
Model-Che
king Iterated GamesChung-Hao Huang1 Sven S
hewe2 Farn Wang1;31: Graduate Institute of Ele
troni
 Engineering, National Taiwan University2: Department of Computer S
ien
es, University of Liverpool3: Department of Ele
tri
al Engineering, National Taiwan UniversityAbstra
t. We propose a logi
 for the de�nition of the
ollaborative power ofgroups of agents to enfor
e di�erent temporal obje
tives. The resulting tempo-ral
ooperation logi
 (TCL) extends ATL by allowing for su

essive de�nition ofstrategies for agents and agen
ies. Di�erent to previous logi
s with similar aims,our extension
uts a �ne line between extending the power and maintaining a low
omplexity: model
he
king TCL senten
es is EXPTIME
omplete in the logi
,and �xed parameter tra
table for spe
i�
ations of bounded size. This advan
e-ment over nonelementary logi
s is bought by disallowing a too
lose entanglementbetween
ooperation and
ompetition. We show how allowing su
h an entangle-ment immediately leads to a nonelementary
omplexity. We have implemented amodel
he
ker for the logi
 and shown the feasibility of model
he
king on a fewben
hmarks.1 Introdu
tionWhile the veri�
ation of traditional linear and bran
hing time logi
s like LTL, CTL,and CTL* [17, 8℄ has been redu
ed to (repeated) rea
hability [11, 13℄, the satis�ability
he
king and synthesis problem has been tightly linked with game theory ever sin
e theseminal works of Bü
hi and Landweber [5, 4℄. With the introdu
tion of alternating timelogi
 (ATL) by Alur, Henzinger, and Kupferman [1℄ and in automata based �-
al
ulusmodel-
he
king (e.g., [22℄), games have entered into the veri�
ation the
orre
tness ofrea
tive systems. With game theoreti

hallenges moving into the fo
us of resear
hersstudying the spe
i�
ation and design of rea
tive systems, traditional problems of multi-player games are repla
ing the former distin
tion between an adversarial environmentand a supportive system. Instead, we have groups of players that
ooperate on someobje
tives while
ompeting on others.For parti
ular properties, the intuition that some players represent the system whileother players represent the environment is, however, still useful. Following this intuition,the system wins the game in an exe
ution (or a play in the jargon of game theory) if thesystem spe
i�
ation is ful�lled along it, and it wins the game if it
an for
e a winningplay. System design as a whole for spe
i�
ations in game logi
s
an rather be
omparedto designing a game board and to show that the respe
tive group of players (or: agen
y)has the
oalition power required by the system spe
i�
ation.There are various established game-based spe
i�
ation languages, in
luding ATL,ATL�, the alternating �-
al
ulus (AMC), and game logi
 (GL) [1℄, strategy logi
s [7, 9,15, 14℄,
oordination logi
 [10℄, sto
hasti
 game logi
 [3℄, and basi
 strategy intera
tion

logi
 (BSIL) [21℄ for the spe
i�
ation of the interplay in open systems. Ea
h languagealso
omes with a veri�
ation algorithm that determines whether a winning strategyfor the system exists. However, there is a gap between the available te
hniques and thes
alability required for industrial appli
ations. Frankly speaking, none of the languagesabove represents, in our view, a proper
ombination of expressiveness for
lose intera
tionamong agent strategies and e�
ien
y for the veri�
ation or refutation of
omplian
e witha spe
i�
ation. On one hand, logi
s like ATL, ATL�, AMC, and GL [1℄ allow us to spe
ifythe
ollaborative power of groups of players to enfor
e a
ommon obje
tive. This fallsshort from spe
ifying even the simple properties in a typi
al game. For example, it wasshown in [21℄ that ATL, ATL�, AMC, and GL [1℄
annot express that the same strategyof a banking system must allow the
lients both, to withdraw and to deposit money. Thisis arguably a severe restri
tion when reasoning about real-world problems.To solve the expressiveness problem in the above example, strategy logi
s (SL) wereproposed in [3, 7, 15, 14℄. They allow for the �exible quanti�
ation over strategies in logi
formulas. However, their veri�
ation
omplexity is prohibitively high and has inhibitedpra
ti
al appli
ation.A previous attempt to tame the
omplexity of strategy intera
tion [21℄, on the otherhand, results in a full temporalization. This leads to severe restri
tions in the entangle-ment between temporal operators and strategy binding and thus prevents, for example,reasoning about Nash equilibria.We thus propose to adapt the logi
 in [21℄ to a new temporal logi

alled temporal
ooperation logi
 (TCL) for this purpose. Let us introdu
e TCL informaly on a gameamong three prisoners.Example 1. Iterated prisoners' dilemma Inspired by the famous prisoners' dilemma,we
onsider a model where three suspe
ts, who are initially in
ustody, are interrogated.In our simpli�ed version, they play in turns (rather than
on
urrently), and have the
hoi
es to either admit or deny the
harges made against them. If all deny, they will bereleased based on la
k of eviden
e.However, a suspe
t may de
ide to
ollaborate with the poli
e and betray her peers. Asole
ollaborator will be a
quited as a
rown witness, while her peers will be senten
ed.But if two or more suspe
ts
ollaborate with the poli
e, all will be senten
ed.In an iterated prisoners' dilemma, the interplay
an
ontinue up to an unboundednumber of times. Su
h a game is very useful in modeling
ollaboration and
ompetitionin networks. For example, a strategy in prisoners' dilemma is ni
e if it does not suggestbetrayal initially and only suggests betrayal if, in the previous round, another prisonerbetrayed [2℄. The following TCL senten
e refers to ni
e strategies of Prisoner 1.h1i�((h+i
 :betray1) _Wa6=1 betraya) (A)hai is a strategy quanti�er (SQ), whi
h states that there exists a strategy of Prisoner 1to a
hieve her temporal goal. h+i is a strategy intera
tion quanti�er (SIQ) that inheritsthe strategy from its parent formula. Proposition betrayi is an atomi
 proposition forthe betrayal of prisoner i at the present state. Similarly, we
an re�e
t more involvedstrategies, su
h as `Prisoner 2 will always betray when she does not have the power tofor
e Player 1 to always play ni
e.'h2i((h+i�betray2) _ h+i�((h+i
 :betray1) _Wa6=1 betraya)) (B)2

