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Abstract 

Dam, M., CTL* and ECTL* as fragments of the modal ,u-calculus, Theoretical Computer Science 

126 (1994) 77796. 

Direct embeddings of the full branching-time CTL* and its extension ECTL* into the modal 

~-calculus are presented. The embeddings use tableaux as intermediate representations of formulas, 

and use extremal fixed points to characterise those paths through tableaux that satisfy an admissibil- 

ity criterion, guaranteeing eventualities to be eventually satisfied. The version of ECTL* considered 

replaces the entire linear-time fragment of CTL* by Biichi automata on infinite strings. As 

a consequence the embedding of ECTL* turns out to be computable in linear time, while the 

embedding of CTL* is doubly exponential in the worst case. 

1. Introduction 

Due to its inherent combinatorial difficulties, concurrency is an area of computer 

science where formal and automated verification methods have proved themselves 

particularly valuable, for instance, in detecting errors difficult or impossible to find by 

informal reasoning alone (cf. [17,7,3]). For programming errors to be exposed by 

exhibiting mismatch to formal properties, those properties must correctly reflect the 

intent of the programmer. The correctness of this representation may be obvious for 

a few very simple theories, but unfortunately the need for greater expressive power 

often seems to call for a corresponding sacrifice in transparency. 

A case in point is the modal p-calculus L, [19]. This logic is obtained as an 

enrichment of a simple modal base logic, Hennessy-Milner logic [ 1 S], by least and 

greatest fixed points of formally monotone operators. The result is a very general 

branching-time temporal logic capable of expressing a wealth of properties related to, 
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for instance, partial and total correctness, liveness, safety, and fairness, that are of 

crucial importance in practical program verification (cf. [2,31]). Indeed L, en- 

compasses a great many well-known program logics such as PDL [15], PDL-d [26], 

linear-time temporal logic PTL [16], CTL [S] and CTL* [ll]. This can be shown by 

providing constructive translations (cf. [19,13,32]). 

In fact, the containment in all these cases is strict. A typical example of a property 

expressible in L, but not, for instance, in CTL* is a cyclic property such as “along any 

path, at all even moments 4 holds, and at all odd moments 4 may hold or not” 

(cf. [33]). Properties such as these are necessary in general for modular reasoning 

[20]. Despite this additional expressive power, L, is decidable in deterministic 

exponential time, and thus essentially is not harder than PDL [ 12,151. Moreover, for 

closed formulas, L, preserves the characterisation of bisimulation equivalence [ 181 

and thus provides a natural temporal logic for process calculi such as CCS [24]. 

A model checker for checking L,-properties against finite-state (CCS) processes due to 

Stirling and Walker [25] has been implemented in the Edinburgh Concurrency 

Workbench [9] and used in several case studies such as mutual exclusion algorithms 

[31] and communication protocols [4]. 

Impeding the widespread practical use of L,, however, is its lack of transparency. 

Already at the second level of alternation, formulas can become highly unintelligible 

and alternation is indeed needed to express, for instance, fairness properties. Conse- 

quently, it is important to develop tools to aid users in manipulating, generating and 

understanding L,-formulas. Constructive translations such as those referred to above 

can be very useful for these purposes. They can be machine implemented to provide 

syntactical sugaring of L,-properties. Moreover, they can help also in understanding 

L, itself, provided they, and the results they produce, are sufficiently simple and 

intuitive. They mostly succeed very well in this: A first step towards a working 

understanding of L, is certainly to understand why the CTL-formula EFX (“along 

some path X holds eventually”) is translated into the least fixed point formula 

pY.X v 0 Y, where 0 is the existential next-state quantifier. 

In this respect CTL* is of particular interest. Beyond CTL, CTL* is capable of 

expressing properties such as EGFX (“along some path X holds infinitely often”), 

useful for dealing with fairness [l 11, and in general arbitrary nestings and boolean 

combinations of linear- and branching-time connectives for which the task of finding 

equivalent L,-formulations may present considerable difficulties. The previously only 

known translation of CTL* into L, is, however, rather indirect and not very transpar- 

ent. It is obtained by composing Wolper’s unpublished translation of CTL* into 

PDL-d [32] with the translation of PDL-d into L, (cf. [13]). It involves 5 stages: The 

first and second stages builds a tableau and derives from it a deterministic Muller 

automaton (cf. [ 141). Third stage derives from this automaton an equivalent u-regular 

expression (cf. [21]). As the fourth stage, a PDL-d formula is obtained, and finally this 

formula is translated into L,. 

In this paper we present a relatively simple and much more direct algorithm 

for translating CTL* into L,. The idea is to represent a tableau directly as an 



CTL* and ECTL* as,fiagments of the modal p-calculus 19 

equivalent L, formula. The notion of tableau used is fairly standard and closely 

related to those of e.g. Ben-Ari et al. [l] and Wolper [33]. Their role is to decompose 

formulas according to their structure, and to detect recursion in the natural way of 

terminating when a tableau node is repeated. The problem is to use the connectives of 

L, as an external means of characterising tableaux, and in particular to use least and 

greatest fixed points to classify loops. The solution involves an analysis of 

the admissible ways of “regenerating” nodes, using the terminology of Streett and 

Emerson [27]. 

An alternative way of allowing cyclic properties to be expressed is to include in 

CTL* not only the linear-time modalities of PTL, but also more generally all 

linear-time modalities expressible in Wolper’s extended temporal logic, ETL [33]. 

ETL extends PTL by allowing arbitrary finite automata on infinite words as temporal 

operators. In this way the full power of the o-regular languages is obtained [34], 

whereas PTL is capable of describing only the star-free o-regular languages [16,28]. 

Several expressively equivalent versions of extended CTL*, ECTL* have been pro- 

posed [30,6,29]. Here we follow the approach of Thomas, adding linear-time oper- 

ators corresponding to Biichi automata on infinite words. 

