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 HlROAKIBA ONO Q? fa? ???Ze
 and

 Akika Nakamtjra of Refutation Kripke Models
 for Some Linear Modal
 and Tense Logics

 Abstract. Let L be any modal or tense logic with the finite model property. For
 each m, define r?(m) to be the smallest number r such that for any formula A with
 m modal operators, A is provable in L if and only if A is valid in every JL-model with
 at most r worlds. Thus, the function rjj determines the size of refutation Kripke models
 for L. In this paper, we will give an estimation of r^(m) for some linear modal and
 tense logics L.

 1. Introduction

 We will investigate the size of a Kripke model, in which a given unprov
 able formula is refutable. For example, as Easiowa and Sikorski showed
 in [5], if A is a formula not provable in the modal logic S4, then we need
 to check valuations into a Boolean algebra of size 2*r, where r is the
 number of subformulas of A. If we will use the filtration method (e.g,
 [6]) to find a refutation Kripke model for a given unprovable formula
 in S4, we will need also Kripke models in exponential size. On the other
 hand, it is shown that if a formula with m modal operators is not provable
 in the modal logic S5, then A is refutable in an S5-model with at most
 m+1 worlds (see [2]). Moreover, this number m+1 is shown to be best.

 In general, we can formulate this problem in the following way.
 Let L he any modal or tense logic with the finite model property. For each
 integer m ^ 1, define rL(m) to be the smallest number r (if there exists)
 which satisfies the following condition:

 For any formula A with m modal (or tense) operators, A is provable
 in L if and only if A is valid in every L-model with at most r worlds.

 The above result says that rS5(m) = m+1. In [4], we proved that rS4t3(m)
 ^ (m+1)2. Using this fact, we have answered affirmatively Ladner's
 conjecture [2] on the computational complexity of the satisfiability
 problem of the modal logic S4.3.

 In this paper, we will give an estimation of rL(m) for some linear
 modal and tense logics L by elaborating our method in [4]. More precisely,
 rL(m) is shown to be bounded by some polynomial p(m) of degree one in
 each case. Thus, our method can be considered as a refinement of the
 filtration method. As an application, we will show in section 4 that the
 satisfiability problems of these tense logics are also log space complete
 in nondeterministic polynomial time.
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 326  H. Ono, A. Nahamnra

 The authors would like to express their gratitude to the referee in
 providing helpful suggestions.

 In the following, we will mainly devote to linear tense logics. Linear
 modal logics can be treated quite similarly (and more easily). We will
 take a , ~~], Or and H for primitive logical connectives. Other connectives
 are defined in the usual way. In particular, unary operators F and F
 are defined as

 FA ^~}G-]A and PA ^-\H ~\A.
 Axioms and rules of the tense logic Kt are as follows.

 Al. Axioms for the classical propositional logic
 A2. G(A 3 B) 3 (GA z> GB)
 A3. H(A 3 B) 3 (HA z> HB)
 A4. A 3 HFA
 A5. A 3 GPA

 El. Modus ponens, i.e, from A and A => B infer B
 E2. from A infer G A
 E3. from A infer HA

 The tense logic CL (by N.B. Oocchiarella) is obtained from Kt by
 adding following three axiom schemata.

 A6. FFA 3 FA
 A7. (FAaFB) 3 (F(AaB)vF(AaFB)vF(FAaB))
 A8. (PAaPB) 3 (P(J.aP)vP(.4aPP)vP(P,4aP))

 Eemark that PPA 3 PA is provable in CL (see [3]). The tense logic SL
 (by D. Scott) is obtained from CL by adding the following two axiom
 schemata.

 A9. GA 3 FA
 A10. HA 3 PA

 The tense logic P? (by A.?F. Prior) is obtained from SL by adding
 All. FA => PPJ..

