
Symbolic Reachability Analysisbased on SAT SolversParosh Aziz Abdulla1, Per Bjesse2, Niklas E�en21 Uppsala University and Prover Technology, Sweden,parosh@docs.uu.se2 Chalmers University of Technology and Prover Technology, Swedenfbjesse,eeng@cs.chalmers.seAbstract. The introduction of symbolic model checking using BinaryDecision Diagrams (BDDs) has led to a substantial extension of theclass of systems which can be algorithmically veri�ed. Although BDDshave played a crucial role in this success they have some well-knowndrawbacks, such as requiring an externally supplied variable orderingand causing space blowups in certain applications. In a parallel devel-opment, SAT solving procedures, such as St�almarck's method or theDavis-Putnam procedure, have been used successfully in verifying verylarge industrial systems. These e�orts have recently attracted the atten-tion of the model checking community resulting in the notion of boundedmodel checking. In this paper, we show how to adapt standard algorithmsfor symbolic reachability analysis to work with SAT-solvers. The key ele-ment of our contribution is the combination of an algorithm that removesquanti�ers over propositional variables and a simple representation thatallows reuse of subformulas. The result will in principle allow many ex-isting BDD-based algorithms to work with SAT-solvers. We show thateven with our relatively simple techniques it is possible to verify systemsthat are known to be hard for BDD-based model checkers.1 IntroductionIn recent years model checking [CES86,QS82] has been widely used for algorith-mic veri�cation of �nite-state systems such as hardware circuits and communi-cation protocols. In model checking, the speci�cation of the system is formulatedas a temporal logical formula, while the implementation is described as a �nite-state transition system. Early model checking algorithms su�ered from stateexplosion, as the size of the state space grows exponentially with the number ofcomponents in the system. One way to reduce state explosion is to use symbolicmodel checking [BCMD92,McM93], where the transition relation is coded sym-bolically as boolean expressions, rather than explicitly as the edges of a graph.Symbolic model checking achieved its major breakthrough after the introductionof Binary Decision Diagrams (BDDs) [Bry86] as a data structure for represent-ing boolean expressions in the model checking procedure. An important propertyof BDDs is that they are canonical. This allows for substantial sub-expression

sharing, often resulting in a compact representation. In addition, canonicity im-plies that satis�ability and validity of boolean expressions can be checked inconstant time. However, the restrictions imposed by the canonicity can in somecases lead to a space blowup, making memory a bottleneck in the applicationof BDD-based algorithms. There are well-known examples of functions, for ex-ample multiplication, which do not allow sub-exponential BDD representations.Furthermore, the size of a BDD is dependent on the variable ordering whichin many cases is hard to optimize, both automatically and by hand. TypicallyBDD-based methods can handle systems with hundreds of boolean variables.A related approach is that of using satis�ability solvers, such as St�almarck'smethod [St�a] and the Davis-Putnam procedure [Zha97]. These methods havealready been used successfully for verifying industrial systems [Bor97b,SS90][Bor97a,GvVK95]. SAT-solvers enjoy several properties which make them at-tractive as a complement to BDDs in symbolic model checking. For instance,their performance is less sensitive to the size of the formulas, and they are oc-casionally able to handle propositional formulas with thousands of variables.Furthermore, typical SAT-solvers do not su�er from space explosion, and do notrequire an external variable ordering to be supplied. Finally, satis�ability solvingis an NP-complete problem, whereas BDD-construction solves a #P-completeproblem [Pap94] as it is possible to determine the number of models of a BDD inpolynomial time. #P-complete problems are widely believed to be harder thanthe NP-complete problems.The aim of this work is to exploit the strength of SAT solving proceduresin order to increase the class of systems amenable to veri�cation via the tradi-tional symbolic methods. We consider modi�cations of two standard algorithms {forwards and backwards reachability analysis { where formulas are used to char-acterize sets of reachable states [Bje99]. In these algorithms we replace BDDsby satis�ability checkers such as the PROVER implementation of St�almarck'smethod [St�a] or SATO [Zha97]. We also use a data structure which we call Re-duced Boolean Circuits (RBCs) to represent formulas. RBCs avoid unnecessarilylarge representations through the reuse of subformulas, and allow for e�cientstorage and manipulation of formulas. The only operation of the reachability al-gorithms that does not carry over straightforwardly to formulas is quanti�cationover propositional variables. Therefore, we provide a simple procedure for theremoval of quanti�ers which gives an adequate performance for the examples wehave tried so far.We have implemented a tool FIXIT [E�en99] based on our approach, and car-ried out a number of experiments. The performance of the tool indicates thateven though we use very simple techniques, our method can perform very wellin comparison to existing ones.Related Work. Bounded Model Checking (BMC) [BCC+99,BCCZ99,BCRZ99]is the �rst approach in the literature to perform model checking using SAT-solvers. The BMC procedure searches for counterexamples by \unrolling" thetransition relation k steps, for increasing values of k. At each step k, the unrollingcharacterizes the set of paths of length k through the transition relation, and