Similar properties
an be used to spe
ify forgiving1 or other related strategies [2℄. Aforgiving strategy of Prisoner 1 is re�e
ted by the following TCL property.h1i�((h+i
 :betray1) ^Wa6=1 betraya) (C)We
an also reason about the existen
e of Prisoner 2's strategy that avoid betrayal ifPrisoner 1
an be unforgiving under this strategy.h2i((h+i�:betray2) _ h+1i�((h+i
 :betray1) ^Wa6=1 betraya)) (D)As
an be seen, properties like (B) and (D) are relevant in network environment whereplays
an be extended round by round without termination. Every agent may tra
kea
h others' re
ords to de
ide whether or not to
ooperate. Su
h a property
annotbe expressed in ATL�, GL, AMC, or BSIL. While it
an be expressed with SL, theveri�
ation
omplexity of SL is prohibitive.In [21℄, SIQs
an neither override or revoke strategies assigned by the SQ or SIQs inwhose s
ope they are. Consequently, BSIL
annot express deterministi
 Nash equilibria.To over
ome this restri
tion, we introdu
e a strategy reset operator that revokes previousstrategy assignments.Let jaila be a proposition, whi
h says that for prisoner a in jail. In TCL,h1; 2; 3iVa2[1;3℄ �(h+;i�:jaila) _ h�ai�jaila� (E)requires that no agent stays in jail inde�nitely, if she
an avoid it under the
urrentstrategies of the remaining prisoners. The SIQ h�ai revokes the binding of the (singletonagen
y that
ontains only) agent a to her strategy.In this work, we establish that TCL is in
omparable with ATL�, GL, and AMCin expressiveness. Although strategy logi
s proposed in [3, 7, 9, 15℄ subsume TCL withtheir �exible quanti�
ation of strategies and binding to strategy variables, their model-
he
king
omplexity are all doubly exponential time hard. In
ontrast, TCL enjoys anEXPTIME-
omplete model-
he
king
omplexity and �xed parameter tra
tability whenusing the length of the formula as parameter, as well as 2EXPTIME
ompleteness ofthe TCL satis�ability problem for turn-based game graphs. TCL thus provides a betterbalan
e between expressiveness and
omplexity / e�
ien
y
onsiderations than ATL�,GL [1℄, and SL [7, 15, 14℄. Given the expressive power as exempli�ed by the spe
i�
ationsfrom above, TCL
an be viewed as an expressive yet inexpensive sub
lass of SL [15, 14℄.Organization or the Paper. Se
tion 2 explains turn-based game graphs for the de-s
ription of multi-agent systems and presents the syntax and semanti
s of TCL. Se
tion 3dis
usses the expressiveness of TCL, establishing that CTL, ATL, LTL, and CTL*
anbe viewed as synta
ti
 fragments of TCL and show that TCL is more expressive thanany of these logi
s while in
omparable with ATL�, AMC, and GL [1℄ in expressiveness,and dis
uss the e�e
t of a mild extension of TCL. In the following se
tions, we developan automata based model-
he
king algorithm and establish the EXPTIME-
ompletenessand 2EXPTIME-
ompleteness of the TCL model-
he
king and satis�ability problem, re-spe
tively. Finally, we have implement a model
he
ker and validated the feasibility ofusing TCL on a set of ben
hmarks.1 A strategy is forgiving if it does not always punish betrayal in the previous round.3

2 System Models and TCL2.1 Turn-based game graphsA turn-based game is played by a �nite number m of agents, indexed 1 through m. Agame is a tuple G = hm;Q; r; !; P; �; Ei, where� Parameter m is the number of agents in the game.� Q is the set of states and r 2 Q is the initial state (or root) of G.� ! : Q 7! [1;m℄ is a fun
tion that spe
i�es the owner of ea
h state. Only the ownerof a state makes
hoi
es at the state.� P is a �nite set of atomi
 propositions.� � : Q 7! 2P is a proposition labeling fun
tion.� E � Q�Q is the set of transitions.For ease of notation, we denote with Qa = fq 2 Q j !(q) = ag the states owned by anagent a.In Figure 1, we have the graphi
al representation of a turn-based game graph. The
w0fqgu0fpg ; w;v;u
 belongs to Agent 1 and � belongs to Agent 2.Fig. 1. A turn-based game graphovals and squares represent states while the ar
s represent state transitions. We also putdown the � values inside the
orresponding states.For
onvenien
e, in the remaining part of the manus
ript, we assume that we arealways in the
ontext of a given game graph G = hm;Q; r; !;P ; �; Ei. Thus, when wewrite Q; r; !;P ; �, and E , we respe
tively refer to the
omponents Q, r, !, P , �, and Eof this G.A play � is an in�nite path q0q1 : : : in G su
h that, for every k 2 N, (qk; qk+1) 2 E .� is initial if q0 = r. For every k � 0, we let �(k) denote qk. Also, given h � k, we let�[h; k℄ denote �(h) : : : �(k) and �[h;1) denote the in�nite tail of � from �(h).A play pre�x is a �nite segment of a play from the beginning of the play. Given a playpre�x � = q0q1 : : : qn, j�j = n+1 denotes the length of the pre�x. Given a k 2 [0; j�j�1℄,we let �(k) = qk. For
onvenien
e, we use last(�) to denote the last state in �, i.e.,�(j�j � 1).For an agent a 2 [1;m℄, a strategy � for a is a fun
tion from Q�Qa to Q su
h thatfor every � 2 Q�Qa, �(�) 2 Q with �last(�); �(�)� 2 E .An agen
y A of [1;m℄ is a subset of [1;m℄. In a short hand notation, we often dropthe
urly bra
kets in the set notation, in parti
ular for singleton and empty sets. Forexample, �1; 3; 4� is a short hand for f1; 3; 4g.4