 We remark also that PA 3 PPJL is provable in PL (see [3]).
 A Kripke frame (M,B) is a pair of nonempty set M and a binary

 relation R on Jf. A valuation TF on a Kripke frame (31, R) is a mapping
 from M x &o to {t,f}, where &0 is the set of all propositional variables.
 Each valuation W can be uniquely extended to a mapping from M x i>
 to {<?,/} in the following way, where $ is the set of all formulas;

 for any A, B e0 and any a e M,
 W(AaB, a) == t iff W(A, a) = ? and TT(P, a) = ?,
 FCI-A,?) =* iff W(A,a)=f,
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 On the sice of refutation Kripke models ... 327

 W(GA, a) - I iff for any b such that aRb, W(A,b) = t,
 W(IIA, a) = t iff for any b such that bRa, W(A, b) = t.

 A Kripke model is an ordered triple (M, R, W), where (M, R) is a Kripke
 frame and W is a valuation on it. A formula A is refutable (or satisfiable)
 in a Kripke model (if, 2?, Tf) if W(A, a) = / (or ?, respectively) for some
 a g iii. A Kripke model is a refutation model of a formula J. if A is refutable
 in it. A formula A is valid in a Kripke frame (M,R) if for any valuation

 W and any <% e If, TT(JL, a) = i. The following theorem is well-known.

 Theorem 1. For any formula A, A is provable in Kt if and only
 if A is valid in any Kripke frame.

 Let R he a binary relation on M. Then,
 1) R is transitive if for any x,y,z, xRy and yRz imply xRz,
 2) R is linear if for any x, y, xRy or a? ? y or 2/i2#,
 3) R is non-ending if for any a?, there exist 2/ and 0 such that i/jB^ and

 xRz,
 4) i2 is dense if for any.#, 2/, there exists z such that xRy implies both

 xRz and zRy.
 Then, a Kripke frame (M, R) is;
 1) a CL-frame if J2 is transitive and linear,
 2) an SL-frame if it is a CL-frame and R is non-ending,
 3) a PL-frame if it is an S?-frame and R is dense.

 A Kripke model (M, R, W) is an ?-model if (M, R) is an ?-frame. We
 can get the completeness theorem of these linear tense logics. (See e.g.
 [3]. It is easily verified that the condition left- and right-linearity on CL-?v?

 mes in [3] can be replaced by the condition linearity.)

 Theorem 2. Let L be any one of CL, SL and PL. Then for any formula
 A, A is provable in L if and only if A is valid in any L-frame.

 2. Finite model property of linear tense logics

 We will show the finite model property of CL, SL and PL in this
 section. Though the proof can be obtained in the standard way, it seems
 that the result has not been published anywhere. So we will give the outline
 of the proof. For the sake of brevity, we assume in the rest of this paper
 that unary operators F and H are primitives, instead of G and H. Note
 that

 W(FA, a) == t iff for some b such that aRb, W(A, b) - t.

 Theorem 3. Let L be any one of CL, SL and PL. Then for any formula
 A, A is provable in L if and only if A is valid in any finite L-frame.

 Proof. Only-if part follows immediately from Theorem 2. So, it
 suffices to show that if A is refutable in an ?-model then A is refutable
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 328  R. ?no, A. Nahanmra

 in a finite ?-model. We will use a filtration method, called Lemmonfiltration
 in [6]. Suppose that W(A, a0) = / for an ?-model (31, R, W) and a0 e 31.
 Define a binary relation ^ on M by

 a ~b iff W(B,a) = W(B,b) for any Be?A,
 where &A is the set of all subformulas of A. Clearly, ^ is an equivalence
 relation on M. Let ilf* = M?~. Since 0A is finite, M* is also finite.
 The equivalence class containing an element x in M is denoted by [x]. Next,
 define a binary relation P* on ilf * by

 [a]i2*[6] iff 1) for any FBs0A, W(FB, a) = / implies
 both Tf (PP, 6) =/ and TT(B, 6) =/, and
 2) for any HBe0A, W(HB, b) - t implies
 both W(HB, a) = t and TF(P, a) - t.

 It is easy to see that R* is well-defined. We can confirm the following four
 propositions.

 (1) aRb implies [a]B*[6],
 (2) P* is transitive and linear,
 (3) P* is non-ending if R is non-ending,
 (4) P* is dense if R is dense.

