
ar
X

iv
:0

90
7.

30
19

v1
 [

cs
.L

O
]

17
 J

ul
 2

00
9

Rational Synthesis

Dana Fisman
Hebrew University and IBM Haifa

Orna Kupferman
Hebrew University

Yoad Lustig
Rice University

Abstract

Synthesisis the automated construction of a system from its specification. The system has to satisfy its
specification in all possible environments. Modern systemsoften interact with other systems, or agents. Many
times these agents have objectives of their own, other than to fail the system. Thus, it makes sense to model
system environments not as hostile, but as composed ofrational agents; i.e., agents that act to achieve their
own objectives.

We introduce the problem of synthesis in the context of rational agents (rational synthesis, for short). The
input consists of a temporal-logic formula specifying the system and temporal-logic formulas specifying the
objectives of the agents. The output is an implementationT of the system and a profile of strategies, suggesting
a behavior for each of the agents. The output should satisfy two conditions. First, the composition ofT with
the strategy profile should satisfy the specification. Second, the strategy profile should be an equilibria in the
sense that, in view of their objectives, agents have no incentive to deviate from the strategies assigned to them.
We solve the rational-synthesis problem for various definitions of equilibria studied in game theory. We also
consider the multi-valued case in which the objectives of the system and the agents are still temporal logic
formulas, but involve payoffs from a finite lattice.

1 Introduction

Synthesisis the automated construction of a system from its specification. The basic idea is simple and appealing:
instead of developing a system and verifying that it adheresto its specification, we would like to have an automated
procedure that, given a specification, constructs a system that is correct by construction. The first formulation of
synthesis goes back to Church [10]; the modern approach to synthesis was initiated by Pnueli and Rosner, who
introduced LTL (linear temporal logic) synthesis [32]. In LTL synthesis, the specification is given in LTL and the
output is a reactive system modeled by a finite-state transducer. Much of today’s research in formal verification
is aimed at increasing the practicality of automated synthesis, and it addresses challenges like simplification of
synthesis algorithms [19], compositionality and modularity [17, 23], extensions of the basic setting to richer ones
(c.f., synthesis of distributed systems, concurrent systems, and on-line algorithms [1, 2, 18, 25]), and extensions
of the underline techniques to further applications (c.f. automated control and repair [14, 33]).

In synthesis, there is a distinction between system outputs, controlled by the system, and system inputs,
controlled by the environment. A system should be able to cope with all values of the input signals, while setting
the output signals to desired values [32]. Therefore, the quantification structure on input and output signals is
different. Input signals are universally quantified while output signals are existentially quantified.

Modern systems often interact with other systems. For example, the clients interacting with a server are by
themselves distinct entities (which we call agents) and aremany times implemented by systems. In the traditional
approach to synthesis, the way in which the environment is composed of its underlying agents is abstracted. In
particular, the agents can be seen as if their only objectiveis to conspire to fail the system. Hence the term “hostile
environment” that is traditionally used in the context of synthesis. In real life, however, many times agents have
goals of their own, other than to fail the system. The approach taken in the field of algorithmic game theory [29]
is to assume that agents interacting with a computational system arerational, i.e., agents act to achieve their own
goals. Assuming agents rationality is a restriction on the agents behavior and is therefore equivalent to restricting
the universal quantification on the environment. Thus, the following question arises: can system synthesizers
capitalize on the rationality and goals of agents interacting with the system?

Consider for example a peer-to-peer network with only two agents. Each agent is interested in downloading
infinitely often, but has no incentive to upload. In order, however, for one agent to download, the other agent

http://arxiv.org/abs/0907.3019v1

must upload. More formally, for eachi ∈ {0, 1}, Agent i controls the bitsui (“Agent i tries to upload”) anddi
(“Agent i tries to download”). The objective of Agenti is always eventually (di ∧ u1−i). Assume that we are
asked to synthesize the protocol for Agent 0. It is not hard tosee that the objective of Agent 0 depends on his input
signal, implying he cannot ensure his objective in the traditional synthesis sense. On the other hand, suppose that
Agent 0, who is aware of the objective of Agent 1, declares andfollows the followingTIT FOR TAT strategy: I will
upload at the first time step, and from that point onward I willreciprocate the actions of Agent 1. Formally, this
amounts to initially settingu0 to True and for every timek > 0, settingu0 at timek to equalu1 at timek − 1. It
is not hard to see that, against this strategy, Agent 1 can only ensure his objective by satisfying Agent 0 objective
as well. Thus, assuming Agent 1 acts rationally, Agent 0 can ensure his objective.

The example above demonstrates that a synthesizer can capitalize on the rationality of the agents that constitute
its environment. When synthesizing a protocol for rationalagents, we still have no control on their actions. We
would like, however, to generate a strategy for each agent (astrategy profile) such that once the strategy profile
is given to the agents, then a rational agent would have no incentive to deviate from the strategy suggested to
him and would follow it. Such a strategy profile is called in game theory asolutionto the game. Accordingly, the
rational synthesisproblem gets as input temporal-logic formulas specifying the objectiveϕ0 of the system and the
objectivesϕ1, . . . , ϕn of the agents that constitute the environment. The desired output is a system and a strategy
profile for the agents such that the following hold. First, ifall agents adhere to their strategies, then the result of
the interaction of the system and the agents satisfiesϕ0. Second, once the system is in place, and the agent are
playing a game among themselves, the strategy profile is a solution to this game.1

A well known solution concept isNash equilibrium[27]. A strategy profile is in Nash equilibrium if no
agent has an incentive to deviate from his assigned strategy, provided that the other agents adhere to the strategies
assigned to them. For example, if theTIT FOR TAT strategy for Agent 0 is suggested to both agents, then the pair
of strategies is a Nash equilibrium. Indeed, for alli ∈ {0, 1}, if Agent i assumes that Agent1 − i adheres to
his strategy, then by following the strategy, Agenti knows that his objective would be satisfied, and he has no
incentive to deviate from it. The stability of a Nash equilibrium depends on the players assumption that the other
players adhere to the strategy. In some cases this is a reasonable assumption. Consider, for example, a standard
protocol published by some known authority such as IEEE. When a programmer writes a program implementing
the standard, he tends to assume that his program is going to interact with other programs that implement the
same standard. If the published standard is a Nash equilibrium, then there is no incentive to write a program
that diverts from the standard. Game theory suggests several solution concepts, all capturing the idea that the
participating agents have no incentive to deviate from the protocol (or strategy) assigned to them. We consider
three well-studied solution concepts [29]: dominant-strategies solution, Nash equilibrium, and subgame-perfect
Nash equilibrium.

An important facet in the task of a rational synthesizer is tosynthesize a system such that once it is in place,
the game played by the agents has a solution with a favorable outcome.Mechanism design, studied in game theory
and economy [28, 29], is the study of designing a game whose outcome (assuming players rationality) achieves
some goal. Rational synthesis can be viewed as a variant of mechanism design in which the game is induced by
the objective of the system, and the objectives of both the system and the agents refer to their on-going interaction
and are specified by temporal-logic formulas.

Having defined rational synthesis, we turn to solve it. In [7], the authors introducedstrategy logic– an
extension of temporal logic with first order quantification over strategies. The rich structure of strategy logic
enables it to specify properties like the existence of a Nash-equilibrium. While [7] does not consider the synthesis
problem, the technique suggested there can be used in order to solve the rational-synthesis problem for Nash
equilibrium and dominant strategies. Strategy logic, however, is not sufficiently expressive in order to specify
subgame-perfect-Nash equilibrium [35] which, as advocated in [37] (see also Section 3), is the most suited for
infinite multiplayer games — those induced by rational synthesis. The weakness of strategy logic is its inability to
quantify over game histories. We extend strategy logic withhistory variables, and show that the extended logic is
sufficiently expressive to express rational synthesis for the three solution concepts we study. Technically, adding
history variables to strategy logic results in amemoryful logic[21], in which temporal logic formulas have to be
evaluated not along paths that start at the present, but along paths that start at the root and go through the present.

1For a formal definition ofrational synthesis, see Definition 3.1.

