
Model-Cheking Iterated GamesChung-Hao Huang1 Sven Shewe2 Farn Wang1;31: Graduate Institute of Eletroni Engineering, National Taiwan University2: Department of Computer Sienes, University of Liverpool3: Department of Eletrial Engineering, National Taiwan UniversityAbstrat. We propose a logi for the de�nition of the ollaborative power ofgroups of agents to enfore di�erent temporal objetives. The resulting tempo-ral ooperation logi (TCL) extends ATL by allowing for suessive de�nition ofstrategies for agents and agenies. Di�erent to previous logis with similar aims,our extension uts a �ne line between extending the power and maintaining a lowomplexity: model heking TCL sentenes is EXPTIME omplete in the logi,and �xed parameter tratable for spei�ations of bounded size. This advane-ment over nonelementary logis is bought by disallowing a too lose entanglementbetween ooperation and ompetition. We show how allowing suh an entangle-ment immediately leads to a nonelementary omplexity. We have implemented amodel heker for the logi and shown the feasibility of model heking on a fewbenhmarks.1 IntrodutionWhile the veri�ation of traditional linear and branhing time logis like LTL, CTL,and CTL* [17, 8℄ has been redued to (repeated) reahability [11, 13℄, the satis�abilityheking and synthesis problem has been tightly linked with game theory ever sine theseminal works of Bühi and Landweber [5, 4℄. With the introdution of alternating timelogi (ATL) by Alur, Henzinger, and Kupferman [1℄ and in automata based �-alulusmodel-heking (e.g., [22℄), games have entered into the veri�ation the orretness ofreative systems. With game theoreti hallenges moving into the fous of researhersstudying the spei�ation and design of reative systems, traditional problems of multi-player games are replaing the former distintion between an adversarial environmentand a supportive system. Instead, we have groups of players that ooperate on someobjetives while ompeting on others.For partiular properties, the intuition that some players represent the system whileother players represent the environment is, however, still useful. Following this intuition,the system wins the game in an exeution (or a play in the jargon of game theory) if thesystem spei�ation is ful�lled along it, and it wins the game if it an fore a winningplay. System design as a whole for spei�ations in game logis an rather be omparedto designing a game board and to show that the respetive group of players (or: ageny)has the oalition power required by the system spei�ation.There are various established game-based spei�ation languages, inluding ATL,ATL�, the alternating �-alulus (AMC), and game logi (GL) [1℄, strategy logis [7, 9,15, 14℄, oordination logi [10℄, stohasti game logi [3℄, and basi strategy interation



logi (BSIL) [21℄ for the spei�ation of the interplay in open systems. Eah languagealso omes with a veri�ation algorithm that determines whether a winning strategyfor the system exists. However, there is a gap between the available tehniques and thesalability required for industrial appliations. Frankly speaking, none of the languagesabove represents, in our view, a proper ombination of expressiveness for lose interationamong agent strategies and e�ieny for the veri�ation or refutation of ompliane witha spei�ation. On one hand, logis like ATL, ATL�, AMC, and GL [1℄ allow us to speifythe ollaborative power of groups of players to enfore a ommon objetive. This fallsshort from speifying even the simple properties in a typial game. For example, it wasshown in [21℄ that ATL, ATL�, AMC, and GL [1℄ annot express that the same strategyof a banking system must allow the lients both, to withdraw and to deposit money. Thisis arguably a severe restrition when reasoning about real-world problems.To solve the expressiveness problem in the above example, strategy logis (SL) wereproposed in [3, 7, 15, 14℄. They allow for the �exible quanti�ation over strategies in logiformulas. However, their veri�ation omplexity is prohibitively high and has inhibitedpratial appliation.A previous attempt to tame the omplexity of strategy interation [21℄, on the otherhand, results in a full temporalization. This leads to severe restritions in the entangle-ment between temporal operators and strategy binding and thus prevents, for example,reasoning about Nash equilibria.We thus propose to adapt the logi in [21℄ to a new temporal logi alled temporalooperation logi (TCL) for this purpose. Let us introdue TCL informaly on a gameamong three prisoners.Example 1. Iterated prisoners' dilemma Inspired by the famous prisoners' dilemma,we onsider a model where three suspets, who are initially in ustody, are interrogated.In our simpli�ed version, they play in turns (rather than onurrently), and have thehoies to either admit or deny the harges made against them. If all deny, they will bereleased based on lak of evidene.However, a suspet may deide to ollaborate with the polie and betray her peers. Asole ollaborator will be aquited as a rown witness, while her peers will be sentened.But if two or more suspets ollaborate with the polie, all will be sentened.In an iterated