is described as a formula (without quanti�ers). If no counterexample is found,the search is terminated when the value of k is equal to the diameter of thesystem. However, the value of the diameter is usually hard to compute, makingBMC incomplete in practice. Furthermore, for \deep" transition systems, for-mulas characterizing the set of reachable states may be much smaller than thosecharacterizing the set of paths. Since our method is based on encodings of setsof states, it may in some cases cope with systems which BMC fails to analyze asit generates too large formulas.Our representation of formulas is closely related to Binary Expression Di-agrams (BEDs) [AH97,HWA97]. In fact there are straightforward linear spacetranslations from each of the representations to the other. Consequently, RBCsshare the nice properties of BEDs, such as being exponentially more succinctthan BDDs [AH97]. The main di�erence between our approach and that ofBEDs is the way in which satis�ability checking and existential quanti�cationis handled. In [AH97], satis�ability of BEDs is checked through a translationto equivalent BDDs. Although many simpli�cations are performed at the BEDlevel, converting to BDDs during a �xpoint iteration could cause degenerationinto a standard BDD-based �xpoint iteration. In contrast, we check satis�abilityby mapping RBCs back to formulas which are then fed to external SAT-solvers.In fact, the use of SAT-solvers can also be applied to BEDs, but this does notseem to have been explored so far. Furthermore, in the BED approach, existen-tial quanti�cation is either handled by introducing explicit operator vertices, orby a special transformation that rewrites the representation into a form wherenaive expansion can be applied. We use a similar algorithm which also applies anextra inlining rule. The inlining rule is particularly e�ective in the case of back-ward reachability analysis, as it is always applicable to the generated formulas.To our knowledge, no results have been reported in the literature on applica-tion of BEDs in symbolic model checking. We would like to emphasize that weview RBCs as a relatively simple representation of formulas, and not as a majorcontribution of this work.2 PreliminariesWe model our systems as (synchronous) circuits which operate over the booleandomain. The operation of a circuit is controlled by a global clock. A circuitcontains the following components:{ Circuit inputs : During each clock-cycle, a circuit input receives a randomvalue which is either true or false.{ Gates : The output of a gate is a boolean combination of its inputs.{ Latches : A latch represents a memory unit with one input and one output.The value of the output during a clock-cycle is equal to the value of theinput in the previous clock-cycle.We use Bool to denote the domain of booleans. For a vector s 2 Booln, we usesk to denote the kth element of s, for k : 1 � k � n. In the sequel, we assume