A play � is
ompatible with a strategy �a of an agent a 2 [1;m℄ i�, for every k 2 N,!(�(k)) = a implies �(k + 1) = �(�[0::k℄).2.2 TCL SyntaxA TCL formula � is
onstru
ted with the following three syntax rules.� ::= p j :�1 j �1 _ �2 j hAi ::= �1 j 1 _ 2 j 1 ^ 2 j h+Ai 1 j h+Ai
 1 j h+Ai�1U 1 j h+Ai 1R�1j h�Ai 1 j h�Ai
 1 j h�Ai�1U 1 j h�Ai 1R�1� ::= �1 j �1 _ �2 j �1 ^ �2 j h+i
 �1 j h+i�1U�2 j h+i�1R�2j h�Ai
 �1 j h�Ai�1U�2 j h�Ai�1R�2Here p is an atomi
 proposition in P and A � f1; : : : ;mg is an agen
y. Property hAi 1 isan (existential) strategy quanti�
ation (SQ) spe
ifying that there exist strategies of theagents in A that make all plays satisfy 1. Property h+Ai 1 is an (existential) strategyintera
tion quanti�
ation (SIQ) and
an only o

ur bound by an SQ. Intuitively, h+Ai 1means that there exist strategies of the agents in A that work with the strategies de
laredby the an
estor formulas.`U' is the until operator. The property 1U 2 spe
i�es a play along whi
h 1 is trueuntil 2 be
omes true. Moreover, along the play, 2 must eventually be ful�lled. `R' isthe release operator. Property 1R 2 spe
i�es a play along whi
h either 2 is alwaystrue or 2U(1 ^ 2) is satis�ed. (Release is dual to until: :(�1U�2) , :�2R:�1.)In the following we may use h?Ai to
onveniently denote an SQ or SIQ formula with`?' is empty, `+', or `-'. An SIQ h�Ai is
alled non-trivial if A is not empty, and trivialotherwise.Formulas � are
alled TCL formulas, senten
es, or state formulas. Formulas and �are
alled tree formulas. Note that we stri
tly require that non-trivial strategy intera
tion
annot
ross path modal operators. This restri
tion is important be
ause it o�ers asu�
ient level of lo
ality to e�
iently model-
he
k a system against a TCL property.To illustrate this and to provide a simple extension that o�ers more expressive power tothe
ost of a mu
h higher
omplexity, we informally dis
uss a small extension, extendedTCL (ETCL), where the produ
tion rule of also
ontains : and show that it
an beused to en
ode ATL�, and the realizability problem of prenex QPTL
an be redu
ed toETCL model-
he
king.For
onvenien
e, we also have the following shorthands.true � p _ (:p) false � :true�1 ^ �2 � :((:�1) _ (:�2)) �1) �2 � (:�1) _ �2��1 � trueU�1 ��1 � falseR�1:
 �1 �
:�1 hAi
 1 � hAih+i
 1hAi 1U 2 � hAih+i 1U 2 hAi 1R 2 � hAih+i 1R 2In general, it would also be ni
e to have the universal SQs and SIQs respe
tively asduals of existential SQs and SIQs. Couldn't we add, or en
ode by pushing negationsto state formulas, a property of the form [+A℄ 1, meaning that, for all strategies ofagen
y A, 1 will be ful�lled? In prin
iple, this is indeed no problem, and extending the5

semanti
s would be simple. This logi
 would be equivalent to allowing for negations inthe produ
tion rule of . The problem with this logi
 is that it is too su

in
t. We willbrie�y dis
uss in the following se
tion that model
he
king be
omes nonelementary if weallow for su
h negagtions.From now on, we assume that we are always in the
ontext of a given TCL senten
e.2.3 TCL Semanti
sIn order to prepare the de�nition of a semanti
s for TCL formulas, we start with thede�nition of a semanti
s for senten
es of the form hAi , where does not
ontain anSQs. We
all these formulas primitive TCL formulas.Due to the design of TCL, strategy bindings
an only e�e
tively happen at non-trivial SQs hAi and when a non-trivial SIQ h+Bi is interpreted. To ease referring tothese strategies, we �rst de�ne the bound agen
y of a subformulas � of a TCL senten
e�, denoted bnd(�), as follows.� For state formulas �, bnd(�) = ;.� For state formulas hAi , bnd() = A.� For tree formulas 1 = h+Ai 2, bnd(2) = bnd(1) [A.� For tree formulas 1 = h�Ai 2, bnd(2) = bnd(1)rA.� For all other tree formulas 1 or 2 with = 1OP 2, with OP 2 f^;_;U ;Rg, wehave bnd(1) = bnd() or bnd(2) = bnd(), respe
tively.bnd shows, whi
h agents have strategies assigned to them by an SIQ or SQ. Note thatthis leaves the bnd unde�ned for all state formulas not in the s
ope of an SQ formulas.For
ompleteness, we
ould de�ne bnd as empty in these
ases, but a de�nition will notbe required in the de�nition of the semanti
s.As the introdu
tion of additional strategies through non-trivial SIQ h+Bi is governedby a positive Boolean
ombination, all strategy sele
tions
an be performed
on
urrently.Su
h a design leads us to the
on
ept of strategy s
hemes.A strategy s
heme � is the set of strategies introdu
ed by any non-trivial SQ hAi orSIQ h+Ai. By abuse of notation, we use �[�; a℄ to identify su
h a strategy. Read in thisway, �
an be viewed as a partial fun
tion from subformulas and their bound agen
iesto strategies. Thus, �[�; a℄ is de�ned if a 2 bnd(�) is in the bound agen
y of �.For example, given a strategy s
heme � for a TCL senten
e h1i�((h+2i
p)^h2i�q),the strategy used in � by Agent 1 to enfor
e the whole formula
an be referred to by�[h1i�((h+2i
 p) ^ h2i�q); 1℄but also by �[h+2i
 p; 1℄, while �[h2i�q; 1℄ is unde�ned.We use a simple tree semanti
s for TCL formulas. A (
omputation) tree Tr is obtainedby unravelling G from r and expand the ownership and labelling fun
tions from G to Trin the natural way. Te
hni
ally, we have the following de�nition.De�nition 1. Computation tree A
omputation tree for a turn based game G from astate q, denoted Tq, is the smallest set of play pre�xes that
ontains q and, for all � 2 Tand (last(�); q0) 2 E , �q0 2 T . �The strategy-pruned tree for a tree node �, a strategy s
heme �, and a subformula 1of � from a state q, in symbols Tqh�; �; 1i, is the smallest subset of Tq su
h that:6

