively. Note that a transition is chosen nondeterministically, but once

it is determined, all the new-born copies must appear. We note that a transition may

have a form x = f where f is a constant symbol, in this case decomposition succeeds

if b t f g and, if so, this computation path successfully terminates.

Now if we follow an infinite path of the computation process, we can see an infi-

nite sequence of states, some of them, due to finiteness of the automaton, reappearing

infinitely often. Thus, with each infinite computation path, we can associate its perma-
nent set of states. This is of which the global acceptance condition of the automaton

will take care, by specifying which sets of states are accepting permanent sets. The ac-

ceptance paradigm is that the whole process is accepting iff all its paths are accepting,

and, a given element b is accepted (or recognized) by the automaton if there exists an

accepting process, in which b is examined initially. In this way an automaton defines

a subset of B consisting of the accepted elements.

In view of subsequent applications, it will be usetil to introduce a slight techni-

cal extension of the above-described concept, such that an automaton may define a

k-ary operator (P(B))~ ---f p(B) rather than just an element of @3(B). To this end we

equip an automaton with an additional feature called variables. A variable may occur

D. Niwiriskil Theoretical Computer Science 189 (1997) 149 11

on the right-hand side of a transition x = f(xi, . . . , xk) but not on the left-hand side.

A computation process is defined w.r.t. a valuation of the variables by subsets of B.
Now if a copy of automaton examines an element b E B assuming a variable z instead of

a state, the computation path terminates in this point and it is successful iff b belongs

to the set associated with z by the valuation. (The acceptance criterion for infinite paths

remains unchanged.) Thus, an automaton defines an operator from the set of possible

valuations, which can be identified with some (P(B))~, to g(B).

We shall now give the formal definitions of the concepts described above. It is

convenient to separate the “local” and “global” parts of automaton.

Pre-automata
A pre-automaton over a signature Sig can be presented as a tuple

A = (Sk Q, K Tr),

where Q is a finite set of states, V is a finite set of variables, and Tr is a set of

transitions, Tr & IJ fEsis Q x W x (Q ” UPcf).
Each transition is therefore a tuple (y, f,xi ,..., xp(f)) where f ESig, ~EQ, and

x1,. , . ,xp(f 1 E Q U V. We shall usually represent such a transition as an equation

Y = ml , . . . ,q,(f)). The variable y will be referred to as the head of the transition

y=f(x1 ,...,x,tf)). Note that if p(f)=O, a transition has form y=f.

The semantics of the automaton is defined as follows. Let 33 be a semi-algebra. Let

val be a valuation that associates a subset of B with any variable in V. A run of the

pre-automaton A w.r.t. the valuation ual is formally represented as a tree r : dom r + B x

(Tr U V), with domr G w*, satisfying the following conditions.

Let w E dom r and suppose r(w) = (b, /?). Then,

l if /I is a transition in Tr, say y = f(xi, . . . ,xk), then w has k immediate successors

in domr, wl,..., wk, and r(wi) = (ai, mi), where
_ c(i is a transition with head xi, if xi is a state,
- Cli is xi, if xi is a variable,

- b-fg(al,...,ak)
l if /I is a variable in V, say z, then w is a leaf of r, and b E val(z).

With a run r, we associate two other trees over the same domain, that we will call the

element part and the state part of r and denote by r r, and r fZ respectively. The tree

r t, : dom r + B is defined as the composition 3 xlor, and the tree rt2:domr-+Qu V

is defined by

rT2(w)=

y if 712 o r(w) is a transition with head y,

Z if 712 or(w) is a variable z.

(Here zi is the projection of the Cartesian product B x (Tr U V) on the ith component.)

A run r such that r(c) = (b, q) will be called a q-run of A on b.

3 Throughout the paper, composition of mappings f : A +B and g:B-+C is denoted gof.

12 D. Niwiriskil Theoretical Computer Science 189 (1997) Id9

Global acceptance conditions

An automaton over signature Sig is presented as a tuple

A = (Sig, Q, K 40, TV, Act),

where (Sig,Q, V, Tr), is a pre-automaton, qo E Q is an initial state, and Act is an

accepting condition.

As we have mentioned in our informal description of automata, an accepting con-

dition is essentially a property of sets of states, so it can be always represented by

a subfamily of p(Q). For technical reasons, it is often convenient to consider more

specific kinds of acceptance conditions that can be represented in more succinct way.

We mention below four kinds of accepting conditions with which we associate the

names of R.J. Btichi, D. Muller, M.O. Rabin, and A.W. Mostowski (see Historical

note on automata below). According to the actual accepting condition, we shall refer

to Biichi, Muller, Rabin and Mostowski automata, respectively. We will say simply

“automaton”, if the acceptance condition is irrelevant to the considerations.

Now, for each of the aforementioned accepting conditions we give its representation

and specify which subsets X C Q are considered accepting.

l Muller acceptance condition is given by a family of sets of states, Act = F C a(Q),

and a set X 2 Q is accepting if X E 97

l Biichi acceptance condition is given by a set of states, Act = F Cc Q; a set X & Q

is accepting if X n F # 0.
l Rabin acceptance condition is given by a collection of pairs of sets of states,

Acc={(L1,Ul),..., (L,, U,,)}; and a set X c Q is accepting if, for some i E { 1 d i Q

n}, X n Ui # 0 while X n Li = 0.

l Mostowski acceptance condition is given by a mapping rank: Q -+ w; and a set

X C Q is accepting if max{rank(x): x EX} is even.

Since an automaton is a pre-automaton with some additional features, the concept

of a run extends to automata immediately. Let $8 be a semi-algebra, and let r be

a run of A over &? w.r.t. some valuation val. Let P = (WO, WI,. . .) be an infinite path

in domr. Recall (Section 1.1) that Inf(r f2, P) is the set of states that occur infinitely

often along the path P in the state part of r. We consider the path P accepting if the

set Inf(r T2, P) is accepting according to the condition Act.
Note that for the Biichi condition it means that some state of F will reappear in-

finitely often; for the Rabin condition it means that, for some i, some state of G will

reappear infinitely often and all states of Li will disappear after finite time; for the

Mostowski condition it means that the highest rank of a state occurring infinitely often

is even.

A run is considered accepting if all its infinite paths are accepting. An element b E B
is accepted (or recognized) by the automaton A w.r.t. a valuation val, if there exists

an accepting run r w.r.t. this valuation, such that r rl (E) = b and r 1‘2 (E) = qo. The set

of all such elements will be denoted A-@[vaZ].
We usually present the valuations explicitly, e.g. zi ++ K1, . . . ,z, w K, (Z++d, for

short), where V = (~1,. . . ,zm} and Kl,. . . , K, C B. Thus, an automaton with m variables

D. Niwitiskil Theoretical Computer Science 189 (1997) 149 13

(given in some order) induces an m-ary operator on p(B) that sends a tuple I? onto

Ag[Zt+g]. We shall denote this operator by A%[z’] or simply by Ag. We shall also

write A(21 , . . . ,z,) to specify the variables of automaton A.

Rabin automata vs. other kinds of automata

We say that two acceptance conditions Act and Act’ over the same set of states Q

although possibly of different kinds are equivalent if any set X C Q is accepting ac-

cording to Act iff it is accepting according to Act’. As we have already remarked, any

Biichi, Rabin, or Mostowski condition can be presented as a Muller condition. Also,

a Biichi condition given by a set of states F is obviously equivalent to a Rabin con-

dition ((0,F)).

It is also easy to see that the Mostowski condition given by a mapping rank : Q -+ w

is equivalent to a Rabin condition of the form ({q: rank(q) is odd and >i + l},

{q: rank(q) is even and ai}), where i ranges over even numbers less than or equal

to max rank(Q).

The last suggests a certain normal form of Rabin acceptance condition: we say that

a Rabin condition is in the chain form, whenever it can be presented by Act = {(L, , U1),

. ..> (L,, U,,)}, where LI > L2 > . . . 2 L,. We shall show that a Rabin condition as above

is in turn equivalent to a Mostowski condition. Let the mapping rank be defined by

l rank(q) = 2i, for the greatest i such that q E Ui - Li, whenever such an i exists;

otherwise:

l rank(q) = 2i + 1, for the greatest i such that q E Li, whenever such an i exists;

otherwise:

l rank(q) = 1.

We shall verify that both conditions are equivalent. Suppose that X C Q is accepting

according to the Rabin condition. Let i be the greatest one such that X n Li = 0 and

X n Ui # 0, and let q E X n (Ui -Li). Then rank(q) is even and rank(q) 2 2i, while no

state q’ in X may have an odd rank rank(q’) > 2i. Conversely, if max{rank(x): x E X}

= 2i, it is easy to see that X is accepting according to the pair (Li, G).

We shall refer to Rabin automata with a condition in chain form, briefly, as to Rabin

chain automata. Thus, Mostowski automata and Rabin chain automata are equivalent

up to easy translations.

Note: Thomas [50] considers an apparently more restrictive form of a chain condi-

tion; in our notation it would amount to the requirement that the sets L,, U,,, L,+l, U,,+, ,

. . .) L,, l_J, form an increasing chain. However, whenever LI > L2 > . . .> L,, the condi-

tion {(Ll,Ul),...,(L,,U,)} can be transformed to such a form in two steps. First, it is

equivalent to {(LI U U2 U.. . U U,, VI), . . . , G-1 U U,, G-I >, (L,, K)}. Next, we can
replace each pair (X, Y) by (X,X U Y).

We say that two automata A and A’ are (semantically) equivalent if, for any semi-

algebra .?2j they define the same operator, that is, A# = A@. Clearly, if two accep-

tance conditions Act and Act’ over Q are equivalent then, for any pre-automaton

A with the set of states Q, the automata (A, Act) and (A, Act’) are equivalent.

14 D. Niwiriskil Theoretical Computer Science 189 (1997) 149

However, there exist more subtle relationships between different kinds of automata, usu-

ally involving transformation of the whole automaton rather than merely the acceptance

condition. We summarize the known facts below (they have been originally proved

for automata on k-ary trees, but the proofs adapt without difficulty to our automata

as well).

Theorem 1.2 (Rabin [41]). Any Muller automaton is equivalent to some Rabin auto-

maton.

Theorem 1.3 (Mostowski [29]). Any Muller automaton is equivalent to some

Mostowski automaton.

In contrast:

Theorem 1.4 (Rabin [42]). Let Sig = {a, b}, with p(a) =p(b) =2. The set of trees
t E Tsig, such that, on each path in t, b occurs only finitely often is recognizable by

a Rabin automaton, but not by any Biichi automaton.

Transformation from Muller to Rabin automata is rather standard, although it may

increase the size of an automaton exponentially. Transformation from Muller to

Mostowski automata originally given in [29] is double exponential; however Thomas

[50] gives an elegant construction that increases the number of states from n to at

most n!.

It should be noted that the three kinds of equivalent automata apparently differ in

succinctness, and consequently also in the complexity of the emptiness problem. The

emptiness problem for Rabin automata over infinite trees has been proved

NP-complete by Emerson and Jutla [lo], while the only upper bound known to us

for the similar problem for Muller automata is double exponential. The emptiness

problem for Mostowski automata is in NPnco-NP, and it is a fascinating hypothesis

that it may actually be in P. By contrast, the emptiness problem for Biichi automata

is logspace complete for PTIME [42,51].

In this paper, we primarily consider automata with the Rabin acceptance condition.

This choice may be questioned, as the Muller condition is more general mathematically,

while the Mostowski condition is quite simple and would make some proofs more

elegant. On the other hand, the Rabin condition is based on the fundamental temporal

property some event repeats infinitely often. We believe that if someone wishes to use

automata for modeling behavior of a continuously operating parallel system, e.g., an

e-mail net, she will rather use the Rabin acceptance condition. In our characterization

of the computations of an automaton by fixed point operators, we shall see that the

two basic temporal properties used in the Rabin condition: “repeating infinitely often”

and “repeating only finitely often” are precisely captured by the greatest and the least

fixed point operators, respectively; this correspondence would not be apparent if we

have chosen another acceptance condition.

D. NiwiliskiITheoretical Computer Science 189 (1997) 149 15

Index of Rabin automaton

For a Rabin automaton with an acceptance condition of the form {(Li, U1), . . , (L,,

U,,)}, with n Z 0, the number n is called the index of the automaton.

For our investigations of the expressive power of Rabin automata, it will be useful

to refine this concept of index, taking into account that some acceptance pairs pro-

vide, in a sense, weaker restrictions than others. Indeed, there are two reasons for this.

A pair of the form (0, &) imposes only a positive constraint on the set of repeating

states: some states have to reappear infinitely often. On the other hand, if for some

pair (Li, Ui), Li U Vi equals to the set of all states of the automaton, then the constraint

is purely negative; indeed, any path that does not meet the states from Li infinitely

often, is accepting according to this pair 4 . Note that a pair (0, Q) gives no constraint

at all.

These observations motivate the following definition.

We say that a Rabin automaton has index n weakened by 0, if it has index n and

the acceptance condition contains at least one pair of the form (0, U). We also say

that an automaton has index n weakened “by all”, if the acceptance condition contains

(at least) one pair (L, U) such that L U U = Q.
Note that an automaton can have index n weakened both by 0 and “by all” if the

acceptance condition contains either two pairs corresponding to the both restrictions

or a pair (8, Q), where Q is the set of all states (for an index n = 1, the latter is the

only possibility). Also note that an automaton with empty acceptance condition has the

index 0 which, by definition, may not be weakened by anything.

Proviso 2

In order to avoid some tedious exceptions, we shall henceforth assume that for

any automaton A in consideration, for any state x of A, there is always at least one

transition of A with the head x (that is, in a form x = r). Clearly, any automaton can be

transformed to an automaton satisfying this assumption by adding some dummy states,

although in one case this may require the change of the automaton’s index, namely

when this index is 1 weakened both by 0 and “by all”.

Remark. We note that Proviso 2 can be in a sense viewed as a special case of

Proviso 1. Indeed, a pre-automaton A = (Sig, Q, V, Tr) may be viewed as a semi-algebra

over signature Sig U V (with p(z) = 0, for z E V), the universe of which consist of

QU V and the operations are defined by x- fA(xl,...,xp(f)) iff x= f(xl,...,xpCfj) is

a transition in Tr, and zA =z, for z E V. Then our Proviso 2 means that this algebra is

operationally complete.

4 It is not required in the definition of Rabin acceptance condition that L, n (i, = 0, but it should be clear

that a pair (Li, U) is semantically equivalent to (L,, U\L,). In particular, a pair (L,, C/iii) with L, u U, = Q is

equivalent to (Li, Q).

16 D. NiwiriskiITheoretical Computer Science 189 (1997) 149

Automata on trees

An automaton A = (Sig, Q, V, qo, Tr, Act) can, in particular, run in the algebra of trees

.Y&. Let val: V -+ ~(TsQ) be a valuation and let t E Z&. Consider a run Y of A w.r.t.

the valuation val which initially examines the tree t. Since any subtree of t induced

by a node w can be uniquely decomposed in Ysig by t. w = f %g(t. wl,. . . , t. wp(f)),
where t(w) = f, it can be easily seen that domr C domt and moreover the element

part of the run satisfies Y rl (w) = t .w, for each w E domr. (For an automaton without

variables, the domains domr and domt coincide.) Thus, the element part of the run

is redundant in this case as it can be all retrieved from r T1 (E). 5 This leads us to a

simplified definition of a run in algebra of trees, which is the classical definition with

only a slight modification due to the presence of variables:

A run of an automaton r on a tree t w.r.t. a valuation val is a tree Y : dom r -+ Q U V,
such that dom Y & dom t and, for each w E dom Y,

(1) if Y(W) E Q and t(w)= f with p(f)= k, then wl,...,wk are in domr and

r(w) = f (r(wl), . . .) r(wk)) is a transition in Tr;

(2) if T(W) E V, say T(W) =z, then w is a leaf of Y and t.w E vaZ(z).

Clearly, if Y is a q-run on a tree t in a former sense then the state part of Y, r T2,

is a q-run on t in the classical sense. Conversely, any run in the classical sense can

be extended to a run in our sense in obvious way. Moreover, these transformations

preserve the satisfaction of global acceptance conditions. Therefore, for the algebra of

syntactic trees, our semantics of automata coincides with the classical one.

Alternating automata. Muller and Schupp [32] extended the concept of nondetermin-

istic automata on trees to alternating automata. There are several equivalent ways of

introducing this notion [30, 121. Close to the our setting, we can present an alternating

automaton by a tuple A = (Sig, Q, V, qo, Tr, Act) as above, where we additionally allow

the set Tr to contain transitions of the form

x=yAz,

where x E Q and y,z E Q U V. The semantics can be defined in game-theoretic terms.

Let t E Tsig and a valuation val: V + @(Tsig) be given. Consider a game of two players,

say Automaton and Opponent. The game will consist of a finite or infinite sequence

of plays; a position of a play will consist of a pair (w,x), where w is a node in dom t,

and x is an item in Q U V. The initial position is (E, 40). If an actual position is (w, y)

with y E Q then Automaton makes move by choosing a transition in Tr with a head y;

the transition may be of a form y = f (xl,. . . , Xk), where t(w) = f, or y =x A z. In the

former case, if moreover f is a constant symbol (that is, k = 0) then the game is over

and Automaton wins. Otherwise Opponent answers by choosing some i E (1,. . ., k};

then the next position becomes (wi,xi). If the transition chosen by Automaton was

5 We could alternatively consider a run of A in the semi-algebra t as defined earlier, initially examining

the root of t. In this case, we would have simply I r 1 (w) = w, for w E dom r.

D. Niwiriskil Theoretical Computer Science 189 (1997) 149 17

y =x A z then Opponent selects one of the conjuncts and then the next position is

(w,x) or (w,z) according to this choice (note that the node part of the position has

not changed). 6 If the actual position was (w,z) with z E V then the game is over

and Automaton wins iff w E vaZ(z). If the game is played infinitely then an infinite

sequence of positions is selected. In this case, Automaton wins iff the set of variables

that occur infinitely often at these positions satisfies the acceptance condition of A,

otherwise, Opponent is the winner.

The set accepted by A under a valuation val consists of those trees t E Tsig for which

Automaton has a winning strategy in the game described above.

On the other hand, an automaton A presented above can be viewed as our automaton

over the signature Sig,, and we can consider a computation of this automaton in the

semi-algebra 9& obtained as an enrichment of 9& by the interpretation of A given

by t A t = t and t A t’ undefined for t # t’ (Section 1.2).

Now, it is straightforward to see that these two semantics coincide, that is, a tree

t is accepted by automaton A interpreted in 9$ if and only if it is accepted by

the same A considered as an alternating automaton with the game-theoretic semantics

defined above. Indeed, an accepting run of A in F& induces a winning strategy for

Automaton and, conversely, from a winning strategy, an accepting run can be easily

reconstructed.

Thus the concept of alternating automata on trees is subsumed by our notion of

automata over arbitrary semi-algebras.

We shall not consider in this paper alternating automata over arbitrary semi-algebras.

It can be noted, however, that the game semantics described above readily applies to

our automata over semi-algebras as well. Since an arbitrary semi-algebra can be en-

riched by the operation A as above, it can be argued that our concept of automata

captures already some essential features of alternation (nondetenninism and running

parallel computations).

Elimination of variables. At this point we would like to make an observation that

the operators over g(Tsiy) computed by (ordinary) automata with variables can be also

characterized by tree languages computed by automata without variables, but over ex-

tended signature. More specifically, given an automaton A(zI, . . . , z,) = (Sig, Q, {zl,. . . ,

zm}, qo, Tr, Act), let us consider an automaton A’ over a signature Sig’ = Sig U {zi, . . . ,
zk}, where the z!‘s are some fresh symbols and p(.$) = 0, for i = 1,. . , m, defined by

A’ = (Sig’, Q U V, 8, qo, Tr’, Act), where the set of transitions Tr’ is obtained from Tr
by adding the equations zi = z!, for i = 1,. . . , m. Note that the automaton A’ has no

variables.

The following fact can be easily derived from the definitions.

6 In this setting, the players may stay at the same node for ever, which is usually not allowed in a classical

alternating automaton. It can be easily prevented by suitable restrictions on transition table of the automaton.