Also for ECTL* the translation involves the building of tableaux and the 

use of fixed points to classify loops. The construction turns out to be simpler, 

however, than for CTL* for two reasons: First there is no need to consider the explicit 

nesting of linear-time connectives present in CTL*, and secondly the use of 

Biichi automata allows attention to be restricted to automata with a single accepting 

state. 

The remainder of the paper is organised as follows. In Sections 2 and 3, L, and 

CTL* are introduced, Sections 4-6 describe the translation from CTL*, and in 

Section 7 it is proved correct. In Sections 8 and 9 ECTL* is introduced and its 

translation described, and finally in Section 10 we discuss issues such as efficiency and 

related work. 

2. The modal p-calculus 

Formulas 4, $, y of L, are built from propositional variables X, Y, boolean connect- 

ives 1 and A, the modal next-state quantifier 0, and the least fixed-point operator 

pX.4. The latter is subject to the formal monotonicity condition that all free occurren- 

ces of X in 4 lie in the scope of an even number of negations. Other connectives 

are derived in the usual way and, in particular, q c#J~lOl(b, 
vX.4 Al ,uX.l4[1 X/X]. We use fl as a metavariable ranging over {p, v}. Usually, 

indexed modalities (a) are considered instead of the unindexed 0. For the purpose of 

embedding CTL* and ECTL*, however, one program letter suffices. 

For the semantics fix a transition system T=(S,R), where S is a set of states 

ranged over by s and R a binary transition relation on S. The semantics of the 

formula 4 relative to T and a valuation -Y-: XHBGS is the set 114 11 -Yc_S defined 
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as follows: 

1) 04 1) V = {SES ( 3s’~S. sRs’ and S’E I( 4 1) V}, 

ihx.w=n{=si II~CX++BIGB~. 

Here V[X++B] is the usual update Y’ of -Y- which agrees with 9”‘ except that 

V’(X) = B. The expected clauses are obtained for the derived connectives. In particu- 

lar, for greatest fixed points, 

/lvX.4IlV=U {BCSIBC j~~IjY[X43]}. 

Intuitively, least fixed points are used for eventualities and greatest fixed points for 

invariant properties. This intuition is brought out by the following characterisation of 

the relation of satisfaction SE /I c) I/ V due to Streett and Emerson [27]. Closely related 

characterisations are due to Stirling and Walker [25], Bradfield and Stirling [2] and 

Cleaveland [S]. 

Relative to a transition system T, a choice relation is a minimal relation = on 

sequents s F C$ such that 

Sills *St-4, 

.sI-~~Ac#I~ =P- sFcj+ for i-land i=2, 

s~c$~v~, * sl-CJ$ for i=l or i=2, 

s I- 04 =S s’ F 4 whenever sRs’, 

s F 04 Z= s’ k $J for some s’ such that sRs’: 

s t- ax.4 * s k &, [aX.l$/X]. 

Rooting = at s I- $J restricts 3 to {s’ I- 4’ / s k c$ a* s’ F @}. Let * be rooted at s F 4. 

Then = agrees with V, if whenever s t I$ a* s’ F-1)X then s’GV(X) (s’#V(X)). 

Regarding fixed points the crucial issue is to avoid having to regenerate p-formulas 

infinitely often. A a-formula ax.4 is regenerated from s1 to s, if there is a derivation 

such that n> 1, d1 =4,, =0x.4, and ox.4 is a subformula of 4i for each i, 1 Gi<n. 

Then = is well-founded if the regeneration relation is well-founded for each p-formula. 

That is, there is no infinite path sR* s0 R* sI R* s 2 . . and no p-formula pLx.4 which is 

regenerated from si to si+ 1 for all igo. 

Theorem 2.1 (Streett and Emerson [27]). There is a well-founded choice relation 

= from s t- C$ which agrees with V” ifss~ II 4 /I V. 
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3. Computation tree logic, CTL* 

Formulas of CTL* are built from propositional variables using boolean connect- 

ives 1 and A, the linear next-time and until-operators 0 and U, and the existential 

path-quantifier E. The dual of E is the universal path-quantifier defined by 

A#J 41 El 4. Other connectives are derived as usual. In particular, F$A true IJ4 and 

G~ATF~~. Also we let ~ilU~,~l(&, U4,). A n eventuality is a formula of the 

form either ~UIJ!J or O($U$) (or F$J or OF4 if F is taken as primitive). 

Formulas denote properties of infinite paths through a transition system T=(S, R) 

with valuation Y. Such a path is a mapping peS” such that for all i~o, p(i)Rp(i+ 1). 

The ith suffix of p is the path pi given by pi(j)=p(i+j) for all jEw. The relation R is 

total if for all SES there is some S’ES such that sRs’. The assumption of totality allows 

attention to be restricted to infinite paths. The semantics of formulas is given as 

follows (cf. [l 11): 

p(=+ X iff p(i)~v(X), 

P I=$ 04 iff p1 I=$ 4, 

pi=+ 41 U4, iff 3i~o such that pil=$ c$~ and Vj, if Odj<i then p’++-~$~, 

p /=* E# iff 3p’ such that p(0) = p’(0) and p’ +=1 qb. 

Let s I=$ 4 iff for all paths p such that p(0) = s, p I=? 4. We are particularly interested 

in formulas that depend only on the current state in the sense that p ++. cj iff 

p(0) I=$ 4. This is true, in particular, for boolean combinations of formulas that are 

either propositional variables or contain an outermost occurrence of the existential 

path-quantifier. Formulas of this form are called state formulas. 

4. Tableaux 

The aim is to translate state formulas into semantically equivalent L, formulas. 