� � 2 Tqh�; �; 1i;� for all �0 2 Tqh�; �; 1i with !�(last(�0)� =2 bnd(1) and (last(�0); q0) 2 E , �0q0 2Tqh�; �; 1i;� for all �0 2 Tqh�; �; 1i, a = !�(last(�0)�, and q0 = �[1; a℄(�0) with a 2 bnd(1),�0q0 2 Tqh�; �; 1i.Given a
omputation tree (or a strategy-pruned tree) T and a node � 2 T , for every�q 2 T , we say that �q is a su

essor of � in T . A play � is a limit of T , in symbols� 12 T , if there are in�nitely many pre�xes of � 2 T .We now de�ne the semanti
s of subformulas of primitive TCL formulas indu
tively asfollows. Given the
omputation tree Tq of G, a tree node � 2 Tq, and a strategy s
heme�, we write Tq; �; � j= 1 to denote that Tq satis�es 1 at node � with strategy s
heme�.� For state formulas � other than SQ formulas, we use the state formula semanti
s:Tq; �; � j= � i� G; last(�) j= �, with the usual de�nition.� G; q j= p if, and only if, p 2 �(q),� G; q j= :� if, and only if, G; q 6j= �,� G; q j= �1 _ �2 if, and only if, G; q j= �1 or G; q j= �2, and� G; q j= �1 ^ �2 if, and only if, G; q j= �1 and G; q j= �2.(Note that this allows for using negation for state formulas.)� Tq; �; � j= 1 _ 2 i� Tq ; �; � j= 1 or Tq; �; � j= 2. (These i are no stateformulas.)� Tq; �; � j= 1 ^ 2 i� Tq ; �; � j= 1 and Tq; �; � j= 2.� Tq; �; � j= h�Ai
 i�, for all su

essors �q0 of � in Tqh�; �; h�Ai
 1i, Tq; �q0; � j= .� Tq; �; � j= h�Ai 1U 2 i�, for all limits � 12 Tqh�; �; h�Ai 1U 2i, there is a k �j�j � 1 su
h that Tq; �[0; k℄; � j= 2 and, for all h 2 [j�j � 1; k� 1℄, Tq; �[0; h℄; � j= 1hold.� Tq; �; � j= h�Ai 1R 2 i�, for all limits � 12 Tqh�; �; h�Ai 1R 2i, one of the followingtwo restri
tions are satis�ed.� For all k � j�j � 1, Tq; �[0; k℄; � j= 2.� There is a k � j�j�1 su
h that Tq ; �[0; k℄; � j= 1^ 2, and, for all h 2 [j�j�1; k℄,Tq; �[0; h℄; � j= 2.� Tq; �; � j= h�Ai 1 i� Tq ; �; � j= 1.� G; q j= hAi 1 i� there is a strategy s
heme � su
h that Tq; q; � j= 1.If �1 is a TCL senten
e then we write G j= �1 for G; r j= �1.Note that, while asking for the existen
e of a strategy s
heme refers to all strategiesintrodu
ed by some SQ or SIQ in the TCL senten
e, only the strategies introdu
ed bythe respe
tive SQ and the SIQs in its s
ope are relevant.The simpli
ity of the semanti
s is owed to the fa
t that it su�
es to introdu
e newstrategies at the points where eventualities be
ome true for the �rst time. Thus, theydo not really depend on the position in whi
h they are invoked and we
an guess themup-front. (Or, similarly, together with the points on the unravelling where they are in-voked.) This is possible, simply be
ause the validity of state formulas (and hen
e of TCLsenten
es)
annot depend on the validity of the left hand side of an until (or the righthand side of a release) after the �rst time it has been satis�ed.7

3 Expressiveness of TCLNote that TCL is not a super
lass of BSIL sin
e BSIL allows for negation in front of SIQswhile TCL does not. However, by examining the proofs in [21℄ for the inexpressibilityof BSIL properties by ATL�, GL, and AMC, we �nd that the BSIL properties used inthe proof is in fa
t also a property of TCL. This observation leads us to the
on
lusionthat there are properties expressible in TCL but
annot be expressed in ATL�, GL, andAMC.Lemma 1. There are TCL properties that
annot be expressed in any of ATL�, GL, andAMC. �TCL is, in fa
t, not only a powerful logi
, but also
ontains important logi
s eitheras synta
ti
al fragments or
an embed them in a straight forward way. ATL and CTL
an be viewed as synta
ti
 fragments of TCL.But it is also simple to embed LTL and even CTL�. We start with 9LTL, the lessused variant where one is
ontent if one path satis�es the formula. We then translate anLTL formula, whi
h we assume w.l.o.g. to be in negative normal form (negations onlyin front of atomi
 propositions). Then �there is a path that satis�es �� is equivalent toh1; : : : ;mib�, where b� is derived from � by repla
ing every o

urren
e of
, U, and R byh+i
, h+iU, and h+iR, respe
tively.The simple translation is possible be
ause the formula b is de-fa
to interpreted overa path, the path formed by the joint strategy of the agen
y [1;m℄. The h+i operatorswe have added have no e�e
t on the semanti
s in su
h a
ase, just as a CTL formula
an be interpreted as the LTL formula obtained by deleting all path quanti�ers wheninterpreted over a word.Consequently, we have the expe
ted semanti
s for 8LTL: �all paths satisfy �� isequivalent to :hAi
:�, where :� is assumed to be re-written in negative normal form.The en
oding of 9LTL and 8LTL
an easily be extended to the en
oding of CTL�.Lemma 2. TCL is more expressive than CTL� and LTL. �Note that this en
oding does not extend to ATL�. The following example shows anATL� property that
annot be expressed with TCL.h1i((�p) _�q)Note that this is di�erent from ATL property (h1i�p)_h1i�q or TCL property h1i((h+i�p) _ h+i�q).In fa
t, the proofs and examples in [21℄
an also be applied in this work to show thatthere are properties of ATL� (or GL, or AMC) that
annot be expressed with TCL. Thisleads to the following lemma.Lemma 3. TCL is in
omparable in expressiveness with any of ATL�, GL, and AMC.�Note, however, that allowing for a negation in the de�nition of would
hange thesituation. Then an ATL� formula hAi (assuming for the sake of simpli
ity that is anLTL formula), would be
ome hAi:h+[1;m℄rAi
: in the extended version of TCL. Thetranslation extends to full ATL�, but this example also demonstrates why negation is8

