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Abstract. We propose a logic for the definition of the collaborative power of
groups of agents to enforce different temporal objectives. The resulting tempo-
ral cooperation logic (T'CL) extends ATL by allowing for successive definition of
strategies for agents and agencies. Different to previous logics with similar aims,
our extension cuts a fine line between extending the power and maintaining a low
complexity: model checking TCL sentences is EXPTIME complete in the logic,
and fixed parameter tractable for specifications of bounded size. This advance-
ment over nonelementary logics is bought by disallowing a too close entanglement
between cooperation and competition. We show how allowing such an entangle-
ment immediately leads to a nonelementary complexity. We have implemented a
model checker for the logic and shown the feasibility of model checking on a few
benchmarks.

1 Introduction

While the verification of traditional linear and branching time logics like LTL, CTL,
and CTL* [17,8] has been reduced to (repeated) reachability [11,13], the satisfiability
checking and synthesis problem has been tightly linked with game theory ever since the
seminal works of Biichi and Landweber [5,4]. With the introduction of alternating time
logic (ATL) by Alur, Henzinger, and Kupferman [1] and in automata based p-calculus
model-checking (e.g., [22]), games have entered into the verification the correctness of
reactive systems. With game theoretic challenges moving into the focus of researchers
studying the specification and design of reactive systems, traditional problems of multi-
player games are replacing the former distinction between an adversarial environment
and a supportive system. Instead, we have groups of players that cooperate on some
objectives while competing on others.

For particular properties, the intuition that some players represent the system while
other players represent the environment is, however, still useful. Following this intuition,
the system wins the game in an execution (or a play in the jargon of game theory) if the
system specification is fulfilled along it, and it wins the game if it can force a winning
play. System design as a whole for specifications in game logics can rather be compared
to designing a game board and to show that the respective group of players (or: agency)
has the coalition power required by the system specification.

There are various established game-based specification languages, including ATL,
ATL*, the alternating p-calculus (AMC), and game logic (GL) [1], strategy logics [7,9,
15,14], coordination logic [10], stochastic game logic [3], and basic strategy interaction



logic (BSIL) [21] for the specification of the interplay in open systems. Each language
also comes with a verification algorithm that determines whether a winning strategy
for the system exists. However, there is a gap between the available techniques and the
scalability required for industrial applications. Frankly speaking, none of the languages
above represents, in our view, a proper combination of expressiveness for close interaction
among agent strategies and efficiency for the verification or refutation of compliance with
a specification. On one hand, logics like ATL, ATL*, AMC, and GL [1] allow us to specify
the collaborative power of groups of players to enforce a common objective. This falls
short from specifying even the simple properties in a typical game. For example, it was
shown in [21] that ATL, ATL*, AMC, and GL [1] cannot express that the same strategy
of a banking system must allow the clients both, to withdraw and to deposit money. This
is arguably a severe restriction when reasoning about real-world problems.

To solve the expressiveness problem in the above example, strategy logics (SL) were
proposed in [3, 7,15, 14]. They allow for the flexible quantification over strategies in logic
formulas. However, their verification complexity is prohibitively high and has inhibited
practical application.

A previous attempt to tame the complexity of strategy interaction [21], on the other
hand, results in a full temporalization. This leads to severe restrictions in the entangle-
ment between temporal operators and strategy binding and thus prevents, for example,
reasoning about Nash equilibria.

We thus propose to adapt the logic in [21] to a new temporal logic called temporal
cooperation logic (TCL) for this purpose. Let us introduce TCL informaly on a game
among three prisoners.

Ezample 1. Iterated prisoners’ dilemma Inspired by the famous prisoners’ dilemma,
we consider a model where three suspects, who are initially in custody, are interrogated.
In our simplified version, they play in turns (rather than concurrently), and have the
choices to either admit or deny the charges made against them. If all deny, they will be
released based on lack of evidence.

However, a suspect may decide to collaborate with the police and betray her peers. A
sole collaborator will be acquited as a crown witness, while her peers will be sentenced.
But if two or more suspects collaborate with the police, all will be sentenced.

In an iterated prisoners’ dilemma, the interplay can continue up to an unbounded
number of times. Such a game is very useful in modeling collaboration and competition
in networks. For example, a strategy in prisoners’ dilemma is nice if it does not suggest
betrayal initially and only suggests betrayal if, in the previous round, another prisoner
betrayed [2]. The following TCL sentence refers to nice strategies of Prisoner 1.

(HO(((+) O —betray;) vV V,, betray,) (A)

(a) is a strategy quantifier (SQ), which states that there exists a strategy of Prisoner 1
to achieve her temporal goal. (+) is a strategy interaction quantifier (SIQ) that inherits
the strategy from its parent formula. Proposition betray; is an atomic proposition for
the betrayal of prisoner i at the present state. Similarly, we can reflect more involved
strategies, such as ‘Prisoner 2 will always betray when she does not have the power to
force Player 1 to always play nice.’

(2)(((+)Obetray,) v (+)0(((+) O —betray,) V'V, betray,)) (B)




Similar properties can be used to specify forgiving' or other related strategies [2]. A
forgiving strategy of Prisoner 1 is reflected by the following TCL property.