18 D. Niwiriskil Theoretical Computer Science 189 (1997) 149

Proposition 1.5. For any Kl,. . . ,K,,, C Gig,

W)[zl HKI ,..., z,t+K,]=L(A’)[z; +&,...,z; +K,,J

Examples of automata

1. Let Sig = {f, c}, where f is binary and c is a constant symbol. The following

Biichi automaton accepts the set of trees that possess an infinite path on which infinitely

many nodes have a left successor labeled by c:

Q = {search, don’t-care, guess, check}

qo = search

F = {guess}

and the set of transitions Tr consists of the following equations (written in the Backu-

Naur form):

search = f(search, don’t-care) 1 f(don’t-care, search) 1

f(don’t-care, guess) 1 f(guess, don’t-care)

guess = f(check, search)

check = c

don’t-care = f(don’t-care, don’t-care) 1 c

2. Let a, b, c be binary symbols and let L be the set of trees over {a, b,c}, such that,

on each path, both a and b occur infinitely often and c only finitely often. Then L is

accepted by a Muller automaton with the states seen,, seenb, seen, (any of which can

be initial state) and the transitions

seen, = d(seend, seend)

for x, d E {a, b, c}, and with the acceptance condition 9 = {{seen,, seem,}}.

Note that replacing this Muller acceptance condition by a Rabin condition {({seen,},

1 seen,, seem,})} would not lead to an equivalent automaton, since the last does not

force that both a and b occur infinitely often along a path. The set L can be however

recognized by a Rabin automaton, obtained from the above by adding a state success,

and the transitions

seen, = b(success, success)

seenb = a(success, success)

success = d(seend, seend)

for d E {a, b, c}. The acceptance condition of this automaton will be {({see&}, {succ-

ess))).

D. Niwiriskii Theoretical Computer Science 189 (1997) l-69 19

3. Consider an automaton with one state x and two variables Y,Z, given by the
transitions

X=a(x,x)) b(Y,Z)

and the trivial Biichi condition F = {x}. Then this automaton defines a binary operator
over @r&r that sends a couple (K,M) on the set of trees t E 9& such that, for each
path, if b OCCUTS the first time on the path, say at a node w, then the subtrees t .wl

and t .w2 belong to 151 and M, respectively.
4. Let A = (Sig, Q,qo, Tr, Act) be an automaton (without variables). Following a re-

mark after Proviso 2, the set Q can be organized into a semi-algebra over Sig (let us
call it also A), such that x h fA(xi,. . .,x,,(f)) iff x = f(xi ,..., +(f)) is a transition in
Tr. Any q-run Y of A in any semi-algebra B, on any element b, induces a q-run of A

in the semi-algebra A, on the element q. (The state part of this new run coincides with
that of r, and the element part coincides with the state part.) On the other hand, it
is easy to see that any q-run of A in B also induces a q-run of A in .J?&, on some
tree in T&. Then, the following conditions are equivalent: (i) there exists an accepting
q-run of A in some semi-algebra !%, (ii) there exists an accepting q-run of A in the
semi”algebra A on q, and (iii) there exists an accepting q-run of A in 9~~~.

Historical note on automata

A comprehensive survey of automata on infinite objects is given by Thomas [49];
an essay by Emerson [7] discusses the role of Bfichi’s ideas in computer science. Here
we only briefly recall some points relevant to our considerations.

Infinite compu~tions of finite-state automata have been considered for the first time
by Biichi [5] and Muller [31]. Considering such automata as running over infinite
strings and taking as an acceptance criterion that a successful state should reappear
infinitely often, Biichi proved the basic closure properties of these automata which
allowed him to characterize the formulas of monadic second-order logic interpreted in
w with (only) successor operation (see Section 6 below) and to establish de~idabili~ of
this theory. Roughly speaking, one can say that any formula of monadic second-order
logic over w describes a set of infinite computations of some automaton (interestingly, a
similar paradigm appears in finite model theory). Rabin [41] proved an analogous result
for the monadic second-order theory of a tree with k successor operations, but now
the closure under complement was a very di~cult result, involving deep mathematical
ideas. Also, the Biichi’s acceptance condition turned out to be too weak; Rabin used
a more general condition proposed by Muller [31] and also its restricted but sufficient
form that we now refer to as the Rabin condition. Several authors attempted to simplify
the Rabin’s proof. Gurevich and Harrington [18] gave a proof via a rather difficult
dete~inacy result for some infinite games with finite memory, with automaton as
one of the players. In search of a yet more comprehensive argument, Mostowski was
looking for automata capable to play with no memory at all; he succeeded with a
concept of automata with a chain acceptance condition that, up to our knowledge, had
been for the first time introduced by Klaus Wagner [52] (see also [53]) in context of

20 D. NiwiriskilTheoretical Computer Science 189 (1997) 149

automata on infinite words. Mostowski proved already in 1985 [29] that tree automata

with this condition have the same accepting power as all Muller automata, and in [30]

gave his proof of the Rabin complementation lemma. Incidentally, essentially the same

acceptance criterion together with its memory-less property, has been later rediscovered

by other authors, namely by McNaughton [28], under the name of a “split-free” Muller

condition, 7 and by Emerson and Jutla [12], under the name of a parity acceptance

condition. The latter authors have also pointed out the relation between this condition

and the fixed point calculus. In the present paper we have adopted the formulation due

to Emerson and Jutla, but we think it justifiable to refer to the condition by the name

of Mostowski who was the first to adopt the condition for automata on trees.

A generalization of the concept of automata to arbitrary algebras (not yet semi-

algebras) has been proposed by Niwinski in [36]; a related concept of alternating

automata running over transition systems has been considered recently by Janin and

Walukiewicz [2 11.

2. Fixed point calculus

We first recall basic concepts and results concerning the least and greatest fixed

points of monotonic mappings over complete lattices. Two issues are highlighted: the

uectoria2 fixed points, which are conceptually very natural and technically useful, and

a hierarchy induced by alternation of the least and greatest fixed point operators, which

provides a natural measure of complexity of fixed point definable objects. Then, we

introduce a logical formalism intended to deal with fixed point definable operations.

2.1. Basic results

Let (L, <) be a complete lattice (cf. Section 1.2). The following basic result is due

to Knaster [22] and Tarski [48].

Theorem 2.1 (Knaster [22] and Tarski [48]). Any monotonic mapping f : L -+L has
a least fixed point

~x.f(x)=n{uELIf(a)da}

and a greatest jixed point

vx.f(x)=~{aEL~adf(a)}.

Proof. We shall show the second part of the result. Let r be U {u E L 1 a<f(a)}.

If b is a fixed point of f then b <r. It remains to verify that Y = f(r). Inequalities

a<f(a) and adr imply, by monotonicity of f, ad f (r). Thus r < f (t-). Further,

f(r)<f(f(r)), and then f(r><r. 0

7 This is a Muller condition 9, such that if two sets X, Y both are (are not) in 9, so is (is not) X U Y.

D. Niwiriskil Theoretical Computer Science 189 (1997) 149 21

A well-known representation of extremal fixed points is provided by the notion of

transfinite iterations. We shall not need this representation in further consideration, but

we note it (without proof) for the sake of completeness.

Let f : L -+ L be a monotonic function. Define inductively the transfinite sequences

f '(1) and f 5(T), where { is an ordinal number, by fO(l_) = I, f’+‘(i) = f (f ((l)),

and fr(l)=U{f'Y-L)Iq<t}, if 5 is a limit ordinal; fO(T)=T, f<+‘(T)=
f(f t(T)), and f t(T) = n {f q(T) 1 q < 0, if 5 is a limit ordinal.

Theorem 2.2. There exist ordinals 01 and M’ such that

and

vx.f(x)=f"'(T).

Remark. The reader may have noticed the symmetry between the properties of the

least and the greatest fixed points. An obvious justification of this fact comes from

consideration of the dual lattice (~5, 6 *) of (L, <), where 6 * = 2. Clearly, a mapping

f : L -+ L is monotonic in the latter lattice iff it is monotonic in the former one, hence

the least fixed point of f in (L, <) is the greatest fixed point in (L, < *), and vice

versa.

Combinatorial properties of fixed points

If @l, Gl),...,@ ,,,, Go) are complete lattices so is the Cartesian product Li x . . . x

L, with the product ordering (al ,..., a,)<(b, ,..., b,) iff ai<ibi, for i=l,..., m. We

call a mapping with the domain L1 x . . . x L, monotonic if it is monotonic w.r.t.

the product ordering. In particular, a mapping g : L” -+ L is monotonic if, for any

al,...,a,,bi , . . . , b,, a’< b’ implies g(Z) <g(g). The monotonic mappings f : L” --) L will

be called operations over L. Suppose h is a monotonic mapping from L x K to L and

fix an element of K, say a, as a second argument of h. Then we obtain a monotonic

mapping h(x, a) : L -+ L. We can further consider the mapping from K to L which sends

a on the least fixed point of h(x, a); we shall denote it by ,ux. h(x, y); the mapping

vx. h(x, y) is defined similarly. It is easy to see that these two mappings are again mono-

tonic. In this context, ,u and v can be viewed as operators that, given an operation on L,
f : L” -+ L, produce new operations such as pxi . f (xl,. . . xn), vx3 .px2. vxl . f (xl,. . . ,x,).

Remark. A reader who is not yet at ease with the above notation for nested fixed

points, may find it helpful to think in terms of solving equations. Let, for example,

f : L3 --) L be a monotonic mapping over a complete lattice L. For fixed x2,x3 EL,

an equation xi = f (x1 ,x2,x3) has the least and the greatest solution in L. Then vxl

f (x1,x2,x3) denotes the mapping that sends a couple (x2,x3) onto the greatest solution

of the above equation. Now, for fixed x3, consider an equation x2 = vxl . f (x1,x2,x3).

Then ~2 .vxi . f (x1,x2,x3) denotes the least solution of this last equation as a function

22 D. NiwiriskilTheoretical Computer Science 189 (1997) l-59

of argument x3. Finally, 1x3 .px2. vxl .f(x, ,x2,x3) denotes the greatest solution of the

equation x3 = pq . vxl . f(xl ,x2, x3).

We recall some basic properties already noted in [35].

Proposition 2.3. If g(x, y) is an operation then

Px.Py.g(x>y) = Px.g(x>x)

similarly for v.

Proof. Let a = px.py.g(x, y), b = px.g(x,x). We have a = py.g(a, y) = g(a, py.g

(a, y)) = g(a, a), hence b < a. To prove a 6 b, by Theorem 2.1 it is enough to show

py .g(b, y) db. This follows from the fact that b = g(b, b). q

Proposition 2.4. If g(x, y) is an operation then

Proof. Let a = px. vy .g(x, y). We have a = g(a, a) and hence px .g(x, a) da. By mono-

tonicity of the operation vy.g(z, y) (with respect to z), we infer

vY.g(~x.g(x,a),Y),<vY.g(a,Y)=a

(the last equality follows from the definition of a).

Then, by monotonicity of g, we obtain

g(Px.g(x,a),vy.g(~x.g(x,a),~))dg(~x.g(x,a),g)

and, by reducing the both sides,

vy.g(Clx.g(x,a),y)~~x.g(x,a).

By Knaster-Tarski Theorem 2.1, this last inequality implies ,UX . vy . g(x, y) < px. g(x, a),

with the left-hand side equal to a. Then, again by Theorem 2.1, a < vy .,~x.g(x, y), as

required. 0

Fixed point clones

Let (L, <) be a complete lattice. For n 2 0 and i Qn, let rci : L” + L be the ith

projection of L” on L, i.e. rr: : (al,. . . ,a,) t+ Ui.

A family of operations on L, say g, is called a clone if it contains all the projections

and is closed under composition, that is, if f (xl,. . . ,x,),gl(y’), . . . ,g,,(y) are in V?, so

is f(g~(.?),...,g~(.G)).
A family %? is a p-clone if it is a clone and moreover is closed under the ,u operator,

that is, if f (xl,. . . , x,) is in V, so is ~x~.f(xt,. . . ,x,,), for i = 1,. . . ,n. A v-clone is

defined analogously. Finally, a family GC is a jixed point clone if it is both a CL- and

v-clone.

D. Niwiriskil Theoretical Computer Science 189 (1997) 149 23

For a family of operations 9 and q E {p, v}, the (v-) clone generated by ZF is the

intersection of all (q-) clones containing 8, which is obviously also a (q-) clone.

We denote the clone generated by a family 9 by Camp(F), the p-clone generated

by F by p(P), the v-clone generated by B by v(9), and the fixed point clone

generated by B by fp(9). Note that fp(9) is the closure of 9 under composition

and under the least and the greatest fixed point operators.

It follows from the definitions:

Proposition 2.5.

P(F) = O(F)) = AComp(V) = Comp(p(W>,

v(9) = v(v(9)) = v(Comp(Y)) = Comp(v(9)).

The fixed point clone generated by a given family of operations can be organized

into a hierarchy according to the number of alternations of p and v. Adopting notation

from the recursion theory, we form the classes zli and II/, n 2 0 as follows (here the

superscript “p” stands as a decoration):

Z:(P) = n;(Y) = Camp(Y),

c;+,(9) = P(n;(Y)),

n;+,(9) = v(Ci(F)).

Clearly,

Remark. The choice of the letter C for the classes constituting p-clones, and the letter

ZI for the v-clones is motivated by the characterization of the least fixed points as the

unions of iterations and the greatest fixed points as intersections (Theorem 2.2). In

this respect our notation follows, e.g. the standard notation for Bore1 classes. It can

be noted however that the opposite choice could also be advocated, in view of the

characterization given by the Knaster-Tarski Theorem (Theorem 2.1). Thus, the actual

notation (also used by some other authors [13,27]) is fixed here with some degree of

arbitrariness.

Vectorial fixed points
It is often convenient to consider systems of fixed point equations; many objects,

as e.g. grammars, are usually presented in that way. Readily, a system of fixed point

equations over a given lattice can be considered as a single equation over a suitable

product lattice; this leads us to the concept of “vectorial fixed points” that we shall

analyze in this subsection more closely. It turns out that vectorial fixed points do not

add any new operations to fixed point clones.

24 D. Niwiriskil Theoretical Computer Science I89 (1997) 149

Let ~I(YI,...Y~,zI,...,z,),...,~~(Y~,... yk,zl , . . . ,zm) be monotonic operations on L.
The product mapping x(y’,Z) : Lk+“’ -+ Lk IS monotonic with respect to the product

ordering. We call it a vectorial operation on L. According to our convention, pLy’.@(y’,z’)

denote the mapping from L”’ to Lk that sends a vector a’ to the least solution of the

system of equations

Yl = h(y’,a’),

yk = hk(y’, a->.

We shall show that the ith component of that mapping, namely n:@y’.@,Z)), may

be obtained from the operations hi , . . . , hk, using composition and the p-operator.

Lemma 2.6. Let (L, <L) and (K, <k) be two complete lattices, let Fl : L x K + L and
F2 : L x K -+ K be monotonic mappings, and let F = (Fl, F2) : L x K -+ L x K. The two

components of the least fixed point pxy.@(x, y) of F satisfy the following equalities:

Proof. Let us denote by a and a’ the left- and right-hand side of the first equation,

and b and b’ those of the second equation.

We have a=Fl(a, b) and b = F2(a, b), since (a, b) is a fixed point of F. Hence,

px.Fl (x, b) <a and ,~y .F~(u, y) d b. By monotonicity of F1 and F2, F&x .Fl(x, b),
b)<F2(u,b)= b and Fl(u,py.F2(u, y))<Fl(u,b)=u. It follows that b’6b and u’6u.

On the other hand, u’=Fl(u’,py.F2(u’,y)) and b’=F&x.Fl(x,b’),b’). Let b”=
py . F~(u’, y)) and u” = px . F1 (x, b’). We have u’ = F1 (a’, b”), b’ = F~(u”, b’), b” = F2
(a’, b”), u” = Fl(u”, b’). It follows that (a’, b”) and (a”, b’) are fixed points of p:,

hence, a da’ and b <b’. 0

Clearly, a similar result can be proved for greatest fixed points.

This result can be extended in the following way:

Proposition 2.7. Let hi : Lk”” -+ L, for 1 <i dk, be monotonic mappings. Each com-
ponent of p_z?.h((x’,~) belongs to n({hi 1 1 <idk}).

Proof. Let us prove this result by induction on k. If k = 1, there is nothing to prove.

Otherwise, let us write F1 = hl, F2 = (h2,. . . , hk), and z’= (X2,. . . ,Xk) and let us ap-

ply Lemma 2.6 and the induction hypothesis. The first component of G.@?, j) is

equal to pxi .hl(xl,~1Z.F2(~1,~,,)); since each component of fiZ.Fz(xi,Z,y’) is in

,4{hz,. . ., hk}), this first component is in p({hl} U p({hz,. . . ,hk})) G p({hl,. . . ,hk}).
The other components are components of ,u.S. F&xi . hl(xz’, ;),Z, 9) which are elements

of~(Comp(~((hl})U{h2,...,hk}))~~({hl,...,hk}). 0

D. Niwiriskil Theoretical Computer Science 189 (1997) Id9 25

The converse of this proposition is also true and we get the following characterization

of the p-clone ~(9) in terms of vectorial fixed points.

Proposition 2.8. Let F be a class of operations over a complete lattice, and let f
be an m-ary operation over this lattice. Then f is in the p-clone generated by 9

if and only if there exist a vectorial mapping z: Lkim --t Lk in Comp(F)k and some
i, l<i<k such that f(jJ)=n~(p.?.$(?,j)).

Proof. The “if” part of the equivalence was proved in the previous proposition. Let

us prove the “only if’ part by induction on the construction of f,

l if f(yl,..., y,) is a projection n;, we have just to consider the equation x =

~:~,+:1(4Yb..,Y?d;

. if f (yl , . . . , y,,) is in F, we consider the equation

x=f(~~+,(X,Yl,...,Ym),...,?lmm++:(X,Y1, Ym))

which is equivalent to

x=f(Yl,...,Ym);

l iff(yl,...,ym)=g(hl(yl,...,y,),...,h,(yl , . . . , y,)) then by induction hypothesis,

there are systems of equations
_ x’= @?,Z), such that g is the jsth component of its least fixed point,
_ .?i =I’&($, y’), such that hi is the jith component of its least fixed point, for

1 bi<n,

with the components of G and of each c?;: included in Camp(B). Then f is the

joth component of the least fixed point of the system

which can be rewritten as 2 = F(2, y’) with F E Comp({ G, HI, . . . H,}) & Camp(B);

l if f(yl,...,ym)=CLz.g(z,yl , . . . , y,) such that g(z, y’) is the jth component of the

least fixed point of I?= G(?,z, y’). Then we consider the system

x’= G(?,z, v’),

Z=Xj,

where xj = rri(?,z, 3). By Lemma 2.6, the last component of its least fixed point is

precisely

~z.nh(~.~(~,z,~),z,y’)

which is equal to pz. g(z, y). 0

26 D. Niwiliskil Theoretical Computer Science 189 (1997) Id9

The fact stated in this proposition is sometimes called the BekiE-Scott Principle [40].

Example. In any complete lattice L, vyi y2. pxlx2. (x2, ~1) = (T, T), while ,ux~x~. vyl

y2 .(x2, yl) = (I, I). This shows that the inequality of Proposition 2.4 is in general

strict.

2.2. The calculus

We build our formalism in algebraic style. That is, the models can be in general

arbitrary p-algebras, although in the sequel we shall be mainly focusing on powerset

algebras. The syntax can be viewed as the usual calculus of terms built out from

variables and function symbols, extended by the least and greatest fixed point operators

and the logical symbol V interpreted as lattice union. This presentation is very general

and may subsume, by restriction of the class of models, several calculi considered in

the literature, in particular the modal mu-calculus.

Let Sig be an arbitrary signature; it is considered fixed for the rest of this section.

Language
We fix a countably infinite set of variables Var. We assume the symbol V is not in

Sig. The set fpTsis of fixed point terms is defined inductively by the following clauses:

l the variables are fixed point terms,

l if f ESig and ri,..., r,,(f) are fixed point terms, so is f (71,. . . , rp(f j),

l if zi and ~2 are fixed point terms, so is ri V 52,

l if r is a fixed point term and x is a variable then both r’ = px. r and 2” = vx .r are

fixed point terms.