banned: even without nesting, we
an, by en
oding ATL�, en
ode a 2EXPTIME
ompletemodel-
he
king problem, losing the appealing tra
tability of our logi
.In fa
t, it is easy to redu
e the realisability problem of prenex QPTL, and hen
e anon-elementary problem, to the model-
he
king problem of this extended version of TCL:using the following game stru
ture, we
an en
ode the realisability of a prenex QPTLformula with n � 1 variables, for the sake of simpli
ity of the form 8p29p38p4 : : :9pn�,where p2; : : : ; pn are all propositions o

urring in �. We redu
e this to the model-
he
kingof the formula �0 = h1i:h+2i:h+3i:h+4i: : : ::h+ni(� ^ h+i�p1);where �
an be obtained from b� by repla
ing� every literal pi by h�1ih+1i
 (pi ^ h+i
 pi), and� every literal :pi by h�1ih+1i
 (pi ^ h+i
 :pi).(While these formulas are te
hni
ally not extended TCL formulas be
ause h+ii 1is not part of the produ
tion rule of , h+ii 1
an be used as an abbreviation forh+iifalseU 1.)Che
king satis�ability of � is is equivalent to model-
he
king �0 on the game shownin Figure 2. The game has n + 1 nodes, agents, and atomi
 propositions. The nodes inFigure 2 are labeled with the agent that owned the nodes, and the atomi
 propositionpi is true exa
tly in node i. From his state, Agent 1
an move to any other state, whileall other agents
an either stay in their state or return to the state owned by Agent 1.The game starts in the node owned by Agent 1, and in order to
omply with thespe
i�
ation, the outermost strategy pro�le
hosen by Agent 1 must be to stay in theinitial state for ever. � is
hosen to align the truth of pi at position j 2 N with thede
ision that Agent i makes on the history 1ji: true
orresponds to staying in i and falsewith returning to 1. 12 3 4 5 � � � nFig. 2. The turn-based game graph from the non-elementary hardness proof of extended TCL.It is not hard to develop a mat
hing upper bound for the model-
he
king of extendedTCL.4 Complexity of TCLIn this se
tion, we show that model-
he
king TCL formulas is EXPTIME-
omplete inthe formula and P-
omplete in the model (and for �xed formulas), while the satis�abilityproblem is 2EXPTIME-
omplete. As the proof of in
lusion of the sati�ability problemin 2EXPTIME builds on the proof of the in
lusion of model-
he
king in EXPTIME, we9

start with an outline of the EXPTIME hardness argument for the TCL model
he
k-ing problem and then
ontinue with des
ribing EXPTIME and 2EXPTIME de
isionpro
edures for the TCL model and satis�ability
he
king problem, respe
tively. 2EXP-TIME hardness for TCL satis�ability is implied by the in
lusion of CTL* as a de-fa
tosub-language [20℄.We show EXPTIME hardness by a redu
tion from the PEEK-G6 [19℄ game. An in-stan
e of PEEK-G6
onsists of two disjoint sets of boolean variables, P1 = fp1; : : : ; phg(owned by a safety agent) and P2 = fph+1; : : : ; ph+kg (owned by a rea
hability agent),a subset I � P1 [P2 of them that are initially true, and a boolean formula
 in CNFover P1 [P2 that the rea
hability agent wants to be
ome true eventually. The game isplayed in turns between the safety and the rea
hability agent (say, with the safety agentmoving �rst), and ea
h player
an
hange the truth value of one of his or her variablesin his/her turn.Lemma 4. TCL model-
he
king is EXPTIME hard for primitive TCL formulas.Proof. To redu
e determining the winner of an instan
e of a PEEK-G6 game to TCLmodel-
he
king, we introdu
e a 2-agent game G = h2;Q; r; !;P ; �; Ei as shown in Figure3, where Agent 1 (he, for
onvenien
e) represents the safety agent while Agent 2 (she, for
onvenien
e) represents the rea
hability agent. th+k and fh+k are the only states ownedby Agent 2.
r f1t1 f2t2 f3t3 � � � fh+kth+k 1...kFig. 3. The turn-based game graph from the EXPTIME hardness proof.The game is played in rounds, and a round starts ea
h time the game is at state r.If the game goes through ti this is identi�ed with the variable pi to be true. Likewise,going through fi is identi�ed with the variable being false.It is simple to write a TCL spe
i�
ation that for
es the safety player to toggle thevalue of exa
tly one of his variable in ea
h round, and to toggle the value of the variableph+i of the rea
hability player de�ned by the state i she has previously moved to, whilemaintaining all other variable values. Requiring additionally that the safety agent
anguarantee that the boolean formula is never satis�ed provides the redu
tion. �The details of the
onstru
tion are moved to Appendix A. It is interesting that agame with only two agents su�
es for the proof. Two agents are also su�
ient to showP hardness for �xed formulas, as solving a rea
hability problem for AND-OR graphs [12℄naturally redu
es to showing h1i�p. 10

Lemma 5. TCL model-
he
king for �xed formulas is P hard for primitive TCL formu-las. �In order to establish in
lusion in EXPTIME and P, respe
tively, we use an automatabased argument.Theorem 1. The model-
he
king problem of TCL formulas against turn-based gamegraphs is EXPTIME-
omplete, and P-
omplete for �xed formulas.Proof. We �rst show the
laim for primitive TCL formulas � = hAi .To keep the proof simple, we �rst
onsider a tree automaton U that
he
ks thea

eptan
e of for a given strategy s
heme �. That is, U
he
ks if Tq+; q; � j= underthe assumption that both � and the truth values for the subformulas starting with ah�Bi are en
oded in the nodes of Tq+.Su
h an automaton would merely have to run simple
onsisten
y
he
ks, and it issimple to
onstru
t a suitable universal weak tree automaton U , whi
h is polynomial inthe size of �. From there it is simple to infer a deterministi
 Bü
hi tree automaton D,whi
h is exponential in the weak universal tree automaton [16℄.It is then a trivial step (proje
tion) to guess � and the truth annotation of thesubformulas on the �y, turning the deterministi
 Bü
hi tree automaton D that requiresa
orre
t annotation into a nondeterministi
 Bü
hi automaton N of the same size that
he
ks G; q j= �. A

