
ELSEVIER Theoretical Computer Science 158 (1996) 343-359

Theoretical
Computer Science

Mathematical Games

The complexity of mean payoff games on graphs *

Uri Zwick a,*, Mike Paterson b

a Department of Computer Science, School of Mathematical Sciences,
Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

b Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

Received August 1994; revised September 1995
Communicated by A.S. Fraenkel

Abstract

We study the complexity of finding the values and optimal strategies of mean payofs games

on graphs, a family of perfect information games introduced by Ehrenfeucht and Mycielski
and considered by Gurvich, Karzanov and Khachiyan. We describe a pseudo-polynomial-time
algorithm for the solution of such games, the decision problem for which is in NPncoNP.

Finally, we describe a polynomial reduction from mean payoff games to the simple stochastic

games studied by Condon. These games are also known to be in NPncoNP, but no polynomial
or pseudo-polynomial-time algorithm is known for them.

1. Introduction

Let G = (V,E) be a finite directed graph in which each vertex has at least one
edge going out of it. Let w : E + {- W,. . . ,O,. . . , W} be a function that assigns an
integral weight to each edge of G. Ehrenfeucht and Mycielski [8] studied the fol-
lowing infinite two-person game played on such a graph. The game starts at a ver-
tex a0 E V. The first player chooses an edge el = (ao,al) E E. The second player
then chooses an edge ez = (al,az) E E, and so on indefinitely. The first player
wants to maximise liminf,,, i CL, w(ei). Th e second player wants to minimise
lim s~p~_~ t cb, w(ei). Ehrenfeucht and Mycielski show that each such game has a
value v such that the first player has a strategy that ensures that lim inf,,, i Cb, w(ei)
b v, while the second player has a strategy that ensures that lim SUP,,_+~ i J& w(ei)

* Corresponding author. E-mail address: zwick@math.tau.ac.il.
’ Supported in part by the ESPRIT Basic Research Action Programme of the EC under contract No. 7141
(project ALCOM II).

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDZ 0304-3975(95)00188-3

344 U. Zwick, M. PatersonITheoretical Computer Science 1% (1996) 343-359

<v. Furthermore, they show that both players can achieve this value using a positional
strategy, i.e., a strategy in which the next move depends only on the vertex from which

the player is to move.

As the players in these mean payof games move alternatively, we may assume,

without loss of generality, that the graph G = (V,E) on which such a game is played

is bipartite, with Vt and V, being the partition of the vertices into the two ‘sides’ and

with E = El U E2 such that El C VI x V2 and E2 & V2 x VI. If the original graph is not

bipartite, we simply duplicate the set of vertices.

To obtain their results for the infinite game, Ehrenfeucht and Mycielski [8] also

consider the following finite version of the game. Again the game starts at a specific

vertex of the graph G = (V, E), which is assumed to be bipartite. The players alternate

in choosing successive edges that form a path, but the game ends as soon as a cycle is

formed. The outcome of the game is then the mean weight of the edges on this cycle.

The first player wants to maximise and the second player to minimise this outcome.

This game is a finite perfect information two-person game and so, by definition, has a

value. Ehrenfeucht and Mycielski [S] show that the value v of this finite game is also

the value of the infinite game described above. Furthermore, they show, surprisingly

perhaps, that both players have positional optimal strategies for the finite game. The

positional optimal strategies of the finite game are also positional optimal strategies for

the infinite game.

Gurvich et al. [ll], unaware of the work of Ehrenfeucht and Mycielski [8], con-

sidered a slightly wider class of mean payoff games which they refer to as cyclic
games. A cyclic game is played on a directed graph G = (V, E) with a weight function

w: E + {-W ,..., 0 ,..., W}. The vertices of G are again divided into two classes VI
and V2. This need not be a bipartite partition however. The players again form a path

starting at a fixed vertex a0 E V. Whenever the endpoint of the path formed is in VI,
the first player chooses the next edge; whenever it is in V2, the second player makes

the choice. Note that a player may be able, or may be forced, to play a few times

in succession. The goal of the first player is again to maximise, and of the second to

minimise, the long-term average weight of the path formed. Gurvich et al. [1 l] note

that a general theorem of Moulin [181 on stationary optimal strategies in stochastic

games implies that both players of a cyclic game have positional optimal strategies.

The theorem of Moulin is proved non-constructively using a fixed point theorem. Gur-

vich et al. [l l] give an exponential time algorithm for finding such positional optimal

strategies thereby giving a constructive proof of their existence. Cyclic games with
prohibitions, a further generalisation of cyclic games, were considered by Karzanov

and Lebedev [131. Generalizations of mean payoff games to IZ players, where n > 2,

have been considered by Alpem [l].

Ehrenfeucht and Mycielski [8] give no efficient algorithm for finding optimal strate-

gies for the finite and infinite games. Gurvich et al. [l l] give, as mentioned, an

exponential-time algorithm for these tasks. We complement their works by exhibit-

ing an 0(1 V13. jE(. W) time algorithm for finding the values of the mean payoff games

played on a graph G = (V,E) with vertex classes VI and VZ. The graph G need not

U. Zwick, M. PatersonlTheoretical Computer Science 158 (1996) 343-359 345

be bipartite so our algorithm applies to the slightly wider class of games considered

by Gurvich et al. [111. The algorithm finds the values of all the vertices of the graph;

games starting at different vertices may have different values, of course. We also give

an 0(lv14.JEJ.log((EI/IVI).W) t’ ime algorithm for finding positional optimal strategies

for both players. Our algorithm is polynomial in the size of the graph but only pseudo-

polynomial in the weights. Our algorithm is polynomial if the weights are presented

in unary notation. In particular, our algorithms work in polynomial time if the weights

are taken from, say, { -l,O,+l}. This is already a non-trivial case.

