arXiv:0907.3019v1 [cs.LO] 17 Jul 2009

Rational Synthesis

Dana Fisman Orna Kupferman Yoad Lustig
Hebrew University and IBM Haifa Hebrew University Rice University

Abstract

Synthesigs the automated construction of a system from its spedificatThe system has to satisfy its
specification in all possible environments. Modern systeften interact with other systems, or agents. Many
times these agents have objectives of their own, other théailtthe system. Thus, it makes sense to model
system environments not as hostile, but as composedtiohal agentsi.e., agents that act to achieve their
own objectives.

We introduce the problem of synthesis in the context of rati@gentsrational synthesisfor short). The
input consists of a temporal-logic formula specifying tlystem and temporal-logic formulas specifying the
objectives of the agents. The outputis an implementdtiofthe system and a profile of strategies, suggesting
a behavior for each of the agents. The output should satisfycbnditions. First, the composition @f with
the strategy profile should satisfy the specification. Sdcthre strategy profile should be an equilibria in the
sense that, in view of their objectives, agents have no iieeto deviate from the strategies assigned to them.
We solve the rational-synthesis problem for various defing of equilibria studied in game theory. We also
consider the multi-valued case in which the objectives efdijistem and the agents are still temporal logic
formulas, but involve payoffs from a finite lattice.

1 Introduction

Synthesiss the automated construction of a system from its spedibica® he basic idea is simple and appealing:
instead of developing a system and verifying that it adhterés specification, we would like to have an automated
procedure that, given a specification, constructs a sydiatrig correct by construction. The first formulation of
synthesis goes back to Chur¢h [10]; the modern approachntbesis was initiated by Pnueli and Rosner, who
introduced LTL (linear temporal logic) synthesis [32]. IMlLsynthesis, the specification is given in LTL and the
output is a reactive system modeled by a finite-state tramesdMuch of today’s research in formal verification
is aimed at increasing the practicality of automated sysishend it addresses challenges like simplification of
synthesis algorithms [19], compositionality and modiyafil 7,[23], extensions of the basic setting to richer ones
(c.f., synthesis of distributed systems, concurrent systeand on-line algorithms&|[L] 2,118,/25]), and extensions
of the underline techniques to further applications (atoenated control and repair [14,]33]).

In synthesis, there is a distinction between system outmastrolled by the system, and system inputs,
controlled by the environment. A system should be able teswith all values of the input signals, while setting
the output signals to desired values|[32]. Therefore, thantification structure on input and output signals is
different. Input signals are universally quantified whilgmut signals are existentially quantified.

Modern systems often interact with other systems. For el@ntipe clients interacting with a server are by
themselves distinct entities (which we call agents) andrary times implemented by systems. In the traditional
approach to synthesis, the way in which the environmentrisposed of its underlying agents is abstracted. In
particular, the agents can be seen as if their only objeiite@conspire to fail the system. Hence the term “hostile
environment” that is traditionally used in the context ohthesis. In real life, however, many times agents have
goals of their own, other than to fail the system. The apgrdaken in the field of algorithmic game theory [29]
is to assume that agents interacting with a computatiorsiésy argational, i.e., agents act to achieve their own
goals. Assuming agents rationality is a restriction on tenés behavior and is therefore equivalent to restricting
the universal quantification on the environment. Thus, tilewing question arises: can system synthesizers
capitalize on the rationality and goals of agents intenactvith the system?

Consider for example a peer-to-peer network with only twerdg. Each agent is interested in downloading
infinitely often, but has no incentive to upload. In ordennewer, for one agent to download, the other agent

http://arxiv.org/abs/0907.3019v1

must upload. More formally, for eache {0,1}, Agenti controls the bita:; (“Agent i tries to upload”) andi;
(“Agent : tries to download”). The objective of Agents always eventually (d; A\ u;—;). Assume that we are
asked to synthesize the protocol for Agent 0. It is not hasktthat the objective of Agent 0 depends on his input
signal, implying he cannot ensure his objective in the tradlal synthesis sense. On the other hand, suppose that
Agent 0, who is aware of the objective of Agent 1, declaresfatholws the followingTIT FOR TAT strategy: | will
upload at the first time step, and from that point onward | véiliprocate the actions of Agent 1. Formally, this
amounts to initially settingy to True and for every time: > 0, settingug at timek to equalu; attimek — 1. It

is not hard to see that, against this strategy, Agent 1 canesrdure his objective by satisfying Agent 0 objective
as well. Thus, assuming Agent 1 acts rationally, Agent O ceruee his objective.

The example above demonstrates that a synthesizer caalizapiin the rationality of the agents that constitute
its environment. When synthesizing a protocol for raticagdnts, we still have no control on their actions. We
would like, however, to generate a strategy for each agestrétegy profil¢ such that once the strategy profile
is given to the agents, then a rational agent would have rentive to deviate from the strategy suggested to
him and would follow it. Such a strategy profile is called imgatheory aolutionto the game. Accordingly, the
rational synthesigroblem gets as input temporal-logic formulas specifyimgdbjectivep, of the system and the
objectivesy, . . ., v, Of the agents that constitute the environment. The desugalibis a system and a strategy
profile for the agents such that the following hold. Firstlifagents adhere to their strategies, then the result of
the interaction of the system and the agents satigfiesSecond, once the system is in place, and the agent are
playing a game among themselves, the strategy profile isuti@oko this gam.

A well known solution concept idNash equilibrium[27]. A strategy profile is in Nash equilibrium if no
agent has an incentive to deviate from his assigned strgtegyided that the other agents adhere to the strategies
assigned to them. For example, if the FOR TAT strategy for Agent 0 is suggested to both agents, then the pai
of strategies is a Nash equilibrium. Indeed, forialkk {0,1}, if Agenti assumes that Agert— i adheres to
his strategy, then by following the strategy, Ageérknows that his objective would be satisfied, and he has no
incentive to deviate from it. The stability of a Nash equilitm depends on the players assumption that the other
players adhere to the strategy. In some cases this is a edsassumption. Consider, for example, a standard
protocol published by some known authority such as IEEE. Wéhprogrammer writes a program implementing
the standard, he tends to assume that his program is goimget@dt with other programs that implement the
same standard. If the published standard is a Nash equitibrinen there is no incentive to write a program
that diverts from the standard. Game theory suggests $es@tdion conceptsall capturing the idea that the
participating agents have no incentive to deviate from ttoéogol (or strategy) assigned to them. We consider
three well-studied solution concepls [29]: dominantisgies solution, Nash equilibrium, and subgame-perfect
Nash equilibrium.

An important facet in the task of a rational synthesizer isyiothesize a system such that once it is in place,
the game played by the agents has a solution with a favoraideme.Mechanism desigrstudied in game theory
and economyi [28, 29], is the study of designing a game whosmme (assuming players rationality) achieves
some goal. Rational synthesis can be viewed as a variant dianessm design in which the game is induced by
the objective of the system, and the objectives of both theesy and the agents refer to their on-going interaction
and are specified by temporal-logic formulas.