Substantial parts of this translation can be performed structurally (cf. [32]). Variables 

can be translated into themselves, and boolean combinations of state formulas can be 

translated into boolean combinations of their translations. Furthermore, substitu- 

tions of state formulas for variables can be preserved. More formally, let 4 -+ $ mean 

that 4 is a state formula and 4 can be translated into the &-formula $. Moreover, 

assume that -+ is correct in the sense that if 4 --+ 4 then 4 and $ are semantically 

equivalent: for all transition systems T, for all s~S, and all valuations Y on T, s kt- I$ 
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iff SE 11 t+b 11 Y. Then the following four rules are validated: 

where y Fir/X,, . , Y,,/X,,] denotes the simultaneous substitution of the yi for Xi in 71. 

By means of these rules, attention can be restricted to formulas of the form E4 where 

4 is a linear-time formula, i.e. (b does not contain occurrences of the existential 

path-quantifier E. Call such formulas basic. For formulas of this form the translation 

uses tableaux as an intermediate representation. A tableau is a rooted, finite-directed 

graph which is generated by applying exactly one of a small set of rules to each node 

that is not a leaf. Leaves are propositional variables or their negations. Other nodes 

are formulas of the form E@ AE A Cp where @ is a finite set of path-quantifier free 

formulas. For simplicity of notation, we generally use a sequential notation for nodes, 

writing, for instance, E(@, 4) in place of E(@u{~}). The purpose of the tableaux rules 

is to analyse the state-related structure of formulas by means of the basic L, 

connectives A, v and 0. Rules consequently have the form 

4 ._ 
n. 41...& 

where Q is either A, v , 0, or possibly I, and a rule instance of this form is forwards- 

and backwards-sound if s +I 4 iff s I=# ?2(4,, . . . , &) where 0 is interpreted as EO 

and I as the identity operator. The tableau rules are the following: 

E(@,114) E(@> X) 

I: E(@,4) A: ~ 

E(@, 1 X) 

E@ X *: E@ -IX 

I. E(@,~A$) v: E(@D, 4 v $) 

’ W@,4,$) EC@> 4) EC@, rl/) 

“1 

V. 

0: 

EC@, 41 U42) 

Et@, 42) Et@, 41,0(41 W2)) 

Et@, $11 U42) 

E(@,lh,l42) E(@,742,0(4,7’J42)) 

WW,, . . . > 04,) 

W~JI,...,~,) 

For the operators F and G the following rules can be used instead of those derived 

from the “until’‘-based ones above: 

E(@, G4) 

‘: E(@, &OG+) 

E(@, F4) 

v : Et@, 4) Et@, OF41 



CTL* and ECTL* as fragments of the modal p-calculus 83 

It is not difficult to see that tableaux are finite, and that all tableau rules are forwards- 

and backwards-sound. 

5. Admissible paths 

A key task is to isolate those infinite paths through a given tableau r that are 

admissible in the sense, intuitively, that eventualities are eventually also satisfied. To 

get at this notion of eventual satisfaction, and thus of admissibility, we analyse the way 

tableau rules decompose individual linear-time formulas. Let EQ1 -+ EQz if there is an 

edge from EQ1 to EQ2 in z. Each member of Q2 is determined, or generated, by at 

least one member of G1. Consider, for instance, the transition E(O(#UII/), 

~U$)+E(O(~U$),$). Relative to this transition, O(4Utj) is generated by 0(4U$) 

and similarly $ is generated by 4U$. On the other hand, it is not relative to this 

transition the case that 0(4U$) is generated by #U$. It is the purpose of the relation 

--D to formalise this notion of generation. Thus, each transition EQ1-+EQ2 deter- 

mines the generation relation --t> E6,_E0, c@, x cP2 in the following way where 

d(Q)= { (+,+) 1 #E@} is the diagonal relation on @: 

DECOY, ,..., o$.)-EC@,,. ,$.)={(06i, 4i) 1 1 <idn}. 

We usually abbreviate +E@,_Eg2 by 4 when the transition E@,-+EQ2 is understood 

from the context. We use Il for +-paths and 71 for +-paths, and write ~~17 if Il and 

n are of equal length, and for each i>O for which n(i) is defined, 7c(i-- 1) 4 n(i) 

relative to the transition n(i - l)+Z7(i). Then an infinite +-path n is admissible, if for 

each 7ceIZ, whenever x(i) = 4Uti or n(i)= F$ then for some j> i, TC( j) = $. Suppose 

that n visits the node E@ infinitely often. Consider a segment 

17(i0, ik)A17(iO) --f ... +fl(&)ofZIfor whichn(i,)=n(i,)=E@andlet 4~@. Then4is 

regenerated along 17(i0, ik) if there is some 7c l n(i,, ik) such that n(O) = n(& - iO) = 4. 
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0 

V 

A 

V 
E(XU Y) 

Y E(X, O(XU Y)) 
Ax O E(O(XU Y)) 

E(XU Y) 

Fig. 1. Tableau for E(XUY) 

0 
E(OFX, OGOFX) 

E(FX, GOFX) 

V 
E(FX, OFX, OGOFX) 

E(X, OFX, OGOFX) 

A X E(OFX,OGOFX)“’ 

E(OFX, OGOFX)“’ 

Fig. 2. Tableau for E(OFX, OGOFX). 

0 

E(GOFX, GOF Y, FX, F Y) 

E(@, FX, FY) 

E(@,X,FY) 

E(@, X, Y) 
E@“’ X Y 

W@,X) “, 

E(@> F Y) 

E(@, Y) E@(4) 

E@* X EQc3’ Y 

Fig. 3. Tableau with @= {OGOFX, OGOFY, OFX, OFY}. 

Example 5.1. Here and below we use a tree-like notation for tableaux, terminating the 

construction as soon as nodes are first repeated. 

(i) Figure 1 shows a tableau for E(XUY). The eventuality XUY is regenerated 

along the +-path from the root to its repetition. 