At the end of [111, there is a claim that there exists a polynomial-time algorithm for

finding values and optimal strategies of cyclic games. According to Karzanov (personal

communication), this claim was made by mistake. Lozovanu [14, 151 also considers

cyclic games and claims a strongly polynomial-time algorithm for them. He describes

a simple reduction from cyclic games to simple acyclic games. Unfortunately, his

reduction is not valid: the first player in his acyclic games gains some control over

the length of the cycles formed in the cyclic games. His reduction fails, for example,

on the complete bipartite graph with vertex sets I’1 = {UO,UZ}, I72 = {ui,u3} and edge

weights given by w = 0 for edges (0, l), (1,2),(2,3), (3,0), w = 1 for (1,0),(3,2), and

w = -1 for (0,3),(2,1).

We also consider situations in which one player knows in advance the positional

strategy the other player is going to use. Using a result of Karp [12] we show that an

optimal counter-strategy can be found in strongly polynomial time. This immediately

implies that the decision problem associated with the game is in NP n co-NP. Similar

observations were made by Karzanov and Lebedev [131.

The decision problem corresponding to mean payoff games (MPGs) is thus in NP n

co-NP as well as in P (pseudo-polynomial time), but is not yet known to be in P. This

gives the MPG problem a rare status shared only by a few number-theoretic problems,

such as primality [22].

Condon [6] has recently studied the complexity of simple stochastic games (SSGs)

introduced originally by Shapley [23]. Condon shows that the decision problem cor-

responding to SSGs is also in NP n co-NP. While MPGs are deterministic, SSGs are

games of chance. We describe a simple reduction from MPGs to SSGs in two steps.

We first describe a reduction from MPGs to discounted payof games (DPGs), and

then a reduction from DPGs to SSGs.

The reduction from MPGs to SSGs shows that SSGs are at least as hard as MPGs.

It also supplies an alternative proof that the MPG problem is in NP n co-NP, though

we believe that the MPG problem is strictly easier then the SSG problem. As attempts

to obtain polynomial-time algorithms for SSG’s have not yet borne fruit, it may be

interesting to focus attention on the possibly easier problem of obtaining a polynomial-

time algorithm for MPGs.

Various path-forming games, such as the many different versions of geography were

studied by Bodlaender [2], Fraenkel and Simonson [lo] and Fraenkel et al. [9]. Many

of these games are PSPACE-complete. It is therefore somewhat surprising that the

mean payoff games that we are considering do have relatively efficient algorithms.

346 U Zwick, M. Paterson I Theoretical Computer Science 158 (1996) 343-359

Mean payoff games arise naturally when trying to design algorithms for various
on-line problems. Some possible applications of mean payoff games are described in
Section 7.

The rest of the paper is organised as follows. In the next section we describe an
algorithm for finding the values of a game. In Section 3 we describe an algorithm
for finding optimal strategies. In Section 4 we consider the case of playing against a
known positional strategy. In Section 5 we introduce discounted payoff games (DPGs)
and describe a reduction from MPGs to DPGs. In Section 6 we describe the simple
stochastic games (SSGs) studied by Condon [6] and present a reduction from DPGs
to SSGs. In Section 7 we describe some applications of mean payoff games. We end
in Section 8 with some concluding remarks and open problems.

2. Finding the values of a game

Let G = (VI, V2,E) be the graph on which the game is to be played, where Vi
are the vertices of the first player and V2 are the vertices of the second player, let
w : E + {-W ,,.., 0 ,..., W} be a weight function on its edges, and 1 VI = n, where
V = VI U V2. Recall that the graph G need not be bipartite, there may be edges between
different vertices of VI and between different vertices of V2.

Our first goal is to find, for each vertex a E V, the value v(a) of the finite and infinite
games that start at a. The proof, given by Ehrenfeucht and Mycielski, that the values
of the finite and infinite games are equal, extends easily to the case in which the graph
G = (VI, V2, E) is not bipartite. To reach this goal we consider a third version of the
game. This time the two players play the game for exactly k steps constructing a path
of length k, and the weight of this path is the outcome of the game. The length of
the game is known in advance to both players. We let ~(a) be the value of this game
started at vertex a E V, where player I or II plays first according to whether a E VI

or a E V2,

Theorem 2.1. The values ~(a), for every a E V, can be computed in O(k.IEj) time.

Proof. It is easy to see that for every a E V and every k 2 1 we have

da) =
mq,,b)dw(a,b) + vk-l(b)) if a E VI ,
miq,,&w(a,b) + u--l(b)} if a E V2 .

Clearly, vo(a) = 0 for every a E V. The values ~(a), for every a E V, can be easily
computed using these recursive formulae in O(k. [El) time. Cl

It seems intuitively clear that limk,, vk(a)/k = v(a), where v(a) is the value of the
infinite game that starts at a. The next theorem states that this is indeed the case. In
the proof of this theorem we rely on the result, proved by Ehrenfeucht and Mycielski
and by Gurvich, Karzanov and Khachiyan, that both players have positional optimal

U. Zwick, M. PatersonlTheoretical Computer Science 158 (1996) 343-3.59 341

strategies. A positional strategy for player I is just a mapping ~1 : VI + V such that
(al,nl(al)) E E for every al E VI. Similarly, a positional strategy for player II is a
mapping n2 : V2 -+ V such that (az,nz(az)) E E for every a2 E V2.