prisoners' dilemma, the interplay an ontinue up to an unboundednumber of times. Suh a game is very useful in modeling ollaboration and ompetitionin networks. For example, a strategy in prisoners' dilemma is nie if it does not suggestbetrayal initially and only suggests betrayal if, in the previous round, another prisonerbetrayed [2℄. The following TCL sentene refers to nie strategies of Prisoner 1.h1i�((h+i  :betray1) _Wa6=1 betraya) (A)hai is a strategy quanti�er (SQ), whih states that there exists a strategy of Prisoner 1to ahieve her temporal goal. h+i is a strategy interation quanti�er (SIQ) that inheritsthe strategy from its parent formula. Proposition betrayi is an atomi proposition forthe betrayal of prisoner i at the present state. Similarly, we an re�et more involvedstrategies, suh as `Prisoner 2 will always betray when she does not have the power tofore Player 1 to always play nie.'h2i((h+i�betray2) _ h+i�((h+i  :betray1) _Wa6=1 betraya)) (B)2



Similar properties an be used to speify forgiving1 or other related strategies [2℄. Aforgiving strategy of Prisoner 1 is re�eted by the following TCL property.h1i�((h+i  :betray1) ^Wa6=1 betraya) (C)We an also reason about the existene of Prisoner 2's strategy that avoid betrayal ifPrisoner 1 an be unforgiving under this strategy.h2i((h+i�:betray2) _ h+1i�((h+i  :betray1) ^Wa6=1 betraya)) (D)As an be seen, properties like (B) and (D) are relevant in network environment whereplays an be extended round by round without termination. Every agent may trakeah others' reords to deide whether or not to ooperate. Suh a property annotbe expressed in ATL�, GL, AMC, or BSIL. While it an be expressed with SL, theveri�ation omplexity of SL is prohibitive.In [21℄, SIQs an neither override or revoke strategies assigned by the SQ or SIQs inwhose sope they are. Consequently, BSIL annot express deterministi Nash equilibria.To overome this restrition, we introdue a strategy reset operator that revokes previousstrategy assignments.Let jaila be a proposition, whih says that for prisoner a in jail. In TCL,h1; 2; 3iVa2[1;3℄ �(h+;i�:jaila) _ h�ai�jaila� (E)requires that no agent stays in jail inde�nitely, if she an avoid it under the urrentstrategies of the remaining prisoners. The SIQ h�ai revokes the binding of the (singletonageny that ontains only) agent a to her strategy.In this work, we establish that TCL is inomparable with ATL�, GL, and AMCin expressiveness. Although strategy logis proposed in [3, 7, 9, 15℄ subsume TCL withtheir �exible quanti�ation of strategies and binding to strategy variables, their model-heking omplexity are all doubly exponential time hard. In ontrast, TCL enjoys anEXPTIME-omplete model-heking omplexity and �xed parameter tratability whenusing the length of the formula as parameter, as well as 2EXPTIME ompleteness ofthe TCL satis�ability problem for turn-based game graphs. TCL thus provides a betterbalane between expressiveness and omplexity / e�ieny onsiderations than ATL�,GL [1℄, and SL [7, 15, 14℄. Given the expressive power as exempli�ed by the spei�ationsfrom above, TCL an be viewed as an expressive yet inexpensive sublass of SL [15, 14℄.Organization or the Paper. Setion 2 explains turn-based game graphs for the de-sription of multi-agent systems and presents the syntax and semantis of TCL. Setion 3disusses the expressiveness of TCL, establishing that CTL, ATL, LTL, and CTL* anbe viewed as syntati fragments of TCL and show that TCL is more expressive thanany of these logis while in omparable with ATL�, AMC, and GL [1℄ in expressiveness,and disuss the e�et of a mild extension of TCL. In the following setions, we developan automata based model-heking algorithm and establish the EXPTIME-ompletenessand 2EXPTIME-ompleteness of the TCL model-heking and satis�ability problem, re-spetively. Finally, we have implement a model heker and validated the feasibility ofusing TCL on a set of benhmarks.1 A strategy is forgiving if it does not always punish betrayal in the previous round.3



2 System Models and TCL2.1 Turn-based game graphsA turn-based game is played by a �nite number m of agents, indexed 1 through m. Agame is a tuple G = hm;Q; r; !; P; �; Ei, where� Parameter m is the number of agents in the game.� Q is the set of states and r 2 Q is the initial state (or root) of G.� ! : Q 7! [1;m℄ is a funtion that spei�es the owner of eah state. Only the ownerof a state makes hoies at the state.� P is a �nite set of atomi propositions.� � : Q 7! 2P is a proposition labeling funtion.� E � Q�Q is the set of transitions.For ease of notation, we denote with Qa = fq 2 Q j !(q) = ag the states owned by anagent a.In Figure 1, we have the graphial representation of a turn-based game graph. The