Classical applications of game theory consider games with real-valued payoffs. For example, agents may bid
on goods or grade candidates. In the peer-to-peer network example, one may want to refer to the amount of data
uploaded by each agent, or one may want to add the possibilityof pricing downloads. The full quantitative setting
is undecidable already in the context of model checking [3].Yet, several special cases for which the problem is
decidable have been studied [4]. We can distinguish betweencases in which decidability is achieved by restricting
the type of systems [3], and cases in which it is achieved by restricting the domain of values [13]. We solve the
quantitative rational synthesis problem for the case the domain of values is a finite distributive De Morgan lattice.
The lattice setting is a good starting point to the quantitative setting. First, lattices have been successfully handled
for easier problems, and in particular, multi-valued synthesis [15, 16]. In addition, lattices are sufficiently rich to
express interesting quantitative properties. This is sometime immediate (for example, in the peer-to-peer network,
one can refer to the different attributions of the communication channels, giving rise to the lattice of the subsets
of the attributions), and sometimes thanks to the fact that real values can often be abstracted to finite linear orders.
From a technical point of view, our contribution here is a solution of a latticed game in which the value of the
game cannot be obtained by joining values obtained by different strategies, which is unacceptable in synthesis.

1.1 Related Work

Already early work on synthesis has realized that working with a hostile environment is often too restrictive. The
way to address this point, however, has been by adding assumptions on the environment, which can be part of
the specification (c.f., [5]). The first to consider the game-theoretic approach to dealing with rationality of the
environment in the context of LTL synthesis were Chatteerjee and Henzinger [8]. The setting in [8], however,
is quite restricted; it considers exactly three players, where the third player is a fair scheduler, and the notion of
secure equilibria[6]. Secure equilibria, introduced in [6], is a Nash equilibria in which each of the two players
prefers outcomes in which only his objective is achieved over outcomes in which both objectives are achieved,
which he still prefers over outcomes in which his objective is not achieved. It is not clear how this notion can be
extended to multiplayer games, and to the distinction we make here between controllable agents that induce the
game (the system) and rational agents (the environment). Also, the set of solution concepts we consider is richer.

Ummels [37] was the first to consider subgame perfect equilibria in the context of infinite multiplayer games.
The setting there is of turn-based games and the solution goes via a reduction to 2-player games. Here, we consider
concurrent games and therefore cannot use such a reduction.Another difference is that [37] considers parity
winning conditions whereas we use LTL objectives. In addition, the fact that the input to the rational synthesis
problem does not include a game makes the memoryful nature ofsubgame perfect equilibria more challenging, as
we cannot easily reduce the LTL formulas to memoryless parity games.

To the best of our knowledge, we are the first to handle the multi-valued setting. As we show, while the lattice
case is decidable, its handling required a nontrivial extension of both the Boolean setting and the algorithms
known for solving latticed games [16].

2 Preliminaries

We considerinfinite concurrent multiplayer games(in short,games) defined as follows. Agame arenais a tuple
G = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉, whereV is a set of nodes,v0 is an initial node,I is a set of players, and for
i ∈ I, the setΣi is the set of actions of Playeri andΓi : V → 2Σi specifies the actions that Playeri can take
at each node. LetI = {1, . . . , n}. Then, the transition relationδ : V × Σ1 × · · · × Σn → V is a deterministic
function mapping the current node and the current choices ofthe agents to the successor node. The transition
function may be restricted to its relevant domain. Thus,δ(v, σ1, . . . , σn) is defined forv ∈ V and〈σ1, . . . , σn〉 ∈
Γ1(v)× · · · × Γn(v).

A position in the game is a tuple〈v, σ1, σ2, . . . , σn〉 with v ∈ V andσi ∈ Γi(v) for every i ∈ I. Thus, a
position describes a state along with possible choices of actions for the players in this state. Consider a sequence
p = p0 ·p1 ·p2 · · · of positions. Fork ≥ 0, we usenode(pk) to denote the state component ofpk, and usepk[i], for
i ∈ I, to denote the action of Playeri in pk. The notations extend top in the straightforward way. Thus,node(p) is
the projection ofp on the first component. We say thatp is aplay if the transitions between positions is consistent

with δ. Formally,p is aplay starting at nodev if node(p0) = v and for allk ≥ 0, we havenode(pk+1) = δ(pk).
We usePG (or simplyP whenG is clear from the context) to denote all possible plays ofG.

Note that at every nodev ∈ V , each playeri chooses an actionσi ∈ Γi(v) simultaneously and independently
of the other players. The game then proceeds to the successornodeδ(v, σ1, . . . , σn). A strategyfor Playeri
is a functionπi : V + 7→ Σi that maps histories of the game to an action suggested to Player i. The suggestion
has to be consistent withΓi. Thus, for everyv0v1 · · · vk ∈ V +, we haveπi(v0v1 · · · vk) ∈ Γi(vk). Let Πi denote
the set of possible strategies for Playeri. For a set of playersI = {1, . . . , n}, a strategy profileis a tuple
of strategies〈π1, π2, . . . , πn〉 ∈ Π1 ×Π2 × · · · ×Πn. We denote the strategy profile by(πi)i∈I (or simply π,
whenI is clear from the context). We say thatp is anoutcomeof the profileπ if for all k ≥ 0 and i ∈ I, we
havepk[i] = πi(node(p0) · node(p1) · · · node(pk)). Thus,p is an outcome ofπ if all the players adhere to their
strategies inπ. Note that sinceδ is deterministic,π fixes a single play from each state of the game. Given a profile
π we denote byoutcome(π)G (or simply outcome(π)) the one play inG that is the outcome ofπ when starting
in v0. Given a strategy profileπ and a nonempty sequence of nodesh = v0v1 . . . vk, we define theshift ofπ by
h as the strategy profile(πhi)i∈I in which for all i ∈ I and all historiesw ∈ V ∗, we haveπhi (w) = πi(h · w).
We denote byoutcome(π)Gh (or simply outcome(π)h) the concatenation ofv0v1 . . . vk−1 with the one play in
G that is the outcome ofπh when starting invk. Thus, outcome(π)h describes the outcome of a game that
has somehow found itself with historyh, and from that point, the players behave if the history had been h.
Given a profile(πi)i∈I , an indexj ∈ I , and a strategyπ′j for Playerj, we use(π−j , π′j) to refer to the profile
of strategies in which the strategy for all players butj is as inπ, and the strategy for Playerj is π′j . Thus,
(π−j , π

′
j) = 〈π1, π2, . . . , πj−1, π

′
j, πj+1, . . . , πn〉.

3 Rational Synthesis

In this section we define the problem of rational synthesis. We work with the following model: the world consists
of thesystemand a set ofn agentsAgent 1, . . . ,Agent n. For uniformity we refer to the system asAgent 0. We
assume that Agenti controls a setXi of variables, and the different sets are pairwise disjoint.At each point in
time, each agent sets his variables to certain values. Thus,an action ofAgent iamounts to assigning values to his
variables. Accordingly, the set of actions ofAgent iis given by2Xi . We useX to denote

⋃
0≤i≤nXi. We useX−i

to denoteX \Xi for 0 ≤ i ≤ n. Each of the agents (including the system) has an objective.The objective of an
agent is formulated using a linear temporal logic formula (LTL [31]) over the set of variables of all agents.2 We
useϕi to denote the objective ofAgent i.

This setting induces the game arenaG = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉 defined as follows. The set of players
I = {0, 1, . . . , n} consists of the system and the agents. The moves of agenti are all the possible assignments to
its variables. Thus,Σi = 2Xi . We useΣ, Σi, andΣ−i to denote the sets2X , 2Xi , and2X−i , respectively. An agent
can set his variables as he wishes throughout the game. ThusΓi(v) = Σi for everyv ∈ V . The game records in
its vertices all the actions taken by the agents so far. Hence, V = Σ∗ and for allv ∈ Σ∗ and〈σ0, . . . , σn〉 ∈ Σ, we
haveδ(v, σ0, . . . , σn) = v · 〈σ0, . . . , σn〉.