Theorem 2.2. For every a E V we have

k.v(a) - 2nW < vk(a) < k.v(a) -t- 2nW .

Proof. Let ~1 : VI + V2 be a positional optimal strategy for player I in the finite game
starting at a. We show that if player I plays using the strategy 1t1 then the outcome
of a k-step game is at least (k - n).v(a) - nW. Consider a game in which player I
plays according to ~1. Push (copies of) the edges played by the players onto a stack.
Whenever a cycle is formed, it follows from the fact that ni is an optimal strategy for
player I in the finite game, that the mean weight of the cycle formed is at least v(a).

The edges that participate in that cycle lie consecutively at the top of the stack. They
are all removed and the process continues. Note that at each stage the stack contains
at most n edges and the weight of each of them is at least -W. Player I can therefore
ensure that the total weight of the edges encountered in a k-step game starting from a

is at least (k - n).v(a) - nW. This is at least k.v(a) - 2nW as v(a)< W.

Similarly, if player II plays according to a positional optimal strategy n2 : V2 -+ VI

of the finite game that starts at a, she can make sure that the mean of each cycle closed
is at most v(a). At most n edges are left on the stack and the weight of each of them
is at most W. She can therefore ensure that the total weight of the edges encountered
in a k-step game starting at a is at most (k - n).v(a) + nW <k.v(a) + 2nW. q

We can now describe the algorithm for computing the exact values of the finite and
infinite games.

Theorem 2.3. Let G = (VI, V2, E) be a directed graph and let w : E --+ {- W, . . . ,O,
. . . , W} be a weight function on its edges. The value v(a), for every a E V, corre-

sponding to the infinite and finite games that start at all the vertices of V can be
computed in 0((V 13. IE 1. W) time.

Proof. Compute the values vk(a), for every a E V, for k = 4n3 W. This can be done,
according to Theorem 2.1, in O(IVI’.IEJ.W) t’ tme. For each vertex a E V, compute an
estimate v’(a) = vk(a)/k. By Theorem 2.2, we get that

v’(a) 1 -
< v’(a) -

2nW 2nW

2n(n - 1)
k 6 v(a) < v’(a) + k < v’(a) +

1

2n(n - 1) *

The value v(a) is a rational number with a denominator whose size is at most n. The
minimum distance between two possible values of v(a) is at least l/n(n - 1). The
exact value of v(a) is therefore the unique rational number with a denominator of size
at most n that lies in the interval (v’(a) - 1/[2n(n - l)],v’(a) + 1/[2n(n - l)]). This
number is easily found. Cl

348 U. Zwick, M. Paterson/ Theoretical Computer Science I58 (1996) 343-359

a cycle of length n - 1 a cycle of length R

Fig. 1. An example in which k = Q(n3. W) is needed.

The example given in Fig. 1 shows that to obtain the correct values using the algo-
rithm described above it may be necessary to take k = Q(n3W). Slightly less accuracy
is needed if we just want to know whether the value of each position is negative, zero
or positive. This decision problem can therefore be decided more efficiently.

Theorem 2.4. Let G = (VI, VZ, E) be a directed graph and let w : E -+ {- W,. . . ,O,

. . . , W) be a weight function on its edges. Let T be an integer threshold. A decision

whether v(a) < T, v(a) = T, or v(a) > T, for every a E V, can be made in 0(1 VJ*jEkW)

time.

Proof. The distance between T and the closest rational number with a denominator of
size at most n is I/n. It is therefore enough to compute the values vk(a) for k = 4n2 W,

and this takes only O(IV12-(EI-W) time. 0

3. Finding the optimal strategies

Given an algorithm for finding the value of any vertex of a graph, positional optimal
strategies can be found using a simple method, which successively eliminates sets of
edges using a ‘group testing’ technique.

Theorem 3.1. Let G = (VI, V2, E) be a directed graph and let w : E + {- W, . . . , 0,

. . ., W) be a weight function on its edges. Positional optimal strategies for both

players, for games played on this graph, can be found in 0((V14.1EI.log(lEI/j VI). W)
time.

Proof. Start by computing the values v(a) for every a E V. If all the vertices a E VI

have outdegree one, then player I has a unique strategy and this strategy is positional
and optimal. Otherwise, consider any vertex a E VI with outdegree d > 1. Remove any
(d/21 of the edges leaving a, and recompute the value of a, v’(a) say, for the resulting
graph. If v’(a) = v(a) then there is a positional optimal strategy for the player I which
does not use any of the removed edges; if v’(a) # v(a) then there is a positional optimal
strategy for this player using one of the removed edges. Whichever is the case, we can

U. Zwick. M. Paterson I Theoretical Computer Science 158 (1996) 343-359 349

now restrict attention to a subgraph G’ with at least [d/2] fewer edges. Let d(a) be
the initial outdegree of vertex a E V. After 0(x,,,, logd(a)) such experiments we
are left with a positional optimal strategy for player I. A positional optimal strategy
for player II is found in a similar way. As CoEV logd(a)< IVI.log(lEJ/IVI), we get
that the complexity of this algorithm is 0(lV(4.1E(.log((EJ/IV().W), as required. 0

An interesting open problem is whether finding positional optimal strategies is harder
than just computing the values of a game. The algorithm we describe calls the full
value-finding algorithm repeatedly, but uses only the value at a single vertex and
ignores any information about the optimal moves of the players in the truncated games.
Unfortunately, optimal moves in the truncated games may not conform to positional
strategies. We think however that it should be possible to use the additional information
gathered and improve our algorithm.