(ii) Figure 2 shows a tableau for the formula 4 =E(OFX, OGOFX). This is 

semantically equivalent to the formula EGFX expressing the fairness-related property 

that X holds infinitely often along some path. No eventuality is regenerated along the 

+-path from the root to its repetition labelled (l), whereas the eventuality OFX is 

regenerated along the +-path to (2). 

(iii) Similarly, the formula E@ of Fig. 3 expresses that both X and Y hold infinitely 

often. In Fig. 3 no eventuality is regenerated from the root to its repetition labelled (l), 

OF Y is regenerated to (2), OFX is regenerated to (3) and both are regenerated to (4). 

The following characterisation of the admissible +-paths is of central importance 

to the translation procedure. Let a simple node be any node E@ with the property that 

whenever $U$E@ (F$E@) then O(~Ull/)$@(OF$#@). Clearly, any infinite +-path 

ZZ will infinitely often visit the same simple node. Consider, for instance, the set of all 

nodes visited by II to which the O-rule applies. 
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Lemma 5.2. Let Il be an injinite -+-path through a tableau T, and let iO, il, . . . be an 
in$nite, strictly increasing sequence such that IZ(ij) is the same simple node E@ for all 
jcw. Then Il is admissible @for each eventuality 4~~3 there are injinitely many jEo such 
that C#J is not regenerated along the segment IZ(ij, ij+ 1). 

Proof. The only-if direction is clear. For the if direction suppose that II is inadmiss- 

ible. Then there is an +-path rc~n, a kgo, and an eventuality 4=4iU+,, say, such 

that for all k’ 3 k, either rt(k’) = 4 or z(k’) = 04. As E@ is a simple node it follows that 

either for all j such that ij> k, n(ij)= 4, or for all j with ij 3 k, n(ij) = 04. In any case 

either 4 is regenerated along every segment I7(ij, ij+l) for which ij> k, or else 

04 is. 0 

The restriction to simple nodes in Lemma 5.2 is indeed necessary. To see this let n, 

be the +-path: 

E(OGFX, FX, OFX, OGOFX)+E(OGFX, OFX, OGOFX) 

+E(GFX, FX, GOFX) 

+E(GFX, OFX, GOFX) 

+E(OGFX, FX, OFX, GOFX) 

and let II, be the +-path: 

+E(OGFX, FX, OFX, OGOFX) 

E(OGFX, FX, OFX, OGOFX)+E(OGFX, OFX, OGOFX) 

+E(GFX, FX, GOFX) 

-+E(GFX, FX, OFX, OGOFX) 

+E(OGFX, FX, OFX, OGOFX). 

Notice that FX is not regenerated along n, and that OFX is not regenerated along 

IIz. Consider the infinite +-path I7 = (Z7, . L’2)w obtained by alternating between n, 

and II2 ad infinitum, and pick as the sequence iO, iI , . . . the largest sequence such that 

KI(ij) = E(OGFX, FX, OFX, OGOFX). Clearly, n is not admissible, but both eventu- 

alities FX and OFX fail to be regenerated along infinitely many segments II(ij, ij+ 1). 

6. Translating CTL* 

Let then a tableau 5 rooted in a formula &, = E@, be given. The translation of &, is 

determined by the labelling of rule instances in r, and least and greatest fixed points 

are used to characterise the admissible -+-paths through z. The translation procedure 

passes each node 4 at most twice in succession. The interesting case is when 4 is 
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a simple node. In this case a suitable context is built up in the first pass of 4, using the 

label information together with fixed-point quantifiers to bind propositional vari- 

ables. For each simple node 4 = E@, we assume distinguished propositional variables 

X, and Y,, o when $E @ is an eventuality. These variables are used in the second pass, 

if it applies. Let 4 = E@. First, if there are no eventualities in @ any infinite -t-path 

II that visits 4 infinitely often is admissible. A suitable scheme for the translation of 

4 in this case is consequently 

vX, .Y(X,), 

where 4 in the second pass is translated into X@. In general, however, by Lemma 5.2, 

each eventuality $E@ must infinitely often be prevented from being regenerated 

between subsequent visits to 4 by U. This suggests 

as a general scheme for the translation of 4, where in the second pass 4 is translated 

into Y,,, if $ is regenerated along the path segment traversed since the first pass, and 

as XG otherwise. 

The translation algorithm is shown in Fig. 4. A node C#J is translated into the 

&-formula tr(~$, II, E), where II is a path segment and E is an eventuality selector: 

a mapping which given a set @ chooses an eventuality E(@)E@, if one exists. The role of 

I7 is to keep track of the path traversed so far, and E is used to handle the conjunction 

over eventualities. We use ~+c#J to denote the +-path obtained by appending C#J to II. 

Initially, II is the empty +-path ( ), and E is an arbitrary eventuality selector se. The 

cases4 ofX: XIlX:lXIE@: 

if Z:(i)=4 

then if E(Q) is defined 

then if E(G) is regenerated along segment n(i)+..‘+n(n)-+4 

then Y,,,,, 0 
else XQ 

else X@ 

else let Sz: 4 

4 &l 
be the rule instance applied to 4 

I,..., 
in if 4 is not simple or 4 is not reachable from any of the nodes C$ 1, . . , &, 

then Q(tr(~l,fl+$,~), . . . , ~~(dh,~+@,~)) 
else if there are no eventualities in @ 

then vX,.Q(tr(~,,n+#,c), . . . , tr(&,,, n-+4,&)) 
else vX,. A eventualities *s@P Y IL,@. 