At each moment in time, the system gets as input an assignmentin Σ−0 and it generates as output an assign-
ment inΣ0. For every possible historyh ∈ (Σ−0 ∪ Σ0)

∗ the system should decide whatσ0 ∈ Σ0 it outputs
next. Thus, a strategy for the system is a functionπ0 : Σ∗ → Σ0 (recall thatΣ = Σ−0 ∪ Σ0 and note that indeed
V + = Σ∗). In the standard synthesis problem, we say thatπ0 realizesϕ0 if all the computations thatπ0 generates
satisfyϕ0. In rational synthesis, on the other hand, we also generate strategies for the other agents, and the single
computation that is the outcome of all the strategies shouldsatisfyϕ0. That is, we requireoutcome(π)G |= ϕ0

whereG is as defined above. In addition, we should generate the strategies for the other agents in a way that would
guarantee that they indeed adhere to their strategies.

Recall that while we control the system, we have no control onthe behaviors ofAgent 1, . . . ,Agent n. Let
π0 : Σ∗ → Σ0 be a strategy for the system inG. Then,π0 induces the gameGπ0

= 〈Σ∗, ǫ, I, (Σi)i∈I , (Γ
′
i)i∈I , δ〉,

where fori ∈ I \ {0}, we haveΓ′
i = Γi, andΓ′

0(w) = {π0(w−0)}, wherew−0 is obtained formw by project-
ing its letters onΣ−0. Recall thatδ is restricted to the relevant domain. Thus, asΓ′

0 is deterministic, we can

2We could have worked with any otherω-regular formalism for specifying the objectives. We choseLTL for simplicity of the presen-
tation.

regardGπ0
as ann-player (rather thann + 1-player) game. Note thatGπ0

contains all the possible behaviors of
Agent 1, . . . ,Agent n, when the system adheres toπ0.

Definition 3.1 (Rational Synthesis)Consider a solution conceptγ. The problem of rational synthesis (with so-
lution conceptγ) is to return, given LTL formulasϕ0, ϕ1, . . . , ϕn, specifying the objectives of the system and the
agents constituting its environment, a strategy profileπ = 〈π0, π1, . . . , πn〉 ∈ Π0 ×Π1 × · · · ×Πn such that both
(a) outcome(π)G |= ϕ0 and (b) the strategy profile〈π1, . . . , πn〉 is a solution in the gameGπ0

with respect to the
solution conceptγ. y

The rational-synthesis problem gets a solution concept as aparameter. As discussed in Section 1, the fact
〈π1, . . . , πn〉 is a solution with respect to the concept guarantees that it is not worthwhile for the agents consti-
tuting the environment to deviate from the strategies assigned to them. Several solution concepts are studied and
motivated in game theory. We focus on three leading concepts, and we first recall their definitions and motivations
in game theory. The common setting in game theory is that the objective for each player is to maximize hispayoff
– a real number that is a function of the play. We usepayoffi : P → R to denote the payoff function of player
i. That is,payoffi assigns to each possible playp a real numberpayoffi(p) expressing the payoff ofi on p. For a
strategy profileπ we use (with a slight abuse of notation)payoffi(π) to abbreviatepayoffi(outcome(π)).

The simplest and most appealing solution concept is dominant-strategies solution. Adominant strategyis a
strategy that a player can never lose by adhering to, regardless of the strategies of the other players. Therefore, if
there is a profile of strategiesπ in which all strategiesπi are dominant, then no player has an incentive to deviate
from the strategy assigned to him inπ. Formally,π is adominant strategy profileif for every 1 ≤ i ≤ n and for
every profileπ′ with π′i 6= πi, we have thatpayoffi(π

′) ≤ payoffi(π
′
−i, πi). Consider, for example, a game played

by three players: Alice, Bob and Charlie whose actions are{a1, a2}, {b1, b2} and{c1, c2}, respectively. The game
is played on the game arena depicted in the left of Figure 1. The labels on the edges are marked by the possible
action moves. Each player wants to visit infinitely often a node marked by his initial letter. In this game, Bob’s
strategy of choosingb1 from Node2 is a dominant strategy. All of the strategies of Charlie are dominating. Alice,
though, has no dominating strategy. Unfortunately, in manygames some agents do not have dominant strategies,
thus no dominant-strategy solution exists. Naturally, if no dominant strategy solution exists, one would still like
to consider other solution concepts.

Another well known solution concept is Nash equilibrium [27]. A strategy profile isNash equilibriumif no
player has an incentive to deviate from his strategy inπ provided he assumes the other players adhere to the
strategies assigned to them inπ. Formally,π is aNash equilibrium profileif for every 1 ≤ i ≤ n and for every
strategyπ′i 6= πi, we have thatpayoffi(π−i, π

′
i) ≤ payoffi(π). For example, the strategy profile depicted in the

middle of Figure 1 by dotted edges is a Nash equilibrium of thegame to its left. Knowing the strategy of the other
players, each player cannot gain by deviating from his strategy.

An important advantage of Nash equilibrium is that a Nash equilibrium exists in almost every game [30].3 A
weakness of Nash equilibrium is that it is not nearly as stable as a dominant-strategy solution: if one of the other
players deviates from his assigned strategy, nothing is guaranteed.

Nash equilibrium is suited to a type of games in which the players make all their decisions without knowledge
of other players choices. The type of games considered in rational synthesis, however, are different, as players do
have knowledge about the choices of the other players in earlier rounds of the game. To see the problem that this
setting poses for Nash equilibrium, let us consider the ULTIMATUM game. In ULTIMATUM , Player 1 chooses a
valuex ∈ [0, 1], and then Player 2 chooses whether to accept the choice, in which case the payoff of Player 1 is
x and the payoff of Player 2 is1 − x, or to reject the choice, in which case the payoff of both players is0. One
Nash equilibrium in ULTIMATUM is π = 〈π1, π2〉 in which π1 advises Player 1 to always choosex = 1 andπ2

advises Player 2 to always reject. It is not hard to see thatπ is indeed a Nash equilibrium. In particular, if Player 2
assumes that Player 1 followsπ1, he has no incentive to deviate fromπ2. Still, the equilibrium is unstable. The
reason is thatπ2 is inherently not credible. If Player 1 choosesx smaller than1, it is irrational for Player 2 to
reject, and Player 1 has no reason to assume that Player 2 adheres toπ2. This instability of a Nash equilibrium is
especially true in a setting in which the players have information about the choices made by the other players. In
particular, in ULTIMATUM , Player 1 knows that Player 2 would make his choice after knowing whatx is.

3In particular, alln-player turn-based games withω-regular objectives have Nash equilibrium [9].

To see this problem in the setting of infinite games, considerthe strategy profile depicted in the right of
Figure 1 by dashed edges. This profile is also a Nash equilibrium of the game in the left of the figure. It is,
however, not very rational. The reason is that if Alice deviates from her strategy by choosinga2 rather thana1

then it is irrational for Bob to stick to his strategy. Indeed, if he sticks to his strategy he does not meet his objective,
yet if he deviates and choosesb1 he does meet his objective.

This instability of Nash equilibrium has been addressed in the definition of subgame-perfect equilibrium [35].
A strategy profileπ is in subgame-perfect equilibrium (SPE)if for every possible history of the game, no player
has an incentive to deviate from his strategy inπ provided he assumes the other players adhere to the strategies
assigned to them inπ. Formally,π is an SPE profile if for every possible historyh of the game, player1 ≤ i ≤ n,
and strategyπ′i 6= πi, we have thatpayoffi(π−i, π

′
i)h ≤ payoffi(π)h. The dotted strategy depicted in the middle of

Figure 1 is a subgame-perfect equilibrium. Indeed, it is a Nash equilibrium from every possible node of the arena,
including non-reachable ones.

In the context of on-going behaviors, real-valued payoffs are a big challenge and most works on reactive
systems use Boolean temporal-logic as a specification language. Below we adjust the definition of the three
solution concepts to the case the objectives are LTL formulas.4 Essentially, the adjustment is done by assuming
the following simple payoffs: If the objectiveϕi of Agent i holds, then his payoff is1; otherwise his payoff is0.
The induced solution concepts are then as followed. Consider a strategy profileπ = 〈π1, . . . , πn〉.