The running times of all the algorithms described so far depend on the size of the
weights. This dependency can be avoided at the (high) price of an exponential running
time in the size of the graph.

Theorem 3.2. Let G = (VI, Vz,E) be a directed graph with a real weight function

w : E + R. Let V = VI U V,. Positional optimal strategies for both players, for games

played on this graph, can be found in 2’(IEI) or 2q1vl’0glvl) time.

Proof. It is easy to see that each player has at most 20(IEI) positional strategies. The
values of all the vertices in V when players I and II play according to specific positional
strategies, ni : VI + V and 712 : V2 -+ V, are easily found in O(lEl + IV\) time. We
can therefore construct, in 2’(IEI) time, a 20(lEI) x 2qlEl) matrix with all the possible
outcomes of the game when both players use positional strategies. Let ~~,,~~(a) be
the outcome of a game that starts at a E V in which the two players use strategies
xi and 712, respectively. The results of Ehrenfeucht and Mycielski and of Gurvich,
Karzanov and Khachiyan imply that v(a) = max,, min,,{~,,,~,(a)}, for every a E V.

The values of all the positions can therefore be found in 2’(lEl) time. The results of
the above-mentioned authors also imply that there exists a positional strategy ni for
the first player for which min,, {v,,,,, (a)} = v(a), for every a E V. Each such strategy
is a positional optimal strategy for player I. A positional optimal strategy for player II
is found similarly. The 20(lvl 1°s 1’1) t’ ime algorithm is obtained in the same way since
the number of positional strategies that each player may have is also bounded by
pv log IVI) 0

4. Playing against a known positional strategy

In this section we consider degenerate games in which there is only one edge out
of each vertex for player II, say. This corresponds, for example, to cases in which
player I knows in advance the positional strategy according to which player II is going

350 L? Zwick, M. Paterson/ Theoretical Computer Science 158 (1996) 343-359

to play. The simple observations made in this section are very similar to observations
made by Gurvich et al. [l l] and by Karzanov and Lebedev [13].

An 0(1 V(-/El) algorithm of Karp [12] (see also [7, p. 5481) for finding the maximum
(or minimum) mean weight cycle of a weighted graph G = (V,E) supplies, almost
immediately, an efficient purely combinatorial algorithm for such special cases.

Theorem 4.1. Let G = (VI, V2,E) be a directed graph with a real weight function
w : E + R on its edges, and assume that the outdegree of each vertex q E V2 is
exactly one. Then, the values of all the vertices and a positional optimal strategy
7c1 : VI + V for player Z can be found in 0(I VI. [El) time.

Proof. The value of vertex a E V is the maximum mean weight of a cycle reachable
from a. We begin therefore by finding the strongly connected components and the
component graph of G. This can be done in O(IE(+ I VI) time (see, e.g., [7]). Next,
we use Karp’s algorithm to find the maximum mean weight cycle in each such strongly
connected component. This takes 0(I VI. [El) t ime. We then find, again in 0(I VI. IEI)

time, the transitive closure of the component graph of G. The maximum mean weight
cycle reachable from each vertex of G is then easily found in O((VIZ) time. 0

The maximum (or minimum) mean weight cycle in a graph G = (V, E) with rela-
tively small weights can be found more efficiently using the scaling algorithms of Odin
and Ahuja [20] and Young and Tarjan and Orlin [24]. If there are only two different
edge weights then it can be found even faster, using an algorithm of Butkovic and
Cuninghame-Green [4].

Could methods used by Karp’s algorithm, or by the other maximum mean weight
cycle algorithms, be used to obtain a more efficient algorithm for the general case?
Could scaling methods be used to speed our algorithm?

The natural decision problem corresponding to MPG’s is the following. Given a
MPG G and a number v, is the value of G at least v? As a Corollary to Theorem 4.1
we get the following result.

Theorem 4.2. The decision problem corresponding to mean payoff games is in NP n
co-NP.

Proof. To show that the value of a game is at least v, all we have to do is guess a
positional optimal strategy for player I. We can then check, using Karp’s algorithm,
that the value of the game is at least v. To show that the value of the game is less
than v, all we have to do is guess a positional optimal strategy for player II, and use
Karp’s algorithm to check that the value is less than v. •i

An alternative, more ‘efficient’, proof of Theorem 4.2 makes use of potentials.

Theorem 4.3. Let G = (VI, V2, E) be a directed graph, let w : E --, R be a weight
function on its edges and let a E V = VI u V2. Then, the value of the mean payoff

U Zwick, M. Paterson1 Theoretical Computer Science 158 (1996) 343-359 351

game that starts at a is at least v if and only if there exist subsets VI c VI and

U2 C V2 with a E U = VI U U2, and a potential function h : U -+ R that satisfy the
following two conditions:

(i)VuEUr 3(u,u)~E VEU A h(u)+w(u,o)>h(u)+v,

(ii) Vu E U2 V(u,u) E E v E U A h(u) + w(u,u)>h(u) + v .