Having defined rational synthesis, we turn to solve it. [In fhle authors introducestrategy logic— an
extension of temporal logic with first order quantificatiomeo strategies. The rich structure of strategy logic
enables it to specify properties like the existence of a Naghlibrium. While [7] does not consider the synthesis
problem, the technique suggested there can be used in ardeivie the rational-synthesis problem for Nash
equilibrium and dominant strategies. Strategy logic, hamxeis not sufficiently expressive in order to specify
subgame-perfect-Nash equilibrium_[35] which, as advatatg37] (see also Section 3), is the most suited for
infinite multiplayer games — those induced by rational sgaif. The weakness of strategy logic is its inability to
quantify over game histories. We extend strategy logic Wisthory variables, and show that the extended logic is
sufficiently expressive to express rational synthesisHerthree solution concepts we study. Technically, adding
history variables to strategy logic results im&moryful logid21], in which temporal logic formulas have to be
evaluated not along paths that start at the present, buj glatins that start at the root and go through the present.

1For a formal definition ofational synthesissee Definitiof 3J1.

Classical applications of game theory consider games wahvalued payoffs. For example, agents may bid
on goods or grade candidates. In the peer-to-peer netwark@e, one may want to refer to the amount of data
uploaded by each agent, or one may want to add the possilffilt§icing downloads. The full quantitative setting
is undecidable already in the context of model checking ¥&}t, several special cases for which the problem is
decidable have been studiéd [4]. We can distinguish betwases in which decidability is achieved by restricting
the type of systems [3], and cases in which it is achieved btyicting the domain of values [13]. We solve the
quantitative rational synthesis problem for the case theaiio of values is a finite distributive De Morgan lattice.
The lattice setting is a good starting point to the quartiagetting. First, lattices have been successfully hahdle
for easier problems, and in particular, multi-valued sgsth [15| 16]. In addition, lattices are sufficiently rich to
express interesting quantitative properties. This is simneemmediate (for example, in the peer-to-peer network,
one can refer to the different attributions of the commutiiscachannels, giving rise to the lattice of the subsets
of the attributions), and sometimes thanks to the fact galtwalues can often be abstracted to finite linear orders.
From a technical point of view, our contribution here is autioh of a latticed game in which the value of the
game cannot be obtained by joining values obtained by diffiestrategies, which is unacceptable in synthesis.

1.1 Related Work

Already early work on synthesis has realized that workinthihostile environment is often too restrictive. The
way to address this point, however, has been by adding assunsn the environment, which can be part of
the specification (c.f.[[5]). The first to consider the gatmesretic approach to dealing with rationality of the
environment in the context of LTL synthesis were Chatteegad Henzinger [8]. The setting inl [8], however,
is quite restricted; it considers exactly three playersemstihe third player is a fair scheduler, and the notion of
secure equilibria[6]. Secure equilibria, introduced inl[6], is a Nash equibin which each of the two players
prefers outcomes in which only his objective is achieved @wgcomes in which both objectives are achieved,
which he still prefers over outcomes in which his objectiw@dt achieved. It is not clear how this notion can be
extended to multiplayer games, and to the distinction weatrate between controllable agents that induce the
game (the system) and rational agents (the environmergp, fie set of solution concepts we consider is richer.

Ummels [37] was the first to consider subgame perfect eqizgilin the context of infinite multiplayer games.
The setting there is of turn-based games and the solutis\gaa reduction to 2-player games. Here, we consider
concurrent games and therefore cannot use such a redudiasther difference is that [37] considers parity
winning conditions whereas we use LTL objectives. In additithe fact that the input to the rational synthesis
problem does not include a game makes the memoryful natwebgfame perfect equilibria more challenging, as
we cannot easily reduce the LTL formulas to memorylessygdames.

To the best of our knowledge, we are the first to handle theivallied setting. As we show, while the lattice
case is decidable, its handling required a nontrivial esitan of both the Boolean setting and the algorithms
known for solving latticed games [16].

2 Preliminaries

We consideiinfinite concurrent multiplayer gamém short,game$ defined as follows. Ayame arenas a tuple

G = (V,uo, I,(%:)ier, (T'y)ier, 0), whereV is a set of nodesy, is an initial node,l is a set of players, and for

i € I, the set%; is the set of actions of PlayeérandT’; : V — 2%i specifies the actions that Playiecan take

at each node. Let = {1,...,n}. Then, the transition relatiof : V' x ¥; x --- x ¥,, — V is a deterministic
function mapping the current node and the current choicabeofgents to the successor node. The transition
function may be restricted to its relevant domain. Ths, o1, ..., 0,) is defined forv € V and{o1,...,0,) €
Ii(v) x - x Ty(v).

A positionin the game is a tuplév, oy, 09,...,0,) With v € V ando; € T';(v) for everyi € I. Thus, a
position describes a state along with possible choicestifrecfor the players in this state. Consider a sequence
p=po-p1-pe--- Of positions. Fok > 0, we usenoddp;,) to denote the state componenipef and usey[i], for
i € 1, to denote the action of Playém p;. The notations extend oin the straightforward way. Thuspdgp) is
the projection op on the first component. We say thails aplay if the transitions between positions is consistent

with . Formally,p is aplay starting at node if nodgpy) = v and for allk > 0, we havenod€py11) = d(px).
We usePg (or simplyP wheng is clear from the context) to denote all possible play§ of

Note that at every node € V, each playef chooses an actios; € I';(v) simultaneously and independently
of the other players. The game then proceeds to the succesdeb(v,o1,...,0,). A strategyfor Playeri
is a functionr; : V* — ¥, that maps histories of the game to an action suggested teRlafhe suggestion
has to be consistent witl;. Thus, for everygv; - - - v, € VT, we haver;(vovy - - - vg) € T;(vg). LetIl; denote
the set of possible strategies for PlayerFor a set of playerd = {1,...,n}, a strategy profileis a tuple
of strategies(ny, ma,...,m,) € 11 x Iy x - -+ x II,,. We denote the strategy profile lfy;);c; (or simply 7,
when [is clear from the context). We say thais anoutcomeof the profiler if for all £ > 0 andi € I, we
havepy[i| = m;(nod€py) - nodgpy) - - - nodgpy)). Thus,p is an outcome ofr if all the players adhere to their
strategies inr. Note that sincé is deterministic;r fixes a single play from each state of the game. Given a profile
7 we denote byoutcomén)9 (or simply outcomér)) the one play ing that is the outcome of when starting
in vg. Given a strategy profile and a nonempty sequence of nodes vgv; ... v, we define theshift of 7 by
h as the strategy profilér!);c; in which for alli € I and all historiesw € V*, we haver! (w) = m;(h - w).
We denote byoutcomér); (or simply outcomér),) the concatenation ofgv; ... v,—1 with the one play in
G that is the outcome of" when starting inv,. Thus, outcomér);, describes the outcome of a game that
has somehow found itself with history, and from that point, the players behave if the history haehbie
Given a profile(r;);cr, an indexj € I, and a strategyr; for Playerj, we use(w_j,w;) to refer to the profile
of strategies in which the strategy for all players bus as inw, and the strategy for Playeris 7r§.. Thus,

(W—j,ﬂé) = <7T1,7T2,... ,7Tj_1,7T;»,7Tj+1,... 77Tn>-

3 Rational Synthesis

In this section we define the problem of rational synthesie.wirk with the following model: the world consists
of the systemand a set of, agentsAgent 1..., Agent n For uniformity we refer to the system agent 0 We
assume that Agentcontrols a sefX; of variables, and the different sets are pairwise disjoktteach point in
time, each agent sets his variables to certain values. &nuasction ofAgent iamounts to assigning values to his
variables. Accordingly, the set of actionsAdent iis given by2X:. We useX to denotd J,,,, Xi. We useX _;

to denoteX \ X; for 0 < i < n. Each of the agents (including the system) has an objecTie.objective of an
agent is formulated using a linear temporal logic formulal([31]) over the set of variables of all age@sWe
usey; to denote the objective &gent i

This setting induces the game ar&ha= (V, vy, I, (X;)icr1, (I'i)ier, 0) defined as follows. The set of players
I =40,1,...,n} consists of the system and the agents. The moves of ageatall the possible assignments to
its variables. Thusy; = 2%:. We useX, ¥;, andX_; to denote the se®¥, 2Xi, and2X-+, respectively. An agent
can set his variables as he wishes throughout the game.ITtwis= X; for everyv € V. The game records in
its vertices all the actions taken by the agents so far. Hénce X* and for allv € ¥* and(oy, ..., 0,) € 3, we
haved(v,oq,...,00) = v - {00,...,0n).