(DO(((+) O —betray,) AV, betray,) (©)

We can also reason about the existence of Prisoner 2’s strategy that avoid betrayal if
Prisoner 1 can be unforgiving under this strategy.

(2)(((+)0-betray,) V (+1)0(({(+) O —betray;) A V., betray,)) (D)

As can be seen, properties like (B) and (D) are relevant in network environment where
plays can be extended round by round without termination. Every agent may track
each others’ records to decide whether or not to cooperate. Such a property cannot
be expressed in ATL*, GL, AMC, or BSIL. While it can be expressed with SL, the
verification complexity of SL is prohibitive.

In [21], SIQs can neither override or revoke strategies assigned by the SQ or SIQs in
whose scope they are. Consequently, BSIL cannot express deterministic Nash equilibria.
To overcome this restriction, we introduce a strategy reset operator that revokes previous
strategy assignments.

Let jail, be a proposition, which says that for prisoner a in jail. In TCL,

(1,2,3) Auepr s (H0)0-jail,) v (~a)jail,) (E)

requires that no agent stays in jail indefinitely, if she can avoid it under the current
strategies of the remaining prisoners. The SIQ (—a)t revokes the binding of the (singleton
agency that contains only) agent a to her strategy.

In this work, we establish that TCL is incomparable with ATL*, GL, and AMC
in expressiveness. Although strategy logics proposed in [3,7,9,15] subsume TCL with
their flexible quantification of strategies and binding to strategy variables, their model-
checking complexity are all doubly exponential time hard. In contrast, TCL enjoys an
EXPTIME-complete model-checking complexity and fixed parameter tractability when
using the length of the formula as parameter, as well as 2EXPTIME completeness of
the TCL satisfiability problem for turn-based game graphs. TCL thus provides a better
balance between expressiveness and complexity / efficiency considerations than ATL*,
GL [1], and SL [7, 15, 14]. Given the expressive power as exemplified by the specifications
from above, TCL can be viewed as an expressive yet inexpensive subclass of SL [15, 14].

Organization or the Paper. Section 2 explains turn-based game graphs for the de-
scription of multi-agent systems and presents the syntax and semantics of TCL. Section 3
discusses the expressiveness of TCL, establishing that CTL, ATL, LTL, and CTL* can
be viewed as syntactic fragments of TCL and show that TCL is more expressive than
any of these logics while in comparable with ATL*, AMC, and GL [1] in expressiveness,
and discuss the effect of a mild extension of TCL. In the following sections, we develop
an automata based model-checking algorithm and establish the EXPTIME-completeness
and 2EXPTIME-completeness of the TCL model-checking and satisfiability problem, re-
spectively. Finally, we have implement a model checker and validated the feasibility of
using TCL on a set of benchmarks.

L A strategy is forgiving if it does not always punish betrayal in the previous round.



2 System Models and TCL

2.1 Turn-based game graphs

A turn-based game is played by a finite number m of agents, indexed 1 through m. A
game is a tuple G = (m, Q,r,w, P, \, E), where
e Parameter m is the number of agents in the game.
e Q is the set of states and r € Q is the initial state (or root) of G.
e w: Q> [1,m] is a function that specifies the owner of each state. Only the owner
of a state makes choices at the state.
e P is a finite set of atomic propositions.
e \: Q2P is a proposition labeling function.
e [ C Q x Q is the set of transitions.
For ease of notation, we denote with Q, = {q € Q | w(q) = a} the states owned by an
agent a.
In Figure 1, we have the graphical representation of a turn-based game graph. The
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O belongs to Agent 1 and O belongs to Agent 2.

Fig. 1. A turn-based game graph

ovals and squares represent states while the arcs represent state transitions. We also put
down the A values inside the corresponding states.

For convenience, in the remaining part of the manuscript, we assume that we are
always in the context of a given game graph G = (m, Q,r,w,P, A, E). Thus, when we
write Q,r,w, P, A, and &, we respectively refer to the components Q, r, w, P, A\, and E
of this G.

A play p is an infinite path gog; ... in G such that, for every k € N, (gx,qr+1) € €.
p is initial if gqo = 7. For every k > 0, we let p(k) denote gi. Also, given h < k, we let
p[h, k] denote p(h)...p(k) and plh,o0) denote the infinite tail of p from p(h).

A play prefiz is a finite segment of a play from the beginning of the play. Given a play
prefix m = qoqi - - . qn, || = n+1 denotes the length of the prefix. Given a k € [0, |x|— 1],
we let (k) = gi. For convenience, we use last(m) to denote the last state in m, i.e.,
m(jm| = 1).

For an agent a € [1,m], a strategy o for a is a function from Q*Q, to Q such that
for every m € Q*Q,, o(m) € Q with (last(r),o(m)) € £.

An agency A of [1,m] is a subset of [1,m]. In a short hand notation, we often drop
the curly brackets in the set notation, in particular for singleton and empty sets. For
example, “1,3,4” is a short hand for {1, 3,4}.



A play p is compatible with a strategy o, of an agent a € [1,m] iff, for every k € N,
w(p(k)) = a implies p(k + 1) = o(p[0..k]).