a circuit with m circuit inputs indexed by 1; : : : ;m, and n latches indexed by1; : : : ; n. The inputs of gates and latches, are connected to the inputs and tothe outputs of other gates and latches. This implies that the output of a latch,in a given clock-cycle, is a boolean combination of circuit inputs and outputsof latches in the previous clock-cycle. In other words, for latch k, there is afunction fk : Boolm � Booln �! Bool , where fk(i; s) describes the output oflatch k during the current clock-cycle, in terms of i and s which are the valuesof circuit inputs and latches, respectively, in the previous clock-cycle.We represent the behaviour of a circuit as a transition system (S; T), whereS = Booln is a �nite set of states and T � Booln�Booln is a �nite set of transi-tions. Intuitively, a state smaps each latch k to a boolean value sk. The transitionrelation describes the computations performed during each clock-cycle, and isde�ned by T (s; s0) = Vnk=1 (s0k $ 9i: fk(i; s)). The argument s0 represents the\new state" of the circuit (after performing the transition), while i and s describethe values of circuit inputs, and the state of the circuit before performing thetransition. The values of circuit inputs are existentially quanti�ed, correspond-ing to the fact that they can have a random value which is either true or falseduring each clock-cycle.Once the state variables under consideration have been �xed, any set of statescan be represented by a propositional formula � that is satis�ed precisely by thestates in the set.3 Reachability AnalysisWe work with two formulas I(s) and B(s), characterizing a set of initial andbad states, respectively. We de�ne the reachability problem as that of checkingwhether the bad states are reachable from the initial states, or in other words todetermine whether there is a sequence s0; s1; : : : ; sn of states, such that s0 2 I ,sn 2 B, and (sk; sk+1) 2 T , for each k : 1 � k < n. There are two basictechniques for performing reachability analysis. Both perform �xpoint iterationsgenerating a sequence �0(s); �1(s); �2(s); : : : ; �n(s) of formulas.In forward reachability analysis, we de�ne �0(s) = I(s), and �j+1(s0) =9s: T (s; s0) ^ �j(s). The formula �j(s) characterizes the set of states which arereachable from an initial state by a path of length j. Notice that �j is aQuanti�edBoolean Formula (QBF). We terminate if we reach a point n such that either(i) �n(s) ^ B(s) is satis�able: this means that the set of reachable statescontains a bad state; hence we answer the reachability problem positively; or (ii)if �n(s) =) Wn�1k=0 �k(s) holds: this implies that we have reached the �xpointwithout encountering a bad state; consequently the answer to the reachabilityquestion is negative.In backward reachability analysis, we de�ne �0(s) = B(s), and �j+1(s) =9s0: T (s; s0) ^ �j(s0). In a similar manner to forward reachability analysis, weterminate either if �n(s) ^ I(s) is satis�able, or if �n(s) =) Wn�1k=0 �k(s).

x z

xzy

z

x z y

reduce

Fig. 1. A non-reduced Boolean Circuit and its reduced form.4 Representation of FormulasLet Vars denote the set of variables, including a special variable > for theconstant true, and Op denote the set f$;^g.We introduce the representation Boolean Circuit (BC) for propositional for-mulas. A BC is a directed acyclic graph, (V;E). The vertices V are partitionedinto internal nodes, VI, and leaves, VL. The vertices and edges are given at-tributes as follows:{ Each internal vertex v 2 VI has three attributes: A binary operator op(v) 2Op, and two edges left(v); right(v) 2 E.{ Each leaf v 2 VL has one attribute: var(v) 2 Vars.{ Each edge e 2 E has two attributes: sign(e) 2 Bool and target(e) 2 V.We observe that negation is coded into the edges of the graph, by the signattribute. Furthermore, we identify edges with subformulas. In particular, thewhole formula is identi�ed with a special top-edge having no source vertex. Theinterpretation of an edge as a formula is given by the standard semantics of ^;$and : by viewing the graph as a parse tree (with some common sub-expressionsshared). Although ^ and : are functionally complete, we choose to include $in the representation as it would otherwise require three binary connectives toexpress. Figure 1 shows an example of a BC.A Reduced Boolean Circuit (RBC) is a BC satisfying the following properties:1. All common subformulas are shared so that there are no two vertices withidentical attributes.2. The constant > never occurs in an RBC, except for the single-vertex RBCsrepresenting true or false.3. The children of an internal vertex are distinct, left(v) 6= right(v).