At each moment in time, the system gets as input an assignme&nt, and it generates as output an assign-
ment inX. For every possible history € (X_o U 3g)* the system should decide what € X it outputs
next. Thus, a strategy for the system is a functign ¥* — ¥, (recall thaty = ¥_y U Xy and note that indeed
V* = ¥*). In the standard synthesis problem, we say thatalizesy if all the computations that, generates
satisfyg. In rational synthesis, on the other hand, we also genetraiiegies for the other agents, and the single
computation that is the outcome of all the strategies sheatisfy ©o. That is, we requir@utcomén)9 = g
whereg is as defined above. In addition, we should generate thegiteatfor the other agents in a way that would
guarantee that they indeed adhere to their strategies.

Recall that while we control the system, we have no controlhenbehaviors ofAgent 1...,Agentn Let
7o : X* — 3o be a strategy for the systeméh Then,r induces the gamé,, = (X*,¢, I, (3;)icr, (I'})icr, 0),
where fori € I\ {0}, we havel’; = I';, andI'{(w) = {mo(w_¢)}, Wwherew_ is obtained formw by project-
ing its letters onx_. Recall thatd is restricted to the relevant domain. Thus,I@sis deterministic, we can

2\We could have worked with any otherregular formalism for specifying the objectives. We chb$e for simplicity of the presen-
tation.

regardg,, as am-player (rather tham + 1-player) game. Note thal,, contains all the possible behaviors of
Agent 1...,Agent nwhen the system adheresstg.

Definition 3.1 (Rational Synthesis) Consider a solution concept The problem of rational synthesis (with so-
lution concepty) is to return, given LTL formulasy, 1, . . . , ¢,, specifying the objectives of the system and the
agents constituting its environment, a strategy prafite (g, 71, ...,m,) € IIy x II; x --- x II,, such that both
(a) outcomér)Y = o and (b) the strategy profilery, . .., 7,) is a solution in the gamé,;, with respect to the
solution concepty. _

The rational-synthesis problem gets a solution concept @@ameter. As discussed in Sectidn 1, the fact
(m,...,m,) iS @ solution with respect to the concept guarantees thatibi worthwhile for the agents consti-
tuting the environment to deviate from the strategies assigo them. Several solution concepts are studied and
motivated in game theory. We focus on three leading concaptswe first recall their definitions and motivations
in game theory. The common setting in game theory is thatlfective for each player is to maximize hgayoff
—a real number that is a function of the play. We psgoff : P — R to denote the payoff function of player
i. That is,payoff assigns to each possible play real numbepayoff(p) expressing the payoff afon p. For a
strategy profiler we use (with a slight abuse of notatiqugyoff () to abbreviatgayoff (outcomér)).

The simplest and most appealing solution concept is doristastegies solution. Alominant strategys a
strategy that a player can never lose by adhering to, reggsdif the strategies of the other players. Therefore, if
there is a profile of strategiesin which all strategies; are dominant, then no player has an incentive to deviate
from the strategy assigned to him4n Formally, = is adominant strategy profild for every 1 < i < n and for
every profiler” with =} # 7;, we have thapayoff(7’) < payoff(n’,, ;). Consider, for example, a game played
by three players: Alice, Bob and Charlie whose actiongafeas }, {b1, b2} and{c, c2}, respectively. The game
is played on the game arena depicted in the left of Figlre &.|abels on the edges are marked by the possible
action moves. Each player wants to visit infinitely often @@onarked by his initial letter. In this game, Bob’s
strategy of choosing; from Node2 is a dominant strategy. All of the strategies of Charlie ammuhating. Alice,
though, has no dominating strategy. Unfortunately, in mngaapes some agents do not have dominant strategies,
thus no dominant-strategy solution exists. Naturally,afdominant strategy solution exists, one would still like
to consider other solution concepts.

Another well known solution concept is Nash equilibrium][2A strategy profile idfNash equilibriumif no
player has an incentive to deviate from his strategyriprovided he assumes the other players adhere to the
strategies assigned to themsin Formally, 7 is aNash equilibrium profilaf for every 1 < ¢ < n and for every
strategyn; # m;, we have thapayoff(r_;, ;) < payoff(r). For example, the strategy profile depicted in the
middle of Figuré 1l by dotted edges is a Nash equilibrium ofge to its left. Knowing the strategy of the other
players, each player cannot gain by deviating from hisesgsat

An important advantage of Nash equilibrium is that a Nashlibgum exists in almost every game [3B]A
weakness of Nash equilibrium is that it is not nearly as stalsla dominant-strategy solution: if one of the other
players deviates from his assigned strategy, nothing isagteed.

Nash equilibrium is suited to a type of games in which the @taynake all their decisions without knowledge
of other players choices. The type of games consideredionedtsynthesis, however, are different, as players do
have knowledge about the choices of the other players ireeaslunds of the game. To see the problem that this
setting poses for Nash equilibrium, let us consider th&MATUM game. In WTIMATUM , Player 1 chooses a
valuez € [0, 1], and then Player 2 chooses whether to accept the choice,igh wase the payoff of Player 1 is
x and the payoff of Player 2 it — z, or to reject the choice, in which case the payoff of both ptayis0. One
Nash equilibrium in WTIMATUM is 7w = (1, m2) in which 7r; advises Player 1 to always choose= 1 and s
advises Player 2 to always reject. Itis not hard to seertlgindeed a Nash equilibrium. In particular, if Player 2
assumes that Player 1 follows, he has no incentive to deviate from. Still, the equilibrium is unstable. The
reason is thatr, is inherently not credible. If Player 1 choosesmaller thanl, it is irrational for Player 2 to
reject, and Player 1 has no reason to assume that Player &2adbe,. This instability of a Nash equilibrium is
especially true in a setting in which the players have infation about the choices made by the other players. In
particular, in UTIMATUM , Player 1 knows that Player 2 would make his choice after kmgpwhatz is.

3In particular, alln-player turn-based games withregular objectives have Nash equilibriufil [9].

To see this problem in the setting of infinite games, consilerstrategy profile depicted in the right of
Figure[1 by dashed edges. This profile is also a Nash equitibof the game in the left of the figure. It is,
however, not very rational. The reason is that if Alice desafrom her strategy by choosing rather tham,
then it is irrational for Bob to stick to his strategy. Indeddhe sticks to his strategy he does not meet his objective,
yet if he deviates and chooskshe does meet his objective.

This instability of Nash equilibrium has been addressetédefinition of subgame-perfect equilibrium [35].
A strategy profiler is in subgame-perfect equilibrium (SPEJor every possible history of the game, no player
has an incentive to deviate from his strategyriprovided he assumes the other players adhere to the ststegi
assigned to them in. Formally,n is an SPE profile if for every possible histayof the game, playet < i < n,
and strategyr, # m;, we have thapayoff(r_;, 7}), < payoff(r);. The dotted strategy depicted in the middle of
Figurell is a subgame-perfect equilibrium. Indeed, it is alNequilibrium from every possible node of the arena,
including non-reachable ones.