• We say thatπ is a dominant strategy profileif for every 1 ≤ i ≤ n and profileπ′ with π′i 6= πi, if
outcome(π′) |= ϕi, thenoutcome(π′−i, πi) |= ϕi.

• We say thatπ is a Nash equilibrium profileif for every 1 ≤ i ≤ n and profileπ′ with π′i 6= πi, if
outcome(π−i, π′i) |= ϕi, thenoutcome(π) |= ϕi.

• We say thatπ is asubgame-perfect equilibrium profileif for every historyh ∈ Σ∗, 1 ≤ i ≤ n, and profile
π′ with π′i 6= πi, if outcome(π−i, π′i)h |= ϕi, thenoutcome(π)h |= ϕi.

4 Solution in the Boolean Setting

In this section we solve the rational-synthesis problem. Let I = {0, 1, . . . , n} denote the set of agents. Recall that
Σi = 2Xi andΣ = 2X , whereX = ∪i∈IXi, and that the partition of the variables among the agents induces a
game arena with states inΣ∗. Expressing rational synthesis involves properties of strategies and histories.Strategy
Logic [7] is a logic that treats strategies in games as explicit first-order objects. Given an LTL formulaψ and
strategy variablesz0, . . . , zn ranging over strategies of the agents, the strategy logic formulaψ(z0, . . . , zn) states
thatψ holds in the outcome of the game in which Agenti adheres to the strategyzi. The use of existential and
universal quantifiers on strategy variables enables strategy logic to state that a given profile consists of dominant
strategies or is a Nash equilibrium. However, strategy logic is not strong enough to state the existence of a subgame
perfect equilibrium. The reason is that a formulaϕ(z0, . . . , zn) in strategy logic assumes that the strategiesz0, . . . ,
zn are computed from the initial vertex of the game, and it cannot refer to histories that diverge from the strategies.
We therefore extend strategy logic with first order variables that range over arbitrary histories of the game.

4.1 Extended Strategy Logic

Formulas ofExtended Strategy Logic(ESL) are defined with respect to a gameG = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉,
a setH of history variables, and setsZi of strategy variables fori ∈ I. Let I = {0, . . . , n}, Σ = Σ0 × · · · × Σn,
and letψ be an LTL formula overΣ. Let h be a history variable inH, and letz0, ..., zn be strategy variables in
Z0, . . . ,Zn, respectively. We usez as an abbreviation forz0, ..., zn. The set of ESL formulas is defined inductively
as follows.5

Ψ ::= ψ(z) | ψ(z;h) | Ψ ∨Ψ | ¬Ψ | ∃zi.Ψ | ∃h.Ψ

4In Section 5, we make a step towards generalizing the framework to the multi-valued setting and consider the case the payoffs are
taken from a finite distributive lattice.

5We note that strategy logic as defined in [7] allows the application of LTL path operators (© andU) on strategy logic closed formulas.
Since we could not come up with a meaningful specification that uses such applications, we chose to ease the presentation and do not allow
them in ESL. Technically, it is easy to extend ESL and allow such applications.

We use the usual abbreviations∧,→, and∀. We denote byfree(Ψ) the set of strategy and history variables that
are free (not in a scope of a quantifier) inΨ. A formula Ψ is closedif free(Ψ) = ∅. Thealternation depthof
a variable of a closed formula is the number of quantifier switches (∃∀ or ∀∃, in case the formula is in positive
normal form) that bind the variable. Thealternation depthof closed formulaΨ is the maximum alternation depth
of a variable occurring in the formula.

We now define the semantics of ESL. Intuitively, an ESL formula of the formψ(z;h) is interpreted over the
game whose prefix matches the historyh and the suffix starting whereh ends is the outcome of the game that
starts at the last vertex ofh and along which each agenti ∈ I adheres to his strategy inz. Let X ⊆ H ∪

⋃
i∈I Zi

be a set of variables. An assignmentAX assigns to every history variableh ∈ X ∩H, a historyAX(h) ∈ V + and
assigns to every strategy variablezi ∈ X ∩ Zi, a strategyAX(zi) ∈ Πi. Given an assignmentAX and a strategy
πi ∈ Πi, we denote byAX[zi←πi] the assignmentA′

X∪{zi}
in whichA′

X∪{zi}
(zi) = πi and for a variablex 6= zi

we haveA′
X∪{zi}

(x) = AX(x). For histories of the gamew ∈ V + we defineAX[h←w] similarly.
We now describe when a given gameG and a given assignmentAX satisfy an ESL formulaΨ, whereX is

such thatfree(Ψ) ⊆ X. For LTL, the semantics is as usual [24].

(G,AX) |= ψ(z) iff outcome(AX(z))G |= ψ (G,AX) |= Ψ1 ∨Ψ2 iff (G,AX) |= Ψ1 or (G,AX) |= Ψ2

(G,AX) |= ψ(z;h) iff outcome(AX(z))GAX(h) |= ψ (G,AX) |= ∃zi.Ψ iff ∃πi∈Πi.(G,AX[zi←πi]) |= Ψ

(G,AX) |= ¬Ψ iff (G,AX) |=/ Ψ (G,AX) |= ∃h.Ψ iff ∃w∈V +.(G,AX[h←w]) |= Ψ

For an ESL formulaΨ we use[[Ψ]] to denote its set of satisfying assignments; that is,[[Ψ]] = {(G,AX) | X =
free(Ψ) and(G,AX) |= Ψ}. Given an ESL formulaΨ and a game graphG, we denote by[[Ψ]]G the assignment
AX to the free variables inΨ such that(G,AX) ∈ [[Ψ]].

Before we show how[[Ψ]]G can be computed we show that ESL is strong enough to express the solution to the
rational-synthesis problems for the three solution concepts we study.

4.2 Expressing Rational Synthesis

We now show that the rational synthesis problem for the threesolution concepts we study can be stated in ESL.
We first state that a given strategy profiley = (yi)i∈I is a solution concept on the gameGy0 , that is, the game
induced byG when Agent0 adheres to his strategy iny. We useI−0 to denote the set{1, . . . , n}, that is, the set of
all agents except for the system, which is Agent0. Given a strategy profilez = (zi)i∈I , we use(z−{i,0}, yi, y0) to
denote the strategy profile where all agents buti and0 follow z and agentsi and0 follow yi andy0, respectively.
For i ∈ I, let ϕi be the objective of Agenti. For a solution conceptγ ∈ {DS, NASH, SPE} and a strategy profile
y = (yi)i∈I , the formulaΨγ(y), expressing that the profile(yi)i∈I−0

is a solution with respect toγ in Gy0 , is
defined as follows.

• ΨDS(y) :=
∧
i∈I−0

∀z. (ϕi(z−0, y0)→ ϕi(z−{i,0}, yi, y0)).

• ΨNASH(y) :=
∧
i∈I−0

∀zi. (ϕi(y−i, zi)→ϕi(y)).

• ΨSPE(y) := ∀h.
∧
i∈I−0

∀zi. ((ϕi(y−i, zi, h)→(ϕi(y, h)).

We can now state the existence of a solution to the rational-synthesis problem with inputϕ0, . . . , ϕn by the
closed formulaΦγ := ∃(yi)i∈I .(ϕ0((yi)i∈I) ∧ Ψγ((yi)i∈I)). Indeed, the formula specifies the existence of a
strategy profile whose outcome satisfiesϕ0 and for which the strategies for the agents inI−0 constitute a solution
with respect toγ in the game induced byy0.

4.3 ESL Decidability

In order to solve the rational-synthesis problem we are going to use automata on infinite trees. Given a setD of
directions, aD-tree is the setD∗. The elements inD∗ are thenodesof the tree. The nodeǫ is the root of the tree.
For a nodeu ∈ D∗ and a directiond ∈ D, the nodeu · d is thesuccessorof u with directiond. GivenD and an
alphabetΣ, aΣ-labeledD-tree is a pair〈D∗, τ〉 such thatτ : D∗ → Σ maps each node ofD∗ to a letter inΣ.