eptan
e
an be
he
ked in time quadrati
 in the size of the produ
tof N and G [6℄.To take the step to full TCL, we
an model
he
k the truth of primitive TCL formulasand then use the result of this model
he
king instead of the respe
tive subformula.Hardness is inherited from Lemmata 4 and 5. �Note that this argument shows more: the
omplexity of TCL model
he
king for �xedformulas does not depend on the formula. It su�
es to solve a number of Bü
hi games,where both the size of the game and the number of games to be played is linear in G.Corollary 1. Viewing the size of a TCL senten
e as a parameter, TCL model
he
kingis �xed parameter tra
table.The automata
onstru
tion from the proof of Theorem 1 extends to a
onstru
tionfor satis�ability
he
king.Theorem 2. The TCL satis�ability problem is 2EXPTIME-
omplete.Proof. As usual, it is
onvenient to
onstru
t an enri
hed model that
ontains the truthof all subformulas for a TCL senten
e � that start with an SQ.In a �rst step, we
onstru
t an alternating tree automaton A that re
ognises theenri
hed models of a spe
i�
ation. This is quite simple: A merely has to
he
k that theboolean
ombination of SQ formulas that forms the TCL senten
e � is satis�ed and thatthe truth assignment of ea
h SQ is
onsistent. But this is simple, as we
an use the treeautomaton N�0 from the proof for Theorem 1 to validate the
laim that a subformula �0of � that starts with an SQ is true, and its dual to validate that it is false. Hen
e, su
h11

an automaton has only two states more than the sum of the states of the individual N�0 .In parti
ular, it is exponential in �.For the resulting alternating automaton, we
an again invoke the simulation theorem[16℄ to
onstru
t an equivalent nondeterministi
 parity automaton, whi
h has doublyexponentially many states in � (and whose transition table is doubly exponential in �)and whose
olours are exponential in . Solving the emptiness game of this automatonredu
es to solving a parity game, whi
h
an be done in time doubly exponential in ,e.g., using [18℄.Hardness is inherited from CTL� satis�ability
he
king [20℄. �5 Implementation and ExperimentAs a proof of
on
ept, we have implemented a model-
he
ker, t
l, in C++. t
l a

eptsmodels
omposed of extended automata that
ommuni
ate with syn
hronizers and sharedvariables, with an expli
it shared variable turn that spe
i�es the turn of agents at a state.A turn-based game graph is then
onstru
ted as the produ
t of the extended automata.Su
h an input format fa
ilitates modular des
ription of the intera
tion among the agents.The implementation builds on a prototype for a PSPACE logi
 [21℄. The extension ispossible be
ause we
an redu
e the
omplexity of TCL to PSPACE by simply restri
tingthe number of operators in the � produ
tion rules in the s
ope of any SQ to be logarithmi
in the size of the TCL senten
e. We show this for primitive TCL senten
es.Lemma 6. Model
he
king
an be done in spa
e bilinear in the size of the turn basedgame stru
ture and the state and tree formulas that are produ
ed using the produ
tionrules and exponentially only in the number of � produ
ed tree formulas.Proof. We have seen that, for a primitive TCL senten
e �, we
an use a single strategys
heme and only have to refer to the �rst position that the right hand side of an untilor the left hand side of a release operator is true. Moreover, it su�
es to guess just aminimal set of positions where tree formulas are true. In parti
ular, the left hand sideof a release, the right hand side of an until, and a next formula are then marked trueexa
tly on
e, and the respe
tive release and until formulas never need to be marked astrue after su
h an event.We
an therefor use an alternating algorithm that guesses su
h minimal truth
laims.The algorithm alternates between a veri�er who guesses a truth assignment and the
urrent de
isions of the strategy s
heme, and a falsi�er, who guesses the dire
tion intowhi
h to expand the path.It is now easy to see that they will produ
e an in�nite path in this way, and onthis path ea
h obligation referring to a tree subformula from a produ
tion rule
anappear only on a
ontinuous interval. In parti
ular, the points where these obligations
hange, is linear in the size of �. However, it also needs to tra
k the truth value of treeformulas produ
ed by the � produ
tion rule. (If there are multiple untilities introdu
edby � produ
tion rules, this also in
ludes a marker that distinguishes a leading until,whi
h is
hanged in a round robin fashion when the leading untility is ful�lled.)The number of possible assignments is then exponential in the number of tree sub-formulas from � produ
tion rules. Note that � formulas
an be exempt from this rule:12

they are monotonous and hen
e in
ur a small impa
t similar to the formulas introdu
edusing the produ
tion rule.Hen
e, if jGj denotes the size of the turn based game and k the number of temporaloperators (di�erent to �) introdu
ed by � produ
tion rules, we end up in a
y
le ifthere is no
hange in the truth assignment temporal operators that are introdu
ed by produ
tion rules or � operators we rea
h a
y
le within jGj �k �2k steps. Hen
e, we rea
ha
y
le in a number of steps that is linear in jGj and the size of �, and exponential onlyin the size of �-produ
ed temporal operators (di�erent to �).Upon rea
hing a
y
le, is su�
es to
he
k if the
y
le is a

epting. (No standingobligation by an until.) �The model-
he
ker uses a sta
k to expli
itly enumerate all paths of all tree tops withdepth pres
ribed by Lemma 6. The tool
an be downloaded from Sour
eforge at proje
tREDLIB at: http://sour
eforge.net/proje
ts/redlib/.We use the parameterized models of the iterated prisoners' dilemma as our ben
h-marks to
he
k the performan
e of our implementation. A brief explanation of the models
an be found in the introdu
tion. The unique parameter to the models are the numberof prisoners m. There is also a poli
eman in the models. We built a turn-based gamegraph for ea
h values of m in the experiment. The parameterization helps us in observinghow our algorithm and implementation s
ale to model and formula sizes. To simplify the
onstru
tion of the state-spa
e representation, we assume that in ea
h iteration, the pris-oners make their de
isions in a �xed order. After all prisoners have made their de
isionsin an iteration, the poli
eman make his de
ision and then the whole game moves to thenext iteration.We have used seven ben
hmarks in our experiments. The �rst �ve ben
hmarks aretaken from the examples (A) through (E) used in the introdu
tion to introdu
e TCL.Ben
hmarks (F) and (G) are the following two properties, taken from [21℄.� Property (F) spe
i�es that all prisoners ex
ept Prisoner 1
an
ollaborate to releasePrisoner 1 and let Prisoner 1 de
ide their fate.h2; : : : ;mi�(h+i�:jail1) ^Vi2f2;:::mg(h+1i�:jaili) ^ (h+1i�jaili� (F)� Property (G) spe
i�es that Prisoner 1 has a strategy to put all other prisoners in jailwhile leaving her fate to them.h1i�(Vi2f2;:::mgh+i�jaili) ^ (h2; : : : ;mi�:jail1) ^ h2; : : : ;mi�jail1� (G)For these ben
hmarks, we have
olle
ted the performan
e data for various parametervalues in Table 1. For small models, the memory usage is dominated by the normaloverhead, su
h as the representation of variable tables, state-transition tables, formulastru
tures, et
. The data shows that our prototype
an handle the various ben
hmarks,and s
ales well on �ve of the seven ben
hmarks. Ignoring the overhead, it also shows theexponential growth. Note, however, that the models are growing exponentially, too, andwe assume to be the main
ause of the exponential growth of the response time.6 Con
lusionTCL is a promising logi
 for the spe
i�
ation of groups of agents who balan
e theirstrategies in order to
ooperate with di�erent partners to a
hieve di�erent obje
tives. It13