In the sequel, we shall often refer to fixed point terms simply as terms.

An occurrence of a variable x in a term r in a context qx. r’, where v is ,LL or v is

bound (by v), otherwise the occurrence is free. As usual, a variable is free in a term

z if it has a free occurrence in r. We write r E t(xi , . . . ,x,) to indicate that the free

variables of r are among xi,. . . , x,,. A term without free variables is called closed.

The composition of terms, i.e. a substitution of some terms into a given term, may

require first a renaming of bound variables in the underlying term, i.e. a-conversion.

Any term obtained from a term r by applying a-conversion some number of times is

called a variant of r. We say that a variable x is free for a term z’(yl, . . . , y,) in z if

x does not occur in scope of any nyi, i = 1,. . . ,m. Now, if r(yi,. . . , y,,,), 71,. . . , z, are

terms, the substitution r[ri/yi,. . . , ~,,Jy,,,l is defined by first taking a variant of r, say

Z’ in which each yi is free for ri, and then replacing simultaneously yi by ri in r’.

Hierarchy of jixed point terms
We now define the syntactic counterparts of the classes of fixed point hierarchy. For

a set of fixed point terms F & fpTsi,, let Camp(F) be the least set of terms containing

F U Var and closed under substitution, viz if r(yi, . . . , ym), ~1,. . . , T,,, are in Camp(F),

so is r[rilyi, . . . , GJY,I.

D. Niwbiskil Theoretical Computer Science 189 (1997) 149 21

Similarly, let p(F) be the least set of terms containing F U Vur and closed under

substitution and under the p operator, where the last means that if r E p(F) and x E I’ur

then ,u. z E p(F).

The set v(F) is defined similarly.

Now let

We set

Cg(Sig) = Ii’:(Sig) = Comp(Bases,),

Clearly,

Note (Hierarchy of Emerson and Lei). The concept of a fixed point hierarchy con-

sidered in our paper (first introduced in [36]) is based on the ideas of Park [40].

A slightly different definition of a hierarchy has been proposed by Emerson and

Lei [131, in context of the model checking problem for modal mu-calculus (cf.

Section 6.2 below). Their definition is originally based on a concept of an alterna-

tion depth of a formula which is defined “top-down”. We can rephrase that definition

in our setting, by inductively defining classes CE” and IIEL of fixed point terms as

follows. Let MEL be the closure of a set of terms F under the application of symbols

in Sig and under the p-operator; note that this class may be not closed under composi-

tion. Let &L(F) be defined similarly. Let CEL(Sig) = ZIEL(Sig) = Comp(Bases,), and

let Cfk,(Sig) = Comp(~sL(17~L)), IIzil(Sig) = Comp(vsL(ZfL)). For example, a term

px.vy.f(x, y,pz.vw. f(x,z,w)), where f E Sig, is in Zg(Sig) but not in CfL(Sig). (To

see that it is in Ct(Sig), note that so are the terms pz. vw. f (x,z, w), vy .f(x, y, u) and

vy f (x, y, pz. VW. f (x, z, w).) On the other hand, our term cannot be obtained by com-

position of two terms in CyL(Sig) since the variable x occurs free in pz. VW. f(x,z, w).)

This term is actually of alternation depth 3 in the sense of Emerson and Lei [13], and,

in our setting, it is not lower than in the class CFL(Sig). In general, we have only

(easy) inclusions Z:L(Sig) 2 Zt(Sig) and IIfL(Sig) 2 II{(Sig).

One argument for our choice of definition of fixed point hierarchy, especially if

the expressibility issues are concerned, is provided by its compatibility with a similar

classification of vectorial fixed points expressions (see Proposition 2.11 below).

Seman t its

We shall interpret the fixed point terms in the p-algebras over the signature Sig,.

So, let d = ((A, {vd} u { f &: f E Sig}) <d) be a p-algebra, where, according to our

28 D. Niwihskil Theoretical Computer Science I89 (1997) Id9

convention, Vd denotes the operation of the least upper bound of two elements in the

lattice A. A valuation is any mapping from a subset V 2 Var into A. If V is finite,

say V = {xl , . . . ,xk}, we usually present a valuation explicitly, say, Xi H al,. . . ,Xk k-b ok,

in vector notation .?H a’. Let r be a fixed point term such that all the free variables

of r are among x1,... ,Xk, in symbols r =z(xi , . . . ,Xk). The interpretation of r under

a valuation xi H al,. . .,X,+ Hak, in symbols r&[xi Hal,. . .,Xk Hak] (Or @[X’Ha]),

is an element of A, defined by induction on the construction of r:

0 Xf[.?H a’] =Ui,

l f(Tl ,..., ~,)~[~~Z]=f~(z~[x’wii] ,..., f[i?f-+d]), for fESig,

. (z1 v T#[% a’] = +[% a’] VA @[% a-],
l (py.~)~[X’t+ a’] is the least element b E A, such that b = @[.?H a’,,~ H b],

l (v~.z)~[x’++ a’] is the greatest element b E A, such that b = z~[X’~ ii, y H b].

Thus, any fixed point term z, together with an ordered vector of variables xi,. . , ,xk,

such that all the free variables of r are among (but do not necessarily exhaust) xi,. . . ,xk,

induces a k-ary operation on A that sends al,. . . , ak on @[x’++ a’]. We shall denote this

operation by @[,?I. Note that, formally, one term r induces an infinity of operations,

depending on the vector of variables in consideration. However, when no confusion

may arise, we shall sometimes write simply r d instead of r&[x’].

The above definitions are obviously made to allow us to prove the following.

Lemma 2.9. Let ZO-~(yl,..., yn), q-zi(x’),for i= l,..., n andlet r=ro[ri/yi,...,

z,JJ+J. Then z”l[x’] = zf[~](zf[x’] . . . , zf’[x’]).

The hierarchy of fixed point terms induces a hierarchy of operations definable by

them in a p-algebra d.

Let

C:(d) = {z”: z E Cf(Sig)},

ZIi(d) = {zd: z E ZI:(Sig)},

It follows from our definitions that all the above classes are clones of operations over

A; moreover, C~+:,,(J&‘) is the least family of operations containing n:(d) and closed

under composition and under the least fixed point operator, similarly for n:+l(&) and

the greatest fixed point.

Note (Intersection). We have not included the lattice intersection A explicitly to the

system although, in an actual p-algebra, it can be present as one of the operations. In

particular, as we have remarked in Section 1.2, the set-theoretical intersection can be re-

trived in a powerset algebra if the original semi-algebra contains the partial operation

A defined there. Our system, though without explicit intersection, will be neverthe-

less sufficient to characterize the infinite behavior of automata over powerset algebras.

This result will be proved in the next section. By considering semi-algebras with the

D. NiwiriskiITheoretical Computer Science 189 (1997) l-69 29

operation A, the characterization will comprise, as a special case, a kind of alternating
automata as discussed in Section 1.3 above.

On the other hand, the presence of intersection as a logical operation would make
the system intrinsically more complex. In particular, our results about initiality and
hierarchy (cf. Sections 4 and 5) depend on the absence of the intersection.

Vectorial fixed point expressions

When examining the proofs of Lemma 2.8 and Propositions 2.6 and 2.7, we can
easily see that the involved transformations can be done uniformly for all Sig-powerset
algebras, and do not depend on a particular interpretation. In particular, we note the
following.

Pro~ition 2.10. Let F be a set ofjxed point tees, and let ~1,. . . ,z, f F, where

Zi E Zi(yl ,..., y,,z, ,..., zm), for i=l,..., n. Then there exist fixed point terms

PlW,..., p,,(z”) in u(F), which represent the least solution of the system of equa-

tions

Yl = Zl (jw,

That is, in any n-algebra r;ll, and for any dl,. . . ,d, E A, the vector py[Zt-+ d”], . . . , pt

[z’++ a] is the least fixed point of the vectorial mapping A” --+ An,

(al,..., an)H(Zi~[~Hii,tHa],...,,~[~Hii,THa]).

The analogous property holds for the greatest fixed points.
Consequently, if F C_ Zi(Sig) then the terms ~1,. . . , p,, can be

and z~F~~~(~ig) then pl,_..,p,, can be chosen in ~~+,(~ig).
chosen in II,“+,(

The converse to the above proposition can be also formulated, and as a consequence,
one obtains a kind of characterization of operations in the classes C{, n{ in terms of
vectorial fixed points. The proof of the following result can be obtained by repeating
the argument of Proposition 2.7 several times, together with some obvious syntactic
manipulations [37].