An alternating parity tree automaton (APT)is a tupleA = 〈Σ,D,Q, δ0, δ, χ〉, whereΣ is the input alphabet,
D is the directions set,Q is a finite set of states,δ0 is the initial condition,δ is the transition relation andχ : Q 7→
{1, . . . , k} is the parity condition. The initial conditionδ0 is a positive boolean formula overQ specifying the
initial condition. For example,(q1 ∨ q2)∧ q3 specifies that the APT accepts the input tree if it accepts it from state
q3 as well as fromq1 or q2. The transition functionδ maps each state and letter to a boolean formula overD×Q.
Thus, as withδ0, the idea is to allow the automaton to send copies of itself indifferent states. Inδ, the copies are
sent to the successors of the current node, thus each state ispaired with the direction to which the copy should
proceed. Due to the lack of space, we refer the reader to [11] for the definition of runs and acceptance.

Base ESL formulas, of the formψ(z, h), refer to exactly one strategy variable for each agent, and one history
variable. The assignment for these variables can be described by a(Σ × {⊥,⊤})-labeledΣ-tree, where theΣ-
component of the labels is used in order to describe the strategy profileπ assigned to the strategy variable, and
the{⊥,⊤}-component of the labels is used in order to label the tree by aunique finite path corresponding to the
history variable. We refer to a(Σ × {⊥,⊤})-labeledΣ-tree as astrategy-history tree. A nodeu = d0d1 . . . dk in
a strategy-history tree〈Σ∗, τ 〉 corresponds to a history of the play in which at time0 ≤ j ≤ k, the agents played
as recorded indj . A label τ(u) = (σ0, . . . , σn,⊣) of nodeu describes (1) for each agenti, an actionσi that the
strategyπi advises Agenti to take when the history of the game so far isu, and (2) whether the node is along the
path corresponding to the history. Among the|Σ| successors ofu in the strategy-history tree, only the successor
u · τ(u) corresponds to a scenario in which all the agents adhere to their strategies in the strategy profile described
in 〈Σ∗, τ〉. We say that a pathρ in 〈Σ∗, τ 〉 is obedientif for all nodesu · d ∈ ρ, for u ∈ Σ∗ andd ∈ Σ, we have
d = τ(u). Note that there is a single obedient path in every strategy tree. This path corresponds to the single play
in which all agents adhere to their strategies. The{⊥,⊤} labeling is legal if there is a unique finite path starting at
the root, all of whose node are marked with⊤. Note that there is a single path in the tree whose prefix is marked
by⊤’s and whose suffix is obedient.

An ESL formulaΨ may contain several base formulas. Therefore,Ψ may contain, for eachi ∈ I, several
strategy variables inZi and several history variables inH. For i ∈ I, let {z1

i , . . . , z
mi

i } be the set of strategy
variables inΨ ∩ Zi. Recall that each strategy variablezji ∈ Zi corresponds to a strategyπji : Σ∗ → Σi. Let
{h1, . . . , hm} be the set of history variables inΨ. Recall that each history variableh corresponds to a word inΣ∗,
which can be seen as a functionwh : Σ∗ → {⊤,⊥} labeling only that word with⊤’s. Thus, we can describe an
assignment to all the variables inΨ by aΥ-labeledΣ-tree, withΥ = Σm0

0 × Σm1

1 × · · · × Σmn

n × {⊥,⊤}m.
We solve the rational synthesis problem using tree automatathat run onΥ-labeledΣ-trees. Note that the

specification of rational synthesis involves an external quantification of a strategy profile. We construct an au-
tomatonU that accepts all trees that describe a strategy profile that meets the desired solution. A witness to the
nonemptiness of the automaton then induces the desired strategies.

We defineU as an APT. Consider an ESL formulaψ(z, h). Consider a strategy tree〈Σ∗, τ〉. Recall thatψ
should hold along the path that starts at the root of the tree,goes throughh, and then continues tooutcome(z)h.
Thus, adding history variables to strategy logic results ina memoryful logic[21], in which LTL formulas have to
be evaluated not along a path that starts at the present, but along a path that starts at the root and goes through
the present. The memoryful semantics imposes a real challenge on the decidability problem, as one has to follow
all the possible runs of a nondeterministic automaton forψ, which involves a satellite implementing the subset
construction of this automaton [21]. Here, we use instead the{⊥,⊤}-component of the label ofτ .

The definition of the APTAΨ for [[Ψ]]G works by induction on the structure ofΨ. At the base level, we have
formulas of the formψ(z, h), whereψ is an LTL formula,z is a strategy profile, andh is a history variable. The
constructed automaton then has three tasks. The first task isto check that the{⊥,⊤} labeling is legal; i.e. there
is a unique path in the tree marked by⊤’s. The second task is to detect the single path that goes throughh and
continues fromh according to the strategy profilez. The third task is to check that this path satisfiesψ. The
inductive steps then built on APT complementation, intersection, union and projection [26]. In particular, as in
strategy logic, quantification over a strategy variable foragenti is done by “projecting out” the correspondingΣi

label from the tree. That is, given an automatonA for Ψ, the automaton for∃zi.Ψ ignores theΣi component that
refers tozi and checksA on a tree where this component is guessed. The quantificationover history variables is
similar. Given an automatonA for Ψ the automaton for∃h.Ψ ignores the{⊥,⊤} part of the label that corresponds
to h and checksA on a tree where the{⊥,⊤} part of the label is guessed.

Theorem 4.1 Let Ψ be an ESL formula overG. Let d be the alternation depth ofΨ. We can construct an APT
AΨ such thatAΨ accepts[[Ψ]]G and its emptiness can be checked in time(d+ 1)-EXPTIME in the size ofΨ.

4.4 Solving Rational Synthesis

We can now reduce rational-synthesis to APT emptiness.

Theorem 4.2 The LTL rational-synthesis problem is 2EXPTIME-complete for the solution concepts of dominant
strategy, Nash equilibrium, and subgame-perfect equilibrium.

Proof: We have shown in Section 4.2 that the rational-synthesis problem for γ ∈ {DS, NASH, SPE} can be
specified by an ESL formulaΦγ with one alternation. It follows from Theorem 4.1 that we canconstruct an APT
accepting[[Φγ]]G (whereG is as defined in Section 3) whose emptiness can be solved in 2EXPTIME. Hence, the
problem is in 2EXPTIME.

Hardness in 2EXPTIME follows easily from the 2EXPTIME-hardness of LTL synthesis [34]. Indeed, syn-
thesis against a hostile environment can be reduced to rational synthesis against an agent whose objective istrue.

Remark 4.3 In the above we have shown how to solve the problem of rationalsynthesis. It is easy to extend our
algorithm to solve the problem ofrational control, where one needs to control a system in a way it would satisfy
its specification assuming its environment consists of rational agents whose objectives are given. Technically, the
control setting induces the game to start with, thus the strategy trees are no longerΣ-trees, and rather they are
(S ×Σ)-trees, whereS is the state space of the system we wish to control. y

5 Solution in the Multi-Valued Setting

As discussed in Section 1, classical applications of game theory consider games with quantitative payoffs. The
extension of the synthesis problem to the rational setting calls also for an extension to the quantitative setting.
Unfortunately, the full quantitative setting is undecidable already in the context of model checking [3]. In this
section we study a decidable fragment of the quantitative rational synthesis problem: the payoffs are taken from
finite De-Morgan lattices. A lattice 〈A,≤〉 is a partially ordered set in which every two elementsa, b ∈ A have
a least upper bound (a join b, denoteda ∨ b) and a greatest lower bound (a meetb, denoteda ∧ b). A lattice is
distributive if for everya, b, c ∈ A, we havea ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). De-Morgan lattices are distributive
lattices in which every elementa has a unique complement element¬a such that¬¬a = a, De-Morgan rules
hold, anda ≤ b implies¬b ≤ ¬a. Many useful payoffs are taken from finite De-Morgan lattices: all payoffs that
are linearly ordered, payoffs corresponding to subsets of some set, payoffs corresponding to multiple view-points,
and more [15, 16].