S2(tr(~,,n-t~,&C~HIC/l),‘.., MdGn>n + 4,EC@H$I)) 

Fig. 4. CTL* translation algorithm tr. 
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translation algorithm works as follows. If 4=E@ is a leaf the translation is trivial; 

otherwise, if 3i: n(i) = 4 the procedure is in its second pass of 4. Then 4 is translated 

into Yw, o if s(Q) is defined and is regenerated along the segment traversed since 4 was 

passed first, and 4 is translated into X* otherwise. Assume instead that the procedure 

is in its first pass. Three cases apply: If 4 is not simple or 4 is not reachable from any of 

its own children then no fixed points are needed. Otherwise, as we have explained, the 

translation depends on whether or not @ contains any eventualities. 

The translation relation -\3 is then completed by adding to the four rules of Section 4 

the axiom &, -+ tiO whenever 4,, is a basic CTL* formula, a tableau z rooted in & is 

given, and relative to 2, $o=tr(&,,( ),E~). 

Example 6.1. (i) From the tableau of Fig. 1 the expected translation is 

E(XUY)-*pY’Y’.Yv(Xr\ Or’). 

(ii) For the tableau of Fig. 2: 

E(OFX,OGOFX)-+vX’.pY’. O((Xr\X’)v Y’). 

The example serves to illustrate why the translation schema uses v-p-alternation. For 

comparison, two possible translations of the (equivalent) formula EGFX are vX’. p Y’. 

(Xn 0X’)v OY’ and vX’. (XA 0X’)vpY’. O((XAX’)V(XA Y’)v Y’). 

(iii) Similarly, the tableau of Fig. 3 illustrates why the conjunction of p-formulas is 

in general necessary. It is translated thus: 

E@-+vX’.(,UY’.O(X’AXA Y)v(Y’AX)V(X’A Y)v Y’) 

A(~Y’.O(X’AXA Y)v(X’AX)V(Y’A Y)v Y’). 

The translation algorithm can be optimised in several respects. For instance, we 

avoid generally introducing variables that are never actually used. The topic of 

optimisations is returned to in the concluding section. 

Proof. See Section 7. 0 

7. Proof of Theorem 6.2 

Let z be a tableau rooted in & = E@, and let &, -+ $0 relative to r. For simplicity, 

assume & to be in positive form, i.e. with A, v , U, 1 U primitive and negations 

applied only to propositional variables. Similarly, we also assume $0 to be in 

a positive form. The proof is split into two parts: 

(i) If so I=*, 4. then there is a successful choice relation rooted in so l-~/~, i.e. one 

which is well-founded and agrees with V. 

(ii) If so + I 4. then there is a successful choice relation rooted in so kl $. . 
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This is sufficient by Theorem 2.1. Both (i) and (ii) are proved by first building a choice 

relation =z. agreeing with “Y, and then showing + to be well-founded. 

Note first that I/~ determines a finite set BV(tio) = {Xi, . , X,} of propositional 

variables bound in $O. Moreover, each XEBV($,) is bound exactly once. Let OX 

denote the subformula of $,, binding X. Given any subformula $ of $0, turf($) is the 

formula resulting from recursively replacing each XEBV($~) free in II/ by 0X: 

unf($)~$[unf(aX,)/X,] ... [unf(aX,)/X,]. 

The construction of =S proceeds in stages, and is guided by the tableau and the 

model. Initially, we are given the tableau root node & and the sequent s0 k (1) tiO. At 

the completion of stage k, having reached tableau node C$ = E@ and sequent s t- (-I)$ 

the following properties are maintained invariant: 

(a) s/=, (1)4, and 
(b) for some F and fl, $ = unf(tr(& n, E)). 

Note that, depending on ITI, tr(4, L7, E) is either the variable XQ or the variable YE,@,,@, 

or else tr(#, Z7, E) = ax,. We show how to complete stage k + 1. For leaves the 

construction of => is complete. Assume then that Q labels the rule instance 

d 

41r...,db 
C$ is simple, that C$ is reachable from one of the nodes 4 1, . , c#I,, and that @ contains 

an eventuality. The proofs where one of these assumptions fail are easy special cases. 

In completing stage k+ 1 the important issue is how to resolve choices, and this is 

dependent on whether we are proving (i) or (ii). 

(i) Here the problem cases are when a= v or Q= 0. From the assumption that 

s + 1 C$ we know the existence of a path which validates each member of @. The 

procedure builds this path by indexing eventualities. An index 5 of 4 assigns a natural 

number to the top-level eventualities of 4: the subformulas of 4 of the form $iLJ#, 

that do not occur within the scope of 1U in C#J. The predecessor of 5 is the index 

pred(5) defined by pred(4)(@,U$,)=~(~,U~,)-l when [(41U4,)>0 and 

pred(r) (4i U4,) =0 otherwise. Then 4 [<I m d exes each member of @ in the following 

way: 

((~)x)c51=(1)x~ ~~~~~2~c51=~~c~l~\~c~1, 

~~1”~2~c51=~~c51”~2c51~ 

(O~,)CS1=o(~lCpred(5)1), (~I~u42)c~1=4I~u42> 

(~1U~2)C51=~1UE’~IU~z)~2, 
where c$~LJ~#~ is the obvious approximation, i.e. 

41U”4,=&, 

~1Un+l~z=~2V(~1A0(~1Un~2)). 

It is clear that ifs 1=7 4 then there is some index i’ appropriate for C#J at s ~ i.e. such that 

s+=, 4c51. 
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The construction of =s. now proceeds as follows. First the rules for fixed points 

(and, if necessary, conjunction) are applied to s E $ until a sequent of the form 

s kQ(4,, . . , tirn) is reached. The construction now depends on the tableau rule 

applied. 

(1) Doublenegation:~=(~,ll~‘).Thens~=,-E(~’,~’)[~].Moreover,SZ=Z(so 

m = 1) and we proceed from the sequent s k $i. 

(2) (Negated) propositional variable: @=( @‘, (1)X). Then s I=? E@‘[t], Q= A, 

$z =(1)X, and we proceed from s k $1. 