2.2 TCL Syntax
A TCL formula ¢ is constructed with the following three syntax rules.

pu=pl=g1| 1V | (A

Y=y [P Ve [ A | (A1 | (+A) O tor | (+A)m Uy | (+A)1 Ry
| (=AY [ (=A) O 1 | (=A)m Uy | (—A)1 R
n ::|= d1lm Ve |m An | () Om | (+F)mUna | (+)mRne

(=A) Om | (=A)ymUn | (=A)m R

Here p is an atomic proposition in P and A C {1,...,m} is an agency. Property (A)y, is
an (existential) strategy quantification (SQ) specifying that there exist strategies of the
agents in A that make all plays satisfy ¢;. Property (+A); is an (existential) strategy
interaction quantification (SIQ) and can only occur bound by an SQ. Intuitively, (+A)y
means that there exist strategies of the agents in A that work with the strategies declared
by the ancestor formulas.

‘U’ is the until operator. The property 1, U, specifies a play along which ¢ is true
until ¥, becomes true. Moreover, along the play, ¥, must eventually be fulfilled. ‘R’ is
the release operator. Property 11 Riy specifies a play along which either 9o is always
true or ¢ U(1)1 A 4p2) is satisfied. (Release is dual to until: =(¢;U¢z) < —@aR-¢;.)

In the following we may use (?A)1) to conveniently denote an SQ or SIQ formula with
‘7’ is empty, ‘+’, or -’. An SIQ (£A)4 is called non-trivial if A is not empty, and trivial
otherwise.

Formulas ¢ are called TCL formulas, sentences, or state formulas. Formulas ¢) and n
are called tree formulas. Note that we strictly require that non-trivial strategy interaction
cannot cross path modal operators. This restriction is important because it offers a
sufficient level of locality to efficiently model-check a system against a TCL property.
To illustrate this and to provide a simple extension that offers more expressive power to
the cost of a much higher complexity, we informally discuss a small extension, extended
TCL (ETCL), where the production rule of ¢ also contains —/ and show that it can be
used to encode ATL*, and the realizability problem of prenex QPTL can be reduced to
ETCL model-checking.

For convenience, we also have the following shorthands.

true = p V (—p) false = —true
1 A P2 = =((=¢1) V (=¢2)) 1= P2 = (1) V ¢
Qo1 = trueUgy ¢y = false Ry
O ¢1 =0 (A O =A)(+) O
(Ayh1 Uy = (A) ()11 Uty (Ay1Rpa = (A)(+)P1 Rpo

In general, it would also be nice to have the universal SQs and SIQs respectively as
duals of existential SQs and SIQs. Couldn’t we add, or encode by pushing negations
to state formulas, a property of the form [+A]y;, meaning that, for all strategies of
agency A, ¢, will be fulfilled? In principle, this is indeed no problem, and extending the



semantics would be simple. This logic would be equivalent to allowing for negations in
the production rule of ). The problem with this logic is that it is too succinct. We will
briefly discuss in the following section that model checking becomes nonelementary if we
allow for such negagtions.

From now on, we assume that we are always in the context of a given TCL sentence.

2.3 TCL Semantics

In order to prepare the definition of a semantics for TCL formulas, we start with the
definition of a semantics for sentences of the form (A)y, where ¢ does not contain an
SQs. We call these formulas primitive TCL formulas.

Due to the design of TCL, strategy bindings can only effectively happen at non-
trivial SQs (A) and when a non-trivial SIQ (+B) is interpreted. To ease referring to
these strategies, we first define the bound agency of a subformulas ¢ of a TCL sentence
X, denoted bnd(¢), as follows.

For state formulas ¢, bnd(¢) = 0.

For state formulas (A, bnd(y) = A.

For tree formulas ¢ = (+ Ao, bnd(ys) = bnd(y1) U A.

For tree formulas ¢ = (— Ao, bnd(v) = bnd(1) \ A.

For all other tree formulas 1y or 1, with ¢ = 1)1 OPt)2, with OP € {A,V,U, R}, we
have bnd(y1) = bnd(y) or bnd(ys) = bnd(y), respectively.

bnd shows, which agents have strategies assigned to them by an SIQ or SQ. Note that
this leaves the bnd undefined for all state formulas not in the scope of an SQ formulas.
For completeness, we could define bnd as empty in these cases, but a definition will not
be required in the definition of the semantics.

As the introduction of additional strategies through non-trivial SIQ (+B) is governed
by a positive Boolean combination, all strategy selections can be performed concurrently.
Such a design leads us to the concept of strategy schemes.

A strategy scheme o is the set of strategies introduced by any non-trivial SQ (A) or
SIQ (+A). By abuse of notation, we use o[, a] to identify such a strategy. Read in this
way, o can be viewed as a partial function from subformulas and their bound agencies
to strategies. Thus, o[¢, a] is defined if a € bnd(¢) is in the bound agency of ¢.

For example, given a strategy scheme o for a TCL sentence (1)O(({(+2) O p) A (2)0gq),
the strategy used in o by Agent 1 to enforce the whole formula can be referred to by

a[(O(((+2) O p) A (2)0g), 1]

but also by o[(+2) O p, 1], while ¢[(2)0g, 1] is undefined.