We specify qualitative specifications using the temporal logic latticed LTL(LLTL, for short), where the truth
value of a specification is an element in a lattice. For a strategy profileπ and an LLTL objectiveϕi of Agenti, the
payoff of Agenti in π is the truth value ofϕi in outcome(π). A synthesizer would like to find a profileπ in which
payoff0(π) is as high as possible. Accordingly, we define the latticed rational synthesis as follows.

Definition 5.1 (Latticed Rational Synthesis) Consider a solution conceptγ. The problem of latticed rational
synthesis (with solution conceptγ) is to return, given LLTL formulasϕ0, . . . , ϕn and a lattice valuev ∈ Ł, a
strategy profileπ = 〈π0, π1, . . . , πn〉 ∈ Π0 × Π1 × · · · × Πn such that (a)payoff0(π) ≥ v and (b) the strategy
profile 〈π1, . . . , πn〉 is a solution in the gameGπ0

with respect to the solution conceptγ. y

In the Boolean setting, we reduced the rational-synthesis problem to decidability of ESL. The decision pro-
cedure for ESL is based on the automata-theoretic approach,and specifically on APT’s. In the lattice setting,
automata-theoretic machinery is not as developed as in the Boolean case. Consequently, we restrict attention to
LLTL specifications that can be translated to deterministiclatticed Büchi word automata (LDBW), and to the
solution concept of Nash equilibrium.6

6A Büchiacceptance conditions specifies a subsetF of the states, and an infinite sequence of states satisfies thecondition if it visitsF

infinitely often. Ageneralized Büchi conditionspecifies several such sets, all of which should be visited infinitely often.

An LDBW can be expanded into a deterministic latticed Büchitree automata (LDBT), which is the key
behind the analysis of strategy trees. It is not hard to lift to the latticed setting almost all the other operations on
tree automata that are needed in order to solve rational synthesis. An exception is the problem of emptiness. In
the Boolean case, tree-automata emptiness is reduced to deciding a two-player game [12]. Such games are played
between an∨-player, who has a winning strategy iff the automaton is not empty (essentially, the∨-player chooses
the transitions with which the automaton accepts a witness tree), and a∧-player, who has a winning strategy
otherwise (essentially, the∧-player chooses a path in the tree that does not satisfy the acceptance condition). A
winning strategy for the∨-player induces a labeled tree accepted by the tree automaton.

In latticed games, deciding a game amounts to finding a lattice valuel such that the∨-player can force the
game to computations in which his payoff is at leastl. The value of the game need not be achieved by a single
strategy and algorithms for analyzing latticed games consider values that emerge as the join of values obtained
by following different strategies [16, 36]. A labeled tree,however, relates to a single strategy. Therefore, the
emptiness problem for latticed tree automata, to which the latticed rational synthesis is reduced, cannot be reduced
to solving latticed games. Instead, one has to consider thesingle-strategyvariant of latticed games, namely the
problem of finding values that the∨-player can ensure by a single strategy. We address this problem below.

Theorem 5.2 Consider a latticed B̈uchi gameG. Given a lattice elementl, we can construct a Boolean generalized-
Büchi gameGl such that the∨-player can achieve value greater or equall in G using a single strategy iff the
∨-player wins inGl. The size ofGl is bounded by|G| · |Ł|2 andG1 has at most|Ł| acceptance sets.

Using Theorem 5.2, we can solve the latticed rational synthesis problem in a fashion similar to the one we used
in the Boolean case. We represent strategy profiles byΣ-labeledΣ-trees, and sets of profiles by tree automata.
We construct two Boolean generalized-Büchi tree automata. The first, denotedA0, for the language of all profiles
π in whichpayoff0(π) ≥ v, and the second, denotedAN , for the language of all Nash equilibria. The intersection
ofA0 andAN then contains all the solutions to the latticed rational synthesis problem. Thus, solving the problem
amounts to returning a witness to the nonemptiness of the intersection, and we have the following.

Theorem 5.3 The latticed rational-synthesis problem for objectives inLDBW and the solution concept of Nash
equilibrium is in EXPTIME.

We note that the lower complexity with respect to the Booleansetting (Theorem 4.2) is only apparent, as the
objectives are given in LDBWs, which are less succinct than LLTL formulas [15, 20].

6 Discussion

We introducedrational synthesis— synthesizing a system that functions in a rational environment. As in tradi-
tional synthesis, one cannot control the agents that constitute the environment. Unlike traditional synthesis, the
agents have objectives, we can suggest a strategy for each agent, and we can assume that rational agents follow
strategies they have no incentive to deviate from.

The solution of the rational synthesis problem relies on an extension of strategy logic [7]. The modularity of
our solution separates the game-theoretic considerationsand the synthesis technique. Indeed our technique can
be applied to any solution concept that can be expressed in extended strategy logic. We show that for the com-
mon solution concepts of dominant strategies equilibrium,Nash equilibrium, and subgame perfect equilibrium,
rational synthesis has the same complexity as traditional synthesis The versatility of the extended logic enables
many extensions of the setting. For example, one can associate different solutions concepts with different sub-
specifications. In particular, it is often desirable in practice to ensure that some properties of the system hold
regardless of the rationality of the agents. This can be doneby letting the specifier specify, in addition toϕ0, also
an LTL formulaϕ′

0 (typicallyϕ0 → ϕ′
0) that should be satisfied in the traditional synthesis interpretations, namely

in all environments.

References

[1] B. Aminof, O. Kupferman, and R. Lampert. Reasoning aboutonline algorithms with weighted automata. InProc. 20th
SODA, pages 835–844, 2009.

[2] P.C. Attie, A. Arora, and E.A. Emerson. Synthesis of fault-tolerant concurrent programs.TOPLAS, 26:128–185, 2004.

[3] A. Chakrabarti, K. Chatterjee, T.A. Henzinger, O. Kupferman, and R. Majumdar. Verifying quantitative properties
using bound functions. InProc. 13th CHARME, LNCS 3725, pages 50–64, 2005.

[4] K. Chatterjee, L. Doyen, and T. Henzinger. Quantative languages. InProc. 17th CSL, LNCS 5213, pages 385-400,
2008.

[5] K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assumptions for synthesis. InProc. 19th CONCUR,
LNCS 5201, pages 147–161, 2008.

[6] K. Chatterjee, T. Henzinger, and M. Jurdzinski. Games with secure equilibria.Theoretical Computer Science, 2006.

[7] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In 18th CONCUR, LNCS, pages 59–73, 2007.

[8] K. Chatterjee and T.A. Henzinger. Assume-guarantee synthesis. InProc. 13th TACAS, LNCS 4424, pages 261–275,
2007.

[9] K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equilibria in stochastic games. InProc. 13th CSL, LNCS
3210, pages 26–40, 2004.

[10] A. Church. Logic, arithmetics, and automata. InProc. Int. Congress of Mathematicians, 1962, pages 23–35, 1963.

[11] E. Grädel, W. Thomas, and T. Wilke.Automata, Logics, and Infinite Games: A Guide to Current Research, LNCS
2500, 2002.

[12] Y. Gurevich and L. Harrington. Trees, automata, and games. InProc. 14th STOC, pages 60–65, 1982.

[13] A. Gurfinkel and M. Chechik. Multi-valued model-checking via classical model-checking. In14th CONCUR, LNCS
2761, pages 263–277, 2003.

[14] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. InProc 17th CAV, LNCS 3576, pages
226–238, 2005.

[15] O. Kupferman and Y. Lustig. Lattice automata. InProc. 8th VMCAI, LNCS 4349, pages 199 – 213, 2007.

[16] O. Kupferman and Y. Lustig. Latticed simulation relations and games. In5th ATVA, LNCS 4762, pages 316–330,
2007.

[17] O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis. InProc 18th CAV, LNCS 4144, pages
31–44, 2006.

[18] O. Kupferman and M.Y. Vardi. Synthesizing distributedsystems. InProc. 16th LICS, pages 389–398, 2001.

[19] O. Kupferman and M.Y. Vardi. Safraless decision procedures, InProc. 46th FOCS, pages 531–540, 2005.

[20] O. Kupferman and M.Y. Vardi. From linear time to branching time.TOCL, 6(2):273–294, 2005.