w0fqgu0fpg ; w;v;u belongs to Agent 1 and � belongs to Agent 2.Fig. 1. A turn-based game graphovals and squares represent states while the ars represent state transitions. We also putdown the � values inside the orresponding states.For onveniene, in the remaining part of the manusript, we assume that we arealways in the ontext of a given game graph G = hm;Q; r; !;P ; �; Ei. Thus, when wewrite Q; r; !;P ; �, and E , we respetively refer to the omponents Q, r, !, P , �, and Eof this G.A play � is an in�nite path q0q1 : : : in G suh that, for every k 2 N, (qk; qk+1) 2 E .� is initial if q0 = r. For every k � 0, we let �(k) denote qk. Also, given h � k, we let�[h; k℄ denote �(h) : : : �(k) and �[h;1) denote the in�nite tail of � from �(h).A play pre�x is a �nite segment of a play from the beginning of the play. Given a playpre�x � = q0q1 : : : qn, j�j = n+1 denotes the length of the pre�x. Given a k 2 [0; j�j�1℄,we let �(k) = qk. For onveniene, we use last(�) to denote the last state in �, i.e.,�(j�j � 1).For an agent a 2 [1;m℄, a strategy � for a is a funtion from Q�Qa to Q suh thatfor every � 2 Q�Qa, �(�) 2 Q with �last(�); �(�)� 2 E .An ageny A of [1;m℄ is a subset of [1;m℄. In a short hand notation, we often dropthe urly brakets in the set notation, in partiular for singleton and empty sets. Forexample, �1; 3; 4� is a short hand for f1; 3; 4g.4



A play � is ompatible with a strategy �a of an agent a 2 [1;m℄ i�, for every k 2 N,!(�(k)) = a implies �(k + 1) = �(�[0::k℄).2.2 TCL SyntaxA TCL formula � is onstruted with the following three syntax rules.� ::= p j :�1 j �1 _ �2 j hAi  ::= �1 j  1 _  2 j  1 ^  2 j h+Ai 1 j h+Ai   1 j h+Ai�1U 1 j h+Ai 1R�1j h�Ai 1 j h�Ai   1 j h�Ai�1U 1 j h�Ai 1R�1� ::= �1 j �1 _ �2 j �1 ^ �2 j h+i  �1 j h+i�1U�2 j h+i�1R�2j h�Ai  �1 j h�Ai�1U�2 j h�Ai�1R�2Here p is an atomi proposition in P and A � f1; : : : ;mg is an ageny. Property hAi 1 isan (existential) strategy quanti�ation (SQ) speifying that there exist strategies of theagents in A that make all plays satisfy  1. Property h+Ai 1 is an (existential) strategyinteration quanti�ation (SIQ) and an only our bound by an SQ. Intuitively, h+Ai 1means that there exist strategies of the agents in A that work with the strategies delaredby the anestor formulas.`U' is the until operator. The property  1U 2 spei�es a play along whih  1 is trueuntil  2 beomes true. Moreover, along the play,  2 must eventually be ful�lled. `R' isthe release operator. Property  1R 2 spei�es a play along whih either  2 is alwaystrue or  2U( 1 ^  2) is satis�ed. (Release is dual to until: :(�1U�2) , :�2R:�1.)In the following we may use h?Ai to onveniently denote an SQ or SIQ formula with`?' is empty, `+', or `-'. An SIQ h�Ai is alled non-trivial if A is not empty, and trivialotherwise.Formulas � are alled TCL formulas, sentenes, or state formulas. Formulas  and �are alled tree formulas. Note that we stritly require that non-trivial strategy interationannot ross path modal operators. This restrition is important beause it o�ers asu�ient level of loality to e�iently model-hek a system against a TCL property.To illustrate this and to provide a simple extension that o�ers more expressive power tothe ost of a muh higher omplexity, we informally disuss a small extension, extendedTCL (ETCL), where the prodution rule of  also ontains : and show that it an beused to enode ATL�, and the realizability problem of prenex QPTL an be redued toETCL model-heking.For onveniene, we also have the following shorthands.true � p _ (:p) false � :true�1 ^ �2 � :((:�1) _ (:�2)) �1 ) �2 � (:�1) _ �2��1 � trueU�1 ��1 � falseR�1: �1 � :�1 hAi   1 � hAih+i   1hAi 1U 2 � hAih+i 1U 2 hAi 1R 2 � hAih+i 1R 2In general, it would also be nie to have the universal SQs and SIQs respetively asduals of existential SQs and SIQs. Couldn't we add, or enode by pushing negationsto state formulas, a property of the form [+A℄ 1, meaning that, for all strategies ofageny A,  1 will be ful�lled? In priniple, this is indeed no problem, and extending the5



semantis would be simple. This logi would be equivalent to allowing for negations inthe prodution rule of  . The problem with this logi is that it is too suint. We willbrie�y disuss in the following setion that model heking beomes nonelementary if weallow for suh negagtions.From now on, we assume that we are always in the ontext of a given TCL sentene.2.3 TCL SemantisIn order to prepare the de�nition of a semantis for TCL formulas, we start with thede�nition of a semantis for sentenes of the form hAi , where  does not ontain anSQs. We all these formulas primitive TCL formulas.Due to the design of TCL, strategy bindings an only e�etively happen at non-trivial SQs hAi and when a non-trivial SIQ h+Bi is interpreted. To ease referring tothese strategies, we �rst de�ne the bound ageny of a subformulas � of a TCL sentene�, denoted bnd(�), as follows.� For state formulas �, bnd(�) = ;.� For state formulas hAi , bnd( ) = A.� For tree formulas  1 = h+Ai 2, bnd( 2) = bnd( 1) [A.� For tree formulas  1 = h�Ai 2, bnd( 2) = bnd( 1)rA.