Proposition 2.11. Let z(z1 , . . . ,z,,,) be a fixed point term in Ci(Sig), n 2 1. Then there
exist k > 0, and a vector of terms ctl, . . . , CTk in CE(Sig),

~~~~~(yl,l,...,~l,k,~~~,Y~,l,~~~,Y,,k,~l,~~~,~,) fir i=l,...,k, 

such that, for any n-algebra ,rtp, 

z”‘(z) = 7$(& .@+I. . . . .Cv’l .(a?,. * . , o,“)). 

(Here < stands for u or v depending on the parity of n.) 



30 D. NiwiriskiITheoretical Computer Science 189 (1997) 1-69 

Moreover, the terms o1 , . . . , ok can be chosen in the form oi = 61 V . . . V be,, where 
each Sj is either a variable or an atomic term f (XI,. . . ,xp(r j). 

Conversely, if al,. . . ,Q are terms as above, then there exist fixed point terms 

71,. . . , Tk in Ci(Sig), such that the equality 

i= l,... , k, holds in any u-algebra A. 
The similar result holds for the class ZI~(Sig). 

3. Characterization 

In this section, we show that Rabin automata with variables and fixed point terms 

have the same expressive power over the class of powerset algebras; moreover, there 

is an exact correspondence between two hierarchies: the fixed point hierarchy induced 

by the alternations of the p and v operators and a hierarchy of indices of Rabin 

automata. This result splits naturally into two translations: from automata to fixed 

point terms, and from fixed point terms to automata. We give thereby an automata- 

theoretic characterization of the levels of the fixed point hierarchy. This main result 

will be completed by a discussion of related characterizations of the hierarchy, in 

terms of vectorial fixed point expressions and automata with the Mostowski condi- 

tion, and in terms of two kinds of iteration operators: unrestricted and well-founded 

iteration. 

Let Sig be an arbitrary finite signature. We fix it for the rest of this section, and 

henceforth we shall omit the explicit references to the signature in the notation, writing, 

e.g., Y for Y&s&, Ci for Zt(Sig), etc. 

3.1. From automata to fixed point terms 

The following lemma characterizes two basic kinds of computations of an automaton: 

finite and unrestricted infinite. It is a direct generalization of what is well-known in 

formal language theory, but we give the proof for the sake of completeness. 

Lemma 3.1. Let A(zl,. . . ,zm) be a pre-automaton with variables and let q be a state 

of A. Then there exists fixed point terms p in Cy and z in II:, such that, for any 
semi-algebra g, and for any DI,. . . , D,,, C B, b E B, 
l bE +‘l[Z~d] SEf there exists a q-run of A on b w.r.t. the valuation Z-8. 
l b E p@B[?~d] ifs there exists a q-run of A on b w.r. t. the valuation Z-d, with 

finite domain. 

Proof. Let A = (Sig, Q, (~1,. . , zm}, Tr), For notational convenience, let Q = {xi,. . . xk}. 

For each xi, let V Tri be the term ~(1 V . . . Vue,, where Xi=cIi,...,Xi=tLd, are all the 



D. NiwiriskiITheoretical Computer Science 189 (1997) Id9 31 

transitions in Tr with the head xi; by Proviso 2, there is at least one such transition. 

Consider the system of equations Eq(A): 

x1 = V Tr,(x',,t), 

xk = if Tr,&?,.?). 

By Proposition 2.10, there are terms pi(Z), . . . , p&+) in Cy which, for any p-algebra 

~2, represent the least solution of this system in &, and the terms ri (Z), . . . , ~~(2) in 

ZIy which similarly represent its greatest solution. 

Now, let g be a semi-algebra and let Di, . . . ,D,&B. For i=l,..., k, letAF[Z++d] 

(_4”*[Z~d]) denote the set of those b E B for which there exists an xi-run (respec- 

tively, an xi-run with finite domain) of A on b w.r.t. the valuation 2~3. In order to 

accomplish the proof, it is enough to show that (1) ..&@[Zt-+d] is the greatest solution 

of the system Eq(A) and (2) A’g*[Z~B] is the least solution of this system. 

Ad 1: By the Knaster-Tarski Theorem (Theorem 2.1), it is enough to show two 

things: 

(i) ag[z’++d] C V ?5-@@[Z+-+A’D[?t+6],z’~fi], 

(ii) (VA4i,..., Mk C B)ti & v T;@@ [Zt+2(),Z~d] implies GsAg[Z++d]. 

The clause (i) follows easily from the definition of a run. To show (ii), let Q 

satisfy the hypothesis and let b E Mi. An Xi-W r of A on t, w.r.t. the valuation ,?++a, 

can be constructed as follows. By hypothesis about A?, there is a transition xi = a, 

such that b E c8’“[21-+1I?,t~d]. This will be the first transition used by our run. Let 

a=f(y1,..., ye). So we have b -fa(bl,. . . , be), for some bl,. . . ,be E B. Note that 

some of the y’s may be among the z’s and some other among the x’s. But if yj =zj/ 

then bj is in Djj, and if yj =xp then bj is in Mjl, and then, again by the hypothesis 

on 2, there is a transition Xjfl =/3, such that bj E /3f’-‘9[.?t+~,Z~d]. This transition 

may be also used by our run. By continuing this procedure perhaps infinitely, we 

obtain a desired Xi-run of A on b. The formal justification follows easily from the limit 

construction (Section 1 .l ). This completes the proof of 1. 

Ad 2: Again, by the Knaster-Tarski Theorem, it is enough to show two things: 

(i) V 5PB[?~AB* [&-+d],ZHd] @P*[ZH6], 

(ii) (VMi,..., Mk LB) V Y?6”“[I~~,I~d] C_h? implies da*[Z+-+d] C&?. 

To show (i), we need to verify that, for each i, V Tri[i?++A’“*[Z++d],Z++d] C 
A”*[Z- 51. This follows immediately from the definition of V Tri and of a run. In 

order to show (ii), let &? satisfy the hypothesis and let b E A”*[z’++d] Let Y be an 

xi-run of A on t, w.r.t. the valuation Z+-+d, with domr finite. To show that b EMU, we 
use the Tree Induction Principle (Section 1 .l ). Let S = {w E dom r : if Y f2 (w) =xj then 

r 71 E Mj}. We need to show E ES. First observe that any leaf v of r is in S. Indeed, 

if r t2 (0) E (~1 , . . . ,z,,,} then the condition holds trivially, and if r f2 (v) =xj then there 

must be a transition xj = c in Tr (and hence c is one of the disjuncts in V Trj), such that 

r tl (v) g cg. Now the inclusion V Tf”[x ~G,t~d]cMj forces that rtl(~)EMj, 



32 D. NiwiriskiITheoretical Computer Science I89 (1997) Id9 

as required. Next, suppose that w E dom r is not a leaf, but all the immediate successors 

of w are in S. Then ~2 o r(w) must be a transition in Tr, say Xj = f(yi, . . . , yP(f j), 

with p(f)>& again, ~(YI,...,Y~(~)) is a disjunct of V TV. Note that some of the 

ye’s may be among Z and some others among 2. But, if ye =zp then, by definition of 

a run, r rl (we) ED,, and, if ye =xZ then, by hypothesis, r 1‘1 (we) EM,. Thus, again, 

the inclusion V T5pB[2 ++G,Y!++D] CMj implies r Ti (w) EMU. By Tree Induction 

Principle, E ES, and hence b E Mi, as required. 0 

Theorem 3.2. For any automaton with variables A(zl, . . . ,zm), one can construct 
a jixed point term rA(z1 , , . . ,z,), such that, for any semi-algebra 43, 7~ and A define 

the same operation in the powerset algebra g.93, that is AB = zTB. Moreover, if A is 
of index n, then Z.,j can be chosen in Ct,,,,, and, additionally, 

a if A is of index n weakened by 0, then 7~ can be chosen in I#‘,,, 

l if A is of index n weakened by all, then 7~ can be chosen in C!&, 
l if A is of index n weakened both by 0 and “by all”, then 7~ can be chosen in 

Proof. General idea. We proceed by induction on the length of the accepting condi- 

tion and distinguish two cases. If the condition has form {(Li, Vi), . . . , (L-l, Un_l ), 
(0, U,,)}, we consider an automaton in which the states of U,, are moved into variables, 

by which the index of automaton decreases. Then the original automaton is character- 

ized by application of the greatest fixed point operator to the terms which by induction 

hypothesis characterize the modified automaton. If no pair in the accepting condition 

has the form (0, U), situation is a bit more difficult. We consider n auxiliary automata 

in which the states of the sets L1 , . . . , L,, are moved to variables, respectively. Now 

the least fixed point operator is applied. Note that the negative (L) and positive (U) 
constraints of the Rabin condition are captured by the least and greatest fixed point 

operators, respectively. 

In order to make the concept of “moving states into variables” more precise, the 

following two operations on automata will be used. The first consists in converting some 

states into variables. Let A = (Sig, $3, V, qo, Tr, Act) be an automaton with variables and 

let X be a subset of Q such that qo #X. We define an automaton ’ Afree = (Sig, Q - 
X, V UX,qo, Tr’, Act’), where a transition y = f (x1 ,...,xk) is in Tr’ iff it is in Tr and 

y E Q --A’ (while the Xi’s may be in Q U V), and the acceptance condition is restricted 

to Q -X, that is, Act’ = {(L -X, U -1) : (L, U) E Act}. 

The second operation exchanges initial states, but for technical reasons, a new 

copy of the new initial state is added. For A as above and x E Q, let f be a sym- 

bol not in Q U V. We define an automaton Azt,+) = (Sig, QU {Z}, V,i, Tr”, Act), 
where Tr”= TrU{P= f(xl,...,xk): x= f(xl , . . . ,xk) is in Tr}. Note that introduc- 

tion of f makes possible a composition of both operations, Astar+)free(x), also when 

8 The notation is motivated by an analogy between the r61e of states in an automaton and that of the 

bound variables in a fixed point term. Thus, the operation Afree consists in “giving freedom” to variables 

in X. 



D. Niwiriskil Theoretical Computer Science 189 (1997) 149 33 

n E X. However, semantically, the automaton A,,,rt(X) is clearly equivalent to the au- 

tomaton A with the initial state replaced by x; in particular L(A,,,(,,)) coincides 

with L(A). 

Now let A = (Sig, Q, {ZI ,...,zm),qo, Tf+,{(h,W),..., (L,, Un)}). We are going to 

prove the claim of Theorem by induction on the index of the automaton A. If n = 0, 

no infinite path is allowed in any accepting run of A. Then, the result follows from 

Lemma 3.1 (remember that the index 0 cannot be weakened). Another easy case that we 

shall consider separately, is when the acceptance condition contains the pair ((0, Q)}; 

in this case any run of A is accepting. Then, again by Lemma 3.1, we can find a fixed 

point term in nf, equivalent to A. 

Now suppose that n >O and the claim holds for all automata with an index less 

than n. The proof proceeds in two steps. 

Step 1: The acceptance condition has the form Act = {(Ll , U1 ), . . . , (L,_ ,, U,_ I), 

(0, Un )}. We shall prove that one can construct an equivalent fixed point term in ZZ;n 

and if moreover, for some i, Ui ULi = Q, then the fixed point term can be chosen in 

G-i. Both cases will be considered simultaneously. 

If U,, = 0 then clearly we can delete the pair (0,0) from the acceptance condition 

without changing the semantics of A, therefore, by the induction hypothesis, the au- 

tomaton is equivalent to a fixed point term in Gin_, c ZI&, . If U,, = Q we have the 

case that has been treated above. So, we may assume 0 # U,, #Q. We can also as- 

sume that the initial state qo is not in U; otherwise we would take into consideration 

a semantically equivalent automaton Astarr(qo ). 

To simplify notation, let U, = U. Let U = (~1,. . . , yk}. We shall consider the au- 

tomata Af,,(r/), and &art(n)free(u), for i = 1,. . . , yk (where the last is a simplified 

notation for (Astart(y,))free(rr)). The acceptance condition of each of these automata is 

{(h,Ul),..., (L,-1, Un_l), (0,0)}. After deleting the useless pair (0,0), we can con- 

sider all these automata being of index n - 1. Then, by the induction hypothesis, there 

exist fixed point terms in Ci+,, r&r,. . . , yk,zl,. . . ,zm) and rr(j,z’), . . . ,zk(y,Z), such 

that, for any semi-algebra 99, AT,.,,(,) = zpJ1 and A~a,,~,~free~u~ = zrB, for i = 1,. . . , k. 

If additionally the stronger hypothesis on the acceptance condition holds, namely 

that Li U Vi = Q, for some i (but not for i = n; that case has been already considered), 

then these fixed point terms can be chosen in C;n_,. 

Consider a system of equations 

yk = zk. 

By Proposition 2.11, there is a vector of fixed point terms in IZcn, pi(Z), . . . , pk(.?) 

which, for any semi-algebra g’, represent the greatest solution of this system in pg. 

In the case when the stronger hypothesis on the acceptance condition holds, the terms 

Pl(z’),..., pk(_?) can be chosen in @+,. 



D. Niwiriskil Theoretical Computer Science 189 (1997) Id9 

We claim that, for any semi-algebra 93, 

‘. AfLt(yz) =~~(z’)@~, for i= l,..., k, 

2. Ag = ~OblIYl, . . . ,PklYkl@. 
Note that the term of (2) is in II;n, and if, additionally, the index of A is weakened 

by 0, it is in ZItn_,. Hence, by proving (2), we shall accomplish the Step 1. 

We first show that (2) follows from (1). 

Let us fix some Q,..., D, CB, we have to show A~[~~d]=zo[iil~]~~[Z~d]. 

“G”: Let r be an accepting run of A on b E B w.r.t. the valuation ZH d. By choice 

of 70, it is enough to construct an accepting run of Afree on b, w.r.t. the val- 

uation y * jP9[z’t+ d], Z ~6. Let E be the set of these nodes in dom r, where 

some state from U occurs for the first time (remember that the initial state qo is 

not in U), that is E={wEdomr:rtz(W)EU and (Vu<w)r~~(u)~U}. Clearly, 

E is an antichain. We define a tree ro by cutting the branches of r in the nodes 

of E; more precisely, we define it by substitution (cf. Section 1.1) ro = r[trunc], 

where the mapping trunc sends each v E E on a tree r, : {E} ---f B x Tr defined by 

r,(c)= (r t1 (u),r t2 <u>). 

We claim that ro is a desired run of Afrree(u) on t. Indeed, ro TZ (u) E U is possible 

only if v E E, and, for any v E E, say r(v) = yj, the subtree r.v of r constitutes an 

accepting yj-run of A on r T1 (v), and hence clearly r rl (v) E A$,,,,,[z’~d]. Then, 

assuming (1 ), we have r tl (u) E p,p”[ ZH~]. Satisfaction of the remaining properties 

of an accepting run is straightforward. 

“2”: In this case, by choice of ~0, we have an accepting run of Afrree(u) on 6, w.r.t. the 

valuation j H ~‘@[ZH D], Z c-r d, say ro. For each w E domro such that ro f2 (w) E U, 

say ro t2 (w) = yj, we have ro t1 (w) E pf”[Z H d], and, assuming (1 ), the last equals 

to A$+ ) F H dl. H ence we have also an accepting yi-run of A on ro t1 (w). Now, 

by substituting a suitable run of A into each node w of ro such that ro t2 (w) E U, we 

obtain the desired run of A on b. 
It remains to show (1). Let us fix a valuation z1 H DI,. . . ,z, H D,, where DI,. . . , 

D, C B. Let us abbreviate 

We need to verify that ,@?[T++d] is indeed the greatest solution of the system in 

consideration. By the Knaster-Tarski Theorem 2.1, it is enough to show two 

things: 

(i) (VM,..., MkcB) A?~_?@‘@[~H&~,,?H~] implies a?(CAg[Z++d]. 

(ii) P[ZH d] & P1 [jLA1[%&Z-d]. 

Ad (i): Suppose &? satisfies the hypothesis and let b EMi, for some i. We have 

to show b E Azzrt(y,) [Tad]. For this, it is enough to construct a successtil yi-run of 

A on t w.r.t. the valuation Zt-+d. We obtain such a run by a limit construction. By 

hypothesis about &?, b E ~g~[jJ++a,?~d]. Hence, by hypothesis about zi, there is a 

successful run of &M,+)~~~~(u) on b, w.r.t. the valuation JHIZ),.?H d. We fix one 

such run, say ro. (Recall that ro r2 (E) =9i.) Observe that any node w of ro, such 



D. Niwiitskil Theoretical Computer Science 189 (1997) 149 35 

that ra 12 (w) E U, must be a leaf, and, moreover, if ra(w) =yj then Y Ii (w) EMS; 

hence, again, there is a successful run of Astart(y,)~,.ee(~) on r ti (w), w.r.t. the valuation 

j? t+$,Zt-+ d. We define r1 by substituting such a run in each leaf w of ro such that 

r. T2 (w) E U. It follows from the construction that dom(ro) C dom(ri) G dam(t), and, 

again, any node w of r1 such that ri Tz (w) E U, must be a leaf of ri, and, moreover, 

if rl f2 (w) = yd, we have r Ti (w) EMU. So, we can repeat the construction again and 

again, defining a sequence of trees r, in the obvious way. Clearly, this sequence satisfies 

the convergence requirement and then has a limit lim r,. Note first that, by construction, 

no finite path of limr, may end with a value ye. Then observe that any infinite path 

of lim r,, is either a completion of some path of some accepting run of the automaton 

Astort(y,)free(U), for some j, or it contains an infinite number of occurrences of some 

“initial transition” of some A,,,,(,)free(r,+ jj = y. Let r be a modification of lim r, 
obtained by “removing hats” from the Fe’s in all values of lim r,. We claim that r is 

an accepting yi-rt.m of A on 6. Indeed, it follows from the remark above that all infinite 

paths of r are accepting. The remaining conditions of a successful run are obviously 

satisfied. 

Ad (ii): The proof is very similar to the proof of the inclusion “C” of the claim (2) 

above and is omitted. The Step 1 of the induction is now completed. 

Step 2: We consider an automaton A(zl,. . . , zm) as above but this time we do not 

assume that the acceptance condition ((Li , U, ), . . . , (L,_l, U,_l),(L,, U,)) is weakened 

by 0. We shall construct an equivalent fixed point term of level C!&+, and if, ad- 

ditionally, for some i, Li U U, = Q, this fixed point term will be of actually smaller 

level Z&. 

Let L=Li U ... UL, and let L={ni, . . . ,xp}. We may assume, without loss of gen- 

erality, that qo $2 L. Consider first the automaton A+(L). The acceptance condition of 

this automaton is ((8, Ui -L): i = 1,. . . , n}, and it should be clear that without changing 

the semantics it can be collapsed to just one pair (0, II), with U = Ui= l,,..,n q - L. 

Therefore, by Step 1, there exists a fixed point term zo in ZIi (hence in I$‘,,), ra - 

r&?,Z), such that AyrereecLj = zf”, for any se mi-algebra B. If, moreover, for some i, 
Li U Ui = Q, then clearly U equals to the set of all states of the automaton Afree( in 

this case the term zo can be chosen in ny. 

Next, for each x E L and each i E { 1,. . . , n}, consider the automaton Asta,.+)free(~, ). 
The acceptance condition of this automaton is in the form that has been considered in 

Step 1 (since the pair (Li, Ui) is replaced by (8, G - Li)). Then, we already know 

how to construct a fixed point term in ZI:n, say r,,,, equivalent to Astart(xjf,.ee(~,). 
If, additionally, for some j E { 1 , . . . ,n}, Lj U Uj = Q, there are two cases to consider. 

If j # i, then, by induction hypothesis, the term rx,j can be chosen in n$,_, , and 

if, for i itself, Li U Vi = Q then, similarly as above, this term can be chosen even 

in II:. 

Let, for each xl EL, 

rL = TX,,,1 v . . . v TX,,, 

(note that the free variables of rd are among xi,. . .,x,, ~1,. . . ,z,). 



36 D. Niwiriskil Theoretical Computer Science 189 (1997) 149 

Consider a system of equations 

xp = zp. 

By Proposition 2.11, there is a vector of fixed point terms in Ci!,, , pi(Z), . , . , p+,(Z), 

which, for any semi-algebra $9, represent the least solution of this system in @3?. (In 

the case of the stronger hypothesis on Act, these terms can be chosen in Gin.) 

We claim that, for any semi-algebra 98, 

1. A$,cx,j = pi(Z)@@, for i = 1,. . . , p, 

2. Aa = Z&3i/Xi,. . . &/Xp]d”T 

Note that the last term is in C;n+,, and if, for some j, Lj U U_ = Q, this term can 

be chosen in Ci,,. Therefore, by proving (2), we shall accomplish the Step 2. The 

proof that (2) follows from (1) is similar to the proof of an analogous statement in 

the Step 1, and will be omitted. 

We are now going to prove (1). 

Again, we fix a valuation zi H D,, . . . ,z, H D,,,, where DI, . . . , D, c B, and abbrevi- 

ate 

We need to verify that Ag[t~d] is indeed the least solution of the system in con- 

sideration. By the &raster-Tarski Theorem (Theorem 2.1), it is enough to show two 

things: 

(i) (VM,..., Mk CB) ?pg[~~A?,i?~d] Ca implies Aa[?~d] C$. 

(ii) ?fla[j HA~[ZH~],ZH~] &?“[Z’H~]. 

Ad (i): Suppose G satisfies the condition above and b E A~a,,~x~~[Z~~]. So we have 

an accepting xi-run of A,tart(xz) on b, w.r.t. the valuation [ZH~]; fix such a run, say r. 

We fix an infinite sequence of integers a4 E { 1, . . , n) that repeats each / E { 1,. . . , n} 

infinitely many times; for instance, let a4 = (q mod n) + 1. We define a sequence of 

subsets of domr, Eq, inductively as follows: 

Eo = {E}, 

Eq+l = {u : r f2 (01 EL,,, A(3wEE,)w<or\(V’u,w<u<u)rf2(U)~~,y+,}. 

Notice that Eq need not be finite. Let E = Uqiw Eq. The key observation is that no 

infinite path of r can meet the set E infinitely often since otherwise such a path would 

not be accepting, as each set Lj would be visited infinitely many times. We want to 

show that, for each w E E, if r T2 (w) =xj then r 1‘1 (w) EMU, in particular b EMi. To 

this end, it is convenient to organize the set E into a well-founded tree and use the 

Tree Induction Principle. The idea of such a tree should be apparent: just delete all 

the nodes of r not in E, keeping the seniority relation of r. 



D. NiwiriskiITheoretical Computer Science 189 (1997) 149 31 

Formally, we define a (non-valued) tree TE as a set of sequences over E, so that 

the nodes of TE are sequences of nodes of r (to avoid the ambiguity of notation, we 

shall write the nodes of r in parentheses ()). Let 

TE={~}u{(wl)...(we): wl~ElAw2~E2A ... Awe~EeAwl < ... <we} 

Clearly, TE is a tree. By remark above, it is well-founded, although it need not be 

finite due to infinite branching. 

Let, for c( E TE, 

last(M) = r 
1 

if M. = (WI). . . (WC), 
if a = E. 

We claim that, for each a E TE, if r f2 (last(a)) =Xj then Y rl (last(m)) E A$, in particular 

b E kfi as required. 

By Tree Induction Principle, it is enough to verify that if all immediate successors 

of a satisfy the condition, so does M. Let last(u) = w, w E El for some e 20, and 

r f2 (w) =Xj. Let r 71 (w) = b’. The subtree Y.W of r constitutes an accepting Xi-mn of 

the automaton A on the element b’. Let F = {v E dom r .w: WV E El+, }. Clearly, F is an 