(3) Conjunction: @=(@‘, $J; A&). Then ~l=~-E(@‘,4;,&)[<], Q=Z and we pro- 

ceed from SF+,. 

(4) Disjunction: @=(@‘, 4; v 4;). Choose i~{1,2} such that sI=~-E(@‘, &)[[‘I 

where 4’ is 4 restricted to the top-level eventualities of @‘, 4:. Also sZ= v , and we 

proceed from s k $i. 

(5) Until: @=(@‘, #iU+;). We know that either s++ E(@‘,&)[t’] or else 

sk, E(~‘,~;,O(~;U~;))Cr’l, h w ere in either case 5’ is the appropriate restriction of 

5. Also Q= v , and we proceed from s I- $1 if the first case applies and from s l-ti2 if 

the second does. 

(6) “Not until”: @=(@‘, 4;iU&). Either sl=I-E(~‘,l~;,l~;)[r’] or 

s +Y-E(@‘,14;, O($;lU&))[5’] where in either case 5’ is an index agreeing with 

t on their common top-level eventualities. Again Q = v and the choice of pi is guided 

as in (4). 

(7) Next-time: @=(04;, . . . , 04;). Then there is some s’ such that sRs’ and 

s/=g-E(4;,..., &)[pred([)]. Moreover 52= 0 and we proceed from s’ k $i. 

We have thus verified that the invariants (a) and (b) above are maintained, taking 

indexing into account. 

(ii) In this case the problem is to deal with the conjunction over eventualities. With 

each variable X,., bound in tiO is associated a scheduler, ft,, which picks out an 

eventuality eu(f&) in @’ in a round-robin fashion. If there are no eventualities in @’ the 

scheduler is never applied. Assume first that tr(& I7, E) is identical to either ax, or X@. 

Note that in this case l$ is a formula of the form 

PXm. v eventualities~‘E~VY~‘.9.1SZ(...) (1) 

The sequence of actions is as follows. The scheduler is updated, the fixed-point 

unfolding rule is applied to l$, the scheduled disjunct 

lIcI’=vy,“(fcp),~.l(...) (2) 

is chosen, and the fixed-point unfolding rule is applied to -J I+V. If, on the other hand, 

tr(4, n, s) = YE,@,. 8 then l$ has the form (2) already and we merely apply the 

fixed-point unfolding rule to l$. In either case a formula of the form 1 sZ(+i, . . . , t,bm) 

results. Stage k+ 1 is now completed in a fashion very similar to the corresponding 

construction in (i). It is in fact simpler as the only points involving choice is when 

sL= A, and this is the case only when one conjunct is a (possibly negated) proposi- 

tional variable which is chosen whenever possible. 
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We have thus given strategies for building choice relations * that agree with V. It 

remains to show that any relation => built using these strategies is well-founded. 

Assume for a contradiction that it is not. Note that Go is well-guarded in the sense that 

whenever 0X.$ is a subformula of $0 then each occurrence of X in $ is in the scope of 

a modal operator. It then follows that there is an infinite path PIGS”, a p-formula 

pX.Ic/, and an infinite, strictly increasing sequence iO, ii, . . such that for all jE,, pX.$ 

is regenerated from p(ij) to p(ij+l). The path p corresponds to an infinite +-path 

$o+&+... through 5. Assume that each +i has the form E@i, and that the suffix of 

p corresponding to the +-path #i-4(+ 1 +... is pi. Again the proof splits according to 

whether we are proving (i) or (ii). 

(i) In this case we find some 4 = E@ such that pX.$ is of the form unf(tr(4,Z7, E)) 

where tr(4, L’, E)= Y,,,,,. Let ri be the index assigned to the tableau node 4i during 

the choice relation construction. An easy induction on the structure of #IE@~ then 

shows that pi /=I 4i[ti]. 

(1) &=(1)X. Here pi(O)E”I~(X) (p,(O)++‘“(X)) as =S agrees with %/. 

(2) 4; ~11 pi, 1. By the induction hypothesis, pi I=$- 4i, 1 [pi] SO also pi I=f 4;[4i]. 

(3) #I = hi, 1 A c&, 2. By the induction hypothesis, pi I=, c$~, j[<i] for both j= 1 and 

j=2, so PiI=$ 4:[5il. 
(4) 4:= pi, 1 v @;,2. By the induction hypothesis, pi +I ~i,j[5i] for either j= 1 or 

j=2, so PiI=? 4IC5il. 
(5) 4: = bi, 1 U@i, Z. By the construction of a, we obtain a smallest i’ > i such that 

4i,2E@i’ whence by the induction hypothesis, pi’ +I 4i, 2[tiS]. Moreover, for all i”, 

i<i”<i’, c#I~,~E@~,., SO JI~,,)=~ ~i,,[5i,,], SO indeed pi)=~ 4:[<i]. 

(6) 4: = $i, 11 U4i, 2. We either obtain a smallest i’ 3 i such that 14i, i,l4i, 2 E @i,, 

SO/I~,+~ l~i,j[s’i,]forbothj=l andj=2.Moreover,foralli”,idi”<i’,l~i,zE@iZZ, 

SO pi,, j=$ ~4~,~[[~-], SO indeed in this case pi)=~ &[<i]. Alternatively, for all 

i’> i-~ &, 2 pi’, and using the induction hypothesis we can conclude that pi /= r &[ti]. 

(7) &= O$i, 1. By the induction hypothesis, pi+ 1 =p! by &, 1 [(i+ 11 and 

5i+ 1 =pred([i). Hence pi I=$- di[[i]. 

But we are then almost done, for the p-formula pX.$ is regenerated infinitely often 

along p only if we find some infinite +-path z relative to the given infinite n-path 

through T which from some point onwards always has one of the forms 4iLJ$, or 

O(@, U4,) for fixed $i, 42. But this contradicts the indexing strategy. 