� For all other tree formulas  1 or  2 with  =  1OP 2, with OP 2 f^;_;U ;Rg, wehave bnd( 1) = bnd( ) or bnd( 2) = bnd( ), respetively.bnd shows, whih agents have strategies assigned to them by an SIQ or SQ. Note thatthis leaves the bnd unde�ned for all state formulas not in the sope of an SQ formulas.For ompleteness, we ould de�ne bnd as empty in these ases, but a de�nition will notbe required in the de�nition of the semantis.As the introdution of additional strategies through non-trivial SIQ h+Bi is governedby a positive Boolean ombination, all strategy seletions an be performed onurrently.Suh a design leads us to the onept of strategy shemes.A strategy sheme � is the set of strategies introdued by any non-trivial SQ hAi orSIQ h+Ai. By abuse of notation, we use �[�; a℄ to identify suh a strategy. Read in thisway, � an be viewed as a partial funtion from subformulas and their bound ageniesto strategies. Thus, �[�; a℄ is de�ned if a 2 bnd(�) is in the bound ageny of �.For example, given a strategy sheme � for a TCL sentene h1i�((h+2ip)^h2i�q),the strategy used in � by Agent 1 to enfore the whole formula an be referred to by�[h1i�((h+2i  p) ^ h2i�q); 1℄but also by �[h+2i  p; 1℄, while �[h2i�q; 1℄ is unde�ned.We use a simple tree semantis for TCL formulas. A (omputation) tree Tr is obtainedby unravelling G from r and expand the ownership and labelling funtions from G to Trin the natural way. Tehnially, we have the following de�nition.De�nition 1. Computation tree A omputation tree for a turn based game G from astate q, denoted Tq, is the smallest set of play pre�xes that ontains q and, for all � 2 Tand (last(�); q0) 2 E , �q0 2 T . �The strategy-pruned tree for a tree node �, a strategy sheme �, and a subformula  1of � from a state q, in symbols Tqh�; �;  1i, is the smallest subset of Tq suh that:6



� � 2 Tqh�; �;  1i;� for all �0 2 Tqh�; �;  1i with !�(last(�0)� =2 bnd( 1) and (last(�0); q0) 2 E , �0q0 2Tqh�; �;  1i;� for all �0 2 Tqh�; �;  1i, a = !�(last(�0)�, and q0 = �[ 1; a℄(�0) with a 2 bnd( 1),�0q0 2 Tqh�; �;  1i.Given a omputation tree (or a strategy-pruned tree) T and a node � 2 T , for every�q 2 T , we say that �q is a suessor of � in T . A play � is a limit of T , in symbols� 12 T , if there are in�nitely many pre�xes of � 2 T .We now de�ne the semantis of subformulas of primitive TCL formulas indutively asfollows. Given the omputation tree Tq of G, a tree node � 2 Tq, and a strategy sheme�, we write Tq; �; � j=  1 to denote that Tq satis�es  1 at node � with strategy sheme�.� For state formulas � other than SQ formulas, we use the state formula semantis:Tq; �; � j= � i� G; last(�) j= �, with the usual de�nition.� G; q j= p if, and only if, p 2 �(q),� G; q j= :� if, and only if, G; q 6j= �,� G; q j= �1 _ �2 if, and only if, G; q j= �1 or G; q j= �2, and� G; q j= �1 ^ �2 if, and only if, G; q j= �1 and G; q j= �2.(Note that this allows for using negation for state formulas.)� Tq; �; � j=  1 _  2 i� Tq ; �; � j=  1 or Tq; �; � j=  2. (These  i are no stateformulas.)� Tq; �; � j=  1 ^  2 i� Tq ; �; � j=  1 and Tq; �; � j=  2.� Tq; �; � j= h�Ai i�, for all suessors �q0 of � in Tqh�; �; h�Ai 1i, Tq; �q0; � j= .� Tq; �; � j= h�Ai 1U 2 i�, for all limits � 12 Tqh�; �; h�Ai 1U 2i, there is a k �j�j � 1 suh that Tq; �[0; k℄; � j=  2 and, for all h 2 [j�j � 1; k� 1℄, Tq; �[0; h℄; � j=  1hold.� Tq; �; � j= h�Ai 1R 2 i�, for all limits � 12 Tqh�; �; h�Ai 1R 2i, one of the followingtwo restritions are satis�ed.� For all k � j�j � 1, Tq; �[0; k℄; � j=  2.� There is a k � j�j�1 suh that Tq ; �[0; k℄; � j=  1^ 2, and, for all h 2 [j�j�1; k℄,Tq; �[0; h℄; � j=  2.� Tq; �; � j= h�Ai 1 i� Tq ; �; � j=  1.� G; q j= hAi 1 i� there is a strategy sheme � suh that Tq; q; � j=  1.If �1 is a TCL sentene then we write G j= �1 for G; r j= �1.Note that, while asking for the existene of a strategy sheme refers to all strategiesintrodued by some SQ or SIQ in the TCL sentene, only the strategies introdued bythe respetive SQ and the SIQs in its sope are relevant.The simpliity of the semantis is owed to the fat that it su�es to introdue newstrategies at the points where eventualities beome true for the �rst time. Thus, theydo not really depend on the position in whih they are invoked and we an guess themup-front. (Or, similarly, together with the points on the unravelling where they are in-voked.) This is possible, simply beause the validity of state formulas (and hene of TCLsentenes) annot depend on the validity of the left hand side of an until (or the righthand side of a release) after the �rst time it has been satis�ed.7



3 Expressiveness of TCLNote that TCL is not a superlass of BSIL sine BSIL allows for negation in front of SIQswhile TCL does not. However, by examining the proofs in [21℄ for the inexpressibilityof BSIL properties by ATL�, GL, and AMC, we �nd that the BSIL properties used inthe proof is in fat also a property of TCL. This observation leads us to the onlusionthat there are properties expressible in TCL but annot be expressed in ATL�, GL, andAMC.Lemma 1. There are TCL properties that annot be expressed in any of ATL�, GL, andAMC. �TCL is, in fat, not only a powerful logi, but also ontains important logis eitheras syntatial fragments or an embed them in a straight forward way. ATL and CTLan be viewed as syntati fragments of TCL.But it is also simple to embed LTL and even CTL�. We start with 9LTL, the lessused variant where one is ontent if one path satis�es the formula. We then translate anLTL formula, whih we assume w.l.o.g. to be in negative normal form (negations onlyin front of atomi propositions). Then �there is a path that satis�es �� is equivalent toh1; : : : ;mib�, where b� is