antichain and, for each v E F, GI(WV) is an immediate successor of a in TE. Then, by the 

tree induction hypothesis, if r . w 12 (v) = Y f2 (WV) = xk then Y .w f2 (v) = r t2 (WV) E Mk. 

Using this observation, we can transform the Xi-mn of A on b’, r . w, to an accepting run 

of the automaton Astart(+ )free(~,+, ) on the same element b’, under the valuation ZH 2, 

ZH d. Then, by definition of the terms r, we get b’ E $“[?I+ ~?,ZH d]. Hence, by 

the hypothesis on 2, b’ E Mj, as required. This remark completes the proof of (i). 

Ad (ii): Let bEz”~[~H~O[~Hd],ZHd]. Then, for some j~{l,...,n}, bEd$ 

[~~d~[Z~d],Zt+d]. Hence, there exists an accepting run of the automaton 

A,,,,t(x, )free(~, ) on b, under the valuation j H A’g[?~ d], ZH d, say ~0. Note that, for 

each w E domre, such that ro f2 (w) E Lj, say ro T2 (w) =xe, we have an accepting xg- 

run of the automaton A on Y ti (w). Then, by a suitable substitution, we can easily 

obtain an accepting run of A,tarr(x,) on b, as required. 

The proof of the theorem is now completed. 0 

Note on complexity 
The above proof of Theorem 3.2 can be implemented as a recursive algorithm which 

takes as an input a Rabin automaton and produces an equivalent fixed point term. We 

can therefore estimate the size of this term w.r.t. the size of the automaton. 

Let a Rabin automaton A have m states and n pairs in the accepting condition. Note 

that n can be exponentially higher than m. Also note that the transition table of A has 

the size m’(l), where the constant depends on the signature. We first observe that, by 

the proof of Proposition 2.7, a term expressing a component of the least (or greatest) 

solutionofasyStemx;=zi,i=l,..., p, is ofthe size O((]ril+...+(r,I)J’). In order to 

perform Step 1 in our recursive algorithm, we first call recursively the procedure for the 

automata Afree and Asfa,.f(y,)free~~), i = 1,. . . ,k, by which the terms z, ~1,. . . ,zk are 



38 D. Niwiriskil Theoretical Computer Science 189 (1997) 149 

computed. Then the system yi = 71,. . . , yk = Tk is solved and its solution, pi,. . . ,pk, is 

substituted to r, in order to get the result. It should be noted that all the constructions 

performed on automata by our algorithm do not increase the number of states. There- 

fore, in each recursive performance of Step 1 in the computation initially started with 

A, we have k <m. Thus the term resulting from Step 1 has the size O(jr] . ( ITI I+ . . . + 

lTkl)m), which can be further estimated by O(mm. (max{ IrI, ]ri I,. . . , ITkl})m+‘). 

Step 2 is even more costly, as we have to make i s O(m) recursive calls rather than 

O(m) calls, where i is the number of pairs of the actually considered automaton (so 

this is n for the original automaton and decreases by 1 after each call of Step 2). If 

max is the maximum size of the terms computed by the recursive calls of Step 2, then 

the size of the system of equations to be solved is bounded by i. m . max. Considera- 

tions as above give us an estimation 0(( m . i)mmaP+l) on size of the term resulting 

from Step 2. Note that at the bottom of the recursion, the algorithm has to consider 

an automaton with an empty or trivial acceptance condition, and with the set of tran- 

sitions being a subset of the original Tr. Therefore, the above considerations lead to 

an estimation of the size of the eventually computed term by 2c.m2” . (n!)“, for some 

constant c. 

It seems, however, that the result may be better if we work with vectorial fixed point 

expressions (cf. Proposition 2.11) instead of fixed point terms. Indeed, suppose that at 

each performance of Step 1 or Step 2, our algorithm computes a vectorial expression 

equivalent to the actually considered automaton. In that case, the size of the expression 

produced in Step 1 can be estimated by the maximal size of the expressions computed 

by recursive calls multiplied by m, whereas, in Step 2, the multiplication factor will be 

m.i, by the reasons explained above. Therefore, the final vectorial expression equivalent 

to the original automaton will be of the size rn”cn) . n!. 

3.2. From fixed point terms to automata 

Translation of fixed point expressions to automata is very natural; we recall here 

our construction of [36] for the sake of completeness, and in order to close up the 

connection between the fixed point hierarchy and the hierarchy of Rabin indices of 

automata indicated by Theorem 3.2. An analogous translation for the modal mu-calculus 

has been made by Streett and Emerson [46], and is also discussed in [12,21]. 

For technical reasons, it is convenient to extend slightly our concept of automata with 

variables, by adding one more feature: initial variables. Such an extension is necessary 

if we wish to give an automata characterization to the terms in which a free variable 

may occur outside of the scope of any functional symbol from the signature, as, e.g., 

zi V ~2. In the remainder of this section, we shall consider automata with variables of 

the form A = (Sig, Q, V, fi, qo, Tr, Act) where I$ C V is a set of initial variables (it may 

be empty). The semantics of automata is extended as follows. Let V = {zl ,...,z,}, let 

9ZJ be a semi-algebra over Sig and let Dl, . . . , D,,, 2 B. All the runs formerly accepting, 

continue to be accepting. Additionally, if an element b of B is in Di and zi E fi is 

an initial variable, then a one element tree r with dom r = {E} and r(E) = (b,zi) is 



D. Niwiriskil Theoretical Computer Science 189 (1997) 149 39 

considered as an accepting qo-run of A on b, with respect to the valuation 5-6. 

We shall call such a run lazy. Note that if A’ is an automaton obtained from A by 

forgetting the issue of initial variables (but keeping the set of variables V intact) then 

the operation defined by A satisfies 

Aa[S+d] = A’g[%d] U u Dj. 
%EV, 

Theorem 3.3. For any jixed point term z(z1,. . . ,zm), one can construct an automaton 

with variables A,(zl, . . . , z,,,), such that, for any semi-algebra 99, z and A, define the 

same operation in the powerset algebra @SY, that is, 

Moreover, the automaton A, can be chosen with the Rabin acceptance condition 
in the chain form, and, 

1. ifr is in Ctn,, then A, can be chosen with index n, 

2. if z is in Ctn, n > 0, then A, can be chosen with index n weakened “by all”, 

3. if z is in II;+,, then A, can be chosen with index n + 1 weakened by 0 and “by 

all”, 
4. if z is in IItn, n > 0, then A, can be chosen with index n weakened by 0, 

5. lj” z is in Cg = III;, then A, can be chosen with empty acceptance condition. 

We start with a series of lemmas which show that the operations definable by au- 

tomata are closed under the fixed point operators and composition. Let A(x,zl, . . . ,zm) 

be an automaton. Recall that, by our notational convention, px.Ag[x,Z] denotes the 

mapping that sends a tuple d of subsets of B onto the least fixed point of the equation 

A4 =Ag[xt+M,Z~fi], where A4 ranges over @B. 

Lemma 3.4. Let A&Z) be an automaton of index n, n 20. Then there exists an auto- 
maton A’[4 of the same index such that, for any semi-algebra ~8, A@[z’] = px.Ag[x,Z]. 
Moreover, if the index of A is weakened “by all” then so is the index of A’ (warning: 

the similar does not apply to the weakening by 0), and, if A is in chain form, so is A’. 

Proof. This is in fact a slight refinement of the well-known construction that pro- 

duces an finite automaton recognizing language L* from an automaton recognizing 

language L. 

Let A = (Sig, Q, {X,ZI ,. ..,zm}, E,qo, Tr, Act) with Ace= {(LI, UI),. ..,(L,, Un)} (if 

n = 0, Act is empty). We define an automaton A’ = (Sig, Q U {x}, {ZI >...,Z?n), J5\{x>, 
x, Tr’, Act’), where 

l Tr’ = Tr U {x = f (yl, . . . , yp(f)): if qo = f (yl, . . . , yP(/)) is a transition in Tr}. 
l Act’ = {(‘Cl u {x}, Ul), . . . ) (15, U {x}, U,,)} (Note that if Act = 0 then Act’ = 0, too.) 

Let 93 be an arbitrary semi-algebra and let 2-d be an arbitrary valuation, where 

0 , . . . , D, C B. It remains to verify that A@[? Ed] is indeed the least fixed point of 

the mapping M H Ag[x +-+ M,Z++ d], where A4 ranges over @B. 



40 D. Niwiriskil Theoretical Computer Science 189 (1997) l-69 

By the Knaster-Tarski Theorem, it is enough to show two things: 

(i) (VM LB) AQHM,ZH~] CM implies kt’O[Z~d] CM. 

(ii) Aa[xt+A@[Z~d],Z~d] &kYB[Z~d]. 

The argument is similar to the one given for an analogous statement in the proof of 

Theorem 3.2. 

Ad (i): Suppose G satisfies the hypothesis, and let bEA@[Zt+d]. Let r be an 

accepting run of A’ on t, with respect to the valuation 2-d. If r is a lazy run with 

r(s) =zj for some zj E e\(x) then b E Dj and hence b EA~[x H M,Z+-+d], from which 

the assertion b EM follows by hypothesis on M. 

Then suppose r is not lazy and so 7~2 o r(E) =x. Let E = {w E domr: TCZ o r(w) =n}. 
Observe that no infinite path of r may intersect the set E infinitely often, otherwise 

a path would not be accepting. We shall organize the set E into a well-founded tree and 

use the Tree Induction Principle, similarly as in Step 2 of the proof of Theorem 3.2. 

Let us write v < w to mean “u < w and, for all u, such that v < u < w, u # E”. 

Let 

T,={E}~{(wI)...(w~):w~ ,..., Awe~EAe<w, <<...<<we}. 

Clearly, TE is a well-founded tree. Let, for cx E T,, 

last(a) = 
{ 

we if a=(wi)...(we), 
E 

if tx = a. 

We claim that, for each u E TE, if 712 o r(last(cr)) =x then t.last(a) EM, in particular 

t EM as required. The argument is similar to that used in the proof of an analogous 

statement in Step 2 of the proof of Theorem 3.2 and will be omitted. 

Ad (ii): Suppose bEAg[x++A’“[ZHd],ZHd] and let r be an accepting run of A 

on b, with the valuation x HA’~[ZH~],ZH~. We consider three cases: 

r is a lazy accepting run with r T2 (E) =zj for some zj E VI and Zj # x. Then r is 

also an accepting run of A’. 
It happens that x E 6, and r is a lazy accepting run with r f2 (E) =x. Thus, by 

definition of a lazy run, b E A@[ZH d] as required. 

r is an accepting run with r T2 (E) = qo. Then, for each w E domr such that r T2 
(w) =x, we have an accepting run of A’ on r rl (w). By a suitable substitution, we 

obtain an accepting run of A’ on b. 0 

Lemma 3.5. Let A(x,Z) be an automaton with an index n weakened by 0. Then there 
exists an automaton A”[,?] with index n weakened by 0, such that, for any semi- 
algebra 93, Ag[Z] = VX.A~[X,Z]. Moreover, if additionally, the index of A is weakened 
“by all”, so is the index of A” and, if A is a chain automaton, so is A”. 

Proof. Let A = (Sig, Q, {x,zl , . . . ,zm}, ?$,qo, Tr, Act), and let 

Act = {(LI, VI), . . . , G-1,~n-l),(0,w). 



D. Niwiriskil Theoretical Computer Science 189 (1997) l-69 41 

We start with the following observation: if x E V, then, for each DI,. . . , D, E B, 
vx.A~[x,?~D] = B. For, it is enough to verify that B is a fixed point in this case, 

and this is obvious. It is plain how to construct an automaton with the required index 

which, independently of a valuation, recognizes all the elements of any operationally 

complete semi-algebra (recall that, by Proviso 1, all our semi-algebras are operationally 

complete). 

It remains to consider the case when x is not an initial variable. 

We define an automaton A” similar to one considered in the previous lemma, 

A” =(Sig, Q U {x}, {ZI , . . . ,zm}, VI, qo, Tr”,Acc”), where 

l ~~“=~~u{x=f(Yl,...,Y,(f)):qo=f(Y1,...,Y~(f~) is a transition in Tr} (exactly 

as in the previous case), 

l Act” = {(LI, U, u {x}), . . . ,Gl, h-1 u {x)M0, VI u {x)1). 
Let J% be an arbitrary semi-algebra and let 2-d be an arbitrary valuation, where 

Di,..., D, c B. It remains to verify that A’@[’ z H d] is the greatest fixed point of the 

mapping 

where M ranges over pB. By the Knaster-Tarski Theorem, it is enough to show two 

things: 

(i) (VMGB) MGA~[xMM,ZHD] implies MGA”a[Z~d], 
(ii) A’~[~~dl~Al[x~A’~[~~bl,Z~dl. 

Again, the argument is analogous to the one given for a similar claim in Step 1 of 

the proof of Theorem 3.2, and will be omitted. 0 

Lemma 3.6. For automata A(xl,. . . ,xk,Z), Al(Z), . . . ,A&+), there exists an automa- 

ton C(Z) such that, for any algebra a, 

CB[z’] = A8[xl ++ A$], . . . ,xk H A$[Z],z’]. 

Moreover, tf the automata A,A,, . . . ,Ak have all the indices not greater than n then 
C can be chosen of index n, and tf additionally the same weakening applies to all 
these automata, it is preserved by the construction. Also, the chain form can be kept 
in the construction. 

Note: The notation Ag[xl H Ay[z’] , . . . ,xk I-+ AF[Z],Z] indicates a mapping that sends 

a tuple Dl,. . . ,&, c B OntO Ag[X16#?[zHd], . . .,Xk ~A~[z~d],.?k-+d]. 

Proof. The construction is straightforward and will be omitted. 0 

Proof of Theorem 3.3. We proceed by induction on n. 
Recall that Ct is the least set of terms containing the basic terms Xi, xi Vxz and 

f(x1 , . . . ,xp(f)), for f E Sig, and closed under substitution. It is plain how to con- 

struct automata equivalent to basic terms. For example, an automaton equivalent to the 



42 D. Niwiriskil Theoretical Computer Science 189 (1997) 149 

term f(xi, . . . ,xp(f)) will have one state, say ~0, and one transition x0 = f(xt,. . . ,+,(f)) 

(Xl , . . . ,+(f)) are variables). No infinite paths are needed in accepting runs of these 

automata and so we can assume that the acceptance conditions are empty. Thus, by 

Lemma 3.6, we obtain the claim for all terms r in Cg = iI;. 

In order to settle the case n = 0, it remains to show that, for any term r(t) E Cf, we 

can find an equivalent automaton with_eepty acceptance condition, and, for any term 

r(Z) E II:, we can find such an automaton with trivial acceptance condition (0, Q). The 

first claim follows directly from Lemmas 3.4 and 3.6. For the second claim first note 

that the empty acceptance condition is equivalent to {(0,8)}. Then the claim follows 

easily from Lemma 3.5 and its proof, together with Lemma 3.6. This settles the case 

of n=O. 
Now suppose n > 0 and the claim holds for all n’ < n. 

Consider first the class Zi*. By induction hypothesis, for each term in n!&_, , we 

have already an equivalent automaton in chain form with index iz weakened both by 0 
and “by all”. Thus, the claim for all r E C,, ’ follows from Lemmas 3.4 and 3.6. 

Now consider the class lI$,. By induction hypothesis, for each term in Cfa_,, we 

have an equivalent automaton in chain form with index n - 1. For each such automaton, 

we can extend the acceptance condition by a void pair (0,0) obtaining thereby an 

equivalent automaton with index n weakened by 0. Thus, the claim for the class IIin 

follows from Lemmas 3.5 and 3.6. 

The claims for the classes CtX+, and ngn+, follow from the just proven facts in the 

similar way. 0 

Note on complexity 
The above proof gives us an upper bound on the size of the constructed automaton A. 

Indeed, in Lemmas 3.4 and 3.5 the number of states increases by 1, and in Lemma 3.6, 

the number of states of the automaton B is not greater than the sum of the corresponding 

numbers for A,Al,..., Ak reduced by k. Then, it is easy to see that an automaton A 
equivalent to a term r can be chosen with no more than 171 states, where IrI denotes 

the length of term z. 

Concluding remark 
We can summarize the above considerations as follows. The class of operations 

definable by fixed point terms over a given signature interpreted in powerset algebras 

coincides with the class of operations definable by Rabin automata with variables. 

Transformations in both directions can be done uniformly for all powerset algebras 

and are computable, although they apparently differ in complexity: a translation from 

fixed point terms to automata is linear while the best bound we are able to give for 

the size of a (vectorial) expression equivalent to a given automaton is exponential. 

Moreover, the transformations establish a tight correspondence between the levels of 

the index hierarchy of automata and those of the fixed point hierarchy, as indicated 

precisely in Theorems 3.2 and 3.3. 



D. Niwiriskil Theoretical Computer Science 189 (1997) I-69 43 

Fixed point terms vs. automata with the Mostowski acceptance condition 
As we have remarked in Theorem 3.3, an automaton resulting from a fixed point 

term has its acceptance condition in chain form, which is readily equivalent to the 

Mostowski acceptance condition. 

Construction is even more direct if, instead of a fixed point term, we start with 

a vectorial fixed point expression (cf. Proposition 2.11). Indeed, consider a vectorial 

expression of the form 

where q is p or v depending on whether n is odd or even, and each 0; is in some 

normal form; say, it is a disjunction ci = 6i,r V . . . V 6i,e, of atomic terms of the form 

ml , . . .,+(,-j) (here the Xi’s are among the variables 90, y’i, . . . , $, plus the free vari- 

ables of the expression, if any). Then it is not difficult to see that our expression is 

semantically equivalent (module initial state) to a Mostowski automaton the states of 

which are just all the bound variables of the expression, the set of transitions consists 

ofalltheequationsy,,i=&j (withp=O,l,..., n,i=l,..., kandj=l,..., ei),andthe 

ranking function is defined by rank : yp,i H p. Note that in this case, the expression 

and an equivalent automaton can be viewed as essentially the same object, and the 

message of Theorem 3.3 is that the two semantics of this object: fixed point semantics 

and automata semantics, are equivalent. 

Conversely, one can carry out a direct translation of Mostowski automata to vectorial 

fixed point expressions. In such a translation, the states with odd rank would be turned 

into variables bound by ,U while the states with even rank would be turned into variables 

bound by v. In order to get a vectorial expression one may need to add some dummy 

variables, but the size of the resulting expression is polynomial (in fact, O(n*)) in the 

size of the automaton. Therefore, the vectorial fixed point expressions and Mostowski 

automata can be viewed as objects of the same level of succinctness, in contrast to 

vectorial expressions vs. Rabin automata (cf. Note on complexity above). Note however 

that the above does not apply to Mostowski automata vs. fixed point terms, due to the 

cost of converting a vectorial expression into a term. 

3.3. Iterative characterization of the jxed point definable tree languages 

In this section we discuss an alternative characterization of the fixed point hierarchy 

in the powerset tree algebra. More specifically, we focus on the sets of trees definable 

by closed fixed point terms interpreted in @.F. We show that tree languages of the 

subsequent levels of the fixed point hierarchy can be constructed from languages of the 

preceding levels by means of two operators that can be viewed as somehow analogous 

to the languagetheoretic operators L* and Lo. 

Compositionality is one of the advantages of the fixed point notation: the expres- 

sions denoting complex objects can be naturally decomposed into simpler expressions, 

denoting simpler objects. However, contrary to the iteration operators * and o of 

classical regular (or o-regular) expressions, the p and v operators do not behave 



44 D. Niwitiskii Theoretical Computer Science 189 (1997) 149 

as algebraic operations, for obvious reasons. Therefore, a fixed point definition of a 

tree language does not provide per se a decomposition of this language into simpler 

languages. 

This can be remedied as follows. The first observation is that an m-ary operator 

defined by a fixed point term z(zi , . . . ,z,) in an algebra @9& can be completely 

characterized by a tree language defined by the same term in the powerset tree algebra 

over a signature Sig U {zl , . . . ,zm}, where the zi’s are considered as constant symbols. 

The following fact, analogous to Proposition 1.5, can be either deduced from that 

proposition and Theorems 3.2 and 3.3, or proved directly by induction on the structure 

of fixed point term. (Recall that for L C 9&gU(r,,...,z,I, L[Z c . .] is the substitution 

operation described in Section 1.1.) 

Proposition 3.7. Let z(zl , . . . ,z,,,> be a jxed point term over a signature Sig. Then, 

for any Kl,...,G C Tsig, 

Note. In [36], we have stated this fact in a more general form, by extending the 

concept of substitution operation L[z’ + ’ . .] to that of an interpretation of a tree lan- 

guage L in an arbitrary ,a-algebra d. Then, an interpretation of a fixed point term r in 

algebra d can be characterized by the interpretation of the tree language rp4;FgU{Zlv sZm} 

in d. 

In order to show that a tree language defined by a fixed point term can be decom- 

posed into languages defined by its subterms, we should be able to interpret the fixed 

point operators as operations on languages. Let L C &g”(x), where x is a constant 

symbol not in Sig. Consider an equation 

X=L[xtX], 

where X ranges over @.9&. We shall show that the extremal fixed points of this 

equation can be characterized by two operations: an unrestricted and a well-founded 

iteration. 

An intuitive idea behind these operations is simple. Pick up a tree t in L. Next, for 

each leaf of t labeled by x, pick up again some tree in L and substitute it at this leaf. 

The resulting tree can still have some leaves labeled by x, so continue the substitutions 

again and again. This process may be of course infinite, but, by the limit construction, it 

eventually produces a tree in 9&s. We have informally described unrestricted iteration. 

For the process of well-founded iteration, we additionally require that only a finite 