reduce(And, left 2 RBC, right 2 RBC)if (left = right) return leftelif (left = :right) return ?elif (left = >) return rightelif (right = >) return leftelif (left = ?) return ?elif (right = ?) return ?else return nil
reduce(Equiv, left 2 RBC, right 2 RBC)if (left = right) return >elif (left = :right) return ?elif (left = >) return rightelif (left = ?) return :rightelif (right = >) return leftelif (right = ?) return :leftelse return nilmk Comp(op 2 Op, left 2 RBC, right 2 RBC, sign 2 Bool)result := reduce(op, left, right)if (result 6= nil)return id(result, sign) { id returns result or :result depending on signif (right < left)(left, right) := (right, left) { Swap the values of left and rightif (op = Equiv)sign := sign xor sign(left) xor sign(right)left := unsigned(left)right := unsigned(right)result := lookup(RBC env, (op, left, right)) { We store verticesif (result = nil)result := insert(RBC env, (op, left, right))return id(result, sign)Fig. 2. Pseudo-code for creating a composite RBC from two existing RBCs.4. If op(v) = $ then the edges to the children of v are unsigned.5. For all vertices v, left(v) < right(v), for some total order < on BCs.The purpose of these constraints is to identify as many equivalent formulas aspossible, and thereby increase the amount of subformula sharing. For this reasonwe allow only one representation of (� ^) () (^ �) (in 5 above) and:(�$) () (:�$) (in 4 above).The RBCs are created in an implicit environment, where all existing sub-formulas are tabulated. We use the environment to assure property (1). Figure2 shows the only non-trivial constructor for RBCs, mk Comp, which creates acomposite RBC from two existing RBCs. We use x 2 Vars(�) to denote thatx is a variable occuring in the formula �. It should be noted that the aboveproperties only takes a constant time to maintain in mk Comp.5 Quanti�cationIn the reachability algorithm we use the notion of quanti�ed boolean formulas(QBF). The quanti�ers are introduced for expressing the next set of reachablestates �j+1, in terms of the current set of reachable states �j . The quanti�ed

formulas are never stored, but immediately resolved into propositional formulas.We reduce the translation of a set of existential quanti�ers to the iterated removalof a single quanti�er after we have chosen a quanti�cation order. In the currentimplementation an arbitrary order is used, but we are evaluating more re�nedapproaches.Figure 3 presents the quanti�cation algorithm of our implementation. Byde�nition we have: 9x : �(x) () �(?) _ �(>) (�)The de�nition can be used to naively resolve the quanti�ers, but this may yieldan exponential blowup in representation size. To try to avoid this, we use thefollowing well-known identities whenever possible:Inlining:9x : (x$) ^ �(x) () �() (where x 62 Vars())Scope Reduction:9x : �(x) ^ () (9x:�(x)) ^ (where x 62 Vars())9x : �(x) _ (x) () (9x:�(x)) _ (9x: (x))When applicable, inlining is an e�ective method of resolving quanti�ers as itimmediately removes all occurrences of x. The applicability of the transformationrelies on the fact that the formulas quanti�ed over for reachability often havethis particular structure. This is especially true for backward reachability as thetransition relation is a conjunction of next state variables de�ned in terms ofcurrent state variables Vi s0i $ �(s0; : : : ; sn) which yields formulas that �t therule.The �rst step of the inlining algorithm collects the toplevel conjunction ofthe RBC. This is necessary as a conjunction on the form Vf�0; �1 : : : �ng mustbe encoded using binary And-operators. If one of the collected conjuncts is ade�nition (x$), we remove it from the conjunction and substitute x for inthe remaining conjuncts, then re-encode the resulting conjunction as an RBC.If inlining is not applicable to the formula (and variable) at hand, the algo-rithm tries to apply the scope reduction rules as far as possible. This may resultin a quanti�er being pushed through an Or (represented as negated And), inwhich case inlining may again be possible.For subformulas where the scope can no longer be reduced, and where inliningis not applicable, we resort to naive quanti�cation (*). Reducing the scope asmuch as possible before doing this will help prevent blowups. Sometimes thequanti�ers can even be pushed all the way to the leaves of the RBC where theycan be eliminated.Throughout the quanti�cation procedure, we may encounter the same sub-problem more than once due to shared subformulas. For this reason we keep atable of the results obtained from all subformulas processed.