In the context of on-going behaviors, real-valued payofts @ big challenge and most works on reactive
systems use Boolean temporal-logic as a specification &yegu Below we adjust the definition of the three
solution concepts to the case the objectives are LTL forﬂ{ﬂjlﬁssentially, the adjustment is done by assuming
the following simple payoffs: If the objective; of Agenti holds, then his payoff i$; otherwise his payoff i§.
The induced solution concepts are then as followed. Conaid&ategy profiler = (7y,...,m,).

e We say thatr is a dominant strategy profiléf for every 1 < i < n and profiler’ with 7 # ;, if
outcomér’) = ;, thenoutcomérn’ ;. m;) = ¢i.

e We say thatr is a Nash equilibrium profileif for every 1 < i < n and profiler” with 7 # m;, if
outcomér_;, 7)) = ¢i, thenoutcomén) = ;.

e \We say thatr is asubgame-perfect equilibrium profiiefor every historyh € ¥*, 1 < i < n, and profile
n' with 7} # ;, if outcomén_;, 7)), = ;, thenoutcomén),, = ¢;.

4 Solution in the Boolean Setting

In this section we solve the rational-synthesis problent./L.e {0, 1,...,n} denote the set of agents. Recall that
¥ = 2% andX = 2%, whereX = U;c;X;, and that the partition of the variables among the agenisciesl a
game arena with statesitt. Expressing rational synthesis involves properties atsgies and historieStrategy
Logic [[7] is a logic that treats strategies in games as explicit-firder objects. Given an LTL formulaé and
strategy variablesy, . . ., z,, ranging over strategies of the agents, the strategy logmuta) (zo, ..., z,,) states
thate holds in the outcome of the game in which Ageéradheres to the strategy. The use of existential and
universal quantifiers on strategy variables enables girdtgic to state that a given profile consists of dominant
strategies or is a Nash equilibrium. However, strategyclamginot strong enough to state the existence of a subgame
perfect equilibrium. The reason is that a formuleay, . . . , 2,,) in strategy logic assumes that the strategiges. .,

z,, are computed from the initial vertex of the game, and it canefer to histories that diverge from the strategies.
We therefore extend strategy logic with first order varialiteat range over arbitrary histories of the game.

4.1 Extended Strategy Logic
Formulas ofExtended Strategy Log{&SL) are defined with respect to a gaghe- (V, v, I, (3;)icr, (Ti)ier, 0),

a setH of history variables, and sef; of strategy variables fare I. Let7 = {0,...,n}, ¥ =3y x --- X X,
and lety) be an LTL formula oved.. Let h be a history variable ifil, and letz, ..., z,, be strategy variables in
Zy, ..., 7Z,, respectively. We useas an abbreviation fag, ..., z,. The set of ESL formulas is defined inductively
as follow

U= (2) | (2 h) | UV | =0 | 320 | InT

“In Sectiorh, we make a step towards generalizing the frametecthe multi-valued setting and consider the case the ffmpoe
taken from a finite distributive lattice.

SWe note that strategy logic as defined(ih [7] allows the apiim of LTL path operatorg) and /) on strategy logic closed formulas.
Since we could not come up with a meaningful specificatiohubas such applications, we chose to ease the presentatiatoaot allow
them in ESL. Technically, it is easy to extend ESL and alloshsapplications.

We use the usual abbreviations—, andV. We denote byreg(¥) the set of strategy and history variables that
arefree (not in a scope of a quantifier) M. A formula ¥ is closedif free(¥) = (). Thealternation depthof

a variable of a closed formula is the number of quantifier gvas @v or V4, in case the formula is in positive
normal form) that bind the variable. Tladternation depttof closed formulal is the maximum alternation depth
of a variable occurring in the formula.

We now define the semantics of ESL. Intuitively, an ESL foranof the formi)(z; h) is interpreted over the
game whose prefix matches the histarand the suffix starting wherk ends is the outcome of the game that
starts at the last vertex afand along which each ageint I adheres to his strategy in Let X C H U | J;¢; Z;
be a set of variables. An assignmefi assigns to every history variabtee X N H, a historyAx(h) € V* and
assigns to every strategy variablee X N Z;, a strategydx(z;) € II;. Given an assignmemdx and a strategy
m; € I1;, we denote bydx|[z; < ;] the assignmenﬂggu{zl_} in which ‘Ag{U{zi}(zi) = m; and for a variabler # z;
we haveAy . (z) = Ax(z). For histories of the game € V* we definedx[h < w] similarly.

We now describe when a given gafieand a given assignmemx satisfy an ESL formulal, whereX is
such thafree(¥) C X. For LTL, the semantics is as usual [24].

(G.Ax) Ev(2) iff outcoméAx(z)) k=1 (G.Ax) = U1V Uy iff (G, Ax) = U or (G, Ax) = Uy
(G.A%) | (2 h) iff outcoméAx(2))%) b= ¢ (G Ax) = 32.@ iff Imelly. (G Ax|zi —m]) E @
(GAx) -0 iff (G.Ax) W (G, Ax) = 3n. 0 iff JweVTt.(GAx[h—uw]) = ¥

For an ESL formulall we use[¥] to denote its set of satisfying assignments; thaflg, = {(G, Ax) | X =
free(W) and(G,Ax) = ¥}. Given an ESL formulal and a game grap8i, we denote by|¥]¢ the assignment
Ax to the free variables i such that(G, Ax) € [¥].

Before we show hoj¥]g can be computed we show that ESL is strong enough to expressilifition to the
rational-synthesis problems for the three solution cotsceye study.

4.2 Expressing Rational Synthesis

We now show that the rational synthesis problem for the teodation concepts we study can be stated in ESL.
We first state that a given strategy profile= (y;)icr is a solution concept on the gargg,, that is, the game
induced byG when Agen® adheres to his strategy in We usel _g to denote the sdll, ..., n}, thatis, the set of

all agents except for the system, which is AgenGiven a strategy profile = (z;)icr, We Us€(2_g; oy, ¥i, Yo) t0
denote the strategy profile where all agentsitannd0 follow =z and agents and0 follow y; andyy, respectively.
Fori € I, let ; be the objective of Agent For a solution concept € {DS,NASH, SPE} and a strategy profile

y = (yi)icr, the formula¥?(y), expressing that the profilg;);c;_, is a solution with respect tg in G, is
defined as follows.

o UPS(y) := Nicp V2. (9i(2-0,%0) — wi(2—1i 0}, Yi> Y0))-
o UNASH(y) = /\zel,o Vzi. (pi(y—i, zi) = @i (y)).
o USPHy) :=Vh. Nicr , V2i- ((0i(y—i, zis h) = (pi(y, b))

We can now state the existence of a solution to the ratiomahesis problem with inpupy, . . . , ¢, by the
closed formula®” := J(y;)ier-(vo((vi)icr) A ¥ ((yi)ier)). Indeed, the formula specifies the existence of a
strategy profile whose outcome satisfigsand for which the strategies for the agentd ig constitute a solution
with respect toy in the game induced by.