(ii) Here pX.$ has the form lunf(tr(#, Z7, E)) where either tr(qb, IT,&)= X, 

or tr(#, I7, E)=FX~. Completing the proof, we show by induction on the size of 

formulas that pi I=,-& whenever 4iE@i, contradicting the assumption that 

pi(O) I=$ l#i. The only slightly difficult case is for 4i=#i, iU4i.z. AS /JX.$ has the 

form (1) it cannot for all i’ > i be the case that &, 24 pi’. For otherwise, by Lemma 5.2, 

for all i’>i such that ~i,=~i, the eventuality 4; would be regenerated along the 

+-derivation from EQi to EQiS. Moreover, the scheduling mechanism ensures that 

a disjunct of the form 

“Y.,,@,.lO( “‘) 
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is eventually visited for some i’ > i such that from the point i’ onwards pLx.4 can never 

be regenerated. In particular, ‘J may be 4:. Thus, we can find a minimal i’ such that 

4i,zE@i’. By minimality of i’ for all i”, i<i”< i’, &, l~@izz. But then by the induction 

hypothesis, pi, k1 4i,Z and pi,, I=7 &, 1 whenever i<i”<i’, i.e. pi I=$ #i. 

8. Extended computation tree logic, ECTL* 

Several natural extensions of CTL* merit consideration. One direction of prag- 

matic interest is to add next-time operators indexed by labels or sets of labels as in [2]. 

This direction is pursued in [lo]. Another direction of more fundamental interest is to 

extend the linear-time fragment of CTL* such as to give it the full power of the 

w-regular languages. Here we follow the approach of Thomas [29] by adding 

temporal operators corresponding to Biichi automata on infinite words. 

A Biichi automaton over the finite alphabet C is a nondeterministic finite automaton 

d=(Q, 40, {%‘)aeI, F) with Q the finite set of states, qOEQ the initial state, 

% c Q x Q the transition relation for each UEC, and F c Q the set of final states. We 

sometimes write d(q,) to emphasize the initial state qo. A run of JZ! on the o-word 

C(EP is an u-word ~EQ~ with the property that r(0) = q. and r(i) a(i) r(i + 1) for each 

iEu. Then JZ! accepts a, if there is a run r of SG! on a and a q6F s.t. r(i) = q for infinitely 

many i, and the language recognised by d is Y(d)= {cr~C” 1 d accepts a}. 

Formulas of ECTL* are inductively defined as usual and built from propositional 

variables using boolean connectives and containing the formula E(d) for each Biichi 

automaton .JZZ over an alphabet 2r41*- ,4n) where the 4i are ECTL* formulas. Note that 

all formulas of ECTL* are state-formulas; linear-time dependencies are accounted for 

by automata. Also the semantics is inductively defined. The clauses for variables and 

boolean connectives are the usual ones: 

s I=vX iff XV(X), 

Then let & be a Btichi automaton over the alphabet 2(413- x4”). The intuition is that 

E(d) is true of a state s just in case there is an infinite path p originating in s such that 

the o-word over 2{$l%‘--’ $m} that encodes the satisfaction of +i, . . . , cjn along p is in the 

language recognised by s?. More precisely, let the word a(p) be determined by 

@4P)(i)={4jI 1 dj<F &)I=, 4j}. 

The satisfaction clause for E(.d) is then the following: 

sI=, E(d) iff 3~. p(O)=s, IX(P)EY(SZ). 
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Fig. 5. Biichi automaton dl for XUY 

Fig. 6. Biichi automaton dz for GFX. 

Example 8.1. The ECTL* formula E(&‘r) where di is the Bikhi automaton of 

Fig. 5 expresses the CTL* property E(XUY). Similarly, the ECTL* formula E(d2) 

expresses EGFX (infinitely often X) where &‘, is the automaton of Fig. 6. 

The closure properties of languages recognised by Biichi automata provide mech- 

anisms for deriving various linear-time connectives. Complementation, for instance, is 

derived by complementing the Biichi automaton concerned. In this way it is not too 

difficult to see that any CTL* formula can be written as an equivalent ECTL* 

formula. 

Note in particular that the definition of the universal path-quantifier in terms of the 

existential one in the case of ECTL* requires complementation of Bikhi automata. In 

this respect the present account sacrifices clarity to some extent. This can be remedied 

by using, for instance, deterministic Muller automata as in [6] at a cost, however, of 

a vastly more complicated translation procedure. 

9. Translating ECTL* 

The use of Bi.ichi automata together with the existential path-quantifier allows 

attention to be restricted to formulas E(d) in a standard form, where d is an 

automaton over sets of propositional variables only, and for which the set F of final 

states is a singleton. For let F = {ql,. . , qm) and let each 1;4i be obtained from d by 

replacing F by {qi}. If -+e is the ECTL* correlate of -+ then in addition to the four 

rules of Section 4 the following rule is validated: 

(3) 
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Tableaux are constructed using the following single rule. Let E(zZ(q)) be in 

standard form where the alphabet of d(q) is C=2iy1x- 2 ‘ni. Let a,, . . . , a, list the 

members of C and for each i such that 1 <i<m let qi, 1, . . . , qi,ki list the q’ such that 

q “A q’. Moreover, for each aEC let a abbreviate the formula A a A A (1 Y I Y#a}. The 

rule is then the following: 

52: 
E@‘(d) 

EW(q,,d) ... EW’(qua)) ... EW(qrn,,)) ... Wf’(qm,d) 

where Q is the operator that takes X,, 1, . . , Xl,kI, . . . , X,, r, . . , X,,,_ into 

As we only consider tableau constructed from nodes in standard form, there is at most 

one node E(&(q)) for which q is an accepting state. The intention is to translate this 

node as a v-formula and all other internal nodes as p-formulas. For this to work, 

however, we must ensure that all possible ways of “regenerating” q are captured. This 

is done by carrying along a set P’G Q& indicating the states that have been visited so 

far, and then resetting this “visited-table” whenever the accepting state is first encoun- 

tered. This is the idea of the translation algorithm tr, shown in Fig. 7. The algorithm 

assumes for each state q a unique variable X,. A node 4 is translated into the 

&-formula ~~(4, V) where Vc Qd is the visited-table, initially empty. The translation 

relation -+e is then completed by adding to the four rules of Section 4 and the rule (3) 

above the axiom 4O -+e $O whenever &, is in standard form and GO = tr,(&, 8). 