{ Global variable processed tabulates the results of the performed quanti�cations.quant naive(� 2 RBC, x 2 Vars)result = subst(�, x, ?) _ subst(�, x, >)insert(processed, �, x, result)return resultquant reduceScope(� 2 RBC, x 2 Vars)if (x 62 Vars(�)) return �if (� = x) return >result := lookup(processed, �, x)if (result 6= nil)return result{ In the following � must be composite and contain x:if (�op = Equiv)result := quant naive(�, x)elif (not �sign) { Operator And, unsignedif (x 62 Vars(�left)) result := �left ^ quant reduceScope(�right , x)elif (x 62 Vars(�right)) result := quant reduceScope(�left , x) ^ �rightelse result := quant naive(�, x)else { Operator And, signed (\Or")result := quant inline(:�left , x) _ quant inline(:�right , x)insert(processed, �, x, result)return resultquant inline(� 2 RBC, x 2 Vars) { \Main"C := collectConjuncts(�) { Merges all binary Ands at the top of � into the\big" conceptual conjunction (returned as a set). := �ndDef (C, x) { Returns the smallest formula such that (x$)is a member of C.if (6= nil)C0 := C n (x$) { Remove de�nition from C.return subst(makeConj (C0), x,) { makeConj builds an RBC.elsereturn quant reduceScope(�, x)Fig. 3. Pseudo-code for performing existential quanti�cation over one variable. By �leftwe denote left(target(�)) etc. We use ^, _ as abbreviations for calls to mk Comp.6 Satis�abilityGiven an RBC we want to investigate whether there exists a satisfying assign-ment for the corresponding formula. We solve the problem by mapping the RBCback to a formula that is fed to an external SAT-solver. The naive translation,where the graph is unfolded to a tree which is linearised to a formula, has thedrawback of removing sharing. We therefore use a mapping where each internal

node in the representation is allocated a fresh variable which is used in place ofthe corresponding subformula. The generated formula is the conjunction of thede�nitions of the internal nodes conjoined with the literal de�ning the top node.Example. The right-hand RBC in Figure 1 is mapped to the following formulain which the ix variables de�ne internal RBC nodes:(i0 $:i1 ^ i2)^ (i1 $ i3 $ i4)^ (i2 $ i3 ^ i4)^ (i3 $ x ^ z)^ (i4 $ z ^ y)^ :i0A formula resulting from the outlined translation is not equivalent to the originalformula without sharing, but it will be satis�able if and only if the originalformula is satis�able. Models for the original formula is obtained by discardingthe values of the internal variables.Remark. The use of SAT-solvers can also be applied to BEDs, although thisseems not to have been explored so far. Instead the BEDs are translated intoBDDs [AH97]. This is feasible only if the resulting BDD is of a manageable size.It would probably be useful to try both building a BDD and applying severalSAT-solvers concurrently in order to decide satis�ability.7 Experimental ResultsBased on our method, we have implemented a tool FIXIT [E�en99] for performingsymbolic reachability analysis. The tool has a �xpoint mode in which it canperform both forward and backward reachability analysis, and an unroll modewhere it searches for counterexamples in a similar manner to the BMC package.We have carried out preliminary experiments on three benchmarks: a multiplier,a barrel shifter (from the BMC package), and a swapper (de�ned by the authors).All the examples are parametrized by the size of the system. The �rst twobenchmarks are known to be hard for BDD-based methods.We present only time consumption. Memory consumption is much smallerthan for BDD-based systems. Garbage collection has not yet been implementedin FIXIT, but the amount of simultaneously referenced memory peaks at about1-2 MB in our experiments. We also know that the memory requirements of
PROVER are relatively low (on the order of tens of megabytes for di�cult formu-las). In all the experiments, PROVER outperforms SATO, so we only present themeasurements for PROVER. The test results for FIXIT are compared against re-sults obtained from VIS release 1.3, BMC version 1.0f and SMV version 2.5.3.1d.