 Propositions from (1) to (3) can be easily verified. We will show only the
 proof of (4). Suppose that [>]P*[&]. Since R is linear, either a = b or aRb
 or 6Pa holds. If a = 6, then [a]P*[a] holds by the assumption. Thus,
 0]P*[a] and [>]P*[fc] hold. If aRb then aPo and cRb hold for some c,
 since P is dense. Hence [a]P*[c] and [c]R*[b] hold by (1). If bRa then
 [b]B*[a] holds. By (2), [a]E*[a] holds. So, [a]R*[a] and [a]P*[&] hold.
 Therefore for each case, there exists some [x] e M* such that [a]P*[#]
 and |>]P*[&]. Hence P* is dense. Thus, we have a finite ?-frame (If*, P*)
 for any given ?-frame (M, R), where ? is any one of CL, SL and PL. It
 remains to show that A is not valid in (Jf*, 22*). We define a valuation
 F* on (i?*,P*) by

 W*(i>,I>]) =W(p,a),
 for any propositional variable p in 0^ and any a e M. Clearly, "FT* is well
 defined. Moreover, we can show by induction that for any B e 0A and
 a e M,

 W*(B, [a]) = W(B,a).
 Taking A for B and a0 for a, we have W*(A, [a0]) = /. Thus, J. is refutable
 in a finite ?-model (M*9 P*, W*).

 3. The size of refutation models

 In this section, we will give some upper bounds of rL(m), which is
 introduced in section 1, for each tense logic CL, SL or PL. rL(m) can be
 defined also in the following manner. Let ? be any one of tense logics
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 On the size of refutation Kripke models...  329

 CL, S?and P? and A be any formula with m (^ 1) tense operators not
 belonging to ?. By Theorem 3, there exists a finite refutation ?-model
 of A. Define sL(A) to be the smallest number of worlds of refutation
 ?-models of A. Next, we define rL(m) by rL(m) = sup {sL(A); A conta?
 ins m tense operators}. Of course, rL(m) can be defined similarly for modal
 logics.

 Lemma 4. Let L be any one of tense logics CL, SL and PL. Then,
 rL(m) ^ m+1.

 Proof. Take the following formula Am.

 4? h(2>iA2>2A ...AjpmAP(n2>lA2>2A ...ApmA

 F(~lPiA ~tP2A ...ApmAF(...F(~]p1A "H>2A ...A 1^?)...)))).
 Clearly, Am contains m tense operators and sL(Am) = m+1. Thus, rL(m)
 ;> m+1.

 We will make some preparations. Let (31, R) be any finite C?-frame.
 We define two binary relations c^ and < on if as follows.

 a ~ b iff a = b or both aRb and bRa,
 a <b iff aRb and not bRa.

 It is easy to see that 1) ^is an equivalence relation on M and 2) < is a tran?
 sitive relation such that a < b implies a ^b for any a and b. The equiva?
 lence class determined by ^, which contains x e M is denoted by \\x\\.

 We call these equivalence classes clusters.
 Next, define a binary relation <* on Jf/ce by

 ||a||<* pH iff a < 6.

 We can show that <* is well-defined. Moreover, <* is a strictly linear
 ordering on M?~, i.e,

 1) <* is transitive,
 2) for any ||a||, ||6|| e M/~, one and only one of relations ||a|| = ||6||,

 \\a\\<*\\b\\,\\b\\<*\\a\\ holds.

 We write ||a|| <* ||6|| if either ||a|| = ||6|| or ||a||<* ||6|| holds. The
 following remarks will be useful in the succeeding discussions. We say
 that an element x e M is reflexive if xRx holds.