We use a simple tree semantics for TCL formulas. A (computation) tree 7). is obtained
by unravelling G from r and expand the ownership and labelling functions from G to 7T,
in the natural way. Technically, we have the following definition.

Definition 1. Computation tree A computation tree for a turn based game G from a
state ¢, denoted 17, is the smallest set of play prefixes that contains ¢ and, for all 7 € T'
and (last(m),q') € €, m¢' € T. ]

The strategy-pruned tree for a tree node 7, a strategy scheme o, and a subformula 1,
of x from a state ¢, in symbols Ty(m, 0,11), is the smallest subset of T, such that:




o m €T (m o,4¢n);

o for all 7' € Ty(m,0,¢1) with w((last(n')) ¢ bnd(y1) and (last(n'),q') € &, n'q’ €
Tq <7T7 g, 1/11 >;

o for all 7' € Ty(m,0,91), a = w((last(r')), and ¢’ = oft)1,a](x’) with a € bnd(¢),
7T’q’ € Tq<7ra o, 1/)1>

Given a computation tree (or a strategy-pruned tree) T' and a node w € T, for every
mq € T, we say that wq is a successor of w in T. A play p is a limit of T, in symbols
p e T, if there are infinitely many prefixes of p € T'.

We now define the semantics of subformulas of primitive TCL formulas inductively as
follows. Given the computation tree T, of G, a tree node m € T}, and a strategy scheme
o, we write Ty, 7,0 |= 11 to denote that T}, satisfies ¢1 at node 7 with strategy scheme
.

e For state formulas ¢ other than SQ formulas, we use the state formula semantics:
Ty, m,0 |= ¢ iff G, last(m) = ¢, with the usual definition.

- gaq 'Z p lf; and Only 1f7 pe /\(q)7

- g7 q 'Z _|(]5 1f7 and OIlly lf; g; q I# ¢7

- gaq 'Z ¢1 \ ¢2 lf; and Only lf; g;q 'Z (lsl or gaq |: ¢27 and
— G,qE ¢1 N2 if, and only if, G,q = ¢1 and G,q = ¢o.

(Note that this allows for using negation for state formulas.)

o IyymolE1 Vi it Ty, m,0 =4y or Ty, 7,0 |= 1s. (These 9; are no state
formulas.)

o Iy,molE=r AN ff Ty, m,0 =4y and Ty, w,0 = .

o T, w0 |= (£A)Qu iff, for all successors mq' of 7 in Ty(m, 0, (£A) Oyn), Ty, 7q’, 0 =
).

o Ty,mo |= (£A) Uy, iff, for all limits p ¢ Ty(m, 0, (£A)1 Utpy), there is a k >
|| — 1 such that Ty, p[0, k],0 = 2 and, for all h € [|7| — 1,k — 1], Ty, p[0, h], 0 |= 41
hold.

o T,,m, 0 |= (£A)1 Rap, iff, for all limits p ¢ Ty(m, 0, (£A)p1 Repa), one of the following
two restrictions are satisfied.

— For all k > |n| — 1, Ty, p[0, k], 0 |= 92.
— Thereis a k > |r|—1 such that Ty, p[0, k], 0 |= ¢1 A, and, for all h € [|7] -1, k],
1y, p[07 h]v o |: Pa.

o T, w0 = (A iff T, 7,0 = .

e G,q = (A)y iff there is a strategy scheme o such that Ty, ¢,0 = 9.

If ¢; is a TCL sentence then we write G = ¢ for G,r = ¢1.

Note that, while asking for the existence of a strategy scheme refers to all strategies
introduced by some SQ or SIQ in the TCL sentence, only the strategies introduced by
the respective SQ and the SIQs in its scope are relevant.

The simplicity of the semantics is owed to the fact that it suffices to introduce new
strategies at the points where eventualities become true for the first time. Thus, they
do not really depend on the position in which they are invoked and we can guess them
up-front. (Or, similarly, together with the points on the unravelling where they are in-
voked.) This is possible, simply because the validity of state formulas (and hence of TCL
sentences) cannot depend on the validity of the left hand side of an until (or the right
hand side of a release) after the first time it has been satisfied.



3 Expressiveness of TCL

Note that TCL is not a superclass of BSIL since BSIL allows for negation in front of SIQs
while TCL does not. However, by examining the proofs in [21] for the inexpressibility
of BSIL properties by ATL*, GL, and AMC, we find that the BSIL properties used in
the proof is in fact also a property of TCL. This observation leads us to the conclusion
that there are properties expressible in TCL but cannot be expressed in ATL*, GL, and
AMC.

Lemma 1. There are TCL properties that cannot be expressed in any of ATL*, GL, and
AMC. |

TCL is, in fact, not only a powerful logic, but also contains important logics either
as syntactical fragments or can embed them in a straight forward way. ATL and CTL
can be viewed as syntactic fragments of TCL.