number of substitutions can be made along each path (although the total number of 

substitutions can be, of course, infinite). 

Formally, it is convenient to describe the iteration processes by trees. Let L be as 

above and let t E F&g. Let D : domD --f L be a tree valued in L, with domD C(dom t)*. 

We recall the operation last that has been used in the proof of Theorem 3.2. For 



D. Niwiliskil Theoretical Computer Science 189 (1997) Id9 45 

c1 E domD, 

w 
last(a) = 

if CI = VW with w E dom t, v E (dom t)*, 

E if c( = E. 

A tree D as above is called a decomposition of t by L, if, for each M E dom D with 

last(a) = w and D(E) = s, the subtree t.w of t is in s[x c 9&] and the set of immediate 

successors of M in dom D is precisely {I: S(V) =n}. A decomposition D is well- 

founded if it is well-founded as a tree, i.e. does not contain an infinite path. (Note that 

a well-founded decomposition may be infinite as its branching degree is not necessarily 

finite.) 

Let 

Iter,(L,x) = {t E 9&: there exists a decomposition of t by L}, 

Iter,,(L,x) = {t E &fg: there exists a well-founded decomposition of t by L} 

Proposition 3.8. The least and the greatest solutions in p&s of the equation X= L 
[x t X], are respectively Iter,,(L,x) and Iter,(L,x). 

Proof. The arguments are quite analogous as in the similar cases considered in this 

section. We shall give an argument only for the least fixed point. Let us abbreviate 

Iter,,(L,x) =I and 9& = Y. 

By the I&aster-Tarski Theorem, it is enough to show two things: 

(i) for all A4 C_ Y, L[x c M] 2 M implies I C A4. 

(ii) L[x t I] C I. 

Ad (i): Let t E I, and let D be a well-founded decomposition of t by L. Using Tree 

Induction Principle, we show that, for each a E domD, the subtree t.last(a) of t is in 

M. Let D(a) = s E L and suppose that the claim holds for all immediate successors of 

a. Then t.w E s[x t M], hence, by assumption, t.w E M. 
Ad (ii): Let t E s[x c I] with s E L. Then, for each w E doms such that s(w) =x, 

we have a well-founded decomposition of t . w by L. From this, we can easily compose 

a decomposition D of t by L, with D(E) = s. 0 

In order to characterize the levels of the fixed point hierarchy over signature Sig, 
we have to consider tree languages over the extensions of Sig by arbitrary large finite 

sets of constants. Let us fix a list of symbols x1,x2,. . . Let, for n < CO, C{(@&,*)O 

be the class of all tree languages L that are in Zi( a&g u~x,,,.,,x,l), for some m; let 

n~(~&,*)a be defined similarly. (The last index 0 indicates that we consider only 

0-ary operations here.) 

We are ready to state the following. 

Proposition 3.9. (1) .?Y:(@~&*)o = D~(~&,*)a is the family of all finite sets of 
jinite trees over signatures Sig U {xl,. . . ,xm}, m < u; 



46 D. Niwiriskil Theoretical Computer Science 189 (1997) 149 

(2) C~,,(pFsie*)~ is the least class of tree languages containing lT{(p&*)o and 
closed under substitution and under well-founded iteration; that is, 

l $2, , . . . ,z, are among x1,x2,. . . and L, K1,. . . , K,,, are in C~+,(~JYsi~*)o, so is 
L[Z +- K], 

0 if L is C~+l(@9&*)0, SO is Iter,,(L,xi), for i < W; 

(3) ZZ~+,(~&e*)o is the least class of tree languages containing C:(p&e*)o and 
closed under substitution and under non-restricted iteration. 

Proof. The claim (1) is obvious. The remaining claims follow from Propositions 3.7 

and 3.8. 0 

Corollary 3.10. Any tree language L C 9&e de$nable by a a fixed point term (or, 
equivalently, by a Rabin automaton), can be obtained from a finite number of finite 

trees over Sig, by means of the operations of substitution, unrestricted iteration, and 
the well-founded iteration. 

Note. A characterization by a kind of regular expressions of tree languages rec- 

ognizable by Biichi automata has been previously shown by Takahashi [47]; it can 

be viewed as the case of II;(pF&*)o in Proposition 3.9 above. Another concept of 

“regular expressions for tree languages” has been proposed by Mostowski [29]. Rather 

than two iteration operators, Mostowski considers one such operator equipped with 

a restriction on infinite paths similar to the Mostowski acceptance condition and shows 

a characterization analogous to Corollary 3.10. 

Connection with injinite games 

The operations Iter,,(L,x) and Iter,(L,x) discussed above can be naturally char- 

acterized in terms of infinite games. Let L be an arbitrary subset of Tsieu(x), and let 

t E Tsie. We may consider a game of two players of which one wants to show that t 

can be decomposed by L and the other strives the opposite. At each moment of the 

game, if player I has to play, some target node of t is fixed; initially this is the root 

E. Suppose that w E dom t is a target node and player I has to play. Then she tries 

to “cover” (at least partially) the subtree t.w by a tree in L; that is, she picks up 

a tree s in L such that t. w E s[x+ 9&g] (if there is no such tree, player I loses). 

Then player I sends the set of nodes {WV: v E doms and s(u) =x} to player II. He 

answers by choosing one node of this set; this will be the target node for the subse- 

quent play. Note that the set of nodes received by player II may be empty, in this case 

he loses. It remains to say who wins the game if it lasts to infinity; actually we can 

define two games according to this decision: in the game, say, G,(L, t), we settle that 

at infinity player I wins, and in the game G,, (L, t), player II is the winner. Then it 

follows directly from the definitions that player I has a winning strategy in the game 

G,(L, t) (respectively, G,,(L, t)) iff there exists a (well-founded) decomposition of t 

by L. 



D. Niwiriskil Theoretical Computer Science 189 (1997) I-69 47 

A simple but interesting observation is that both games are determined, that is, 
if there is no suitable decomposition of t by L then player II can always win (a 
construction of a winning strategy is straightforward). It is interesting because this fact 
does not appear to be a corollary to the Martin Determinacy Theorem about Bore1 
games, since the set L may be arbitrary. It can be also observed that if there is a 
winning strategy for either player, it can be made “memory-less”, that is, such that 
at each moment the next move depends only on the actual position and not on the 

history of the play until now. Using these observations and the ch~a~te~zation of fixed 
point terms by the iteration operators, one could inductively define more refined games 
suitable for characterization of arbitrary fixed point terms; in these games more than 
one label (like X) would be involved and the winning condition would depend on the 
labels occurring infinitely often, yet the “memory-less” property would be preserved. 
Cons~ctions of that kind have been actually carried on by the authors that introduced 
(independently) automata with Mostowski condition [30,28,12] (cf. Historical note 

on automata above), but without explicit reference to the “basic” games that we have 
described above. 

4. Initial&y of the powerset tree algebra 

In this section, we prove that the powerset algebra of syntactic trees over a signature 
Sig, m&g, is initial in the class of all powerset algebras over signature Sig, in the 
follo~ng sense: for any semi-algebra @, there is a mapping from PTsig to ~3, which 
is a morphism w.r.t. fixed point terms. (In the language of category theory, such 
a property should be rather called weak initiality because we do not show that the 
morphism in consideration is unique.) We apply this result in order to show that the 
emptiness problem for fixed point terms over the powerset algebra of trees can be 
reduced to the analogous problem over the powerset algebra of a trivial (one element) 
algebra, from which we deduce a pol~omial-time algorithm for this problem. 

We need a definition first. 
Let ?8 = (B, {fg: f E Sig}) be a semi-algebra, let t E Tsig, and b E B. An expansion 

of b by t is a tree D : dom D --+ 3, such that domD = dom t, D(E) = b, and, for each 
w E domD, if t(w) = f, with p(f) = k, then D(w) = f g(D(wl), . . . , D(wk)). 

Let 

Exp(t, &?) = {b E B: there exists an expansion of b by t}, 

For L 2 Z’sig, let 

Exp(L, W) = lJ Exp(t, #). 
EL 

Note that the operational completeness of a semi-algebra 9 (Proviso 1) implies 
that, for any b E B, there is always an expansion along some tree in T,sig, in particular 

ExpUkg,@)#@. 



48 D. Niwitiskil Theoretical Computer Science 189 (1997) Id9 

We are ready to state the main result of this section. 

Theorem 4.1. Let 98 be a semi-algebra and let a mapping h: @(Tsig)+ p(B) be 

de$ned by h(L) = Exp(L, 98). Then, for any jixed point term over Sig, z(zl,. . . ,z,), 

and any L1,. . , L, z Tsig, 

h(+% 
bl H Ll ,. . .,z, H L,]) =z”~[z~ H h(L1),. . .,z,,, H h(L,)]. 

Note. It is not always true that h is onto @B, as it can be possible that two distinct 

elements of B have expansions along exactly the same trees and therefore cannot be 

separated in any value of h. However, any subset of B definable by some term, i.e. 

B 2 C = z@@, is a value of h. 

Proof. We shall apply a characterization of fixed point terms by automata of 

Theorem 3.3. By that result, there exists a Rabin automaton with variables A(zt, . . . ,z,,,), 

such that, for any semi-algebra 99, z@~[z H h(z)] =A9[z H h(z)] (here h(i) abbre- 

viates the vector (h(Ll), . . . , h(Lk))). 

Thus, it is enough to prove that, for any L1,. . . , L, c Tsig, it holds 

h(AF[Z H i-j) = A9[Z H h(i)]. 

Let A = (Sig, Q, V, V~,qg, Tr,Acc) (note that A may have initial variables, cf. 

Section 3.2). Let V = {zl,. . . ,zm}. 

Ad “C”: Let b E B, and let t be a tree in AF[Z H L], such that there exists an expan- 

sion of b by t, say D. Let r : domr -+ Tsig x (TrUV) be an accepting run of A on t, w.r.t. 

a valuation Z ++ L’. Recall (Section 1.3) that dom Y = dom t and, for each w E dom r, 

Y ri (w) = t.w. We need to construct an accepting run of A on b, w.r.t. a valuation 

.Z H h(i). We define a tree r’ : domr’ + B x (Tr U V), by dom Y’ = dom Y and, for 

wEdomr’, 

r’(w) = (D(w), 7~2 o r(w)). 

Note that for each w E domr’, if the second component 712 o r’(w) is a transition 

v=f(x1 ,..., Xk) then t(w)= f and hence rci or’(w) I fg(ni or’(wl),. ..,ni or’(wk)), 

since D is an expansion by t, and if 7~ or’(w) =zi then t.w E Li and, as D(w) has 

obviously an expansion by t.w, we have D(w) E h(Lj). Therefore, Y’ is a run of A on 

b w.r.t. the valuation Z w h(z). Moreover, as the state parts of the runs r and r’ 
coincide, this run is accepting. 

Ad “2”: Now let b E B and let r be an accepting run of A on b w.r.t. the valuation 

Z H h(l). Consider for a moment a tree t’ over a signature Sig u {ZI ,...,z,,,}, where 

p(zi) = 0, defined by dom t’ = domr, and, for each w E dom t’, if rczor(w) is a transition 

y = f (2) then t’(w) = f, and if 712 or(w) =q then t’(w) =zi, too. Note that in this last 

case, there is an expansion of the element r tl (w) by some tree in Li; let us fix such a 

tree tw and a corresponding expansion D,; let pick : w H tw and pickD : w H D, denote 

the induced mappings. Let D’ = r T1 be the element part of the run r. We define a tree 



D. NiwiriskiITheoretical Computer Science 189 (1997) Id9 49 

D by substitution D = D’[pick,], and a tree t by substitution t = t’[pick]. Then it is easy 

to see that D is an expansion of our b by the tree t. Now let Y” : dom r + Tsis x (Tr U V) 

be defined by dom r” = dom r, and, for w E dom r”, r”(w) = (t.w, 7~2 o r(w)). Then it 

is straightforward to verify that r” is an accepting run of A on t, w.r.t. the valuation 

Z H L’. Therefore t E A YJG~[ZH ,?I, and hence b E h(A@sg[Z~,f]). 

This remark completes the proof. 0 

Remark. One may think that the easiest way to show that a mapping between two 

powerset algebras preserves fixed point terms, should be rather to show that it behaves 

well w.r.t. the underlying subset ordering. Considering a characterization of extremal 

fixed points in Theorem 2.2, one would like to require that a candidate for a mor- 

phism should preserve the least upper bounds of increasing chains and the greatest 

lower bounds of decreasing chains. The last, however, is not true about the mapping 

h considered above. 

Let, for example, a signature Sig consist of two symbols: a unary symbol f and 

a constant symbol c. Let L, = {fm(c): m 2 n}. Then n, <o L, = 8. Now let 9Y be an 

algebra with the universe B consisting of one element, say B = { 1 }, and let fB( 1) = 1, 

cB = 1. Then clearly 1 has an expansion in &9 by any f”(c), hence Exp(L,, 98) = { 1 }, 

for each n, and consequently n,,, = Exp(L,, B) = { 1). 

In view of this remark, we believe that the use of Theorem 3.3 (or some similar 

automata-like characterization) in the proof of Theorem 4.1 is essential. 

4.1. Internalization 

We apply Theorem 4.1 to show a close connection between the algebra a&s and 

an algebra t, for t E T,, (cf. Section 1.2). 

Proposition 4.2. For a closed jxed point term z and t E Tsig, t E z@sg if and only if 
eEzf. 

Proof. Let h : p(Tsiq) -+ p(dom t) be the mapping defined in Theorem 4.1. Observe 

that E (the root of t) considered as an element of the algebra t has the unique expan- 

sion by t. Therefore, for any L c Tsig, t EL iff E E h(L). Thus, the claim follows from 

Theorem 4.1. 0 

Note. We have first observed this property in [3] (and proved it directly for a 

stronger version of the fixed point calculus) and called it internalization, because it 

enables us to pass from external semantics for the fixed point terms in @9& to an 

internal semantics in t (and vice versa). We believe that this phenomenon is very 

general, since many objects considered in computerscience, as words, graphs, trees, 

automata.. ., can be either organized into algebras (or logical structures) or treated 

themselves as algebraic (or logical) structures. The virtue of the fixed point calculus 

is that the both approaches can be considered in a unified way, just as two legitimate 

interpretations of the same fixed point term notation. 



50 D. NiwiriskiITheoretical Computer Science 189 (1997) 149 

4.2. Nonemptiness problem 

Consider the following decision problems: 

Satisjability. Given a fixed point term without free variables, z, is there a powerset 

algebra @Z+Y such that rP” # 0 ? 

Nonemptiness. For a fixed powerset algebra @?8’, given r, is z@ # 0 ? 
We are primarily interested in solving this second problem for the powerset algebra 

of syntactic trees. It turns out however that both problems can be reduced to some 

simple finite powerset algebra, in fact the simplest one. 

In what follows, Sig is an arbitrary signature. Let &J be an algebra over Sig with 

the universe consisting of only one element, say 1, and all the operations defined by: 

fV , . . . , 1) = 1, for f E Sig. The following fact induces a reduction of the satisfiability 

problem, as well as the nonemptiness problem for p&g, to the nonemptiness problem 

for @&j. 

Proposition 4.3. For a fixed point term without free variables, z, the following con- 

ditions are equivalent: 
1. r@~~~ # 0, 
2. there is a semi-algebra $9, such that z@~ # 0, 
3. @go # 0. 

Proof. Implications 2 + 1 and 3 + 1 follow directly from Theorem 4.1, implication 1 

=+ 2 is trivial, and the implication 1 =+- 3 follows from Theorem 4.1 and the fact that 

1 has an expansion in S&, by any tree t E Tsc. 0 

We note that the equivalence of the fixed point terms and automata (Theorems 3.2 

and 3.3), imply an analogous result for automata: 

Proposition 4.4. For any Rabin automaton without free variables, A, the following 

conditions are equivalent: 
1. A@%jg # 8, 

2. there is a semi-algebra &?‘, such that A@% # 0, 
3. Apa # 8. 

How difficult computationally is the nonemptiness problem for @9& ? 

The ordered universe of the algebra @SO can be identified with that of the Boolean 
lattice ((0, l}, A, V), and one can translate the fixed point terms over Sig to the fixed 

point terms over the signature {A, V} in such a way that the values of a closed 

term and its translation are identical. Namely, trans(rl V ~2) = trans(zl) V trans(zz), 
trans(qx.z) = qx.trans(z), for q E {p, v} and trans( f (71,. . . , zk)) trans(zl ) A . . . A trans 

(zk), for f E Sig. 
Now, it is immediate to verify that, for any monotonic Boolean function g : (0, l}k+l 

-{O,l}, and for any bl,..., bkE{O,l}, py.g(y,bl,..., bk)=g(O,bl,..., bk) and vy. 

g(Y,bl,...,bn)=g(l,bl,..., bk). Therefore, evaluation of a closed fixed point term over 

the Boolean lattice can be reduced to evaluation of an ordinary term built out from 



D. NiwiriskilTheoretical Computer Science 189 (1997) Id9 51 

V, A, 0 and 1. The last can clearly be done in linear time. As all the reductions are 

also linear, we can note the following corollary to Proposition 4.3. 

Corollary 4.5. The satisfiability problem for jixed point terms, as well as the non- 

emptiness problem for $xed point terms interpreted in the powerset tree algebra, can 

be solved in linear time. 

We cannot consider the above result as particularly optimistic, because our fixed 

point calculus is not very succint. Note that an upper bound for the emptiness problem 

for fixed point terms does not imply similar results neither for vectorial fixed point 

terms, nor for the Rabin or Mostowski automata, as the only translations that we know 

to carry on from fixed point terms to those objects are not polynomial. 

Note. A similar result has been obtained recently by Janin and Walukiewicz [21] for 

a special kind of formulas of the modal p-calculus (see Section 6) called disjunctive 

formulas. 

5. Hierarchy 

In this section we shall examine the problem whether the alternation hierarchy of 

fixed point terms induces a proper hierarchy of fixed point definable operations in a 

p-algebra. We shall see that it is so in the powerset algebra of syntactic trees, under 

some general hypothesis on the signature. More specifically, we shall exhibit a family 

of sets of binary trees the definitions of which will require arbitrarily long sequences of 

alternations of the least and greatest fixed point operators. For simplicity of presentation, 

we shall first consider languages over different signatures; later on, we shall observe 

that all these can be encoded over one fixed signature, provided that it contains at least 

two symbols one of them of an arity at least 2. 

Note. The family of examples to be presented has been already shown by this author 

in [36]; in the actual presentation, we simplify the phrasing according to [12]. 

In this section we shall deal only with automata without variables running over 

syntactic trees. Therefore, we shall use the classical definition of an automaton run 

(Section 1.3). We shall also use a more standard notation L(A) for A@fig, the set of 

trees accepted by an automaton A. 
Let, for n=1,2,3 ,..., Sig,={al,az ,..., a,,} be a signature, where the arity of each 

ai is 2. We define two sequences of tree languages, (M,),>o and (N,),>o, by the 

interpretation of two sequences of fixed point terms over signatures Sig, in the algebras 

@ %ig, T respectively, 

IV, = 5x,. ...px3.vx2.wI .al(xl,Xl)Va2(X2,X2)V”‘Van(Xn,Xn), 

N,, = {‘x, . . . . vx3 .w2 .vxl .al(xl,xl)Vaz(xz,n;!)V...Va,(x,,x,), 

where {,~E{~,v} and, t=p iff n is odd iff r=v. 



D. Niwihskil Theoretical Computer Science 189 (1997) 1-69 

What do these tree languages look like? 

Let L be any of the above sets M, or N,,. There is one common property that 

characterizes the trees t in all these sets L: 

For any infinite path, if i is the greatest index such that ai occurs infinitely often 

on this path, then the variable xi is bound by v (not by p) in the above definition 

of L. 

This obviously amounts to the following two properties: 

t E A4, iff, for any infinite path P of t, max{i: ai E Inf(t, P)} is euen 

and 

t EN, iff, for any infinite path P of t, max{i: ai E Inf(t, P)} is odd. 

The easiest way to see the above characterization is by translation of the fixed point 

terms into the Rabin automata, e.g. by the method of Theorem 3.3. For n = 1,2,. . ., 

consider the following Rabin automata (without variables): A,, = (Sig,, { 1,2,. . . , n}, 1, 

Tr,,, Act,,) and B, = (Sig,, { 1,. . . , n}, 1, Tr,,, Acci), where the numbers 1,2,. . . ,n, serve 
as states of both A,, and B,, the set of transitions Tr,,, also common to A, and B,, 

consists of all the equations i = uj(j, j), for i, j E { 1,. . . , n}, and the acceptance condi- 

tions are specified as follows (here Even and Odd stand for the sets of even and odd 

natural numbers respectively, and [k, m] is an abbreviation for {j: k < j < m}): 

Acc,={(Oddn[i+ l,n],Evenrl[i,n]): i is even and idn}, 

Acck = {(Even n [i + l,n], Oddn [i,n]): i is odd and i 6 n}. 

For example, 

Acc7 = {({3,5,7}, {2,4,6}), ({5,7} {4,6}), ((71, {6})}, 

Accl, = {({2,4,6}, {1,3,5,7}), ((4,612 {3,5,7}), ({6), {5,7)), (8,{7))). 

Note that Acq = 0, and Acq = ((0, {O})}. 
It is easy to see that the above are precisely the automata that we shall obtain 

from the fixed point terms defining the languages M, and N,,, according to the method 

of Theorem 3.3 (up to replacing xi by just i, for the sake of simplicity). In 

particular, 

M,=L(A,) for n=O,l,..., 

N,=L(B,) for n=O,l,... 

We are ready to state the main result of this section. 

Theorem 5.1. (I) For n < o odd, 
(a) Mn is in Zi(Sig,) but not in II{(Sig,), 
(b) N,, is in IIi(Sig,) but not in Zi(Sig,). 



D. Niwiliskil Theoretical Computer Science 189 (1997) I-49 53 

(2) For 0 < n < co even, 
(a) M,, is in IIg(Sig,) but not in Z{(Sig,), 