[21] O. Kupferman and M.Y. Vardi. Memoryful branching-timelogics. InProc. 21st LICS, pages 265–274, 2006.

[22] O. Kupferman and M.Y. Vardi. Weak alternating automataand tree automata emptiness. InProc. 30th STOC, pages
224–233, 1998.

[23] Y. Lustig and M.Y. Vardi. Synthesis from component libraries. InProc. 12th FOSSACS, LNCS 5504, pages 395–409,
2009.

[24] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, 1992.

[25] R. van der Meyden and T. Wilke. Synthesis of distributedsystems from knowledge-based specifications. In16th
CONCUR, LNCS 3653, pages 562–576, 2005.

[26] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees.Theoretical Computer Science, 54:267–276, 1987.

[27] J.F. Nash. Equilibrium points in n-person games. InProceedings of the National Academy of Sciences of the United
States of America, 1950.

[28] N. Nisan and A. Ronen. Algorithmic mechanism design. InProc. 31st STOC, pages 129–140, 1999.

[29] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani.Algorithmic Game Theory. Cambridge University Press,
2007.

[30] M. J. Osborne and A. Rubinstein.A Course in Game Theory. The MIT Press, 1994.

1

0

c

2

a, c a,b

a1 a2

c1 c2 b2 b1

1

0

c

2

a, c a,b

a1 a2

c1 c2 b2 b1

1

0

c

2

a, c a,b

a1 a2

c1 c2 b2 b1

Figure 1: A game, two Nash equilibria and one subgame-perfect equilibrium.

[31] A. Pnueli. The temporal logic of programs. InProc. 18th FOCS, pages 46–57, 1977.

[32] A. Pnueli and R. Rosner. On the synthesis of a reactive module. InProc. 16th POPL, pages 179–190, 1989.

[33] P.J.G. Ramadge and W.M. Wonham. The control of discreteevent systems.IEEE Transactions on Control Theory,
77:81–98, 1989.

[34] R. Rosner.Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of Science, 1992.

[35] R. Selten. Reexamination of the perfectness concept for equilibrium points in extensive games.International Journal
of Game Theory, 4(1):25–55, March 1975.

[36] S. Shoham and O. Grumberg. Multi-valued model checkinggames. InProc. 3rd ATVA, LNCS 3707, pages 354–369,
2005.

[37] M. Ummels. Rational behaviour and strategy construction in infinite multiplayer games. InProc. 26th FSTTCS, LNCS
4337, pages 212–223, 2006.

[38] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.Information and Computation, 115(1):1–37, 1994.

A Proofs

A.1 Proof of Theorem 4.1

The construction proceeds by induction on the structure ofΨ. Note that while the APT is defined with respect to
Υ-labeledΣ-trees, a base formulaψ(z, h) focuses on a(Σ × {⊥,⊤}) projection of the label (the one assigning
values to the variables inz andh). We describe here in detail the base case, whereΨ = ψ(z, h). The case
whereΨ = ψ(h) can be derived from the caseΨ = ψ(z, h) by checking in addition that only the root is labeled
⊤. The casesΨ is of the formΨ1 ∨ Ψ2,¬Ψ1,∃zi.Ψ1, and∃h.Ψ1 follow from the closure of APTs to union,
complementation, and projection.

The complexity analysis follows from the fact that the automaton forψ(z, h) is exponential inψ, and each
sequence of quantifiers that increases the alternation depth by one, involves an exponential blow up in the state
space and a polynomial blow up in the index [26]. Thus, the number of states inAΨ is (d + 1)-exponential inΨ
and the index ofAΨ is polynomial (of degreed) in Ψ, whered is the alternation depth ofΨ. Since the projection
operation results in a nondeterministic (rather than an alternating) tree automaton, the emptiness check when the
last operation is projection does not involve an additionalexponential blow up.

Let Ψ = ψ(z, h). Given an LTL formulaψ, one can construct an APTUψ with 2O(|ψ|) states and index3
such thatUψ accepts all trees all of whose paths satisfyψ [38]. Let Uψ = 〈Σ,Σ, Q, δ0, δ, χ〉. For the first and
second tasks we use four statesqhis, qfut, qacc, andqrej. The automatonAΨ starts by sending two copies, one at
the initial state ofUψ and one atqhis. The copy in stateqhis follows thehistory, i.e. the path marked with⊤
labels. When it reads a node with a⊥ label, marking that the history ends and thefuturebegins, it moves to the
stateqfut. From the stateqfut, this copy checks that the agents adhere to the strategy. If aviolation of the strategy
is detected, the copy concludes thatψ need not be evaluated along the path it traversed and moves toqacc. If
another⊤ has been read, the copy conclude that the{⊤,⊥}-component is illegal and moves toqrej. Formally,
AΨ = 〈Σ×{⊥,⊤},Σ, Q∪{qhis, qfut, qacc, qrej}, δ

0∧qhis, ν, χ
′〉, where for everyσ ∈ Σ, ⊣∈ {⊥,⊤}, the transition

functionν is defined as follows. Note that the alphabet ofAΨ is Υ, rather thanΣ×{⊥,⊤}. Since, however, base
formulas refer to a single strategy profile and history variable, we restrict attention to the relevant components of
the input alphabet.

• ν(qacc, 〈σ,⊣ 〉) = qacc andν(qrej, 〈σ,⊣ 〉) = qrej. • ν(qhis,〈σ,⊤〉) =
∨
d∈Σ ((d, qhis) ∧

∧
d′∈Σ\{d}(d

′, qacc)).

• For everyq ∈ Q, we haveν(q,〈σ,⊣ 〉) = δ(q, σ). • ν(qfut,〈σ,⊤〉) =
∧
d∈Σ(d, qrej).

• ν(qhis,〈σ,⊥〉) =
∧
d∈Σ(d, qfut). • ν(qfut,〈σ,⊥〉) =

∧
d∈Σ (

∧
d=σ(d, qfut) ∧

∧
d6=σ(d, qacc)).

The parity conditionχ′ is such thatχ′(q) = χ(q) for everyq ∈ Q and for the other states we haveχ′(qacc) = 0,
χ′(qrej) = 1, χ′(qhis) = 1, andχ′(qfut) = 0.

It is easy to see that a tree〈Σ∗, τ〉 is accepted byAΨ iff there is a wordw ∈ Σ∗ such that for every prefixu of
w the nodeu is labeled〈σ,⊤〉 for someσ ∈ Σ andoutcome(τ)w |= ψ. The number of states ofAΨ is exponential
in ϕ and its index is3.

A.2 Proof of Theorem 5.2

Consider a lattice Ł. An elementx ∈ Ł is join irreducible if for all y, z ∈ Ł we havex ≤ y ∨ z impliesx ≤ y
or x ≤ z. Givenl, we define the gameGl as follows. LetXl = {x ∈ JI(Ł) | x ≤ l} be the set of join irreducible
elements smaller thenl. By Birkhoff’s representation theorem, a strategy ensuresa value greater or equall iff for
everyx ∈ Xl the strategy ensures a value greater or equalx.

By the analysis in [16], the value of a latticed playp in a gameG can be decomposed into three values: the
acceptance valueacc(p), and two valuesr∨ andr∧ that have to do with value relinquished by the∨-player and the
∧-player during the play, respectively. Furthermore, the valuesr∨ andr∧ are the limits of the sequences{r∨i }

∞
i=0

and{r∧i }
∞
i=0 where for everyi ≥ 0 the values ofr∨i andr∧i depend on thei-long prefix of the playp.

The idea underlying the reduction is to consider a Boolean game in which the values from the latticed game are
made explicit by the structure of the game graph. Formally, for a latticed gameG = {V,E} with V = V∨ ∪ V∧
and an Ł-B̈uchi conditionF ∈ ŁV , we define a Boolean generalized-Büchi gameG′

l = {V ′, E′} as follows. The
state spaceV ′ = V × Ł × Ł is such that in a state(u, x, y) ∈ V × Ł × Ł, we have thatu stands for a state inG,
the valuex stands for the∨-relinquished valuer∨i , and the valuey stands for the∧-relinquished valuer∧i .