 Eemark 1. An element x is reflexive if ||a?|| contains at least two
 elements. For, if x =? y and x ~y then xRy and yRx by the definition.
 Thus, xRx holds by the transitivity of P. From this it follows that if
 xRy and if either x or y is contained in some cluster consisting of at least
 two elements, then for some z, both xjiz and zRy hold.
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 330  H. Ono, A. Nakamura

 Eemark 2. If P is non-ending and if x is either in the minimum
 or the maximum cluster, then x is reflexive. (Since M is finite and <*
 is a strictly linear ordering, there exist the minimum and the maximum
 clusters among M?~.) For, suppose that x is in the maximum cluster.
 Since R is non-ending, xRy for some y g M. If not yRx then \\x\\ <* \\y\\.
 But this contradicts the assumption. So yRx. Hence xRx holds. It can
 be verified similarly for the case of the minimum cluster.

 Eemark 3. If P is dense and ||#||<* \\y\\ holds for non-reflexive ele?
 ments x, y, then there exists a reflexive element z such that \\x\\ <* \\z\\
 <* \\y\\. For, from the assumption it follows that xRy. By the denseness
 of R, there exists w such that xRw and wRy. Let 8 = {iv e M ; xRw and
 wRy}. Then, take an element z e 8 such that for any w e 8\\z\\ <;* \\w\\.
 Since both x any y are non-reflexive, \\x\\ <* ||s|| <* \\y\\. Furthermore,
 there exists u such that xRu and uRz, since xRz holds. Of course, ||^||
 ^* ||*||. But ||*|| ^* ||u|| holds too, since u e S. Thus ||*|| = \\u\\. If z ^ u
 then z is reflexive by Eemark 1. If z = u then uRz implies that z is refle?
 xive.

 Now, let A be a formula containing m (^ 1) tense operators such that
 W(A, a0) =/ for some a0 g if in a finite OP-model (Jf, R, W). We will
 show that A is also refutable in some GL-mo?el (M',R', W) with at

 most m+1 worlds. Define the set FA (or HA) to be the set of all subfor?
 mulas of A which are of the form FB (or HB, respectively). We enumerate
 elements of FA and HA as FGX, ..., FGS and HBX, ..., HBt (s,
 t ^ 0). Of course, s + t = m. Suppose that JffOi is satisfiable in(ilf, P, W).
 Then, take such an element u{ e M that W(Ci9 ut) = t and W(Gi,w) =/
 for any w such that ||%?| <* ||w||. When PC? is not satisfiable in (M, R, W),
 let ut = aQ. Similarly, if HB? is refutable in (M, R, W), then take such
 an element Vj e M that W(B?, v?) = / and W(Bj, w) = t for any w such
 that \\w\\ <* ll^ll. When HB? is not refutable in (M, R, W), let ^ = a0.
 Now, define a Kripke model (M', Rf, W) as follows.

 1) 3?' = {a0,^,...,^,^,...,^},
 2) P' and W are restrictions of R and W to 3f', respectively.

 Clearly, (M', R', W) is a C?-model and if contains at most m +1 elements.
 We can show by induction that for any subformula B of A,
 (1) W'(B,x) = W(B,x)

 for every x e M'. Here, we will give only a proof for the case where B
 is FG{. If FGi is not satisfiable in (M, R, W), then W(Guw) =/ for every
 w e M and hence W'(G{,w) =/ for every w g if. Thus, W(P(7?,a?)
 = f =, W(FCi, x) for every a? g M'. Next, suppose that FG{ is satisfiable
 in (i?, P, Tf). If IKH <* ||o?|| and xBw for a?, w e M', then ||^|| <* ||w||.
 Thus, W{Oi9 w) = T7(C? to) =/. Hence, Wf(FG{, x) =/ - T^PC*, a).
 Next, suppose that #P% and x e 31'. Then #P'% holds also, so W'(POi?
 #) = t = Tt^PO^, #). Finally, suppose that a? = % and ui is not reflexive.
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 On the size of refutation Kripke models...  331

 Then u{Bw implies ||%|| <* |M|. Therefore W(FC{9 u{) =/ = W(FGiy u{)
 can be shown similarly as the first case. Now, taking A for B and a0 for
 x in (1), we have

 W'(A,a0) = W(A,a0) =/.
 Combining this fact with Lemma 4, we have the following theorem.