Proof. For the ‘if’ direction, suppose that such sets and potential function exist.
Player I then always chooses an edge that satisfies condition (i). This makes sure
that the game never leaves the set U and that the mean of every cycle formed is at
least v.

For the ‘only if’ direction, suppose that v(a) 2~. If we subtract v from each of
the edge weights, we obtain a corresponding game where v(a) 3 0, so we may assume
v(a)>v = 0 without loss of generality. Let ni : VI ---f V be a positional optimal strategy
for player I, and consider the subgraph G’ = (VI, UT, E’) of G whose vertices and
edges are just those which are reachable from vertex a when player I plays according
to the positional strategy rri and player II plays arbitrarily. We define h(u) E R for
each u E UI U Uz as the minimum weight of a path from a to u, i.e., the distance

from a to u in the weighted graph formed. Since ret is an optimal strategy for player I
assuring that v(a) 2 0, the weight of any cycle in G’ is nonnegative and these distances
are well defined. Conditions (i) and (ii) follow immediately from the definitions of
G’ and h. 0

To show that the value of a game is at least v, all we have to do is guess the
subsets U1 and U2 and the potential function h. The two conditions can then be verified
in linear time. A dual condition can be used to verify that the value of the game is at
most v.

5. Discounted payoff games

In this section we describe a discounted version of mean payoff games. This (fourth)
variant, which is also interesting in its own right, will serve in the next section as a
link between mean payoff games and simple stochastic games.

Let 0 < I < 1 be a real number. The weight of the ith edge, ei, chosen by the
players is now multiplied by (1 - I)v and the outcome of the game is defined to be
(1 - A) X:0 R’w(ei). The goal of the first player is again to maximise the outcome of
the game and the goal of the second player is to minimise this outcome. The number
2 is called the discounting factor of the game.

Let G = (VI, V2, E) be a directed graph and let w : E --) R be a weight
function on its edges. As always, we assume that the outdegree of all the vertices
is at least one. Let V = VI U V2 = {1,2,...,n}. Let Xi = xi(n) be the value of
a discounted game started at i. If (i,j) E E, we use WV as an abbreviation for

w((i&).

352 U Zwick, M. Paterson I Theoretical Computer Science 158 (1996) 343-359

Theorem 5.1. The value vector x = (x1 , . . . ,x,,) of the discounted games played on

the graph G = (VI, V2,E) is the unique solution of the following set of equations:

max (i,j)@ {(1 - A)WZj + hj} if i E VI ,
Xi =

min (i,j)EE {(1 - A)Wu + hj} if i E V2 .

Proof. Let % be a mapping that receives a vector x and returns the vector y such that

(

max (i,j)EE ((1 7 l)Wij + A.Xj} if i E VI ,

yi = min (i,j)EE {(1 - A)Wij + hj} if i E V2 .

The given set of equations can be expressed in the form x = %(x). If we let llvlj =
maxi be the max norm, then

vu, c, II%(u) - S(C)11 <Allu - C(I .

Thus, since 0 < 1 < 1, % is a contraction mapping with respect to the norm. It
follows easily that the limit x = lim,,, %2”(O) exists and is the unique solution to
the equation x = %(x).

Let x be the solution of the equation x = %(x). It is easy to verify that if player I
plays according to a strategy which at each vertex i E VI chooses an edge (i,j) E E

which maximises (1 - n)wij + 3JEj, then the outcome of the game that starts from each
vertex i is at least xi. Similarly, if player II plays according to a strategy which at
each vertex i E V2 chooses an edge (i,j) E E which minimises (1 - ~)WQ + 3xj, then
the outcome of the game that starts from each vertex i is at most Xi. It follows that
the value of the game starting from i is exactly xi. Cl

It follows immediately from this theorem that both players of the discounted game
again have positional optimal strategies. The proof in this case is much simpler than
the proofs given by Ehrenfeucht and Mycielski [8] and by Gurvich, Karzanov and
Khachiyan [1 l] for non-discounted games.

Theorem 5.1 suggests a way of finding the values of the discounted payoff games
played on a graph G = (VI, V2,E). We are not aware, however, of any strongly poly-
nomial-time algorithm for finding a solution to the set of equations that appear in
the theorem. A pseudo-polynomial-time algorithm for finding the values and optimal
positional strategies for discounted payoff games, similar to the algorithm presented in
the proof of Theorem 2.3, can be easily devised.

Let v(n) be the value of the discounted game with discounting factor 1. As J. tends
to 1, we expect v(n) to tend to v, the value of the non-discounted game. This follows
from the next theorem.

Theorem 5.2. Let G = (VI, V2, E) be a graph on n vertices, let V = VI U V2, let

w: E + {-W ,..., 0 ,..., W} be a weight function on its edges and let 1 be a real
number satisfying 0 c ;i < 1. If v(A) and v are the values of the discounted and

U. Zwick. M. PatersonITheoretical Computer Science 158 (1996) 343-359 353

mean payoff games played on the graph G = (VI, V,, E) starting at a E V, then

v - 2n(l - n)FV G v(n) < v + 2n(l - n)FV .