derived from � by replaing every ourrene of , U, and R byh+i, h+iU, and h+iR, respetively.The simple translation is possible beause the formula b is de-fato interpreted overa path, the path formed by the joint strategy of the ageny [1;m℄. The h+i operatorswe have added have no e�et on the semantis in suh a ase, just as a CTL formulaan be interpreted as the LTL formula obtained by deleting all path quanti�ers wheninterpreted over a word.Consequently, we have the expeted semantis for 8LTL: �all paths satisfy �� isequivalent to :hAi:�, where :� is assumed to be re-written in negative normal form.The enoding of 9LTL and 8LTL an easily be extended to the enoding of CTL�.Lemma 2. TCL is more expressive than CTL� and LTL. �Note that this enoding does not extend to ATL�. The following example shows anATL� property that annot be expressed with TCL.h1i((�p) _�q)Note that this is di�erent from ATL property (h1i�p)_h1i�q or TCL property h1i((h+i�p) _ h+i�q).In fat, the proofs and examples in [21℄ an also be applied in this work to show thatthere are properties of ATL� (or GL, or AMC) that annot be expressed with TCL. Thisleads to the following lemma.Lemma 3. TCL is inomparable in expressiveness with any of ATL�, GL, and AMC.�Note, however, that allowing for a negation in the de�nition of  would hange thesituation. Then an ATL� formula hAi (assuming for the sake of simpliity that  is anLTL formula), would beome hAi:h+[1;m℄rAi: in the extended version of TCL. Thetranslation extends to full ATL�, but this example also demonstrates why negation is8



banned: even without nesting, we an, by enoding ATL�, enode a 2EXPTIME ompletemodel-heking problem, losing the appealing tratability of our logi.In fat, it is easy to redue the realisability problem of prenex QPTL, and hene anon-elementary problem, to the model-heking problem of this extended version of TCL:using the following game struture, we an enode the realisability of a prenex QPTLformula with n � 1 variables, for the sake of simpliity of the form 8p29p38p4 : : :9pn�,where p2; : : : ; pn are all propositions ourring in �. We redue this to the model-hekingof the formula �0 = h1i:h+2i:h+3i:h+4i: : : ::h+ni( � ^ h+i�p1);where  � an be obtained from b� by replaing� every literal pi by h�1ih+1i  (pi ^ h+i  pi), and� every literal :pi by h�1ih+1i  (pi ^ h+i  :pi).(While these formulas are tehnially not extended TCL formulas beause h+ii 1is not part of the prodution rule of  , h+ii 1 an be used as an abbreviation forh+iifalseU 1.)Cheking satis�ability of � is is equivalent to model-heking �0 on the game shownin Figure 2. The game has n + 1 nodes, agents, and atomi propositions. The nodes inFigure 2 are labeled with the agent that owned the nodes, and the atomi propositionpi is true exatly in node i. From his state, Agent 1 an move to any other state, whileall other agents an either stay in their state or return to the state owned by Agent 1.The game starts in the node owned by Agent 1, and in order to omply with thespei�ation, the outermost strategy pro�le hosen by Agent 1 must be to stay in theinitial state for ever.  � is hosen to align the truth of pi at position j 2 N with thedeision that Agent i makes on the history 1ji: true orresponds to staying in i and falsewith returning to 1. 12 3 4 5 � � � nFig. 2. The turn-based game graph from the non-elementary hardness proof of extended TCL.It is not hard to develop a mathing upper bound for the model-heking of extendedTCL.4 Complexity of TCLIn this setion, we show that model-heking TCL formulas is EXPTIME-omplete inthe formula and P-omplete in the model (and for �xed formulas), while the satis�abilityproblem is 2EXPTIME-omplete. As the proof of inlusion of the sati�ability problemin 2EXPTIME builds on the proof of the inlusion of model-heking in EXPTIME, we9



start with an outline of the EXPTIME hardness argument for the TCL model hek-ing problem and then ontinue with desribing EXPTIME and 2EXPTIME deisionproedures for the TCL model and satis�ability heking problem, respetively. 2EXP-TIME hardness for TCL satis�ability is implied by the inlusion of CTL* as a de-fatosub-language [20℄.We show EXPTIME hardness by a redution from the PEEK-G6 [19℄ game. An in-stane of PEEK-G6 onsists of two disjoint sets of boolean variables, P1 = fp1; : : : ; phg(owned by a safety agent) and P2 = fph+1; : : : ; ph+kg (owned by a reahability agent),a subset I � P1 [ P2 of them that are initially true, and a boolean formula  in CNFover P1 [ P2 that the reahability agent wants to beome true eventually. The game isplayed in turns between the safety and the reahability agent (say, with the safety agentmoving �rst), and eah player an hange the truth value of one of his or her variablesin his/her turn.Lemma 4. TCL model-heking is EXPTIME hard for primitive TCL formulas.Proof. To redue determining the winner of an instane of a PEEK-G6 game to TCLmodel-heking, we introdue a 2-agent game G = h2;Q; r; !;P ; �; Ei as shown in Figure3, where Agent 1 (he, for onveniene) represents the safety agent while Agent 2 (she, foronveniene) represents the reahability agent. th+k and fh+k are the only states ownedby Agent 2.