4.3 ESL Decidability

In order to solve the rational-synthesis problem we aregytinuse automata on infinite trees. Given aRaif
directions, aD-treeis the setD*. The elements i* are thenodesof the tree. The nodeis the root of the tree.
For a nodex € D* and a directiond € D, the nodeu - d is thesuccessopf « with directiond. GivenD and an
alphabet:, aX-labeledD-tree is a paif D*, 7) such that- : D* — ¥ maps each node db* to a letter in¥.

An alternating parity tree automaton (AP a tupleA = (X, D, @, do, 9, x), whereX is the input alphabet,
D is the directions sety is a finite set of stategy is the initial condition is the transition relation angd : Q —
{1,...,k} is the parity condition. The initial conditiody is a positive boolean formula ové} specifying the
initial condition. For example(q; V g2) A g3 specifies that the APT accepts the input tree if it accepterit fstate
q3 as well as fromy; or ¢gs. The transition functiod maps each state and letter to a boolean formula bver().
Thus, as withyg, the idea is to allow the automaton to send copies of itsdtifferent states. Id, the copies are
sent to the successors of the current node, thus each sfaead with the direction to which the copy should
proceed. Due to the lack of space, we refer the readér to gt 1hé definition of runs and acceptance.

Base ESL formulas, of the form(z, h), refer to exactly one strategy variable for each agent, aedchistory
variable. The assignment for these variables can be deschp a(> x {L, T})-labeledX-tree, where the&-
component of the labels is used in order to describe theegirairofiler assigned to the strategy variable, and
the{_L, T }-component of the labels is used in order to label the treednyique finite path corresponding to the
history variable. We refer to @ x {L, T })-labeledX-tree as atrategy-history treeA nodeu = dyd; ... dj in
a strategy-history tre€-*, 7) corresponds to a history of the play in which at tihe j < k, the agents played
as recorded ;. A labelr(u) = (oy,...,0n,) of nodeu describes (1) for each agentan actiono; that the
strategyr; advises Agent to take when the history of the game so fatjsand (2) whether the node is along the
path corresponding to the history. Among {b# successors af in the strategy-history tree, only the successor
u-7(u) corresponds to a scenario in which all the agents adhereitostiategies in the strategy profile described
in (X*, 7). We say that a path in (¥*, 7) is obedientif for all nodesu - d € p, for u € ¥* andd € ¥, we have
d = 7(u). Note that there is a single obedient path in every strategy This path corresponds to the single play
in which all agents adhere to their strategies. The T } labeling is legal if there is a unique finite path starting at
the root, all of whose node are marked with Note that there is a single path in the tree whose prefix iskedar
by T’s and whose suffix is obedient.

An ESL formula¥ may contain several base formulas. Therefdranay contain, for each € I, several
strategy variables iZ; and several history variables Hi. Fori € I, let {z},...,2"'} be the set of strategy
variables in¥ N Z;. Recall that each strategy variablfe € Z; corresponds to a strateg:;{ Y — ¥, Let
{h1,...,hn,} be the set of history variables . Recall that each history variabbecorresponds to a word *,
which can be seen as a function, : ¥* — {T, L} labeling only that word withT’s. Thus, we can describe an
assignment to all the variablesinby aY-labeledX-tree, withY = X" x X" x - x X7n x {1, T},

We solve the rational synthesis problem using tree autothattarun onY-labeledX-trees. Note that the
specification of rational synthesis involves an externariification of a strategy profile. We construct an au-
tomatonl/ that accepts all trees that describe a strategy profile teatsrthe desired solution. A witness to the
nonemptiness of the automaton then induces the desirddgas

We definel/ as an APT. Consider an ESL formuldz, h). Consider a strategy trg&*, 7). Recall thaty
should hold along the path that starts at the root of the gees through, and then continues toutcome¢z),,.
Thus, adding history variables to strategy logic resultaimemoryful logid21], in which LTL formulas have to
be evaluated not along a path that starts at the present|dmgt a path that starts at the root and goes through
the present. The memoryful semantics imposes a real cigellen the decidability problem, as one has to follow
all the possible runs of a nondeterministic automatonyfowhich involves a satellite implementing the subset
construction of this automaton [21]. Here, we use instead th T }-component of the label af.

The definition of the APHy for [¥]¢ works by induction on the structure 8f. At the base level, we have
formulas of the form)(z, k), wherey is an LTL formula,z is a strategy profile, anfl is a history variable. The
constructed automaton then has three tasks. The first tasicigeck that thg L, T} labeling is legal; i.e. there
is a unique path in the tree marked Bys. The second task is to detect the single path that goeaghrio and
continues fromh according to the strategy profile The third task is to check that this path satisfiesThe
inductive steps then built on APT complementation, intetisa, union and projectiori [26]. In particular, as in
strategy logic, quantification over a strategy variableafgent; is done by “projecting out” the correspondidy
label from the tree. That is, given an automatéior ¥, the automaton fofliz;. ¥ ignores thex; component that
refers toz; and checks4 on a tree where this component is guessed. The quantificaginhistory variables is
similar. Given an automataoA for ¥ the automaton foBh. ¥ ignores the{ L, T} part of the label that corresponds
to h and checks4 on a tree where thg L, T} part of the label is guessed.

Theorem 4.1 Let ¥ be an ESL formula ovef. Letd be the alternation depth of. We can construct an APT
Ay such thatdy acceptgV]g and its emptiness can be checked in tiie- 1)-EXPTIME in the size ob.

4.4 Solving Rational Synthesis
We can now reduce rational-synthesis to APT emptiness.

Theorem 4.2 The LTL rational-synthesis problem is 2EXPTIME-completélie solution concepts of dominant
strategy, Nash equilibrium, and subgame-perfect equilibr

Proof: We have shown in Sectidn 4.2 that the rational-synthesiblgno for v € {DS,NASH, SPE} can be
specified by an ESL formul&” with one alternation. It follows from Theorelm 4.1 that we camstruct an APT
accepting[®"] g (whereg is as defined in Sectidd 3) whose emptiness can be solved iIPZEBXE. Hence, the
problem is in 2EXPTIME.
Hardness in 2EXPTIME follows easily from the 2EXPTIME-haeds of LTL synthesis [34]. Indeed, syn-
thesis against a hostile environment can be reduced tmehisynthesis against an agent whose objectiveies
]

Remark 4.3 In the above we have shown how to solve the problem of ratisyrathesis. It is easy to extend our
algorithm to solve the problem oétional control where one needs to control a system in a way it would satisfy
its specification assuming its environment consists obnati agents whose objectives are given. Technically, the
control setting induces the game to start with, thus thdegjyatrees are no longét-trees, and rather they are
(S x X¥)-trees, where is the state space of the system we wish to control. 4

5 Solution in the Multi-Valued Setting

As discussed in Sectidd 1, classical applications of gamerthconsider games with quantitative payoffs. The
extension of the synthesis problem to the rational settaity @lso for an extension to the quantitative setting.
Unfortunately, the full quantitative setting is undecittablready in the context of model checking [3]. In this
section we study a decidable fragment of the quantitatitierral synthesis problem: the payoffs are taken from
finite De-Morgan lattices A lattice (A, <) is a partially ordered set in which every two elememts € A have

a least upper bound: (oin b, denoteda Vv b) and a greatest lower bound eetb, denoteds A b). A lattice is
distributiveif for everya,b,c € A, we havea A (bV ¢) = (a A b) V (a A ¢). De-Morgan lattices are distributive
lattices in which every element has a unique complement element such that-—a = a, De-Morgan rules
hold, anda < b implies—b < —a. Many useful payoffs are taken from finite De-Morgan latticall payoffs that
are linearly ordered, payoffs corresponding to subsetsmisset, payoffs corresponding to multiple view-points,
and morel[15, 16].