Theorem 9.1. For any ECTL* formula 4, if cj -+= $ then {s I s I= s C#I} = II $ II -Y-. 

Proof. Let a tableau r for &=E(&(qO)) be given where d(q,) is in standard form. 

Let Il/,, =tr,(&,@). Note that due to the way the visited-table V is reset when the 

accepting state q is first visited by the translation procedure the only v-subformula of 

tr,(EW(q)), VI = 
ifqEV 

then X, 

W&(q)) 
e1se let ‘: E(d(q,)) ... E(&(q,J) 

be the rule instance applied to E(,d(q)) 

in if q is accepting 

then vX,JW,(EW(qr)), {q)), ... 1 tre(EWhJL{d)) 
else G’dWe(EW’c4(q~)), vu(q)), . . . 9 tre(W~(qd), vu(q))) 

Fig. 7. ECTL* translation algorithm tr,. 
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tiO is the formula tr,(E(d(q)), 8). By Theorem 2.1 it suffices to show that so I=+ 4. iff 

there is a well-founded choice relation * from sok$o which agrees with ^Y-. 

Corresponding to any choice relation * which agrees with V there is an infinite 

path p from so and a run r of d(qo) on cc(p). Conversely, any run r of d(qo) on a(p) 

determines a choice relation * which agrees with V. Fix then a choice relation 

=> which agrees with V. Note that there is exactly one infinite derivation of =P, say, 

originating in s,E$~. The proof is complete when it is shown that the run r corres- 

ponding to d visits q infinitely often iff * is well-founded. Assume the latter. Then for 

infinitely many i, pi = tr,(E(&‘(q)), @), and the result follows. Conversely, assume that 

r visits q infinitely often. Then there is an infinite, strictly increasing sequence 
. 
~O,~l, ... such that for all jEw is pi, = tr,(E(d(q)), 8). Moreover lc/io is a subformula of 

each tik for all k 3 io. Hence, there can be no p-formula ,uX.$ for which $k = pX.4 for 

infinitely many k and such that pX.4 is a subformula of tik for almost all k. For then 

pX.4 = tr,(EW(q)),@), a contradiction. It follows that 5 is well-founded. 0 

Example 9.2. The formula E(.JzZ~) of Example 8.1 is translated into the formula 

PX'.(lXA OX’)V(XA O(b), 

where 4 is determined in the following way: 

(b=vy'.(1Xr\ O$)V(XA OY’), 

$=px'.(lXA OX’)V(XA Oy’). 

Note that without resetting the “visited-table” 4 becomes instead 

~=vy'.(lxAox')v(xA OY’) 

equivalent to EFGX and inequivalent to E(d2). 

10. Concluding remarks 

As the “standard translation”, our translation from CTL* is doubly exponential in 

the length of the input formula, and the translation from ECTL* is singly exponential. 

The difference is accounted for by the exponential cost of representing CTL* in 

ECTL*. This suggests an alternative, also doubly exponential, translation from CTL* 

in three stages that first translates tableaux into ECTL* using, for instance, Emerson 

and Sistla’s construction [14], and then translates ECTL* into L,. This translation 

shares, however, with the standard translation the pragmatic but nonetheless impor- 

tant problem that their results are not very intuitive or readable, and indeed best 

thought of as L, encodings of Biichi automata. 
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The existence of a translation of ECTL* into L, is not very surprising. It is 

well-known that ECTL* is strictly less expressive than Rabin’s S2S (cf. [29]), and 

Niwinsky [22] shows S2S to be expressively equivalent to a p-calculus with, in effect, 

a left and right next-time operator. This does not, however, give an embedding into L, 

itself. The standard translation, for instance, is easily modified for this purpose, by 

translating Biichi automata into L, via PDL-d. Our ECTL* translation can be 

considered a direct version of this algorithm. Note that from the existence of a transla- 

tion into PDL-d and Niwinsky’s result that PDL-d is strictly less expressive than L,, 

it follows that also ECTL* is strictly less expressive than L,. 

Although the CTL*-translation of Section 6 is doubly exponential in the worst case 

we hope that its complexity will nonetheless turn out to be manageable in many 

practical situations. Many optimisations are possible to support this hope. By suitably 

encoding the conjuncts involved in the translation of internal nodes translated 

formulas can be represented in size s(n2”). Note also that sufficient syntactic criteria 

for classifying internal nodes as least or greatest fixed-point nodes can easily be found: 

Suppose @ contains a formula 4 of one of the forms +1 U$J, or O(&, U$J,), and 4 is 

not a subformula of any other @‘E@. Then 4 is regenerated along any -+-path EQo 

+.‘.+ E@, for which Q0 = @,=@. We expect this in particular to cover a large 

number of applications, and where it applies the complexity can be cut to a single 

exponential. 

An alternative to the use of automata in the syntax of ECTL* is to use a p-calculus 

with basic modalities 0 and E. If fixed points are restricted such as to allow the 

formation of ox.4 only when X does not occur within the scope of E in $J yet another 

version of ECTL* results. This follows by the equivalence of the w-regular languages 

with the linear-time p-calculus (cf. [23]). If the restriction concerning E is lifted the 

result, the full branching-time p-calculus [24], is at least as expressive as L,. It is open 

whether the containment is strict. 
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