r f1t1 f2t2 f3t3 � � � fh+kth+k 1...kFig. 3. The turn-based game graph from the EXPTIME hardness proof.The game is played in rounds, and a round starts eah time the game is at state r.If the game goes through ti this is identi�ed with the variable pi to be true. Likewise,going through fi is identi�ed with the variable being false.It is simple to write a TCL spei�ation that fores the safety player to toggle thevalue of exatly one of his variable in eah round, and to toggle the value of the variableph+i of the reahability player de�ned by the state i she has previously moved to, whilemaintaining all other variable values. Requiring additionally that the safety agent anguarantee that the boolean formula is never satis�ed provides the redution. �The details of the onstrution are moved to Appendix A. It is interesting that agame with only two agents su�es for the proof. Two agents are also su�ient to showP hardness for �xed formulas, as solving a reahability problem for AND-OR graphs [12℄naturally redues to showing h1i�p. 10



Lemma 5. TCL model-heking for �xed formulas is P hard for primitive TCL formu-las. �In order to establish inlusion in EXPTIME and P, respetively, we use an automatabased argument.Theorem 1. The model-heking problem of TCL formulas against turn-based gamegraphs is EXPTIME-omplete, and P-omplete for �xed formulas.Proof. We �rst show the laim for primitive TCL formulas � = hAi .To keep the proof simple, we �rst onsider a tree automaton U that heks theaeptane of  for a given strategy sheme �. That is, U heks if Tq+; q; � j=  underthe assumption that both � and the truth values for the subformulas starting with ah�Bi are enoded in the nodes of Tq+.Suh an automaton would merely have to run simple onsisteny heks, and it issimple to onstrut a suitable universal weak tree automaton U , whih is polynomial inthe size of �. From there it is simple to infer a deterministi Bühi tree automaton D,whih is exponential in the weak universal tree automaton [16℄.It is then a trivial step (projetion) to guess � and the truth annotation of thesubformulas on the �y, turning the deterministi Bühi tree automaton D that requiresa orret annotation into a nondeterministi Bühi automaton N of the same size thatheks G; q j= �. Aeptane an be heked in time quadrati in the size of the produtof N and G [6℄.To take the step to full TCL, we an model hek the truth of primitive TCL formulasand then use the result of this model heking instead of the respetive subformula.Hardness is inherited from Lemmata 4 and 5. �Note that this argument shows more: the omplexity of TCL model heking for �xedformulas does not depend on the formula. It su�es to solve a number of Bühi games,where both the size of the game and the number of games to be played is linear in G.Corollary 1. Viewing the size of a TCL sentene as a parameter, TCL model hekingis �xed parameter tratable.The automata onstrution from the proof of Theorem 1 extends to a onstrutionfor satis�ability heking.Theorem 2. The TCL satis�ability problem is 2EXPTIME-omplete.Proof. As usual, it is onvenient to onstrut an enrihed model that ontains the truthof all subformulas for a TCL sentene � that start with an SQ.In a �rst step, we onstrut an alternating tree automaton A that reognises theenrihed models of a spei�ation. This is quite simple: A merely has to hek that theboolean ombination of SQ formulas that forms the TCL sentene � is satis�ed and thatthe truth assignment of eah SQ is onsistent. But this is simple, as we an use the treeautomaton N�0 from the proof for Theorem 1 to validate the laim that a subformula �0of � that starts with an SQ is true, and its dual to validate that it is false. Hene, suh11



an automaton has only two states more than the sum of the states of the individual N�0 .In partiular, it is exponential in �.For the resulting alternating automaton, we an again invoke the simulation theorem[16℄ to onstrut an equivalent nondeterministi parity automaton, whih has doublyexponentially many states in � (and whose transition table is doubly exponential in �)and whose olours are exponential in  . Solving the emptiness game of this automatonredues to solving a parity game, whih an be done in time doubly exponential in  ,e.g., using [18℄.Hardness is inherited from CTL� satis�ability heking [20℄. �5 Implementation and ExperimentAs a proof of onept, we have implemented a model-heker, tl, in C++. tl aeptsmodels omposed of extended automata that ommuniate with synhronizers and sharedvariables, with an expliit shared variable turn that spei�es the turn of agents at a state.A turn-based game graph is then onstruted as the produt of the extended automata.Suh an input format failitates modular desription of the interation among the agents.The implementation builds on a prototype for a PSPACE logi [21℄. The extension ispossible beause we an redue the omplexity of TCL to PSPACE by simply restritingthe number of operators in the � prodution rules in the sope of any SQ to be logarithmiin the size of the TCL sentene. We show this for primitive TCL sentenes.Lemma 6. Model heking an be done in spae bilinear in the size of the turn basedgame struture and the state and tree formulas that are produed using the  produtionrules and exponentially only in the number of � produed tree formulas.Proof. We have