Bit FIXITFwd FIXITBwd FIXITUnroll BMC VISsec sec sec sec sec0 1.6 2.9 1.5 1.7 9.31 1.8 3.1 1.6 1.9 9.42 1.9 3.7 1.6 2.5 9.43 2.6 4.8 1.8 3.8 9.64 3.7 6.6 1.9 6.5 10.85 7.0 10.5 2.4 14.5 17.96 17.0 20.1 3.5 48.6 55.47 62.1 47.4 8.2 245.6 [>384 Mb]8 277.9 150.3 27.1 1438.4 {9 1423.6 544.31 111.3 8721.1 {10 7878.9 2078.0 487.0 24926.3 {11 18871.6 8134.1 2132.5 { {12 { 30330.0 10156.9 { {Table 1. Experimental results for the multiplier.The Multiplier. The example models a standard 16�16 bit shift-and-add mul-tiplier, with an output result of 32 bits. Each output bit is individually veri-�ed against the C6288 combinatorial multiplier of the ISCAS'85 benchmarks bychecking that we cannot reach a state where the computation of the shift-and-add multiplier is completed, but where the selected result bit is not consistentwith the corresponding output bit of the combinatorial circuit.Table 1 presents the results for the multiplier. The SAT-based methods out-perform VIS on all system sizes. The unroll mode is a constant factor moree�cient than the �xpoint mode. However, we were unable to prove the diame-ter of the system by the generated diameter formula, which means that unrollveri�cation (and BMC) should be considered a partial result.The Barrel Shifter. The barrel shifter rotates the contents of a register �le Rwith one position in each step. The system also contains a �xed register �le R0,related to R in the following way: if two registers from R and R0 have the samecontents, then their neighbours also have the same contents. We constrain theinitial states to have this property, and the objective is to prove that it holdsthroughout the reachable part of the state space. The width of the registers arelog jRj bits, and we let the BMC tool prove that the diameter of the circuit isjRj.Table 2 presents the results for the barrel shifter. No results are presentedfor VIS due to di�culties in describing the extra constraint on the initial statein the VIS input format.The backward reachability mode of FIXIT outperforms SMV and BMC onthis example. The reason for this is that the set of bad states is closed under thepreimage function, and hence FIXIT terminates after only one iteration. SMV isunable to build the BDDs characterising the circuits for larger problem instances.