But it is also simple to embed LTL and even CTL*. We start with JLTL, the less
used variant where one is content if one path satisfies the formula. We then translate an
LTL formula, which we assume w.l.o.g. to be in negative normal form (negations only
in front of atomic propositions). Then “there is a path that satisfies ¢” is equivalent to
(1,... ,m)a, where (E is derived from ¢ by replacing every occurrence of (), U, and R by
(+)O, (+)U, and (+)R, respectively.

The simple translation is possible because the formula 121\ is de-facto interpreted over
a path, the path formed by the joint strategy of the agency [1,m]. The (+) operators
we have added have no effect on the semantics in such a case, just as a CTL formula
can be interpreted as the LTL formula obtained by deleting all path quantifiers when
interpreted over a word.

Consequently, we have the expected semantics for VLT L: “all paths satisfy ¢” is
equivalent to —|(A>—/I<\b, where —¢ is assumed to be re-written in negative normal form.
The encoding of dLTL and VLTL can easily be extended to the encoding of CTL*.

Lemma 2. TCL is more expressive than CTL* and LTL. |
Note that this encoding does not extend to ATL*. The following example shows an
ATL* property that cannot be expressed with TCL.

(1)((Cp) vdq)

Note that this is different from ATL property ((1)0p)V(1)Oq or TCL property (1) (((+)Op) V (+)0gq).
In fact, the proofs and examples in [21] can also be applied in this work to show that

there are properties of ATL* (or GL, or AMC) that cannot be expressed with TCL. This

leads to the following lemma.

Lemma 3. TCL is incomparable in expressiveness with any of ATL*, GL, and AMC.
]

Note, however, that allowing for a negation in the definition of ¢ would change the
situation. Then an ATL* formula (A)¢ (assuming for the sake of simplicity that v is an
LTL formula), would become (A)—=(+[1, m] \ A)— in the extended version of TCL. The
translation extends to full ATL*, but this example also demonstrates why negation is



banned: even without nesting, we can, by encoding ATL*, encode a 2EXPTIME complete
model-checking problem, losing the appealing tractability of our logic.

In fact, it is easy to reduce the realisability problem of prenex QPTL, and hence a
non-elementary problem, to the model-checking problem of this extended version of TCL:
using the following game structure, we can encode the realisability of a prenex QPTL
formula with n — 1 variables, for the sake of simplicity of the form Vp,3psVpy...3p. o,
where ps, ..., p, are all propositions occurring in ¢. We reduce this to the model-checking
of the formula

¢" = (D)=(+2)~(+3)~(+4) = ... ~(+n) (¥ A (+)0p1),

where 14 can be obtained from $ by replacing
e every literal p; by (=1)(+1) O (pi A (+) O ps), and
e every literal —p; by (—=1)(+1) O (i A {(+) O —ps).

(While these formulas are technically not extended TCL formulas because (+i)t;
is not part of the production rule of ¢, (+i)1; can be used as an abbreviation for
(+4) falseUrpy )

Checking satisfiability of ¢ is is equivalent to model-checking ¢’ on the game shown
in Figure 2. The game has n + 1 nodes, agents, and atomic propositions. The nodes in
Figure 2 are labeled with the agent that owned the nodes, and the atomic proposition
p; is true exactly in node i. From his state, Agent 1 can move to any other state, while
all other agents can either stay in their state or return to the state owned by Agent 1.

The game starts in the node owned by Agent 1, and in order to comply with the
specification, the outermost strategy profile chosen by Agent 1 must be to stay in the
initial state for ever. 14 is chosen to align the truth of p; at position j € N with the
decision that Agent i makes on the history 17i: true corresponds to staying in i and false
with returning to 1.

Fig. 2. The turn-based game graph from the non-elementary hardness proof of extended TCL.

It is not hard to develop a matching upper bound for the model-checking of extended
TCL.

4 Complexity of TCL

In this section, we show that model-checking TCL formulas is EXPTIME-complete in
the formula and P-complete in the model (and for fixed formulas), while the satisfiability
problem is 2EXPTIME-complete. As the proof of inclusion of the satifiability problem
in 2EXPTIME builds on the proof of the inclusion of model-checking in EXPTIME, we



start with an outline of the EXPTIME hardness argument for the TCL model check-
ing problem and then continue with describing EXPTIME and 2EXPTIME decision
procedures for the TCL model and satisfiability checking problem, respectively. 2EXP-
TIME hardness for TCL satisfiability is implied by the inclusion of CTL* as a de-facto
sub-language [20].

We show EXPTIME hardness by a reduction from the PEEK-Gg [19] game. An in-
stance of PEEK-Gj consists of two disjoint sets of boolean variables, P, = {p1,...,pn}
(owned by a safety agent) and P, = {pp+t1,...,Pn+k} (owned by a reachability agent),
a subset I C P, U P, of them that are initially ¢rue, and a boolean formula v in CNF
over P; U P» that the reachability agent wants to become true eventually. The game is
played in turns between the safety and the reachability agent (say, with the safety agent
moving first), and each player can change the truth value of one of his or her variables
in his/her turn.

Lemma 4. TCL model-checking is EXPTIME hard for primitive TCL formulas.