Table 1. Performan
e data of model-
he
king the TCL fragmentPPPPPPPproperties m 2 3 4 5 6 7 8 9 10(A) 0.71s 0.94s 5.41s 66.3s 945s >1000s163M 165M 185M 350M 1307M(B) 0.50s 0.52s 0.61s 0.71s 1.11s 1.62s 5.77s 20.9s 68.1s163M 163M 164M 165M 168M 176M 214M 270M 376M(C) 0.51s 0.51s 0.6s 0.82s 1.01s 1.81s 5.54s 18.2s 48.3s163M 163M 164M 165M 168M 176M 200M 241M 318M(D) 0.5s 0.51s 0.57s 0.74s 1.01s 1.79s 7.41s 33.8s 141s163M 163M 164M 165M 168M 175M 232M 312M 430M(E) 0.51s 0.66s 19.1s >1000s163M 164M 194M(F) 0.51s 0.53s 0.61s 0.71s 1.01s 1.70s 5.38s 15.2s 53.7s163M 163M 163M 165M 168M 175M 202M 243M 295M(G) 0.52s 0.52s 0.65s 0.72s 1.03s 1.85s 4.86s 16.1s 93.5s163M 163M 164M 165M 169M 177M 189M 208M 235Ms: se
onds; M: megabytes.The models are with 1 poli
eman and m prisoners.The experiment was
arried out on an Intel i5 2.4G notebook with 2
ores and 4G memoryrunning ubuntu Linux version 11.10.is an inexpensive logi
 in many ways. First and foremost, it is �xed parameter tra
table.Following folklore, spe
i�
ations are tiny while models are huge. In this situation, �xedparameter tra
tability is a very important property, in parti
ular as it is a
hieved by anatural and simple de
ision pro
edure, whi
h is merely exponential in the formula.This appealing property is not bought with inexpressivity. In parti
ular, the populartemporal logi
s LTL, CTL, ATL, and CTL� are
ontained as de-fa
to sublogi
s. Conse-quently, it
an be ex
ellently used to extend existing spe
i�
ations in these languages,without the need to develop
ompetitive models.The appli
ability is underlined by
ompelling data from our ben
hmarks. This is inspite of the fa
t that our implementation is rather based on an ad-ho
 extension of anexisting algorithm for a di�erent logi
, and neither fully exploit the low
omplexity, noris a fully symboli
 implementation. It will be interesting to see by whi
h extent symboli
representation like BDDs will enhan
e the performan
e and how an automata based toolwould fare.Referen
es1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logi
. Journal ofthe ACM (JACM), 49(5):672�713, September 2002.2. R. Axelrod. E�e
tive
hoi
e in the prisoner's dilemma. Journal of
on�i
t resolution,24(1):3�25, 1980. 14

3. C. Baier, T. Brázdil, M. Gröser, and A. Ku
era. Sto
hasti
 game logi
. In QEST, pages227�236. IEEE Computer So
iety, 2007.4. J. Bü
hi and L. Landweber. De�nability in th emonadi
 se
ond-order theory of su

essor.Journal of Symboli
 Logi
, 34(2):166�170, 1969.5. J. Bü
hi and L. Landweber. Solving sequential
onditions by �nite-state strategies. Trans.AMS, 138(4):295�311, 1969.6. K. Chatterjee and M. Henzinger. An o(n2) time algorithm for alternating bü
hi games. InPro
eedings of the Twenty-Third Annual ACM-SIAM Symposium on Dis
rete Algorithms(SODA 2012), Kyoto, Japan, January 17-19, 2012, pages 1386�1399. SIAM, 2012.7. K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logi
. Information and Com-putation, 208:677�693, 2010.8. E. M. Clarke and E. A. Emerson. Design and synthesis of syn
hronization skeletons usingbran
hing-time temporal logi
. In Workshop on Logi
 of Programs, volume LNCS 131.Springer-Verlag, 1981.9. A. D. Costa, F. Laroussinie, and N. Markey. Atl with strategy
ontexts: Expressivenessand model
he
king. In IARCS Annual Conferen
e on Foundations of Software Te
hnologyand Theoreti
al Computer S
ien
e (FSTTCS 2010), volume 8 of Leibniz International Pro-
eedings in Informati
s (LIPI
s), pages 120�132. S
hloss Dagstuhl�Leibniz-Zentrum fuerInformatik, 2010.10. B. Finkbeiner and S. S
hewe. Coordination logi
. In CSL, pages 305�319, 2010.11. G. J. Holzmann. The model
he
ker spin. IEEE Trans. Software Eng., 23(5), 1997.12. N. Immerman. Number of quanti�ers is better than number of tape
ells. Journal ofComputer and System S
ien
es, 22(3):65�72, 1981.13. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoreti
 approa
h to bran
hing-time model
he
king. Journal of ACM, 47(2):312�360, 2000.14. F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. What makes atl� de
idable ? ade
idable fragment of strategy logi
. In Con
urren
y theory (CONCUR 2012), volumeLNCS 7454, pages 193�208. Springer-Verlag, 2012.15. F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In IARCS An-nual Conferen
e on Foundations of Software Te
hnology and Theoreti
al Computer S
ien
e(FSTTCS 2010), volume 8 of Leibniz International Pro
eedings in Informati
s (LIPI
s),pages 133�144. S
hloss Dagstuhl�Leibniz-Zentrum fuer Informatik, 2010.16. D. E. Muller and P. E. S
hupp. Simulating alternating tree automata by nondeterministi
automata: new results and new proofs of the theorems of Rabin, M
Naughton and Safra.Theoreti
al Computer S
ien
e, 141(1-2):69�107, 1995.17. A. Pnueli. The temporal logi
 of programs. In 18th annual IEEE-CS Symposium on Foun-dations of Computer S
ien
e, pages 45�57, 1977.18. S. S
hewe. Solving parity games in big steps. In Pro
eedings of the 27th Conferen
e onFoundations of Software Te
hnology and Theoreti
al Computer S
ien
e (FSTTCS 2007),12�14 De
ember, New Delhi, India, volume 4805 of Le
ture Notes in Computer S
ien
e,pages 449�460. Springer-Verlag, 2007.19. L. J. Sto
kmeyer and A. K. Chandra. Provably di�
ult
ombinatorial games. SIAM Journalon Computing (SICOMP), 8(2):151�174, 1979.20. M. Vardi and L. Sto
kmeyer. Improved upper and lower bounds for modal logi
s of pro-grams: Preliminary report. In Pro
eedings of the 17th Annual ACM Symposium on Theoryof Computing (STOC '85), May 6-8, Providen
e, Rhode Island, USA, pages 240�251, 1985.21. F. Wang, C.-H. Huang, and F. Yu. A temporal logi
 for the intera
tion of strategies. In22nd Con
urren
y Theory (CONCUR), volume LNCS 6901. Springer-Verlag, Sept. 2011.22. T. Wilke. Alternating tree automata, parity games, and modal �-
al
ulus. Bulletin of theBelgian Mathemati
al So
iety, 8(2), May 2001.15