(b) N, is in Zt(Sig,) but not in IZ{(Sig,). 

Proof. The positive part of the claim follows from the definition of the languages M,, 

and N,. In order to prove the negative part, we find it more convenient to deal with 

automata rather than directly with fixed point terms and then we shall use Theorem 3.3. 

It is enough to prove the following: 

Claim 5.2. (1) For m < w, M2,,,+l cannot be recognized by a Rabin automaton with 

index m + 1 weakened by 0 and “by all”, 
(2) For m < o, Nz,,,+l cannot be recognized by a Rabin automaton with index m, 

(3) For m > 0, Mz,,, cannot be recognized by a Rabin automaton with index m 

weakened “by all”, 

(4) for m>O, h,, cannot be recognized by a Rabin automaton with index m 

weakened by 0. 

The above suggests that we will have to consider 4 cases. In fact, one can note 

that the cases (1) and (4) are symmetric as in both sets it is required that ai with the 

highest possible i may not occur infinitely often along a path. Similarly, the case (3) 

is analogous to (2), so we will essentially deal with two cases only. 

It will be useful to introduce a concept of a partial tree over a binary signature and 

a partial run over such a tree. We fix a symbol I as a 0-ary (constant) symbol. Let 

Sig be any of the signatures Sig,, and let Sig, abbreviate the signature Sig U {I}. 

Clearly Ts@ z r&, . We shall refer to the trees over Sig, as partial trees over Sig; 

in this context the trees from Tsig will be emphatically called total. 
Let A = (Sig, Q, qo, Tr, Act) be a Rabin automaton (over signature Sig) and let q E Q. 

Let t E Tsig, be a partial tree. A partial q-run of A on t is any tree r : dom t -+ Q such 

that Y(E) = q, and, for each w E dom t such that t(w) # I, say t(w) = a, r(w) = a(r(wl), 

r(w2)) is a transition in Tr. (Note that we do not adapt the automaton A to a new 

signature Sig I; in particular, nothing is imposed on the states occurring at the leaves 

of a partial run.) 

A partial q-run is accepting if any of its infinite paths is accepting, in the usual 

sense (note that I may not appear on an infinite path). We say that a tree t E Tsig, is 

partially accepted by A if there exists a state q E Q and a partial accepting q-run of A 
on t. Reference to q will be sometimes omitted. Note that q need not to be the initial 

state. We denote by &,(A) the set of all partial trees partially accepted by A. Clearly, 

L(A) G&(A); note however that L,(A) may be nonempty while L(A)=@ 
Now, for any total tree t E T,,, we define the set tP of partial trees, 

tP = {t’ E Tsig, : for some wedomt, t.wEt’[l+Tsi,]}. 

Intuitively, this is the set of those all partial trees that occur in t (not necessarily as 

complete subtrees). 



D. Niwifiskil Theoretical Computer Science 189 (1997) Id9 

For A4 C Tsig, we set A4p = lJt,-M tp. 

We shall use the following fact, coming easily from the aforementioned characteri- 

zations of the sets M,, and N,,. 

Observation 5.3. For m < n, 

We call a partial tree t E Tsig, a branch if, for any w l domt, there is v~dom t, 

v > w, such that t(v) = 1. 
The following is the heart of our proof. 

Lemma 5.4. Let A4 be any of the sets N, or AI,,, n = 1,2,. . . Let A be a Rabin 

automaton with such an index that hypothesis L(A)=M would contradict Claim 5.2 
above. Suppose L,(A) CW’. Then there exists a branch in AP - Lp(A). 

Proof. For A4 = Mi, the statement may appear strange, since Mf = Ml = 0, but in this 

case the claim only says that the inclusion L,(A) C IMP is impossible. Indeed, due to 

our Proviso 2, an automaton with the index 1 weakened both by 0 and “by all”, that 

is, with a trivial acceptance condition (0,Q) must accept at least one tree. 

For A4 = Ni, clearly A4 consists of the unique tree of Tsig, , t : { 1,2}* + {al }. On the 

other hand, an automaton with the empty acceptance condition cannot partially accept 

any tree with an infinite path. Thus any infinite branch in MP will do. 

Now we are going to show that the claim holds for all the sets N,. Let n > 1 and 

suppose that the claim holds for all N,I, n’ < n. We shall consider two cases. 

Case 1: n is even, say n = 2m, for some m > 0. Let A = (Sig,, Q, qo, Tr, Act) be an 

automaton with 

and suppose L,(A) c N/. 
We define an automaton A’ over a smaller signature Sig,_l by restricting the tran- 

sitions to Sig,_l and also simplifying the acceptance condition, namely 

A’=(Sig,_,,Q,qo,Trn(Q x Sig,_l x Q x QhAcc’) 

with Act = { (LI, U, ), . . . , (L,_I, Urn-~)} (if m = 1, this acceptance condition is empty). 

It should be clear that any accepting partial run of A’ is also accepting in the sense 

of A, hence L,(A’) c N/. But, since L,(A’) & Tsig,_,, by Observation 5.3, we have 

L,(A’) C Nf_,. Since A’ has index m - 1, by induction hypothesis, there exists a branch 

BEN;-, - L,(A’). We shall use it to construct a desired branch in N{ - L,(A). 

Let k be the cardinality of U,. We first construct a sequence of partial trees Bo, 

Bl,..., Bk, as follows. Let ~=a,(l,_L)[I +B] (here a,(l,_L) stands for the tree 



D. Miwiriskil Theoretical Computer Science 189 (1997) Id9 

k+ 1 

Fig. 1. Branch B’ EN{ - L,(A) for even n. 

with the domain {E, 1,2} and the values at E, 1,2 being a,, I and I, respectively; the 

definition of substitution has been given in Section 1.1). Let 

Bo =B[I +-- a,(l, _L)] 

and let, for i=O, l,..., k - 1, 

Bi+r =b[_L +Bi]. 

Clearly, each Bi is a branch. Let B’ =Bk. We claim B’ EN/ - L,(A) (see Fig. 1). 

The assertion B’ EN! follows easily from the construction: a, may occur at most 

k + 2 times on a path, and any infinite path of B’ is cofinal with some path in B. To 

prove B’ $ L,(A) suppose the converse and let Y : dom B’ + Q be a partial accepting 

q-run of A on B’. Consider an “occurrence” of B in B’, that is, a node w E dom B’, 

such that B' . w E B[I + TQ]. Let Y(W) = p. Such an occurrence induces a partial 

p-run of A on B, r’ say, defined by T’(U) = Y(WU), for v E dom B. But r’ can be also 

considered as a partial run of the automaton A’ on B. Now a crucial observation is 



56 D. Niwiriskil Theoretical Computer Science 189 (1997) Id9 

that Y’ may not be accepting as a partial run of A’, since otherwise we would have 

B ELJA’), contradictory to the choice of B. On the other hand, Y’ is obviously an 

accepting partial run of A, as a fragment of an accepting partial run. From that we can 

conclude that some state from U, must occur as a value of Y’ at least once (in fact, 

infinitely often; if U, = 0, we obtain a contradiction which completes the proof in this 

case). Let r’(v) E U,. Note that, since B is a branch, there must be a leaf ~1 E dom B, 

u < ~1. As this situation holds for every occurrence of B in B’, we easily derive that 

there exist some nodes wi, ~2, w3 E dom B’ such that wi < w2 < ~3, r(wi) = I E U,, 

and B’(w2) = a,. This fact will allow us to construct a partial tree that is not in N/ but 

is nevertheless partially accepted by A, contradictory 9 to the assumption L,(A) C N/. 

More specifically, we first define a sequence of partial trees B& Bi,. . ., a sequence of 

partial q-runs r-0, t-1,. . ., and, as an auxiliary, a sequence of nodes us, vi,. . ., as follows. 

We set ug=ws, Bk=B’ and ro=r. 

Let v be such that w3 = wiu. For i < co, we define 

B:+l = B,![Ui + B’ s wl]y 

ri+l = rj[Ui + r . WI], 

Vi+1 = ViV. 

Let B” = lim Bi and r” = lim r,. Clearly, B” contains a path with infinitely many oc- 

currences of a,, and then B” $ N!. On the other hand, it is easy to see that r” is an 

accepting partial q-run of A on B”. Indeed, the only infinite path of r” that is not 

cofinal with some path of r does contain infinitely many occurrences of a state from 

U, and therefore is accepting. 

This remark completes the induction step for even n. 

Case 2: n > 1 is odd, say n = 2m + 1, for some m > 0. Let A = (Sig,, Q, qo, Tr, Act) 

be an automaton with Act = {(Ll, Ul ), . . . , (L,, U,,,)} and suppose LJA) & N/. 

Now, for each i=l,..., m, we consider an automaton Ai over the signature Sig,_l, 

obtained from A by restriction of Tr to Sig,_l, and moreover dropping out the states 

from Li (we may assume without loss of generality that qo is not in any Li). That is, 

A’i = (Sig,_l, Qi, 40, Tri, Accj), 

with Qi = Q-Li, Tri = Trn(Qi XSig,_, XQi xQ~), and Ace< = {(Ll flQi, Ul flQi),. .., 

(L, n Qiy U, n Qi)}. Note that Li fl Qi = 0, and thus each automaton Ai has index m 

weakened by 8. Again, it is easy to see that L,(Ai) &N:_, . Next, it is not difficult to 

construct an automaton, D say, of index m weakened by 0, such that L*(D) = Ui=l,.,,,m 

L,(Ai). Clearly, L,(D) &N:_, . Therefore, by the induction hypothesis, there exists a 

branch B E Ni_ 1 -L,(D). Again, we shall use this branch to construct a required branch 

B’ EN/ - L,(A) (see Fig. 2). 

9 Our construction generalizes a pumping argument used by Rabin [42] in order to show, in our termi- 

nology, that N2 $ Ii’,“(Sign). 



D. Niwiriskil Theoretical Computer Science 189 (1997) 149 57 

B 
.- .* .* .* 

/= 
.’ 

.- 

i _.-’ 
-- 

_.= 
..-- 

--._ ----____ 
----a__ 

---___ 
---__. 

Fig. 2. Branch B’ 6 N{ - L,(A) for odd n. 

The construction will be similar as in the previous case, but this time B’ will be 

obtained as a limit of an infinite sequence. Hence, for B’ to be a branch, we must be 

more careful when making substitutions. Technically, it will be convenient to introduce 

for a moment an auxiliary constant symbol I’ that will be used for substitutions. Let 

k = a,(l, 1’)[1’ + B], 

B. =&Iwz,(lJ’)], 

and let, for i=O,1,2 ,..., 

Bi+l =Bo[l’ + Bi]. 

It is easy to see, that the sequence Bi is convergent and its limit is a partial tree over 

Sig, (without I’). Let B’ = lim Bi. We claim B’ E A$ - L,(A). 

The assertion B’ E Nf: follows from the fact that any path of B’ that is not cofinal 

with a path of B, contains infinitely many occurrences of a,. To prove B’ @L,(A) 

suppose the contrary and let r : dom B’ -+ Q be a partial accepting q-run of A on B’. 



58 D. Niwifiskil Theoretical Computer Science 189 (1997) 1-69 

As in the previous case, consider an occurrence of B in B’, that is, a node w E dom B’, 

such that B' . w E B[I + Tsig,]. Let r(w) = p. Again, the occurrence of B in B’ induces 

a partial p-run of A on B, r’ say, defined by r’(u) = r(wu), for v E dom B. By choice 

of B, this r’ may not be accepting if considered as a run of an A:, i = 1,. . . , m. That 

is, for any i, there must be a path that is accepting for A but not for Ai. But this 

means that, for any i, we can find a node, say u E dom B, such that r’(u) = r(wu) E Li 

(if some Li = 0, we obtain a contradiction that ends the proof). Since B is a branch, 

and by construction of B’, the node WV is succeeded by another node in dom B’, which 

is again an occurrence of B. Since the above observation holds for any occurrence 

of B in B’, and for any i = 1 , . . . ,m, we can inductively construct an infinite path 

in dom B’ = dom r containing infinitely many occurrences of some state in Li, for each 

i= l,... ,m, and thus clearly non-accepting. But this contradicts the assumption that r 
is an accepting run. 

This remark completes the proof of the claim of the lemma for all sets N,,, n = 1,2,. . 

The proof of the statement for the sets M,, is almost completely analogous, although 

the actual argument for A42,,, will coincide with the argument for Nzm+i, and the ar- 

gument for Mzrn+i will coincide with the argument for Nzm. One more remark must 

be added for the special case when a trivial pair (0, Q) appears in the acceptance 

condition. We sketch the argument briefly. 

The case of Mr is already settled. For n > 1, we consider two cases. 

Case 1: n = 2m, for some m > 0. Let A be an automaton of index m weakened “by 

all” such that L,(A) 2 N{. 

We construct the automata A[, as in Case 2 of the proof for N,,. These new automata 

have index m weakened by 0, but it is plain that their index is also still weakened “by 

all”. Therefore, the induction hypothesis may be applied, and the argument proceeds 

exactly as in the previous case. 

Case 2: n = 2m + 1, for some m > 0. Let A be an automaton with the index m + 1 

weakened both by 0 and “by all”, such that L,(A) g A@. Let the acceptance condition 

ofA be 

Act= (65, Vi),. . .,&n, f-L),@, Um+l>> 

and let Li U Ui = Q. 

If i = m + 1, that is U,,,+l = Q, then every infinite path in every run is accepting. In 

this case, it is fairly easy to construct a branch that may not be accepted by A. For 

example, let B be defined as follows: dom B = {2}* U {2}* 1, B(w) = al for w E 2* and 

IwI G IQ], B(w) =a2 for w E 2*, and lw( > IQ/. and B(w) = I for w E {2}* 1. Clearly, B 

is a branch in M/. Suppose it is partially accepted by A and let r be a partial accepting 

q-run. There must be some 0 d ni < n2 < IQ1 such that r(2”‘) = r(2”*). Hence, by an 

obvious pumping construction, we can construct an accepting partial q-run of A on a 

branch, say B’, that differs from B in that B(w) = al, for all w E 2”. Clearly, B’ is not 

in M/, which is a contradiction to the assumption L,(A) Cd@. 
Now suppose that the i satisfying Li U CJ = Q is different from m + 1. We construct 

an automaton A’ as in Case 1 of the proof for N,. This automaton has now index 



D. Niwiizskil Theoretical Computer Science 189 (1997) 149 59 

m weakened “by all” (recall that A had index m + 1 weakened by 0 and “by all”). 

Therefore, the induction hypothesis may be applied, and the argument proceeds exactly 

as in the previous case. 

This remark completes the proof of the lemma. 0 

Now we are ready to prove Claim 5.2. 

Ad 1: Suppose that, for some m < o, the set I&,,,+, is recognized by a Rabin 

automaton A with an index m + 1 weakened by 0 and “by all”. For m = 0, we have 

A41 = 0, while the automaton A has trivial acceptance condition which, by our Proviso 

2 on automata, implies L(A) # 0; a contradiction. 

Suppose m > 0. We may assume, without loss of generality, that every state of A 

occurs in some accepting run. Indeed, if this is not the case originally, we can drop out 

the “useless” states, without increasing the index of the automaton. This assumption 

implies L,(A) = i~$~+~. Then, by Lemma 5.4, there exists a branch B in A4&+, -L,(A). 

Clearly, any branch in Mf,,, can be extended to a “total” tree in I&,,+,. That is, we 

can find a tree t E Mzm+i, and w E dom t, such that t . w E B[I t TQ~,+,]. Let Y be an 

accepting run of A on t and let r(w) =q. Then the restriction of r to the occurrence 

of B in t at the node w is clearly a partial accepting q-run of A on B, thus B E L,(A), 
a contradiction. 

The argument for the remaining cases is similar. 

The proof of the theorem is now completed. 0 

We have shown by Theorem 5.1, that, in the algebra @Y&, , Ct(Sig,) # Ili(Sig, ); 

consequently Cr(Sig,) # Cy+,(Sig,) and lIf(Sig,) # II,“,,(Sig,), for 0 6 i < n, that is, 

the hierarchy has the height at least n. From this, it is already not difficult to construct 

a single powerset tree algebra in which the hierarchy is actually infinite. 

Theorem 5.5. Let Sig = {f, c} b e a signature, where f is binary and c is constant 
symbol. Then, for all n < w, the classes C[(Sig) and lIi(Sig) are incomparable, that 
is, the jixed point hierarchy in the algebra BY& is infinite. 

Proof. The argument will consist in encoding the trees over all signatures Sig, con- 

sidered above by the trees over Sig, and then showing that the encoded versions of 

the sets A4, and N,, require the same indices of Rabin automata as before. 

We first fix a sequence of distinct finite trees in Tsig, bl, bz,. . . Let bl = c and 

bi+l = f(c, C)[C + bi], for i = 1,2,. . . 

NOW, for each t E (J, Tsig., we shall define a tree t^ E Tsis. It will be more infor- 

mative to start with a tree, say t’, over an auxiliary signature {f,al,. . .,a,}, where 

al,..., a, are considered as constant, not binary, symbols. Let h : { 1,2}* + { 1,2}* be 

a homomorphism induced by the mapping 

1H 11 

2H 12 



D. NiwiriskiITheoretical Computer Science 189 (1997) 149 

Fig. 3. Transformation t H t’. 

and let code:{1,2}*--t{1,2}* be a mapping given by 

code(w) = h(w)2. 

We define t’ by (see Fig. 3) 

domt’={u:u<code(w) for some w~{1,2}*} 

and 

t’(code(w)) = t(w) 

t’(v) = f for v # code(w) 

Let 

t^= l’[Ul + bl, . . . , a, +- b,]. 

Let, for a set of trees 44, A= {t^: t&V}. 

We claim that the properties of the sets && and fin are analogous to those of the 

sets Zt4, and N,. That is, for odd n, A.?, is in Z{(Sig) but not in ni(sig); for even n, 

A&, is in IIt(,Sig) but not in C{(Sig); and the similar properties hold for the sets N,. 

Again, we find it convenient to deal with the automata equivalent to the fixed point 

terms. Construction of the automata justifying the positive part of the claim is easy. 

The proof of the negative part does not depend on the particular case of I’& or N,,; 

we shall fix the attention on the set A?zm+i. 
* 

It is enough to show that Mz,,,+i can- 

not be recognized by a Rabin automaton with index m + 1 weakened by 0 and “by 

all”. Suppose, to the contrary, that A = (Sig, Q, qo, Tr, Act) is such an automaton. Let 

Acc={(L1,~),...,(L,+1, lJ,,,+l)}. We shall construct an automaton A’ over Sig*,,,+,, 
with the same index as A, recognizing M&,,+i. 



D. Niwiriskil Theoretical Computer Science 189 (1997) 149 61 

x. f 

x2 
I \ 

’ ‘\ 
: ‘, 

: ‘, 
: \ 

: b ‘\ 

: 
i ', 

\ 

8' 
\ 
\ 

(--------_-_--\ 

<X.X’>. a i 

m 

/\ 

<y.x 1 > 
C&Xl > 

Fig. 4. Producing transitions of A’ 

The set of states of A’ is Q x Q and the initial state is (qo,qo). For XEQ, let &4,x) 

denote the set of trees in Tsig for which there exists an accepting x-run of A. The set 

of transitions Tr’ is defined as follows (see Fig. 4): 

if x = f(xi,xz) and XI = f(z, y) are the transitions of A, such that moreover 

bi E L(A, x2 ), then 

(X,X’) =Q((.Y,Xl), (z~X1)) 

is a transition of A’, and there are no other transitions. 

The acceptance condition of A’ is Act’ = {(L’,, Vi’), . . . , (Lk,, , Uk+l )}, where, for 

each X = Li or X = Ui, X’ = (X x Q) U (Q x X). It should be clear that if the index of 

A is weakened by 0 and “by all”, so is the index of A’. 

Now, given a tree t E T&,,+, and an accepting run of A’ on t, it is not difficult to 

construct an accepting run of A on the tree ;E Tsig. Conversely, given an accepting 

run of A on t^, it is not difficult to construct an accepting run of A’ on t; we omit the 

details. 

Thus L(A’) =A&,,+~, which is a contradiction to Theorem 5.1 (cf. Claim 5.2 (1)). 

This remark completes the proof. 0 

For some signatures, however, the hierarchy is finite. The following fact has been 

shown, in a slightly different formulation, by Park [40]. 

Proposition 5.6 (Park [40]). Let Sig be a signature such that the arity of all symbols 
is at most one. Then 

Proof. The argument follows via the equivalence of fixed point terms and Rabin au- 

tomata from the well-known fact that, for infinite words, Rabin automata can be always 

simulated by non-deterministic Biichi automata (see [49]). The presence of constants 



62 D. NiwiriskiITheoretical Computer Science 189 (1997) Id9 

and variables does not require much modifications, so we only briefly sketch the ar- 

gument for the sake of completeness. 

Let A[Z] be a Rabin automaton with variables, with the acceptance condition Act = 

{(Li, Ui), . . . , (L,, Un)}. If n = 0, this acceptance condition is equivalent to a Biichi 

condition F = 0. Suppose n > 0. Since any tree in Tsiq has at most one infinite path, 

the operation defined by A is equivalent to a finite union 

wm = u wim, 
i = l,...,n 

where the automaton Ai differs from A only in that its accepting condition is just 

{(l;i, Vi)}. Therefore, without loss of generality we may assume that m = 1, say ACC = 

{(L, U)}. Now it is an easy exercise to construct a Biichi automaton equivalent 

toA. 0 

Remark. The above result is optimal, in the sense that, in general, C$‘(Sig) # L’;(Sig). 
Park in [39] exhibits an example that we have mentioned in the introduction: let Sig 

consist of two unary symbols a and b and let FM (“fair merge”) be the set of all trees 

in Tsi, (that is, infinite words over the alphabet {a,!~}), such that both a and b occur 

infinitely often. It can be shown by a topological argument that FM is in IZc(Sig) but 

not in Ci(Sig). 

It is not hard to see that the argument we have used for the signature Sig above 

can be carried over to many other signatures. We summarize the above considerations 

in the following. 

Corollary 5.7. Let Sig be a signature containing at least two symbols of which 
at least one is of an arity 32. Then, Zt(Sig) # #(Sig), for all n < co, that is, 
the Jixed point hierarchy in the algebra PYsig is injnite. For all other signatures, 

fp(@%ig)=n~(@%ig)~ 

Proof. The first part of the claim follows from adaptation of the proof of 

Theorem 5.5 above; we omit the details. The second part of the claim follows from 

Proposition 5.6 and an easy observation that, for a signature consisting of one symbol, 

c;(sig) = @(Sig). 0 

Note. One may investigate how the alternation hierarchy looks like in other 

p-algebras. The powerset tree algebras are the only examples known to the author 

in which the hierarchy has been proved infinite. One may however expect that an 

infinite hierarchy may be also constructed over p(o) with an appropriate family of 

arithmetically definable operations, by a diagonalization method. In [38], the author has 

considered the hierarchy problem for the powerset algebra of an algebra (C”, ., E, cr E Z), 