We specify qualitative specifications using the temporgiddatticed LTL(LLTL, for short), where the truth
value of a specification is an element in a lattice. For aeggsaprofiler and an LLTL objectivep; of Agenti, the
payoff of Agenti in is the truth value of; in outcomér). A synthesizer would like to find a profitein which
payoff,(7) is as high as possible. Accordingly, we define the latticéidmal synthesis as follows.

Definition 5.1 (Latticed Rational Synthesis) Consider a solution concept The problem of latticed rational
synthesis (with solution concep) is to return, given LLTL formulaspy, ..., ¢, and a lattice value € t, a
strategy profiler = (mg, 71,...,m,) € Iy x II; x --- x II,, such that (apayoff,(7) > v and (b) the strategy
profile (71, ..., m,) is a solution in the gamé,, with respect to the solution concept _

In the Boolean setting, we reduced the rational-synthesiblem to decidability of ESL. The decision pro-
cedure for ESL is based on the automata-theoretic appr@achspecifically on APT’s. In the lattice setting,
automata-theoretic machinery is not as developed as in dloéeBn case. Consequently, we restrict attention to
LLTL specifications that can be translated to determiniktticed Bichi word automata (LDBW), and to the
solution concept of Nash equilibridﬁm

A Buichiacceptance conditions specifies a sulisef the states, and an infinite sequence of states satisfiestigtion if it visits F
infinitely often. Ageneralized Biichi conditiospecifies several such sets, all of which should be visitiitialy often.

An LDBW can be expanded into a deterministic latticed Biirthe automata (LDBT), which is the key
behind the analysis of strategy trees. It is not hard todifthie latticed setting almost all the other operations on
tree automata that are needed in order to solve rationahasgist An exception is the problem of emptiness. In
the Boolean case, tree-automata emptiness is reducedittindea two-player game [12]. Such games are played
between arv-player, who has a winning strategy iff the automaton is mop#y (essentially, the-player chooses
the transitions with which the automaton accepts a witnes=),t and a\-player, who has a winning strategy
otherwise (essentially, the-player chooses a path in the tree that does not satisfy tteptnce condition). A
winning strategy for the/-player induces a labeled tree accepted by the tree autamato

In latticed games, deciding a game amounts to finding a éatiéduel such that the/-player can force the
game to computations in which his payoff is at leasThe value of the game need not be achieved by a single
strategy and algorithms for analyzing latticed games damsialues that emerge as the join of values obtained
by following different strategies [16, 36]. A labeled trdegwever, relates to a single strategy. Therefore, the
emptiness problem for latticed tree automata, to whichdtteed rational synthesis is reduced, cannot be reduced
to solving latticed games. Instead, one has to considesitiyge-strategyariant of latticed games, namely the
problem of finding values that the-player can ensure by a single strategy. We address thitepndielow.

Theorem 5.2 Consider a latticed Bchi game. Given a lattice elementwe can construct a Boolean generalized-
Buchi gameG, such that thev-player can achieve value greater or equah G using a single strategy iff the
V-player wins inG;. The size o, is bounded byG| - |£|> and G} has at mostt | acceptance sets.

Using Theorern 512, we can solve the latticed rational syastroblem in a fashion similar to the one we used
in the Boolean case. We represent strategy profiles#gbeledX-trees, and sets of profiles by tree automata.
We construct two Boolean generalizeddhi tree automata. The first, denotdd, for the language of all profiles
7 in which payoff,(7) > v, and the second, denotetly, for the language of all Nash equilibria. The intersection
of Ap and. Ay then contains all the solutions to the latticed rationatisgsis problem. Thus, solving the problem
amounts to returning a witness to the nonemptiness of teesittion, and we have the following.

Theorem 5.3 The latticed rational-synthesis problem for objectived. PBW and the solution concept of Nash
equilibrium is in EXPTIME.

We note that the lower complexity with respect to the Boolsetting (Theorerh 412) is only apparent, as the
objectives are given in LDBWSs, which are less succinct thihlLformulas [15/20].

6 Discussion

We introducedational synthesis— synthesizing a system that functions in a rational envirent. As in tradi-
tional synthesis, one cannot control the agents that d¢otesthe environment. Unlike traditional synthesis, the
agents have objectives, we can suggest a strategy for eaoh agd we can assume that rational agents follow
strategies they have no incentive to deviate from.

The solution of the rational synthesis problem relies onxarsion of strategy logi¢ [7]. The modularity of
our solution separates the game-theoretic consideraéindghe synthesis technique. Indeed our technique can
be applied to any solution concept that can be expressedénded strategy logic. We show that for the com-
mon solution concepts of dominant strategies equilibritdash equilibrium, and subgame perfect equilibrium,
rational synthesis has the same complexity as traditioyrgthesis The versatility of the extended logic enables
many extensions of the setting. For example, one can assatféerent solutions concepts with different sub-
specifications. In particular, it is often desirable in pi@eto ensure that some properties of the system hold
regardless of the rationality of the agents. This can be tigrietting the specifier specify, in addition {5, also
an LTL formulayy (typically oo — () that should be satisfied in the traditional synthesis pregations, namely
in all environments.

References

[1] B. Aminof, O. Kupferman, and R. Lampert. Reasoning atlmmiine algorithms with weighted automata.Rroc. 20th
SODA pages 835844, 2009.

[2] P.C. Attie, A. Arora, and E.A. Emerson. Synthesis of faolerant concurrent program8OPLAS 26:128-185, 2004.

[3] A. Chakrabarti, K. Chatterjee, T.A. Henzinger, O. Kupfan, and R. Majumdar. Verifying quantitative properties
using bound functions. IRroc. 13th CHARMELNCS 3725, pages 50—64, 2005.

[4] K. Chatterjee, L. Doyen, and T. Henzinger. Quantativegiaages. IProc. 17th CSLLNCS 5213, pages 385-400,
2008.

[5] K. Chatterjee, T. Henzinger, and B. Jobstmann. Envirentrassumptions for synthesis. Rmoc. 19th CONCUR
LNCS 5201, pages 147-161, 2008.

[6] K. Chatterjee, T. Henzinger, and M. Jurdzinski. Gamethwecure equilibriaTheoretical Computer Scienc2006.
[7] K. Chatterjee, T. A. Henzinger, and N. Piterman. Stratiegjic. In 18th CONCURLNCS, pages 59-73, 2007.

[8] K. Chatterjee and T.A. Henzinger. Assume-guarante¢hsgis. InProc. 13th TACASLNCS 4424, pages 261-275,
2007.

[9] K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nashildgria in stochastic games. IRroc. 13th CSLLNCS
3210, pages 26-40, 2004.

[10] A. Church. Logic, arithmetics, and automata.Froc. Int. Congress of Mathematicians, 19f2ges 23-35, 1963.

[11] E. Gradel, W. Thomas, and T. WilkeAutomata, Logics, and Infinite Games: A Guide to Current Bese LNCS
2500, 2002.

[12] Y. Gurevich and L. Harrington. Trees, automata, andganinProc. 14th STOCpages 60-65, 1982.

[13] A. Gurfinkel and M. Chechik. Multi-valued model-chengivia classical model-checking. Isith CONCURLNCS
2761, pages 263-277, 2003.

[14] B. Jobstmann, A. Griesmayer, and R. Bloem. Programiregga game. IProc 17th CAY LNCS 3576, pages
226-238, 2005.