Proof. Consider the outcome of a discounted game in which player I uses a positional
optimal strategy for the non-discounted game and player II uses a positional optimal
strategy to counter the strategy of player I. The outcome of such a game clearly
supplies a lower bound on the value v(n) of the discounted game. The play in such a
case consists of a path of length k, followed by a cycle of length e which is repeated
indefinitely, where O<k<n - 1, 1 <e<n and k + e<n.

Assume for the moment that all the edge weights are non-negative. Let ~0,. . . , we_ 1

be the weights of the edges in the cycle formed. As player I uses an optimal strategy
for the non-discounted game we get that CfI,r wi ~Lv. The outcome of the discounted
game is then at least

As e(l -A)/(1 -Ad) > 1 and ;Ik+!-’ > A” > 1 -n(l -A), this is at least (1 -n(l -L)).v.
We now return to the general case in which the edge weights are not assumed to be

non-negative. By adding W to each weight, we can make all the weights non-negative.
The value and outcome of the game are changed by exactly W. Applying the previous
inequality to the resulting non-negative game we get that

(v(L)+ W)3(1 -n(l -n))(v+ W),

or equivalently that

v(A)av-n(l-A)(v+W)>v-2n(l-I)W.

The opposite inequality is proved in a similar way. q

In particular, if we choose I = 1 - 1/(4n3 W), then it is easy to verify that Iv(n) -
VI 6 1/(2n(n - 1)), and v can be obtained from v(1) by rounding to the nearest rational
with a denominator less than n, as was done in Section 2. We thus obtain a reduction
from MPGs to discounted payoff games (DPGs).

6. Reduction to simple stochastic games

In this section we describe a simple polynomial reduction from discounted payoff
games (DPGs) to simple stochastic games (SSGs). This reduction, combined with the
reduction from MPGs to DPGs, shows that SSGs are at least as hard as MPGs. We
believe that MPGs are in fact easier than SSGs.

354 U. Zwick, M. PatersonITheoretical Computer Science 158 (1996) 343-359

A simple stochastic game is a two-person game played on a directed graph G =
(Y,E) whose vertex set Y is the union of three disjoint sets Vmax, Vmin and Paverage. The
graph also contains a special start vertex and two special vertices called the O-sink and
the l-sink. Each edge emanating from an ‘average’ vertex has a rational probability
attached to it. The probabilities attached to all the edges from each average vertex add
up to 1.

A token is initially placed on the start vertex of the graph. At each step of the game
the token is moved from a vertex to one of its neighbours, according to the following
rules:

1. At a max vertex, player I chooses the edge along which the token is moved.
2. At a min vertex, player II chooses this edge.
3. At an average vertex, the edge along which the token is moved is chosen randomly

according to the probabilities attached to the outgoing edges.
The game ends when the token reaches one of the sink vertices. Player I wins if

the token reaches the l-sink and player II wins otherwise, i.e., if the token reaches the
O-sink or if the game does not end. The ualue of such a game is the probability that
player I wins the game when both players play optimally. As was the case for mean
payoff games, the two players of a simple stochastic game have positional optimal
strategies.

Simple stochastic games were first studied by Shapley [23]. Many variants of them
have been studied since then (see Peters and Vrieze [21] for a survey). Condon [6] was
the first to study simple stochastic games from a complexity theory point of view. She
showed that the natural decision problem corresponding to SSGs (i.e., given a game G
and a rational number 0 < u < 1, is the value of G at least a?) is in NP fl co-NP. No
polynomial time algorithm for SSGs is yet known. Some exponential algorithms for
the problem are described in [171. A subexponential randomized algorithm for SSGs
was recently obtained by Ludwig [161.

Condon [6] actually shows containment in NP n co-NP of the decision problem that
corresponds to SSGs of the following restricted form. The outdegree of each non-sink
vertex is exactly two and the probability attached to each edge that emanates from an
average vertex is f. She then describes a reduction from general SSGs to SSGs of
this restricted form. Her reduction, however, is not polynomial. A general SSG on n
vertices in which the denominators of all the (rational) probabilities are at most m is
transformed into a restricted SSG of size polynomial in n and m, rather than in n and
logm. Her transformation can be easily modified however, as we show next, to yield
a polynomial reduction.

It is easy to transform a SSG into an equivalent SSG in which the outdegree of
each non-sink vertex is exactly two. Each vertex of fan-out k is simply replaced by
a binary tree with k leaves. This increases the size of the graph (i.e., the number
of vertices and edges) by only a constant factor. The remaining problem is therefore
the simulation of binary average vertices with non-equal probabilities. Suppose we
want to implement an average vertex u with two emanating edges (~,a]) and (u,uz),
labelled respectively by the probabilities p/q and (q - p)/q, where p and q are integers

U. Zwick, M. PatersonITheoretical Computer Science 15% (1996) 343-359 355

Fig. 2. Implementing an average vertex with arbitrary probabilities.

and 2’-’ <q < 2’. Let ata2 . ..a._ia, and bib2 . . . b,_rbr be the binary representations
of p and q - p, respectively, where ai and bl are the most signi~cant digits. We use
the construct shown in Fig. 2. All the vertices used are average vertices with equal
probabilities. For every i, 2 < i 6 t + 1, there are two emanating edges that are reached
from u with probability 2-j. If ai = 1 then connect one of the edges with probability
2-(‘+‘) to vi, and if bi = 1 then connect one of these edges to 02. All the unused edges
are cormected back to u. Is it easy to check that vi and u2 are eventually reached
with the appropriate probabilities. The number of vertices used in this construction is
proportional to the number of bits needed to represent the transition probabilities. The
reduction is therefore polynomial.