where Coo = C* u Co is the set of finite and infinite words over a finite alphabet Z, 

and + is a concatenation operation, such that if u E Z’” then uv = u, for any v E Cm. 



D. Niwiriskil Theoretical Computer Science 189 (1997) 149 63 

It has been proved that the hierarchy is finite, and moreover it collapses on the level 
Comp(C7 U II:). 

In any j&rite p-algebra, if we allow the symbols T and I for the greatest and least 
elements respectively, then any fixed point term is equivalent to a term without fixed 
point operators. (This follows, e.g., from the iterational characterization of fixed points, 
Theorem 2.2.) Considering that J- = p .x and T = vx .x, we obtain the collapsing of 
the hierarchy to the level Comp(Cy U II:), in all finite p-algebras. 

6. Related formalisms 

In this section we compare our fixed point calculus over powerset algebras to some 
other calculi considered in the literature. Several open problems appear naturally in this 
context. We also mention a connection between the fixed point calculus and monadic 
second-order logic interpreted over syntactic trees. 

6.1. The jixed point calculus with intersection 

It is natural to extend the syntax of our fixed point calculus by a binary operator A 
interpreted as the greatest lower bound in the universe of a p-algebra. In a powerset 
algebra, this operator is just as the set-theoretical intersection. 

The fixed point calculus with intersection interpreted in the powerset algebra of syn- 
tactic trees has been considered by Arnold and Niwinski [2,3]. Clearly, the extension 
is proper, as, e.g., the term x A y is not equivalent to any fixed point term without 
intersection. However, the extended calculus does not define more tree languages; that 
is, for any closed fixed point term with intersection r, there exists a fixed point term 
without intersection t’ such that r and r’ define the same set of trees when interpreted 
in the powerset tree algebra. The existence of such r’ can be inferred from known re- 
sults: an embedding (easy) of the fixed point calculus with intersection into the monadic 
second-order logic (cf. Section 6.3 below), a characterization of this logic by Rabin 
automata proved by Rabin [41], and, finally, our characterization of Rabin automata 
by the fixed point calculus without intersection (Theorems 3.2 and 3.3). However, we 
should expect that the complexity of a translation from z to r’ will be high; in partic- 
ular, the number of alternations of /J and v may, in course of this translation, increase 
arbitrarily. The last follows from an observation that our tree languaues exhibiting the 
infinity of fixed point hierarchy for terms without intersection (Section 5) are all the 
complements of some Biichi languages lo and therefore can be defined by terms with 
intersection of the level Ct. 

It can be noted [2] that the automata counterpart of the fixed point terms with 
intersection is provided by alternating automata introduced by Muller and Schupp [32]. 
Therefore, the elimination of intersection in the fixed point calculus amounts to the 

‘OThis observation is due to A. Arnold. 



64 D. Niwiriskil Theoretical Computer Science I89 (1997) Id9 

reduction of alternating automata to nondeterministic automata. (A purely automata- 

theoretic proof of this last fact is given by Muller and Schupp” [33].) We believe 

that an analogous result can be proved for the fixed point calculus interpreted over 

the class of all powerset algebras; Janin and Walukiewicz [21] have recently shown a 

similar fact for the modal p-calculus interpreted over transition systems. 

In [2], the hierarchy problem for the fixed point calculus with intersection is also 

considered. It is proved that the tree languages definable on the level fl; of this hier- 

archy coincide with those definable on the analogous level in the fixed point calculus 

without intersection (as we have remarked above, this level can be also characterized 

by Biichi automata). On the other hand, it is observed there that the levels Z; of both 

hierarchies are different and that, in general, ZJ; # Ct also in the presence of inter- 

section. The last was the most that we were able to say about the hierarchy in that 

case; in particular, the question whether it is infinite has remained open. We note that 

Thilo Hafer has shown in his dissertation [ 191 that Boolean combinations of tree lan- 

guages recognizable by Biichi automata (that coincide with the Boolean combinations 

of tree languages definable on the levels II: and Ct) do not exhaust all the languages 

definable by Rabin automata. Recently, Lenzi [27] and Bradfield [4] have presented 

two different proofs of the fact that a fixed point hierarchy for the modal p-calculus 

(see below) is infinite. This result implies that the height of the hierarchy cannot be 

uniformly bounded for all powerset algebras of trees, however it does not yet follow 

that there exists a single signature Sig such that the fixed point hierarchy in mF& A is 

infinite. 

Concerning the signatures where the arity of function symbols is at most 1 (and so 

the trees can be viewed as possibly infinite words), it is shown in [3] that the hierarchy 

of tree languages definable by fixed point terms with intersection collapses on the level 

Comp(nr U Zy), thus earlier than in the case without intersection (n;). 

6.2. Modal mu-calculus 

Modal p-calculus has been defined by Kozen [23] as an extension of the propositional 

modal logic, usually with many modalities, by the least fixed point operator; the greatest 

fixed point is definable by the duality law: vX . p(X) = lfl. lp(lX). The modal 

p-calculus can be presented as a fragment of our fixed point calculus as follows. Let 

Act and Prop be finite sets of symbols called actions and propositions, respectively. We 

consider a signature Sigmodal =PropU{j% pEProp}U{(a): aEAct}U{[a]: aEAct}, 

where the symbols p, FE Prop, are considered as 0-ary, and the symbols (a) and 

[a] as unary function symbols. The formulas of the modal p-calculus are fixed point 

terms over the signature Sigmodal,v,, (cf. Section 1.2). Classically, models for this 

calculus are so-called Kripke structures of the form M = (S”, {p” C S”: pEProp}, 
{aM C SM x S”: a E Act}), where SM is an underlying set of states (or worlds), and the 

p”‘s and a”’ s are interpretations of propositions and actions, respectively. According 

I1 The paper is dedicated to the memory of Ahmed Saoudi. 



D. NiwiriskiITheoretical Computer Science 189 (1997) 149 65 

to the classical interpretation of the modal operators (a) and [a], we can associate with 

such a model A4 a p-algebra, say A’, over signature Sigmodal,v,,, with the universe 

&S”) completely ordered by subset ordering, 

Jl=(60(S”),{pM: pEProp}U{jY: pEProp) 

u {(uy: uEAct} u {[u]“: aEAct} u {v-/l’, I+}), 

where VA and AA are set-theoretical union and intersection, respectively, pA= pM 

and j9=SSM - p”, for p E Prop, and, for L 5. S”, 

(a)“qL) = (sES‘5 @‘GM) (s,s’) Ed%s’EL}, 

Then the classical interpretation of the formulas of the modal p-calculus [23] coincide 

with our interpretation of fixed point terms. We note however that a p-algebra J& 

cannot in general be easily identified with any powerset algebra p9? (the difficulty 

stems from the a priori unbounded arity of [a]). 

Conversely, for an arbitrary signature Sig, we can consider a vocabulary of the modal 

p-calculus Prop = {pf: f E Sig}, Act = {di: 16 i <k}, where k is the maximum of 

arities of the symbols in Sig. In particular, a tree t E T& can be considered as a Kripke 

structure over this vocabulary, say f, with A”= dom t, p: = {w E dom t: t(w) = f}, and 

df = {(w, wi) : w, wi E dom t}. Let Sigmodal be the signature constructed as above on 

the basis of sets Prop and Act. Then we can embed fixed point terms over signature 

Sigv, A into the modal p-calculus over this vocabulary by the following translation: 

e(x) =x, 

e(ri vv)=e(~l)v4~2), 

4f(~l,. . ,w)) = PY A (dl)e(zl) A . . . A (&&(r,(f)), 

e(vx. 7) = vx. e(z). 

Recall that a tree t E Z”iq can be also viewed as a semi-algebra over signature Sig, t 

(Section 1.2). Then it is easy to verify that, for each fixed point term z, rt = e(z)i. 

Considering the internalization property (Proposition 4.2), we can say that our fixed 

point calculus interpreted over powerset algebra of trees can be embedded into the 

modal p-calculus. 

Note. The above construction does not directly carry over to arbitrary semi-algebras, 

since we can meet the following problem. Suppose that in an algebra we have c - 

f(u,b) and c -f(b,u), but not c A f(a,a). Then it seems to be no obvious way to 

construct a Kripke structure over the same domain, such that the fixed point terms 



66 D. Niwiriskil Theoretical Computer Science 189 (1997) Id9 

could be translated into equivalent modal formulas (unless the number of modalities 
excessively increases). Therefore, we do not believe that our fixed point calculus over 
arbitrary powerset algebras is trivially subsumed by the modal p-calculus. 

The formulas of the modal p-calculus resulting from the aforementioned transla- 
tion e have a special form, since they use the conjunction in a restricted way. Such 
formulas do not exhaust the class of all modal formulas, even if one restricts the 
class of models to the syntactic trees. However, similar to the fixed point calculus 
with intersection discussed above, it can be shown that any closed formula of the 
modal p-calculus is equivalent to some e(z) over syntactic trees. Interestingly, Janin 
and Walukiewicz [21] present a class of what they call disjunctive formulas, which 
can be viewed as a generalization of the formulas e(z), and prove that any formula of 
the modal mu-calculus is equivalent to some disjunctive formula. 

6.3. Monadic second-order logic 

A connection between recognizability by finite-state automata and definability in 
monadic second-order logic has been established by B&hi [5], who also extended the 
concept of finite-state reco~izabili~ to in~nite words, in order to prove decidability of 
the monadic second-order theory of w with successor operation (only). Rabin [41] used 
the concept of automata on infinite trees to prove decidability of the monadic second- 
order theory of full k-ary tree (for arbitrary k Go). The structure in consideration is 
the (unlabeled) k-ary tree with k successor operations. The labelled trees appear in an 
intermediate stage of the proof, because a valuation of monadic second-order variables, 
say 21 c-$ & , . . . , 2, w Km (where Kr , . . . , Km are sets of nodes) can be identified with 
a labeling of the nodes of the tree in an alphabet { 0,l)” (such that the ith component 
of the label of w is 1 iff w EKE); the key fact is that a set of trees over this alpha- 
bet is recognizable by a Rabin automaton iff the corresponding set of valuations is 
definable by a monadic second-order formula. Adaptation of this last characterization 
to syntactic trees is straightfo~ar~ we shall note its prolongation to the fixed point 
calculus. 

Let TV T& and let t”= (dom t, {p;: f E Sig}, {df: 1 <i< k}) be the Kripke structure 
as defined above in the context of modal ,u-calculus. It can be viewed as a logical 
structure over a vocabulary consisting of monadic symbols pf, for f ES@, and binary 
symbols di, i < k, where k is the m~imum of arities of the symbols in Sig. 

The formulas of monadic second-order logic use two kinds of variables: individual 
variables x0,x1,. . ., ranging over elements of dom t, and set variables X0, Xl,. . ., ranging 
over subsets of dom t. Atomic formulas are Xi =xj, pf(xi), d,&,xj), Xi(xj). The other 
formulas are built using propositional connectives V, A,-l, +,u, and quantifiers V,3 
ranging over both kinds of variables. A formula without free variables is called a 
sentence. The satis~ction of formulas in t” is defined in the usual way. 

For a sentence q, let Mod(q) denote the set of all t E T&, such that t” satisfies 
cp. Then, from the Rabin’s characterization of monadic second-order logic and our 
characterization of automata, we can infer the following. 



D. Niwiriskil Theoretical Computer Science 189 (1997) 149 61 

Theorem 6.1. For any fixed point term z over Sig, one can construct a monadic 
second-order sentence q,, such that z @%I = Mod(cp,). Conversely, for any monadic 

second-order sentence rp, one can construct a fixed point term zV, such that Mod(q) = 
ka% 

ruJ ’ 

The first part of the above theorem can be proved directly, without using automata, 
but using the internalization property (Proposition 4.2), as the least and greatest fixed 
points in p(dom t) can be easily expressed in monadic second-order logic (a proof of 
this fact for the fixed point calculus with intersection can be found in [3]). 

We note that the two equivalent formalisms considered in above theorem are ex- 
tremely distant in succinctness. Indeed, the complexity of the emptiness problem 
“ ~~~“l~#0 ‘7” is in PTIME (Corollary 4.5), while the complexity of the analogous 
problem “Mod( cp) # 0 ?” is known to be non-elementary [ 141. 

Acknowledgements 

I wish to thank Jerzy Tiuryn for introducing me to the theory of fixed points. 
I am grateful to Andrzej W. Mostowski, Andre Arnold, Bruno Courcelle and Wolfgang 
Thomas for enlightening discussions and for encouragement. I am also indebted to the 
referees for corrections and helpful comments, and to Igor Walukiewicz for his critical 
remarks on the preliminary version of this paper. 

References 

[1] A. Arnold, M. Nivat, Nondeterministic recursive programs, in: Proc. Fundamentals of Computation 

Theory, Lecture Notes in Computer Science, vol. 56, Springer, Berlin, 1977, pp. 12-21. 

[2] A. Arnold, D. Niwinski, Fixed point characterization of Biichi automata on infinite trees, .I. Inform. 

Process. Cybemet EIK 26 (1990) 453-461. 

[3] A. Arnold, D. Niwibski, Fixed point characterization of weak monadic logic definable sets of 

trees, in: M. Nivat, A. Podelski (Eds.), Tree Automata and Languages, Elsevier, Amsterdam, 1992, 

pp. 159-188. 

[4] J.C. Bradfield, The modal mu-calculus alternation hierarchy is strict, in: Proc. CONCUR, 1996. 

[5] J.R. Biichi, On a decision method in restricted second-order arithmetic, in: E. Nag1 (Ed.), Logic, 

Methodology, and Philosophy of Science, Stanford Univ. Press, Stanford, 1960, pp. l-l 1. 

[6] B. Courcelle, Equivalences and transformations of regular systems. Applications to recursive program 

schemes and grammars, Theoret. Comput. Sci. 42 (1986) l-122. 

[7] E.A. Emerson, The role of Biichi’s automata in computing science, in: S. MacLane, D. Sietkes (Eds.), 

The Collected Works of J.R. Biichi, Springer, Berlin, 1990. 

[S] E.A. Emerson, Temporal and modal logic, in: J. van Leeuven (Ed.), Handbook of Theoretical Computer 

Science, vol. B, Elsevier, Amsterdam, 1990, pp. 995-1072. 

[9] E.A. Emerson, E.M. Clark, Characterizing correctness properties of parallel programs using fixpoints, 

in: Proc. 7th Intemat. Coll. on Automata, Languages and Programming, 1980, pp. 169-181. 

[lo] E.A. Emerson, C.S. Jutla, The complexity of tree automata and logics of programs, in: Proc. 29th IEEE 

Symp. on Foundations of Computer Science, 1988, pp. 328-337. 

[ll] E.A. Emerson, C.S. Jutla, On simultaneously determinizing and complementing o-automata, 

in: Proc. 4th IEEE Symp. on Logic in Comput. Sci., 1989, pp. 333-342. 



68 D. Niwiizskil Theoretical Computer Science 189 (1997) 149 

[12] E.A. Emerson, C.S. Jutla, Tree automata, mu-calculus and determinacy, in: Proc. 32nd IEEE Symp. on 

Foundations of Computer Science, 1991, pp. 368-377. 

[13] E.A. Emerson, C. Lei, Efficient model checking in fragments of the propositional mu-calculus, in: Proc. 

1st IEEE Symp. on Logic in Comput. Sci., 1986, pp. 267-278. 

[14] J. Ferrante, C.W. Rackoff, The computational complexity of logical theories, Lecture Notes in Math., 

vol. 718, Springer, Berlin, 1979. 

[15] L. Flon, N. Suzuki, Consistent and complete proof rules for the total correctness of parallel programs, 

in: Proc. 19th IEEE Symp. on Foundations of Computer Science, 1978. 

[16] G. Gratzer, Universal Algebra, D. Van Nostrand Co. Inc., Princeton, 1968. 

[17] I. Guessarian, Algebraic Semantics, Lecture Notes in Computer Science, vol. 99, Springer, Berlin, 1981. 

[18] Y.Gurevich, L. Harrington, Trees, Automata and games, in: Proc. 14th ACM Symp. on Theory of 

Computation, 1982, pp. 60-65. 

[19] T. Hafer, Automaten und Logiken iiber unendlichen BHumen, Ph.D. Thesis, RWTH Aachen, 1989. 

[20] R. Hossley, C. Rackoff, The emptiness problem for automata on infinite trees, in: Proc. 13th IEEE 

Symp. Switching and Automata Theory, 1972, pp. 121-124. 

[21] D. Janin, LWalukiewicz, Automata for the p-calculus and related results, in: Proc. MFCS’95, Lecture 

Notes in Computer Science, vol. 969, Springer, Berlin, 1995, pp. 552-562. 

[22] B. Knaster, Un thioreme sur les fonctions des ensembles, Ann. Sot. Polon. Math 6 (1928) 133-134. 

[23] D. Kozen, Results on the propositional mu-calculus, Theoret. Comput. Sci. 27 (1983) 333-354. 

[24] D. Kozen, R.J. Parikh, A decision procedure for the propositional mu-calculus, in: 2nd Workshop on 

Logics of Programs, Lecture Notes in Computer Science, vol. 164, Springer, Berlin, 1983, pp. 313-325. 

[25] D. Kozen, J. Tiuryn, Logics of programs, in: J. van Leeuven (Ed.), Handbook of Theoretical Computer 

Science, vol. B, Elsevier, Amsterdam, 1990, pp. 789-840. 

[26] K. Kuratowski, A. Mostowski, Set Theory, North-Holland, Amsterdam, 1976. 

[27] G. Lenzi, A hierarchy theorem for the n-calculus, in: Proc. ICALP’96, Lecture Notes in Computer 

Science, vol. 1099, Springer, Berlin, 1996, pp. 87-109. 

[28] R. McNaughton, Infinite games played on finite graphs, Ann. Pure Appl. Logic 65 (1993) 149-184. 

[29] A.W. Mostowski, Regular expressions for infinite trees and a standard form of automata, in: Computation 

Theory, Lecture Notes in Computer Science, vol. 208, Springer, Berlin, 1985, pp. 157-168. 

[30] A.W. Mostowski, Games with forbidden positions, Tech. Report 78, University of Gdatisk, 1991. 

[3 l] D.E. Muller, Infinite sequences and finite machines, in: Proc. 4th Ann. IEEE Symp. on Switching Circuit 

Theory and Logical Design, 1963, pp. 3-16. 

[32] D.E. Muller, P. Schupp, Alternating automata on infinite trees, Theoret. Comput. Sci. 54 (1987) 

267-276. 

[33] D.E. Muller, P. Schupp, Simulating alternating tree automata by nondeterministic automata: new results 

and new proofs of the theorems of Rabin, McNaughton and Safra, Theoret. Comput. Sci. 141 (1995) 

69-107. 

[34] D. Niwinski, Fixed-point characterization of context-free co-languages, Inform. Control 61 (1984) 

247-276. 

[35] D. Niwinski, Equational p-calculus, in: Computation Theory, Lecture Notes in Computer Science, 

vol. 208, Springer, Berlin, 1985, pp. 169-176. 

[36] D. Niwinski, On fixed point clones, in: L. Kott (Ed.), Proc. 13th ICALP’86, Lecture Notes in Computer 

Science, vol. 226, Springer, Berlin, 1986, pp. 464473. 

[37] D. Niwinski, Hierarchy of objects definable in the fixed point calculus, Ph.D. Thesis, University of 

Warsaw, 1987 (in Polish). 

[38] D. Niwinski, Fixed points vs infinite generation, in: Proc. 3rd IEEE Symp. on Logic in Comput. Sci., 

1988, pp. 402-409. 

[39] D.M.R. Park, Fixpoint induction and proof of program semantics, in: Machine Intelligence, vol. 5, 

Edinburgh University Press, Edinburgh, 1969, pp. 59-78. 

[40] D.M.R. Park, On the semantics of fair parallelism, in: Abstract Software Specification, Lecture Notes 

in Computer Science, vol. 86, Springer, Berlin, 1980, pp. 504-526. 

[41] M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Sot. 

141 (1969) l-35. 
[42] M.O. Rabin, Weakly definable relations and special automata, in: Y. Bar-Hillel (Ed.), Mathematical 

Logic in Foundations of Set Theory, 1970, pp. l-23. 



D. NiwiriskiITheoretical Computer Science 189 (1997) Id9 69 

[43] M.O. Rabin, Automata on Infinite Objects and Church’s Problem, Amer. Math. Sot., Providence, RI, 

1972, pp. l-22. 

[44] S. Safra, On the complexity of w-automata, in: Proc. 29th IEEE Symp. on Foundations of Computer 

Science, 1988, pp. 319-327. 

[45] C.P. Stirling, D.J. Walker, Local model checking in the modal mu-calculus, in: Proc. Intemat. Joint 

Conf. in Theory and Practice of SoI-Iware Development, Lecture Notes in Computer Science, vol. 35 1, 

Springer, Berlin, 1989, pp. 369-382. 

[46] R.S. Street& E.A. Emerson, An automata theoretic procedure for the propositional mu-calculus, Inform. 

Comput. 81 (1989) 249-264. 

[47] M. Takahashi, The greatest fixed points and rational omega-tree languages, Theoret. Comput. Sci. 44 

(1986) 259-274. 

[48] A. Tarski, A lattice theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955) 285-309. 

[49] W. Thomas, Automata on infinite objects, in: J. van Leeuven (Ed.), Handbook of Theoretical Computer 

Science, vol. B, Elsevier, Amsterdam, 1990, pp. 133-191. 

[50] W. Thomas, On the synthesis of strategies in infinite games, in: Proc. STACS’95, Lecture Notes in 

Computer Science, vol. 900, Springer, Berlin, 1995, pp. 1-13. 

[51] M.Y. Vardi, P. Wolper, Automata-theoretic techniques for modal logic of programs, J. Comput. System 

Sci. 18 (1986) 183-221. 

[52] K. Wagner, Eine topologische Charakterisierung einiger Klassen regularer Folgemnengen, J. Inform. 

Process, Cybemet EIK 13 (1977) 473-487. 

[53] K. Wagner, On w-regular sets, Inform. and Control 43 (1979) 123-177. 

[54] I. Walukiewicz, Completeness of Kozen’s axiomatisation of the propositional p-calculus, in: Proc. 10th 

IEEE Symp. on Logic in Comput. Sci., 1995, pp. 14-24. 