Let G = {V,E} be a latticed game with an Ł-B̈uchi conditionF ∈ ŁV and initial vertexv0 ∈ V . The
simplificationof G for l ∈ Ł, denotedG′

l, is the Boolean gameG′
l = {V ′, E′} whereV ′ = V × Ł × Ł, and the

partition ofV ′ andE′ is defined as follows. First,V ′
∨ = V∨× Ł × Ł andV ′

∧ = V∧× Ł× Ł (note that even though
G′
l is Boolean, we keep the names∨-player and∧-player). The initial vertex is〈v0,⊤,⊥〉. In order to define the

edges we introduce the following notation. Foru, u′ ∈ V andx, y ∈ Ł theu′-successor of〈u, x, y〉 is 〈u′, x′, y′〉,
where eitheru ∈ V∨ in which casex′ = x ∧ (E(u, v) ∨ y) andy′ = y, or u ∈ V∧ in which casex′ = x and
y′ = y ∨ (E(u, v) ∧ x). Now,E′ = {(〈u, x, y〉, 〈u′, x′, y′〉) | 〈u′, x′, y′〉 is theu′-successor of〈u, x, y〉}.

It is left to define the generalized-Büchi condition. In order to ensure the valuel ∈ Ł, the ∨-player must
“collect” every valuex ∈ Xl either as a value relinquished by the∧-player or by the acceptance valueacc. For
that, we define, for eachx ∈ Xl a setFx in the generalized-B̈uchi condition. We defineFx = (V × Ł × {y ∈
Ł | y ≥ x})∪ ({u ∈ V | F (u) ≥ x)\V ×{y ∈ Ł | y 6≥ x}×Ł). The first component states for states in which the
∧-player relinquishedx, and the second component stands for states in which both theacceptance value is greater
thenx andx was not relinquished by the∨-player in the past. Now, the generalized-Büchi acceptance condition
is F ′ = {Fx | x ∈ Xl}.

Assume first there exists a single strategyπ in G ensuring value greater or equall. Every strategyπ for G
(for either player) induces a strategyπ′ in G′

l in which π′(〈u0, x0, y0〉, . . . , 〈un, xn, yn〉) is theπ(u0, . . . , un)-
successor of〈un, xn, yn〉. Consider a∨-player strategyπ that ensures value greater or equall. We show thatπ′ is
winning inG′

l. It is not hard to see that a playp′ = 〈u0, x0, y0〉 . . . 〈un, xn, yn〉 . . . consistent withπ′ corresponds
to a playp = u0 . . . un . . . consistent withπ. Furthermore, for everyi ≥ 0, we havexi = r∨i andyi = r∧i . Since
π ensures valuel in G, the value ofp is greater or equall, and therefore, for every join irreduciblex ∈ Vx we have
val(p) ≥ x. Thus, either there exists an indexi from whichr∧i ≤ x or for infinitely manyi’s we haveF (ui) ≥ x
andr∨i ≥ x. Both cases imply that the setFx is traversed infinitely often. Thus the playp′ is winning for the
∨-player inG′

l.
Assume now thatπ′ is a winning strategy for the∨-player inG′

l. The strategyπ′ induces a∨-player strategy
in G in the following way: Every prefix of a playp = u0, u1, . . . , un in G induces the prefix of a playp′ =

〈u0,⊤,⊥〉, 〈u0, x1, y1〉, . . . , 〈un, xn, yn〉, where for everyi > 0, we have that〈ui, xi, yi〉 is theui-successor of
〈ui−1, xi−1, yi−1〉. We defineπ(p) to be the stateu for which π′(p′) is 〈u, x, y〉. It is not hard to see that for a
play p in G consistent withπ, and for everyi ≥ 0, we havexi = r∨i andyi = r∧i . Asπ′ is winning inG′

l, we get
that for everyx ∈ Xl we haveval(p) ≥ x, and thereforeval(p) ≥ l.

A.3 Proof of Theorem 5.3

Approaching the problem in a fashion similar to the one we used in the Boolean case, we represent strategy
profiles byΣ-labeledΣ-trees, and sets of profiles by tree automata. We construct two Boolean tree automata.
The first, denotedA0, for the language of all profilesπ in which payoff0(π) ≥ v, and the second, denotedAN ,
for the language of all Nash equilibria. It is not hard to see that the intersection ofA0 andAN contains all the
solutions to the latticed rational synthesis problem. Thus, solving the problem amounts to returning a witness to
the nonemptiness of the intersection.

For the purposes of complexity analysis, we denote bysi the size of the LDBW for thei-th agent specification,
by s = max{si} the maximalsi, and bym = |Ł| the size of the lattice.

We first constructA0. As in the Boolean case, we first construct an LDBTA′
0 that maps a strategy profileπ to

payoff0(π). Using Theorem 5.2, we can construct fromA′
0 the required Boolean tree automatonA0. To see how,

note that the generalized-Büchi game involved has a very uniform structure. From every∨-vertex, the∨-player
has exactly one choice associated with eachσ ∈ Σ. (This property is inherited from the latticed game which in
turn inherits it from the fact that the alphabet ofA′

0 is Σ.) A similar property holds for the∧-player (this property
is inherited from the fact thatA′

0 runs onΣ-trees). Therefore, the generalized-Büchi game can be reduced, using
standard techniques, to a generalized-Büchi tree automatonA0. The size ofA′

0 is s0 · m2 and the number of
acceptance sets in its generalized Büchi condition is bounded bym.

We now turn to build an automaton for Nash equilibriaAN . We constructAN as an intersection ofn automata
{AiN}

n
i=1, where the language ofAiN is the set of the profiles that satisfypayoffi(π−i, π

′
i) ≤ payoffi(π). By

Birkhoff’s representation theorem, an equivalent criteria would be that for every join irreducible elementj ∈
JI(Ł), we havepayoffi(π−i, π

′
i) ≥ j → payoffi(π, ϕi) ≥ j. Given LDBW forϕi, it is not hard to construct

LDBTs for payoffi(π−i, π
′
i) andpayoffi(π). For every join irreducible elementj ∈ JI(Ł) we would like to make

sure thatpayoffi(π−i, π
′
i) ≥ j → payoffi(π, ϕi) ≥ j. To that end, we use the construction of the Boolean game

G⊤ in the proof of Theorem 5.2. Recall that in the gameG⊤, the valuex is obtained by a single strategy iff the
acceptance setFx is visited infinitely often. Thus, for a specific agenti ≤ n, and a join irreducible element
j ∈ JI(L), we can construct a Boolean Büchi tree automatonBij, of sizeO(si · m

2), that accepts exactly the
trees encoding profiles for whichpayoffi(π, ϕi) ≥ j. In a similar way, we can construct a tree automatonCij , of
similar size, that accepts trees encoding profiles for whichpayoffi(π−i, π

′
i) ≥ j. CombiningBi

j andCij we can
get a Streett automatonAij that accepts profiles for whichpayoffi(π−i, π

′
i) ≥ j → payoffi(π, ϕi) ≥ j. The size

of Aij is O(s2i × m
4), and it has one Streett pair. Note that for a fixedi, the automataAij share their structure

and only differ in the acceptance condition. Therefore, fora fixedi ≤ n, we can construct an automatonAiN , of
sizeO(s2i ·m

4) and withO(m) pairs, that accepts profiles for whichpayoffi(π−i, π
′
i) ≥ j → payoffi(π, ϕi) ≥ j

for every join irreducible elementj ∈ JI(Ł). By intersecting the automataAiN we get an automatonAN of size
(s ·m)O(n), withO(m · n) pairs.

The intersection ofA0 andAN is a Streett automaton of size(s·m)O(n) and withO(m·n) pairs. Its emptiness
can then be checked in time(s ·m)O(m·n2) [22], and we are done.

	Introduction
	Related Work

	Preliminaries
	Rational Synthesis
	Solution in the Boolean Setting
	Extended Strategy Logic
	Expressing Rational Synthesis
	ESL Decidability
	Solving Rational Synthesis

	Solution in the Multi-Valued Setting
	Discussion
	Proofs
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??