[15] O. Kupferman and Y. Lustig. Lattice automata.Rroc. 8th VMCA] LNCS 4349, pages 199 — 213, 2007.

[16] O. Kupferman and Y. Lustig. Latticed simulation retats and games. I5th ATVA LNCS 4762, pages 316-330,
2007.

[17] O. Kupferman, N. Piterman, and M.Y. Vardi. Safralesmpositional synthesis. IRroc 18th CAYLNCS 4144, pages
31-44, 2006.

[18] O. Kupferman and M.Y. Vardi. Synthesizing distribugtems. IrProc. 16th LICSpages 389-398, 2001.
[19] O. Kupferman and M.Y. Vardi. Safraless decision praged, InProc. 46th FOCSpages 531-540, 2005.
[20] O. Kupferman and M.Y. Vardi. From linear time to bramgitime. TOCL, 6(2):273—-294, 2005.

[21] O. Kupferman and M.Y. Vardi. Memoryful branching-tifegics. InProc. 21st LICSpages 265—-274, 2006.

[22] O. Kupferman and M.Y. Vardi. Weak alternating automaita tree automata emptiness. Rroc. 30th STOCpages
224-233,1998.

[23] Y. Lustig and M.Y. Vardi. Synthesis from component llbies. InProc. 12th FOSSACENCS 5504, pages 395-409,
20009.

[24] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems:if@jagion. Springer, 1992.

[25] R. van der Meyden and T. Wilke. Synthesis of distribusgdtems from knowledge-based specifications.16th
CONCUR LNCS 3653, pages 562-576, 2005.

[26] D.E. Muller and P.E. Schupp. Alternating automata dmite trees.Theoretical Computer Sciencs4:267—-276, 1987.

[27] J.F. Nash. Equilibrium points in n-person gamesPtoceedings of the National Academy of Sciences of the dUnite
States of Amerigal 950.

[28] N. Nisan and A. Ronen. Algorithmic mechanism designPtac. 31st STO(pages 129-140, 1999.

[29] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirafligorithmic Game Theory Cambridge University Press,
2007.

[30] M. J. Osborne and A. RubinsteiA. Course in Game Theoryrhe MIT Press, 1994.

Figure 1: A game, two Nash equilibria and one subgame-ptesefpalibrium.

[31] A. Pnueli. The temporal logic of programs. Rroc. 18th FOCSpages 46-57, 1977.
[32] A.Pnueliand R. Rosner. On the synthesis of a reactivéute InProc. 16th POPl_pages 179-190, 1989.

[33] P.J.G. Ramadge and W.M. Wonham. The control of disaeént systemsIEEE Transactions on Control Theqry
77:81-98, 1989.

[34] R. RosnerModular Synthesis of Reactive SystefiD thesis, Weizmann Institute of Science, 1992.

[35] R. Selten. Reexamination of the perfectness conceduoilibrium points in extensive gameisiternational Journal
of Game Theory4(1):25-55, March 1975.

[36] S. Shoham and O. Grumberg. Multi-valued model checkiages. InProc. 3rd ATVALNCS 3707, pages 354-369,
2005.

[37] M. Ummels. Rational behaviour and strategy constauciin infinite multiplayer games. IRroc. 26th FSTTC3.NCS
4337, pages 212-223, 2006.

[38] M.Y. Vardi and P. Wolper. Reasoning about infinite corgtions.Information and Computatiqri15(1):1-37, 1994.

A Proofs
A.1 Proof of Theorem[4.1

The construction proceeds by induction on the structuré.dflote that while the APT is defined with respect to
T-labeledX-trees, a base formula(z, h) focuses on &% x {_L, T}) projection of the label (the one assigning
values to the variables in and k). We describe here in detail the base case, wiere (z,h). The case
whereWU = ¢(h) can be derived from the cade= v (z, h) by checking in addition that only the root is labeled
T. The casesl is of the formW¥, v ¥y, =¥, dz;.¥¢, and3h. ¥, follow from the closure of APTs to union,
complementation, and projection.

The complexity analysis follows from the fact that the autdom for«(z, h) is exponential ir), and each
sequence of quantifiers that increases the alternatior digpone, involves an exponential blow up in the state
space and a polynomial blow up in the index|[26]. Thus, the lmemof states indy is (d + 1)-exponential in¥
and the index ofdy is polynomial (of degred) in ¥, whered is the alternation depth oF. Since the projection
operation results in a nondeterministic (rather than arm@diting) tree automaton, the emptiness check when the
last operation is projection does not involve an additiangdonential blow up.

Let ¥ = (2, h). Given an LTL formula, one can construct an AP, with 20(¥D) states and indes
such that/, accepts all trees all of whose paths satigf§88]. Letify, = (,%,Q,8%, 5,). For the first and
second tasks we use four stat@s, gut, gacc, @Ndgrej. The automatondy starts by sending two copies, one at
the initial state of/, and one agnis. The copy in staten;s follows the history, i.e. the path marked witfi
labels. When it reads a node withlalabel, marking that the history ends and fh&ure begins, it moves to the
stategr,t. From the statey,, this copy checks that the agents adhere to the strategyidfation of the strategy
is detected, the copy concludes thlaheed not be evaluated along the path it traversed and movggctolf
anotherT has been read, the copy conclude that{tfie L }-component is illegal and moves #gj. Formally,
Ay = (Ex{L, T} X, QU{qnis, Giut, Gacc, drej }, 3° Agnis, v, X'), Where for everyr € 33, 4 € {L, T}, the transition
functionv is defined as follows. Note that the alphabet4f is T, rather thark x { L, T }. Since, however, base
formulas refer to a single strategy profile and history \@&awe restrict attention to the relevant components of
the input alphabet.

® v(qacc, (0, 1)) = gacc andv(grej; (0, 1)) = grej. * v(anis;{0; T)) = Vgex ((d, gnis) A /\d’eE\{d}(d/7 Gacc))-
e For everyg € Q, we havev(q,(o, 1)) = 6(q, o). v(gut,(0, T)) = Agex(d, rej)-
i V(th57<07 —]—>) = /\dez(d7 qut)- o V(qut7<‘77 J—>) = /\deE (/\d:o’(d7 qut) A /\d¢g(d7 Qacc))-

The parity conditiony’ is such tha’(¢) = x(q) for everyq € @ and for the other states we hav€gacc) = 0,
X/(Qrej) =1, X/(ths) =1, andX/(qut) =0.

Itis easy to see that a tréE*,) is accepted byly iff there is a wordw € X* such that for every prefix of
w the nodeu is labeled(, T) for somes € ¥ andoutcomér),, = ¢. The number of states ofy is exponential
in ¢ and its index is3.

A.2 Proof of Theorem[5.2

Consider a lattice £. An element € t is join irreducibleif for all y,z € £ we havexr < y Vv z impliesz < y
orz < z. Givenl, we define the gam@, as follows. LetX; = {z € JI(L) | = < [} be the set of join irreducible
elements smaller then By Birkhoff’s representation theorem, a strategy ensareslue greater or equalff for
everyx € X, the strategy ensures a value greater or egual

By the analysis in[16], the value of a latticed playn a gameG can be decomposed into three values: the
acceptance valuecc(p), and two values“ andr” that have to do with value relinquished by theplayer and the
A-player during the play, respectively. Furthermore, tHeesr" andr” are the limits of the sequencés;’ }2°,
and{r/*}2°, where for every > 0 the values of-Y andr/* depend on thé-long prefix of the play.