Proof. To reduce determining the winner of an instance of a PEEK-G game to TCL
model-checking, we introduce a 2-agent game G = (2, Q,r,w, P, A, E) as shown in Figure
3, where Agent 1 (he, for convenience) represents the safety agent while Agent 2 (she, for
convenience) represents the reachability agent. ¢4 and fr4 are the only states owned
by Agent 2.

Fig. 3. The turn-based game graph from the EXPTIME hardness proof.

The game is played in rounds, and a round starts each time the game is at state r.
If the game goes through ¢; this is identified with the variable p; to be true. Likewise,
going through f; is identified with the variable being false.

It is simple to write a TCL specification that forces the safety player to toggle the
value of exactly one of his variable in each round, and to toggle the value of the variable
Pr+i of the reachability player defined by the state ¢ she has previously moved to, while
maintaining all other variable values. Requiring additionally that the safety agent can
guarantee that the boolean formula is never satisfied provides the reduction. |

The details of the construction are moved to Appendix A. It is interesting that a
game with only two agents suffices for the proof. Two agents are also sufficient to show
P hardness for fixed formulas, as solving a reachability problem for AND-OR graphs [12]
naturally reduces to showing (1)Op.
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Lemma 5. TCL model-checking for fived formulas is P hard for primitive TCL formu-
las. |

In order to establish inclusion in EXPTIME and P, respectively, we use an automata
based argument.

Theorem 1. The model-checking problem of TCL formulas against turn-based game
graphs is EXPTIME-complete, and P-complete for fived formulas.

Proof. We first show the claim for primitive TCL formulas ¢ = (A)1.

To keep the proof simple, we first consider a tree automaton U/ that checks the
acceptance of v for a given strategy scheme o. That is, U checks if T, %, q, 0 = ¢ under
the assumption that both ¢ and the truth values for the subformulas starting with a
(£B) are encoded in the nodes of 7, ™.

Such an automaton would merely have to run simple consistency checks, and it is
simple to construct a suitable universal weak tree automaton ¢/, which is polynomial in
the size of ¢. From there it is simple to infer a deterministic Biichi tree automaton D,
which is exponential in the weak universal tree automaton [16].

It is then a trivial step (projection) to guess o and the truth annotation of the
subformulas on the fly, turning the deterministic Biichi tree automaton D that requires
a correct annotation into a nondeterministic Biichi automaton A of the same size that
checks G, ¢ |= ¢. Acceptance can be checked in time quadratic in the size of the product
of N and G [6].

To take the step to full TCL, we can model check the truth of primitive TCL formulas
and then use the result of this model checking instead of the respective subformula.

Hardness is inherited from Lemmata 4 and 5. ]

Note that this argument shows more: the complexity of TCL model checking for fixed
formulas does not depend on the formula. It suffices to solve a number of Biichi games,
where both the size of the game and the number of games to be played is linear in G.

Corollary 1. Viewing the size of a TCL sentence as a parameter, TCL model checking
is fized parameter tractable.

The automata construction from the proof of Theorem 1 extends to a construction
for satisfiability checking.

Theorem 2. The TCL satisfiability problem is 2EXPTIME-complete.

Proof. As usual, it is convenient to construct an enriched model that contains the truth
of all subformulas for a TCL sentence ¢ that start with an SQ.

In a first step, we construct an alternating tree automaton A that recognises the
enriched models of a specification. This is quite simple: A merely has to check that the
boolean combination of SQ formulas that forms the TCL sentence ¢ is satisfied and that
the truth assignment of each SQ is consistent. But this is simple, as we can use the tree
automaton Ny from the proof for Theorem 1 to validate the claim that a subformula ¢’
of ¢ that starts with an SQ is true, and its dual to validate that it is false. Hence, such
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an automaton has only two states more than the sum of the states of the individual Ny .
In particular, it is exponential in ¢.

For the resulting alternating automaton, we can again invoke the simulation theorem
[16] to construct an equivalent nondeterministic parity automaton, which has doubly
exponentially many states in ¢ (and whose transition table is doubly exponential in ¢)
and whose colours are exponential in . Solving the emptiness game of this automaton
reduces to solving a parity game, which can be done in time doubly exponential in ¥,
e.g., using [18].

Hardness is inherited from CTL* satisfiability checking [20]. [ ]

5 Implementation and Experiment

As a proof of concept, we have implemented a model-checker, tcl, in C++. tcl accepts
models composed of extended automata that communicate with synchronizers and shared
variables, with an explicit shared variable turn that specifies the turn of agents at a state.
A turn-based game graph is then constructed as the product of the extended automata.
Such an input format facilitates modular description of the interaction among the agents.

The implementation builds on a prototype for a PSPACE logic [21]. The extension is
possible because we can reduce the complexity of TCL to PSPACE by simply restricting
the number of operators in the n production rules in the scope of any SQ to be logarithmic
in the size of the TCL sentence. We show this for primitive TCL sentences.

Lemma 6. Model checking can be done in space bilinear in the size of the turn based
game structure and the state and tree formulas that are produced using the i production
rules and exponentially only in the number of n produced tree formulas.