seen that, for a primitive TCL sentene �, we an use a single strategysheme and only have to refer to the �rst position that the right hand side of an untilor the left hand side of a release operator is true. Moreover, it su�es to guess just aminimal set of positions where tree formulas are true. In partiular, the left hand sideof a release, the right hand side of an until, and a next formula are then marked trueexatly one, and the respetive release and until formulas never need to be marked astrue after suh an event.We an therefor use an alternating algorithm that guesses suh minimal truth laims.The algorithm alternates between a veri�er who guesses a truth assignment and theurrent deisions of the strategy sheme, and a falsi�er, who guesses the diretion intowhih to expand the path.It is now easy to see that they will produe an in�nite path in this way, and onthis path eah obligation referring to a tree subformula from a  prodution rule anappear only on a ontinuous interval. In partiular, the points where these obligationshange, is linear in the size of �. However, it also needs to trak the truth value of treeformulas produed by the � prodution rule. (If there are multiple untilities introduedby � prodution rules, this also inludes a marker that distinguishes a leading until,whih is hanged in a round robin fashion when the leading untility is ful�lled.)The number of possible assignments is then exponential in the number of tree sub-formulas from � prodution rules. Note that � formulas an be exempt from this rule:12



they are monotonous and hene inur a small impat similar to the formulas introduedusing the  prodution rule.Hene, if jGj denotes the size of the turn based game and k the number of temporaloperators (di�erent to �) introdued by � prodution rules, we end up in a yle ifthere is no hange in the truth assignment temporal operators that are introdued by  prodution rules or � operators we reah a yle within jGj �k �2k steps. Hene, we reaha yle in a number of steps that is linear in jGj and the size of �, and exponential onlyin the size of �-produed temporal operators (di�erent to �).Upon reahing a yle, is su�es to hek if the yle is aepting. (No standingobligation by an until.) �The model-heker uses a stak to expliitly enumerate all paths of all tree tops withdepth presribed by Lemma 6. The tool an be downloaded from Soureforge at projetREDLIB at: http://soureforge.net/projets/redlib/.We use the parameterized models of the iterated prisoners' dilemma as our benh-marks to hek the performane of our implementation. A brief explanation of the modelsan be found in the introdution. The unique parameter to the models are the numberof prisoners m. There is also a polieman in the models. We built a turn-based gamegraph for eah values of m in the experiment. The parameterization helps us in observinghow our algorithm and implementation sale to model and formula sizes. To simplify theonstrution of the state-spae representation, we assume that in eah iteration, the pris-oners make their deisions in a �xed order. After all prisoners have made their deisionsin an iteration, the polieman make his deision and then the whole game moves to thenext iteration.We have used seven benhmarks in our experiments. The �rst �ve benhmarks aretaken from the examples (A) through (E) used in the introdution to introdue TCL.Benhmarks (F) and (G) are the following two properties, taken from [21℄.� Property (F) spei�es that all prisoners exept Prisoner 1 an ollaborate to releasePrisoner 1 and let Prisoner 1 deide their fate.h2; : : : ;mi�(h+i�:jail1) ^Vi2f2;:::mg(h+1i�:jaili) ^ (h+1i�jaili� (F)� Property (G) spei�es that Prisoner 1 has a strategy to put all other prisoners in jailwhile leaving her fate to them.h1i�(Vi2f2;:::mgh+i�jaili) ^ (h2; : : : ;mi�:jail1) ^ h2; : : : ;mi�jail1� (G)For these benhmarks, we have olleted the performane data for various parametervalues in Table 1. For small models, the memory usage is dominated by the normaloverhead, suh as the representation of variable tables, state-transition tables, formulastrutures, et. The data shows that our prototype an handle the various benhmarks,and sales well on �ve of the seven benhmarks. Ignoring the overhead, it also shows theexponential growth. Note, however, that the models are growing exponentially, too, andwe assume to be the main ause of the exponential growth of the response time.6 ConlusionTCL is a promising logi for the spei�ation of groups of agents who balane theirstrategies in order to ooperate with di�erent partners to ahieve di�erent objetives. It13