Size FIXITFwd FIXITBwd FIXITUnroll BMC Diam SMVsec sec sec sec sec sec2 1.7 0.1 0.1 0.0 0.0 0.03 2.3 0.1 0.1 0.0 0.0 0.04 3.0 0.1 0.2 0.0 0.0 0.15 42.4 0.2 0.3 0.1 0.1 75.596 848.9 0.2 0.4 0.5 0.1 3348.47 [>3 h] 0.4 0.6 0.5 0.2 [>3 h]8 { 0.5 0.8 2.2 0.3 {9 { 0.8 1.3 4.3 0.6 {10 { 1.1 2.1 16.8 0.8 {11 { 1.5 2.1 5.4 1.1 {12 { 2.3 3.9 52.4 1.5 {13 { 2.6 3.6 11.7 2.0 {14 { 3.2 7.6 168.2 2.6 {15 { 3.7 8.3 154.4 3.5 {16 { 4.3 12.6 310.0 4.4 {17 { 6.7 10.4 58.5 7.9 {18 { 8.7 14.5 ? ? {19 { 9.2 21.0 ? ? {20 { 13.5 50.5 ? ? {...30 { 51.4 528.0 ? ? {...40 { 230.5 2458.0 ? ? {...50 { 501.5 8797.0 ? ? {Table 2. Experimental results for the barrel shifter.The BMC tool has to unfold the system all the way up to the diameter, producingvery large formulas. In fact, the version of BMC that we used could not generateformulas for instances larger than 17. The memory requirements for a size 17formula is 2.2 MB, and for larger sizes we received segmentation faults.The Swapper. A set of N nodes, capable of storing a single bit are connectedlinearly: 1 | 2 | 3 | 4 | � � � | NAt each clock-cycle (at most) one pair of adjacent nodes may swap their values.From this setting we ask whether the single �nal state where exactly the �rstjn=2j nodes are set to 1 is reachable from the single initial state where exactly thelast jn=2j nodes are set to 1. Table 3 shows the result of verifying this property.Both VIS and SMV handle the example easily. FIXIT can handle sizes up to15, but does not scale up as well as VIS and SMV, as the representations get toolarge. This stresses the importance of maintaining a compact representation dur-ing deep reachability problems; something that is currently not done by FIXIT.

Size FIXITFwd FIXITBwd FIXITUnroll BMC VIS SMVsec sec sec sec sec sec3 0.2 0.2 0.18 0.01 0.3 0.034 0.3 0.3 0.17 0.01 0.3 0.055 0.6 0.5 0.27 0.08 0.3 0.046 0.9 1.5 1.76 7.24 0.4 0.067 1.7 3.7 131.19 989.51 0.4 0.068 3.8 10.4 [>2 h] [>2 h] 0.4 0.089 9.7 58.9 { { 0.4 0.1110 27.7 187.1 { { 0.4 0.1111 74.1 779.2 { { 0.5 0.1812 238.8 4643.2 { { 0.6 0.2313 726.8 { { { 0.7 0.3014 2685.7 { { { 0.7 0.4415 { { { { 0.7 0.61...20 { { { { 1.6 7.88...25 { { { { 3.3 52.97...30 { { { { 15.1 263.08...35 { { { { 39.1 {...40 { { { { 89.9 {Table 3. Experimental results for the swapper.However, BMC does even worse, even though the problem is a strict search forcounterexamples, something that BMC is generally good at. This suggests thatfor deep systems, �xpoint methods are superior to the bounded model checkingapproach.8 Conclusions and Future WorkWe have described an alternative approach to standard BDD-based symbolicmodel checking which we think can serve as a useful complement to existingtechniques. We view our main contribution as showing that with relatively simplemeans it is possible to modify traditional algorithms for symbolic reachabilityanalysis so that they work with SAT-procedures instead of BDDs. The resultingmethod gives surprisingly good results on some known hard problems.SAT-solvers have several properties which make us believe that SAT-basedmodel checking will in the long term become an interesting complement to BDD-based techniques. For example, in a proof system like St�almarck's method, for-mula size does not play a decisive role in the hardness of satis�ability checking.This is particularly interesting since industrial applications often give rise toformulas which are extremely large in size, but not necessarily hard to prove.There are several directions for future work. Although this article deals onlywith reachability analysis, a similar approach can be applied to convert any