Proof. We have seen that, for a primitive TCL sentence ¢, we can use a single strategy
scheme and only have to refer to the first position that the right hand side of an until
or the left hand side of a release operator is true. Moreover, it suffices to guess just a
minimal set of positions where tree formulas are true. In particular, the left hand side
of a release, the right hand side of an until, and a next formula are then marked true
exactly once, and the respective release and until formulas never need to be marked as
true after such an event.

We can therefor use an alternating algorithm that guesses such minimal truth claims.
The algorithm alternates between a verifier who guesses a truth assignment and the
current, decisions of the strategy scheme, and a falsifier, who guesses the direction into
which to expand the path.

It is now easy to see that they will produce an infinite path in this way, and on
this path each obligation referring to a tree subformula from a 1 production rule can
appear only on a continuous interval. In particular, the points where these obligations
change, is linear in the size of ¢. However, it also needs to track the truth value of tree
formulas produced by the n production rule. (If there are multiple untilities introduced
by n production rules, this also includes a marker that distinguishes a leading until,
which is changed in a round robin fashion when the leading untility is fulfilled.)

The number of possible assignments is then exponential in the number of tree sub-
formulas from 7 production rules. Note that O formulas can be exempt from this rule:
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they are monotonous and hence incur a small impact similar to the formulas introduced
using the ¥ production rule.

Hence, if |G| denotes the size of the turn based game and k the number of temporal
operators (different to O) introduced by n production rules, we end up in a cycle if
there is no change in the truth assignment temporal operators that are introduced by v
production rules or [J operators we reach a cycle within |G| - k- 2¥ steps. Hence, we reach
a cycle in a number of steps that is linear in |G| and the size of ¢, and exponential only
in the size of p-produced temporal operators (different to O).

Upon reaching a cycle, is suffices to check if the cycle is accepting. (No standing
obligation by an until.) [ |

The model-checker uses a stack to explicitly enumerate all paths of all tree tops with
depth prescribed by Lemma 6. The tool can be downloaded from Sourceforge at project
REDLIB at: http://sourceforge.net/projects/redlib/.

We use the parameterized models of the iterated prisoners’ dilemma as our bench-
marks to check the performance of our implementation. A brief explanation of the models
can be found in the introduction. The unique parameter to the models are the number
of prisoners m. There is also a policeman in the models. We built a turn-based game
graph for each values of m in the experiment. The parameterization helps us in observing
how our algorithm and implementation scale to model and formula sizes. To simplify the
construction of the state-space representation, we assume that in each iteration, the pris-
oners make their decisions in a fixed order. After all prisoners have made their decisions
in an iteration, the policeman make his decision and then the whole game moves to the
next iteration.

We have used seven benchmarks in our experiments. The first five benchmarks are
taken from the examples (A) through (E) used in the introduction to introduce TCL.
Benchmarks (F) and (G) are the following two properties, taken from [21].

e Property (F) specifies that all prisoners except Prisoner 1 can collaborate to release

Prisoner 1 and let Prisoner 1 decide their fate.

(2,...,m) (((£)0-3aily) A Niego, my ((F1)0—]a1L) A ((+1)0jail;) (F)

e Property (G) specifies that Prisoner 1 has a strategy to put all other prisoners in jail

while leaving her fate to them.

<1> ((/\ie{27...m}<+>|:|jai1i) A ((27 Tt 7m>0_'j ai]‘l) A <2> T 7m>|:|jai11) (G)

For these benchmarks, we have collected the performance data for various parameter

values in Table 1. For small models, the memory usage is dominated by the normal

overhead, such as the representation of variable tables, state-transition tables, formula

structures, etc. The data shows that our prototype can handle the various benchmarks,

and scales well on five of the seven benchmarks. Ignoring the overhead, it also shows the

exponential growth. Note, however, that the models are growing exponentially, too, and
we assume to be the main cause of the exponential growth of the response time.

6 Conclusion

TCL is a promising logic for the specification of groups of agents who balance their
strategies in order to cooperate with different partners to achieve different objectives. It
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Table 1. Performance data of model-checking the TCL fragment

. ™ 2 | 3| 4| 5 6 71 8| 9 |10
properties

(A) 0.71s]0.94s | 5.415 | 66.3s| 945s >1000s
T63M|165M|185M [350M [1307M

(B) 0.505|0.525 [0.61s [ 0.71s | 1.11s | 1.625]5.775]20.95 | 68.1s
T63M|163M |164M |165M | 168M |176M|214M|270M|376M

©) 0.515|0.51s| 0.6s [0.82s| 1.01s | 1.81s|5.54s | 18.25 | 48.3s
T63M|163M |164M |165M | 168M |176M|200M|241M|318M

D) 0.55 |0.515|0.575 [0.74s | 1.01s | 1.79s | 7.41s | 33.85| 141s
T63M|163M |164M |165M | 168M |175M|232M|312M|430M

(E) 0.5150.66s | 19.1s ~1000s
T63M|164M|194M

() 0.5150.535 [ 0.61s [ 0.71s | 1.01s | 1.70s]5.385 | 15.25 | 53.7s
T63M|163M |163M |165M | 168M |175M|202M|243M|295M

(© 0.5250.525 [ 0.65s | 0.72s | 1.03s | 1.855 | 4.865 | 16.15 | 93.55
T63M|163M |164M |165M | 169M |177M|189M|208M|235M

s: seconds; M: megabytes.
The models are with 1 policeman and m prisoners.
The experiment was carried out on an Intel i5 2.4G notebook with 2 cores and 4G memory
running ubuntu Linux version 11.10.

is an inexpensive logic in many ways. First and foremost, it is fixed parameter tractable.
Following folklore, specifications are tiny while models are huge. In this situation, fixed
parameter tractability is a very important property, in particular as it is achieved by a
natural and simple decision procedure, which is merely exponential in the formula.