APPENDICESA Proof of Lemma 4This se
tion
ontains the details of the redu
tion to PEEK-G6 from the proof of Lemma4. Note that, while PEEK-G6 allows the agents to pass, we disllow it for simpli
ity. Thisis, however, no restri
tion: to simulate passing, we
ould add a single boolean variablefor ea
h agent that does not o

ur in the formula. Passing
an then be identi�ed withtoggling the value of this variable.A.1 Full ProofTo redu
e determining the winner of an instan
e of a PEEK-G6 game to TCL model-
he
king, we introdu
e a 2-agent game G = h2;Q; r; !;P ; �; Ei as shown in Figure 3 withthe following restri
tions. Agent 1 (he, for
onvenien
e) is the safety agent while Agent2 (she, for
onvenien
e) is the rea
hability agent.� Q = fr; t1; : : : ; th+k; f1; : : : ; fh+k; 1; : : : ; kg. Spe
i�
ally, there are two states ti andfi for ea
h variable in P1 [P2.� There are k + 3 atomi
 propositions in P = fs; p;
1; : : : ;
kg.� Initial state r is the only state where s is true (�(q) = fsg i� q = r). For ea
hi 2 [1; h+ k℄, �(ti) = fpg and �(fi) = ;. For the remaining states i 2 [1; k℄, we have�(i) = f
ig.� The state r has two su

essors, t1 and f1 in E . For i < h+k, both ti and fi have twosu

essors, ti+1 and fi+1. th+k and fh+k have k+1 su

essors, 1; : : : ; k, and they allhave one su

essor, r.� th+k and fh+k belong to a rea
hability agent (re
tangular nodes), while all otherstates belong to a safety agent (
ir
ular nodes).Note that :

an be rewritten in DNF by dualising the
 (whi
h is in CNF), that is, byswapping
onjun
tions and disjun
tions and negating the literals.The game is played in rounds. Every time the game is at state r, it enters a new round.Formally, the safety agent makes his moves at states t1; : : : ; th+k�1; f1; : : : ; th+k�1; 1; : : : ; k,and r, while the rea
hability agent makes her moves at states th+k and fh+k. The spe
-i�
ation we provide, however, will require that the safety agent must
hange exa
tly thevariable of the rea
hability agent identi�ed by the state the rea
hability agent has previ-ously moved to. It also for
es the safety agent to make his
hoi
e for the following roundea
h time at state r, and to make it in a way that the value of exa
tly one variable istoggled.For ease of notation we use, for any i 2 N, the formula template h+i
(i) 1 to denotea sequen
e of i su

essive h+i
 followed by subformula 1. Su
h formulas are used toassert that 1 is true in i steps of the game.For this game, we model-
he
k the following formula� def= h1i(�1 ^ h+i�(:s _ (�2 ^ �3 ^ �4))),where �1, �2, �3, and �4 re�e
t the following guarantees:� �1 spe
i�es the
orre
tness of the initial
ondition. Spe
i�
ally,i

�1 def= Vpi2Ih+i
(i) p ^Vpi2P1[P2�Ih+i
(i) :p� At every o

urren
e of r, the game enters a round in whi
h the safety agent maytoggle at most one of p1; : : : ; ph. This is spe
i�ed with �2.�2 def= Wi2[1;h℄ ÆiVj2[1;h℄;j 6=i �j , withÆi def= �(h+i
(i) (p^ h+i
(h+k+2) :p)�_ �(h+i
(i) (:p ^ h+i
(h+k+2) p)� and�i def= �(h+i
(i) (p ^ h+i
(h+k+2) p)� _ �(h+i
(i) (:p ^ h+i
(h+k+2) :p)�.� The rea
hability agent de
lares her
hoi
e for a
hange by sele
ting a state i 2f1; : : : ; kg. Choosing i 2 [1; k℄ means the toggling of ph+i. This is spe
i�ed by �3.�3 def= Vi2[1;k℄ �+i _ ��i with�+i def= (h+i
(h+i)p)^h+i
(h+k+1)�(
i^h+i
(h+i+1):p)_(:
i^h+i
(h+i+1)p)� and��i def= (h+i
(h+i):p)^h+i
(h+k+1)�(
i^h+i
(h+i+1)p)_(:
i^h+i
(h+i+1):p)�.� Globally, at r the formula
 is not satis�ed (using the truth of p in i steps for pi).This is re�e
ted by repla
ing every literal pi in :
 (re
all that :
 is in DNF) byh+i
(i) p and every literal :pi by h+i
(i) :p.The turn taking and the order of the moves are re�e
ted as well as the
ompetitive natureof the game. It is apparent that the safety agent wins the PEEK game if the safety agenthas a strategy s
heme �, and it is easy to translate one into the other.

ii