BDD-based algorithm into a corresponding SAT-based algorithm. For example,we have already implemented a prototype of a model checker for general (fair)CTL formulas.We are currently surveying simpli�cation methods to maintain compact rep-resentations. One promising approach [AH97] is to improve the local reductionrules to span over multiple levels of the RBC graphs. Other methods include uti-lizing the structure of big conjunctions or disjunctions and simplifying formulasusing algorithms based on St�almarck's notion of formula saturation [Bje99].Extensions to the representation by the trinary connective if-then-else, and bysubstitution nodes [HWA97] are also under consideration. We are experimentingwith heuristics for choosing good quanti�cation orderings.It is also interesting to investigate whether standard BDD-based model check-ing techniques, such as front simpli�cation and approximate analysis, can becarried over into our domain.AcknowledgementsThe implementation of FIXIT [E�en99] was done as a Master's thesis at ProverTechnology, Stockholm. Thanks to Purushothaman Iyer, Bengt Jonsson, MarySheeran and Gunnar St�almarck for giving valuable feedback on earlier drafts.References[AH97] Henrik Reif Andersen and Henrik Hulgaard. Boolean expression diagrams.In Proc. 12th IEEE Int. Symp. on Logic in Computer Science, pages 88{98,1997.[BCC+99] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolicmodel checking using sat procedures instead of BDDs. In Design AutomationConference (DAC'99), 1999.[BCCZ99] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checkingwithout BDDs. In Proc. TACAS '98, 8th Int. Conf. on Tools and Algorithmsfor the Construction and Analysis of Systems, 1999.[BCMD92] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Symbolic modelchecking: 1020 states and beyond. Information and Computation, 98:142{170,1992.[BCRZ99] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties ofa PowerPC[tm] microprocessor using symbolic model checking without BDDs.In Proc. 11th Int. Conf. on Computer Aided Veri�cation, 1999.[Bje99] Per Bjesse. Symbolic model checking with sets of states represented as for-mulas. Technical Report CS-1999-100, Department of Computer Science,Chalmers technical university, March 1999.[Bor97a] Arne Bor�alv. A fully automated approach for proving safety properties ininterlocking software using automatic theorem-proving. In Proceedings of theSecond International ERCIM Workshop on Formal Methods for IndustrialCritical Systems, pages 39{62, 1997.

[Bor97b] Arne Bor�alv. The industrial success of veri�cation tools based on st�almarck'smethod. In Proc. 9th Int. Conf. on Computer Aided Veri�cation, volume 1254of Lecture Notes in Computer Science, pages 7{10, 1997.[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Trans. on Computers, C-35(8):677{691, Aug. 1986.[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cation. ACM Trans. onProgramming Languages and Systems, 8(2):244{263, April 1986.[E�en99] Niklas E�en. Symbolic reachability analysis based on SAT-solvers. Master'sthesis, Dept. of Computer Systems, Uppsala university, 1999.[GvVK95] J.F. Groote, S.F.M. van Vlijmen, and J.W.C. Koorn. The safety guaran-teeing system at station hoorn-kersenboogerd. In COMPASS 95, 1995.[HWA97] Henrik Hulgaard, Poul Frederick Williams, and Henrik Reif Andersen. Com-binational logic-level veri�cation using boolean expression diagrams. In 3rdInternational Workshop on Applications of the Reed-Muller Expansion in Cir-cuit Design, 1997.[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,1993.[Pap94] Christos Papadimitriou. Computatitional complexity. Addison-Wesley, 1994.[QS82] J.P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systemsin Cesar. In 5th International Symposium on Programming, Turin, volume137 of Lecture Notes in Computer Science, pages 337{352. Springer Verlag,1982.[SS90] G. St�almark and M. S�aund. Modelling and verifying systems and softwarein propositional logic. In SAFECOMP '90, pages 31{36. Pergamon Press,1990.[St�a] G. St�almark. A system for determining propositional logic theorems by ap-plying values and rules to triplets that are generated from a formula. SwedishPatent No. 467 076 (approved 1992), US patent No. 5 276 897 (1994), Euro-pean Patent No. 0403 454 (1995).[Zha97] H. Zhang. SATO: an e�cient propositional prover. In Proc. Int. Conferenceom Automated Deduction (CADE'97), volume 1249 of LNAI, pages 272{275.Springer Verlag, 1997.