A simple stochastic game is said to halt with probability 1 if, no matter how the
players play, the game ends with probability 1. The proof of the following theorem
can be found in Condon [6]. Note the simila~~ of this theorem to Theorem 5.1.

Theorem 6.1. Let G = (V,E) be a SSG that halts with probability 1, and let p(u,u)
denote the probability attached to an edge (u,v) that emanates from an average
vertex u. The ualues v(v) of the vertices of G form the unique solution to the following
set of equations~

i

max~u,v~dW~ if u is a max vertex,

v(u) = min(,,)&v(v)) if u is a min vertex,

C~u,o)EE{P(u,u).v(u)} if u is an average uertex,

along with the conditions that v(O-sink) = 0 and v(l-sink) = 1.

We are finally in a position to describe a reduction from discounted payoff games
(DPGs) to simple stochastic games (SSGs). Recall that we have already described a
reduction from MPGs to DPGs.

Let G = (VI, V&Z) be a DPG with discounting factor 1. If we add a constant c to
all the weights of the game, the value of the game is increased by c. If we multiply all
the weights of the game by a constant c r 0, the value of the game is multiplied by
c. We can therefore scale the weights so that they will all be rational numbers in the
interval [0, 11. If the original weights were in the range (--IV,. . . ,O,. . . , W}, then the

356 U Zwick, M. Paterson I Theoretical Computer Science 158 (1996) 343-359

l-sink

Fig. 3. Simulating a transition of a discounted payoff game.

new weights will be rational numbers with denominators and numerators in the range

{O,l)..., 2W).

We construct in the following way a SSG G’ = (V’,E’), with the same value as the

scaled DPG G = (Vi, V2,E) with discounting factor 1. Each edge (u, v) with weight w

in G is replaced by the construct shown in Fig. 3. We let V’ = V,,, U Vmin U Vaverage,

where V,, = Vi, Vmin = VZ and Vaverage is the set of intermediate vertices added.

The simple stochastic game G’ halts with probability 1, as in each transition there

is a probability of 1 - L of reaching a sink vertex. The values of the vertices of

the discounted payoff game G satisfy the set of equations given in Theorem 5.1. The

values of the vertices of the simple stochastic game G’ satisfy the set of equations given

in Theorem 6.1. These two sets of equations become identical once the intermediate

variables, that correspond to the intermediate vertices introduced by the transformation

described in Fig. 3, are eliminated. As this set of equations has a unique solution,

the values of the two games are equal. The transformation of G to G’ can clearly be

carried out in polynomial time. This completes the description of the reduction.

7. Some applications

In this section we briefly mention some applications of mean payoff games.

Consider a system with n possible states. At each time unit, the system receives one

of k possible requests. The system is allowed to change its state and then it has to

serve the request. The transition from state i to state j costs aij, and serving a request

of type t from state i costs bi,. What, in the worst-case, is the average cost of serving

a request?

Borodin et al. [3] performed a competitive analysis of such systems, which they call

on-line metrical task systems. If we look at the worst-case instead, we get a bipartite

mean payoff game G = (Vi, V2, E) played between the system and an adversary that

chooses the requests. The adversary plays from the vertices of VI = { 1,2,. . . ,n}.

The algorithm plays from the vertices of V2 = {(i, j) 1 1 < i < n, 1 <j <k}. The edge

i + (i,j) corresponds to the request of task j while the system is in the state i. The

edge (i,j) -+ k corresponds to the transition of the system to state k before serving

this request. The weight of all the edges of the form i + (i,j) is 0. The weight of an

edge (i,j) + k is aik + bkj.

U. Zwick, M. Paterson I Theoretical Computer Science 158 (1996) 343-359 351

Consider finite-window on-line string matching algorithms (see [5] for a definition).

What, in the worst-case, is the average number of comparisons that an optimal algo-

rithm has to perform per text character? The problem can be formulated as a bipartite

mean payoff game played between the designer of a string matching algorithm and an

adversary that answers the queries made by an algorithm. The reward (the complement

of cost) obtained by the algorithm at each stage is the amount by which it can shift

its window. For each pattern string and window size we obtain a mean payoff game,

the solution of which yields an optimal string matching algorithm for that pattern and

window size.

As a last example, consider the problem of selection with limited storage. Suppose

that we are to receive a long stream of numbers. We are supposed to select the kth

largest of these numbers. We have however only s storage locations, for some s > k,

each one of them capable of holding a single number. Each input number must be read

into one of these s storage locations before it can be compared to any of the numbers

held in the other s - 1 locations. The previous value of the cell into which the input

number is read is lost. What is the average number of comparisons needed per input

element in the worst case? Selection and sorting problems with limited storage were

considered by Munro and Paterson [191. They allowed several passes over the input

stream however.

The problem can again be formulated as a bipartite mean payoff game G = (VI, I’*,,!?)

played by the designer of a selection algorithm and an adversary that answers queries

made by an algorithm. The vertices of Vr correspond to those partial orders of s ele-

ments in which no element is known to be smaller than k elements. The vertices of I’2

corresond to such partial orders together with requests for comparing two specific el-

ements in each such partial order. Edges from I’, to V2 correspond to comparison

requests made by the algorithm. Edges from I5 to Vr correspond to the answers of

the adversary. Each vertex of I’2 has two edges emanating from it, corresponding to

the two possible outcomes of the comparison requested. The weight of all the edges

from I’, to I’2 is 0. The weight of each edge u + u from I’2 to Vi is the number

of elements that are known, as a result of the last comparison, to be smaller than at

least k elements. Such elements are discarded and are replaced by new input elements.