The idea underlying the reduction is to consider a Booleamsga which the values from the latticed game are
made explicit by the structure of the game graph. Formadiyaflatticed game&r = {V, E} with V = 1, UV,
and an £-Bichi conditionF” € £V, we define a Boolean generalizedhi gameG’ = {V’, E'} as follows. The
state spac®’ =V x L x L is such that in a stateu, z,y) € V x £ x £, we have that stands for a state i@,
the valuer stands for the/-relinquished value’, and the valug stands for the\-relinquished value".

Let G = {V, E} be a latticed game with an LiBhi condition € £V and initial vertexvy € V. The
simplificationof G for [€ £, denoted), is the Boolean gamé’ = {V’, E'} whereV’ = V x £ x t, and the
partition of V" and £ is defined as follows. First/, = Vi, x £ x £ andV{ = V,, x £ x £ (note that even though
G| is Boolean, we keep the namesplayer andA-player). The initial vertex ivg, T, L). In order to define the
edges we introduce the following notation. kor/ € V andz,y € the u/-successor ofu, z, y) is (', 2, y'),
where either: € V4, in which caser’ = = A (E(u,v) V y) andy’ = y, oru € V, in which caser’ = z and
v =y V (E(u,v) Ax). Now, E' = {((u, z,y), (', 2',y")) | (v, 2, y') is theu'-successor ofu, z,y)}.

It is left to define the generalized-Biichi condition. In erdo ensure the value € t, the V-player must
“collect” every valuer € X; either as a value relinquished by theplayer or by the acceptance valuec. For
that, we define, for each € X; a setF), in the generalized-Bchi condition. We defind’, = (V x £ x {y €
Lly>zhH)U({ue V| F(u) >z)\Vx{y et |y # z} xt). The first component states for states in which the
A-player relinquished:, and the second component stands for states in which bottteptance value is greater
thenz andx was not relinquished by the-player in the past. Now, the generalizeddbi acceptance condition
isF' ={F, |z € X;}.

Assume first there exists a single strategin G ensuring value greater or equalEvery strategyr for G
(for either player) induces a strategy in G in which @’ ((ug, 2o, y0), - - -, (Un, Tn, Yn)) IS them(ug, . .., uy,)-
successor ofu,,, T,, y,). Consider a/-player strategyr that ensures value greater or equalVe show that’ is
winning in Gj. Itis not hard to see that a pla§ = (uo, o, yo) - - - (Un, Zn,yn) . . . CONSistent withr’ corresponds
to a playp = ug . .. u, ... consistent withr. Furthermore, for every > 0, we haver; = r; andy; = r/*. Since
m ensures valuéin G, the value op is greater or equdl and therefore, for every join irreduciblec V, we have
val(p) > x. Thus, either there exists an indeftom whichr/* < z or for infinitely manyi’s we haveF (u;) > x
andr/ > z. Both cases imply that the sé; is traversed infinitely often. Thus the playis winning for the
V-player inGj.

Assume now that’ is a winning strategy for the-player inG;. The strategyr’ induces av-player strategy
in G in the following way: Every prefix of a play = ug,u1,...,u, in G induces the prefix of a play’ =

(uo, T, L), (wo,x1,41), - - -, (Un, Tn, yn), Where for everyi > 0, we have thatu,;, z;,y;) is theu;-successor of
(ui—1,wi—1,vi—1). We definerr(p) to be the states for which 7/(p’) is (u,z,y). Itis not hard to see that for a
play p in G consistent withr, and for everyi > 0, we haver; = r’ andy; = r*. As 7’ is winning inG}, we get
that for everyz € X; we haveval(p) > z, and thereforeal(p) > 1.

A.3 Proof of Theorem5.3

Approaching the problem in a fashion similar to the one wedusethe Boolean case, we represent strategy
profiles by>-labeledX-trees, and sets of profiles by tree automata. We construcBoolean tree automata.
The first, denoted4,, for the language of all profiles in which payoff,(7) > v, and the second, denotetly,

for the language of all Nash equilibria. It is not hard to des the intersection ofly and. A contains all the
solutions to the latticed rational synthesis problem. Tlso$/ing the problem amounts to returning a witness to
the nonemptiness of the intersection.

For the purposes of complexity analysis, we denote;ltlye size of the LDBW for thé-th agent specification,
by s = max{s;} the maximals;, and bym = |t | the size of the lattice.

We first constructd,. As in the Boolean case, we first construct an LDBJthat maps a strategy profiteto
payoff,(7). Using Theorem 512, we can construct froffj the required Boolean tree automatdp. To see how,
note that the generalizeddBhi game involved has a very uniform structure. From evemertex, thev-player
has exactly one choice associated with each X.. (This property is inherited from the latticed game which in
turn inherits it from the fact that the alphabetdf is >.) A similar property holds for the-player (this property
is inherited from the fact thatlj, runs onX-trees). Therefore, the generalizedidbi game can be reduced, using
standard techniques, to a generalizdttBi tree automatotdy. The size ofAj is so - m? and the number of
acceptance sets in its generalizedcBi condition is bounded by:.

We now turn to build an automaton for Nash equilibda;. We construct4 y as an intersection af automata
{A%},, where the language ofY; is the set of the profiles that satispayoff(r_;,7;) < payoff(x). By
Birkhoff’'s representation theorem, an equivalent cratesiould be that for every join irreducible elemente
JI(L), we havepayoff(r_;,7}) > j — payoff(m, ;) > j. Given LDBW for ;, it is not hard to construct
LDBTSs for payoff(n_;, ;) andpayoff(w). For every join irreducible elemepite JI(L) we would like to make
sure thatpayoff(n_;, 7;) > j — payoff(r,¢;) > j. To that end, we use the construction of the Boolean game
G in the proof of Theorerh 512. Recall that in the gaghg the valuer is obtained by a single strategy iff the
acceptance sef;, is visited infinitely often. Thus, for a specific agent< n, and a join irreducible element
j € JI(L), we can construct a Booleariihi tree automatodﬁ;'., of sizeO(s; - m?), that accepts exactly the
trees encoding profiles for whigayoff(w, ¢;) > j. In a similar way, we can construct a tree automa(ﬂ?fnof
similar size, that accepts trees encoding profiles for whayoff (7_;, =) > j. CombiningB]". and Cj- we can
get a Streett automatomﬁ- that accepts profiles for whighayoff (7_;, ;) > j — payoff(r, ;) > j. The size
of A;'. is O(s? x m*), and it has one Streett pair. Note that for a fixgthe automataél;l share their structure
and only differ in the acceptance condition. Therefore g@dixed: < n, we can construct an automatelrjg], of
sizeO(s? - m*) and withO(m) pairs, that accepts profiles for whigayoff (r_;, 7!) > j — payoff(r, p;) > j
for every join irreducible elemente JI(t). By intersecting the automatd’, we get an automatod y of size
(s -m)°™), with O(m - n) pairs.

The intersection afd, and.Ay is a Streett automaton of size-m)™ and withO(m-n) pairs. Its emptiness
can then be checked in tinfe - m)°(™"*) [22], and we are done.

	Introduction
	Related Work

	Preliminaries
	Rational Synthesis
	Solution in the Boolean Setting
	Extended Strategy Logic
	Expressing Rational Synthesis
	ESL Decidability
	Solving Rational Synthesis

	Solution in the Multi-Valued Setting
	Discussion
	Proofs
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??