This appealing property is not bought with inexpressivity. In particular, the popular
temporal logics LTL, CTL, ATL, and CTL* are contained as de-facto sublogics. Conse-
quently, it can be excellently used to extend existing specifications in these languages,
without the need to develop competitive models.

The applicability is underlined by compelling data from our benchmarks. This is in
spite of the fact that our implementation is rather based on an ad-hoc extension of an
existing algorithm for a different logic, and neither fully exploit the low complexity, nor
is a fully symbolic implementation. It will be interesting to see by which extent symbolic
representation like BDDs will enhance the performance and how an automata based tool
would fare.
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APPENDICES

A Proof of Lemma 4

This section contains the details of the reduction to PEEK-Gg from the proof of Lemma
4. Note that, while PEEK-Gg allows the agents to pass, we disllow it for simplicity. This
is, however, no restriction: to simulate passing, we could add a single boolean variable
for each agent that does not occur in the formula. Passing can then be identified with
toggling the value of this variable.

A.1 Full Proof

To reduce determining the winner of an instance of a PEEK-Gg game to TCL model-
checking, we introduce a 2-agent game G = (2, Q, 7, w, P, A\, £) as shown in Figure 3 with
the following restrictions. Agent 1 (he, for convenience) is the safety agent while Agent
2 (she, for convenience) is the reachability agent.

e Q= {rt,. ., thtk, f1,---, fntk,1,...,k}. Specifically, there are two states ¢; and
fi for each variable in P, U P,

e There are k + 3 atomic propositions in P = {s,p,c1,...,ck}.

e Initial state r is the only state where s is true (A(q) = {s} iff ¢ = r). For each
i € [1,h+ k], A(t;) = {p} and A(f;) = (. For the remaining states ¢ € [1, k], we have
A1) = {a}

e The state r has two successors, t; and f; in €. For i < h+ k&, both t; and f; have two
successors, t;+1 and fiy1. tpyr and frpir have k4 1 successors, 1,. .., k, and they all
have one successor, r.

e ity and frir belong to a reachability agent (rectangular nodes), while all other
states belong to a safety agent (circular nodes).

Note that —y can be rewritten in DNF by dualising the « (which is in CNF), that is, by
swapping conjunctions and disjunctions and negating the literals.

The game is played in rounds. Every time the game is at state r, it enters a new round.
Formally, the safety agent makes his moves at states t1, ..., th4+x—1, fi,- -5 thtk—1,1,..., K,
and r, while the reachability agent makes her moves at states t,4+; and fn4+r. The spec-
ification we provide, however, will require that the safety agent must change exactly the
variable of the reachability agent identified by the state the reachability agent has previ-
ously moved to. It also forces the safety agent to make his choice for the following round
each time at state r, and to make it in a way that the value of exactly one variable is
toggled.

For ease of notation we use, for any i € N, the formula template (+) (O ¢, to denote
a sequence of i successive (+)( followed by subformula ;. Such formulas are used to
assert that 1 is true in 7 steps of the game.

For this game, we model-check the following formula

¢ = (1)1 A (+)O(=s V (62 A s Aby))),

where 61, 05, 03, and 4 reflect the following guarantees:
e O specifies the correctness of the initial condition. Specifically,



01 d:ef /\piEI<+> O(Z) p A /\piEP1UP2—I<+> O(Z) -p
e At every occurrence of r, the game enters a round in which the safety agent may
toggle at most one of py,...,py. This is specified with 5.
def .
f; = Vie[l,h] d; /\je[l,h],j;éi €j, with
3 = (((+) O (p A (+) QP —p)) v ((+) O (=p A (+) O"H++2) p)) and
e = (((+) OW (0 A (+) O p)) v (((+) O (=p A (+) QT2 —p)).
e The reachability agent declares her choice for a change by selecting a state i €
{1,...,k}. Choosing i € [1, k] means the toggling of pj+;. This is specified by 65.
0s < /\ie[Lk] i Vo with
17 = (FHOMIPAF) QP (e A QP sp)V (=¢; A(+) O ") p) ) and
— def ; ; ;
17 = (FYOPTI=p) A(+) QY ((ei A (+) QD p) v (=i A(+) QU+ —p)).
e Globally, at r the formula + is not satisfied (using the truth of p in i steps for p;).
This is reflected by replacing every literal p; in —y (recall that —y is in DNF) by
(+) O p and every literal —p; by (+) O® —p.
The turn taking and the order of the moves are reflected as well as the competitive nature
of the game. It is apparent that the safety agent wins the PEEK game if the safety agent
has a strategy scheme o, and it is easy to translate one into the other.

ii