Twice the value of the game is the average number of elements that can be discarded

as a result of a single comparison. The graph that corresponds to the selection of the

second largest element using four storage locations, i.e., k = 2 and s = 4, is given in

Fig. 4. It is not difficult to verify that the value of this game is v = 4, the starting

point is this case does not matter. This means that the average number of comparisons

needed per input element is i.

8. Concluding remarks

Mean payoff games form a very natural class of full information games and we think

that resolving their complexity is an interesting issue. We conjecture that they lie in P

358 U Zwick, M. PatersonITheoretical Computer Science 158 (1996) 343-359

Fig. 4. A mean payoff game that corresponds to the problem of selecting the second largest element with

only four storage locations.

but, since none of the standard methods seems to yield a polynomial-time algorithm

for them, the study of mean payoff games may require new algorithmic techniques.

If such positive approaches are unsuccessful, the example of mean payoff games may

help in exploring the structure of NP n co-NP.

Acknowledgements

We would like to thank Sergiu Hart, Ehud Lehrer, Nimrod Megiddo, Moni Naor,

Noam Nisan and Avi Wigderson for helpful discussions and suggestions, Alexander

Karzanov for pointing out a flaw in the previous version of Theorem 3.1, and Thomas

McCormick for bringing references [1 l] and [131 to our attention.

References

[l] S. Alpern, Cycles in extensive form perfect information games, J. Math. Anal. Appl. 159 (1991)
1-17.

[2] H.L. Bodlaender, Complexity of path-forming games, Theoret Comput Sci. 110 (1993) 215-245.

[3] A. Borodin, N. Linial and M.E. Saks. An optimal on-line algorithm for metrical task system J. ACM
39 (1992) 745-763.

[4] P. Butkovic and R.A. Cuninghame-Green, An O(n*) algorithm for the maximum cycle mean of an

n x n bivalent matrix, Discrete Appl. Math. 35 (1992) 157-162.

U. Zwick, M. Paterson1 Theoretical Computer Science 158 (1996) 343-359 359

[5] R. Cole, R. Hariharan, M. Paterson and U. Zwick, Tighter lower bounds on the exact complexity of

string matching, SIAM .Z. Comput. 24 (1995) 30-45.

[6] A. Condon, The complexity of stochastic games, Inform. Comput. 96 (1992) 203-224.
[7] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (The MIT Press, Cambridge,

(1990).
[8] A. Ehrenfeucht and J. Mycielski, Positional strategies for mean payoff games, Znt. J. Game Theory 8

(1979) 109-l 13.
[9] A.S. Fraenkel, E.R. Scheinerman and D. Ullman, Undirected edge geography, Theoret. Comput. Sci.

112 (1993) 371-381.
[lo] A.S. Fraenkel and S. Simonson, Geography, Theoret Comput. Sci. 110 (1993) 197-213.

[ll] V.A. Gurvich, A.V. Kamanov and L.G. Khachiyan, Cyclic games and an algorithm to find minimax

cycle means in directed graphs, USSR Comput. Math. Math. Phys. 28 (1988) 85-91.

[12] R.M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math. 23 (1978)
309311.

[13] A.V. Karzanov and V.N. Lebedev, Cyclical games with prohibitions, Math. Programming 60 (1993)
277-293.

[14] D.D. Lozovanu, Algorithms to solve some classes of network minimax problems and their applications,

Cybernetics 29 (1991) 93-100.

[151 D.D. Lozovanu, Strongly polynomial algorithms for finding minimax paths in networks and solution of

cyclic games, Cybernetics Systems Anal. 29 (1993) 754-759.
[16] W. Ludwig, A subexponential randomized algorithm for the simple stochastic game problem, Znform.

Comput. 117 (1995) 151-155.

[17] M. Melekopoglou and A. Condon, On the complexity of the policy iteration algorithm for stochastic

games, Technical Report TR 941, University of Wisconsin, June 1990.

[181 H. Moulin, Prolongement des jeux a deux joueurs de somme nulle, Bull. Sot. Math. Prance. Memoires
45 (1976).

[19] J.I. Munro and M.S. Paterson, Selection and sorting with limited storage, Theoret. Comput. Sci. 12
(1980) 315-323.

[20] J.B. Orlin and R.K. Ahuja, New scaling algorithms for the assignment and minimum mean cycle

problems, Math. Programming 54 (1992) 41-56.

[21] H.J.M. Peters and O.J. Vrieze, Surveys in game theory and related topics, CWI Tract 39, Centrnm

voor Wiskunde en Informatica, Amsterdam, 1987.

[22] V.R. Pratt, Every prime has a succinct certificate, SIAM J. Comput. 4 (1975) 214-220.
[23] L.S. Shapley, Stochastic games, Proc. Nut. Acad. Sci. USA, 39 (1953) 1095-1100.
[24] N.E. Young, R.E. Tarjan and J.B. Orlin, Faster parametric shortest path and minimum-balance

algorithms, Networks 21 (1991) 205-221.