Table 1. Performane data of model-heking the TCL fragmentPPPPPPPproperties m 2 3 4 5 6 7 8 9 10(A) 0.71s 0.94s 5.41s 66.3s 945s >1000s163M 165M 185M 350M 1307M(B) 0.50s 0.52s 0.61s 0.71s 1.11s 1.62s 5.77s 20.9s 68.1s163M 163M 164M 165M 168M 176M 214M 270M 376M(C) 0.51s 0.51s 0.6s 0.82s 1.01s 1.81s 5.54s 18.2s 48.3s163M 163M 164M 165M 168M 176M 200M 241M 318M(D) 0.5s 0.51s 0.57s 0.74s 1.01s 1.79s 7.41s 33.8s 141s163M 163M 164M 165M 168M 175M 232M 312M 430M(E) 0.51s 0.66s 19.1s >1000s163M 164M 194M(F) 0.51s 0.53s 0.61s 0.71s 1.01s 1.70s 5.38s 15.2s 53.7s163M 163M 163M 165M 168M 175M 202M 243M 295M(G) 0.52s 0.52s 0.65s 0.72s 1.03s 1.85s 4.86s 16.1s 93.5s163M 163M 164M 165M 169M 177M 189M 208M 235Ms: seonds; M: megabytes.The models are with 1 polieman and m prisoners.The experiment was arried out on an Intel i5 2.4G notebook with 2 ores and 4G memoryrunning ubuntu Linux version 11.10.is an inexpensive logi in many ways. First and foremost, it is �xed parameter tratable.Following folklore, spei�ations are tiny while models are huge. In this situation, �xedparameter tratability is a very important property, in partiular as it is ahieved by anatural and simple deision proedure, whih is merely exponential in the formula.This appealing property is not bought with inexpressivity. In partiular, the populartemporal logis LTL, CTL, ATL, and CTL� are ontained as de-fato sublogis. Conse-quently, it an be exellently used to extend existing spei�ations in these languages,without the need to develop ompetitive models.The appliability is underlined by ompelling data from our benhmarks. This is inspite of the fat that our implementation is rather based on an ad-ho extension of anexisting algorithm for a di�erent logi, and neither fully exploit the low omplexity, noris a fully symboli implementation. It will be interesting to see by whih extent symbolirepresentation like BDDs will enhane the performane and how an automata based toolwould fare.Referenes1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logi. Journal ofthe ACM (JACM), 49(5):672�713, September 2002.2. R. Axelrod. E�etive hoie in the prisoner's dilemma. Journal of on�it resolution,24(1):3�25, 1980. 14
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APPENDICESA Proof of Lemma 4This setion ontains the details of the redution to PEEK-G6 from the proof of Lemma4. Note that, while PEEK-G6 allows the agents to pass, we disllow it for simpliity. Thisis, however, no restrition: to simulate passing, we ould add a single boolean variablefor eah agent that does not our in the formula. Passing an then be identi�ed withtoggling the value of this variable.A.1 Full ProofTo redue determining the winner of an instane of a PEEK-G6 game to TCL model-heking, we introdue a 2-agent game G = h2;Q; r; !;P ; �; Ei as shown in Figure 3 withthe following restritions. Agent 1 (he, for onveniene) is the safety agent while Agent2 (she, for onveniene) is the reahability agent.� Q = fr; t1; : : : ; th+k; f1; : : : ; fh+k; 1; : : : ; kg. Spei�ally, there are two states ti andfi for eah variable in P1 [ P2.� There are k + 3 atomi propositions in P = fs; p; 1; : : : ; kg.� Initial state r is the only state where s is true (�(q) = fsg i� q = r). For eahi 2 [1; h+ k℄, �(ti) = fpg and �(fi) = ;. For the remaining states i 2 [1; k℄, we have�(i) = fig.� The state r has two suessors, t1 and f1 in E . For i < h+k, both ti and fi have twosuessors, ti+1 and fi+1. th+k and fh+k have k+1 suessors, 1; : : : ; k, and they allhave one suessor, r.� th+k and fh+k belong to a reahability agent (retangular nodes), while all otherstates belong to a safety agent (irular nodes).Note that : an be rewritten in DNF by dualising the  (whih is in CNF), that is, byswapping onjuntions and disjuntions and negating the literals.The game is played in rounds. Every time the game is at state r, it enters a new round.Formally, the safety agent makes his moves at states t1; : : : ; th+k�1; f1; : : : ; th+k�1; 1; : : : ; k,and r, while the reahability agent makes her moves at states th+k and fh+k. The spe-i�ation we provide, however, will require that the safety agent must hange exatly thevariable of the reahability agent identi�ed by the state the reahability agent has previ-ously moved to. It also fores the safety agent to make his hoie for the following roundeah time at state r, and to make it in a way that the value of exatly one variable istoggled.For ease of notation we use, for any i 2 N, the formula template h+i(i) 1 to denotea sequene of i suessive h+i followed by subformula  1. Suh formulas are used toassert that  1 is true in i steps of the game.For this game, we model-hek the following formula� def= h1i(�1 ^ h+i�(:s _ (�2 ^ �3 ^ �4))),where �1, �2, �3, and �4 re�et the following guarantees:� �1 spei�es the orretness of the initial ondition. Spei�ally,i



�1 def= Vpi2Ih+i (i) p ^Vpi2P1[P2�Ih+i (i) :p� At every ourrene of r, the game enters a round in whih the safety agent maytoggle at most one of p1; : : : ; ph. This is spei�ed with �2.�2 def= Wi2[1;h℄ ÆiVj2[1;h℄;j 6=i �j , withÆi def= �(h+i(i) (p^ h+i(h+k+2) :p)�_ �(h+i(i) (:p ^ h+i(h+k+2) p)� and�i def= �(h+i (i) (p ^ h+i (h+k+2) p)� _ �(h+i (i) (:p ^ h+i (h+k+2) :p)�.� The reahability agent delares her hoie for a hange by seleting a state i 2f1; : : : ; kg. Choosing i 2 [1; k℄ means the toggling of ph+i. This is spei�ed by �3.�3 def= Vi2[1;k℄ �+i _ ��i with�+i def= (h+i(h+i)p)^h+i(h+k+1)�(i^h+i(h+i+1):p)_(:i^h+i(h+i+1)p)� and��i def= (h+i(h+i):p)^h+i(h+k+1)�(i^h+i(h+i+1)p)_(:i^h+i(h+i+1):p)�.� Globally, at r the formula  is not satis�ed (using the truth of p in i steps for pi).This is re�eted by replaing every literal pi in : (reall that : is in DNF) byh+i (i) p and every literal :pi by h+i (i) :p.The turn taking and the order of the moves are re�eted as well as the ompetitive natureof the game. It is apparent that the safety agent wins the PEEK game if the safety agenthas a strategy sheme �, and it is easy to translate one into the other.
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