 Theorem 5. rCL(m) = m+1.
 Let S4.3 he the modal logic obtained from S4 by adding the axiom

 schema
 D(D^3 DB)vD(D?^ D?).

 S4.3Dum (or S4.3Grz) is the modal logic obtained from S4.3 by adding
 the axiom schema

 D(D(A 3 QA) 3 A) 3 (ODi 3 ?)

 (or D(D(-A =3 D^L) => A) 3 J., respectively).

 See [6]. Quite similarly as the above, we have the following theorem,
 which is a strengthened version of theorems in [4].

 Theorem 6. If L is any one of S4.3, S4.3Dum cmd S4.3 Grz, then
 rL(m) = m+1.

 But in eases of SL and PL, it is not so easy to estimate rL(m). For*
 the Kripke model (M', R', W) may not be an SL- (or a PL-) model in
 general, even if the original model (M, R, W) is an SL- (or a PL-) model.

 Suppose that \\u\\' and ||0||' are the minimum and the maximum clus?
 ters among clusters in M', respectively. Moreover, assume that neither
 u nor v are reflexive. Then, R' is not non-ending by Eemark 2. In such
 a case, we must take two elements u0 and v0 from the minimum and the
 maximum clusters in 31, respectively and add them to M'. Of course,
 they are reflexive. So, the model thus obtained becomes an S?-model
 with at most m+3 worlds. Similarly as the proof of Theorem 5, we can
 show that A is refutable in this model.

 Next, we will consider the case for P?-models. We suppose that no
 elements in 31' are reflexive. Then, we must first add u0 and v0 to M'
 just as the above, to make the model non-ending.We remark here that
 R' is a strictly linear ordering on M', by our assumption. For each pair
 (z17z2) such that z2 is the immediate successor of zx with respect to R',
 take a reflexive element w e M such that ||*3|| <* ||w|| <*||s2l|. T^e existen?
 ce of such a element w is confirmed by Eemark 3. We add also these
 reflexive elements to 31'. Then, we can show that the model thus obtained
 becomes a P?-model with at most 2m+3 (= (m+l)+2+m) worlds, in
 which A is refutable.
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 332  H. Ono, A. Nakamura

 Theorem 7.
 1) m+1 ^ rSL(m) ^ m+3,
 2) m+1 ^ rPL(m) ^ 2m+3.

 It will be possible to improve these upper bounds. In the following,
 we will give some remarks about this matter.

 Eemark 4. Consider the case where a given formula A contains
 only m P-operators (or m 22-operators). Then w? can show that sSL(A)
 <; m+2. In particular, it can be verified that sSL(~~]pvFp) = 3. Thus,
 rsx(l) = 3 = m+2. But we can show that sSL(A) g m+1 for m == 2.
 So, it seems plausible that rSL(m) = m+1 for m ^ 2.

 Eemark 5. If m is odd then we can show that rPL(m) ^ m+2. For,
 let m = 2n+l and consider the following formula Bn containing m tense
 operators ;

 Bnl Pi*p2A...ApnA ~~]Fp1AF(-\p1Ap2A ...ApnA ~}Fp2
 aF(... AF(-]p1A-}p2A...^pnAqA-]Fq)...))

 If ~~}Bn is refutable, or equivalently if Bn is satisfiable, then there
 must exist n+1 distinct, non-reflexive elements. To obtain a refutation
 P?-model of ~~\Bn, we must add the first and the last elements as before and
 n more reflexive elements between two successive, non-reflexive elements.
 Thus, the model thus obtained must contain at least 2w+3 worlds. Thus
 TPh(m) ^ 2w+3 = m+2.

 We do not know much about rS4(m) at present. It is interesting to
 know whether rS4(m) can be bounded by some polynomial p(m).

 4. An application to the computational complexity of satisfiability

 Throughout this section, we suppose that L is any one of CL, SL,
 PL, S4J?, S4.3Dum and S4.3Grz. For a given formula A, define \A\
 to be the length of A, i.e. the number of all symbols appearing in A. By
 theorems in section 3, we have the following.

 There exists a polynomial pL(x) of degree one such that if a formula
 A with \A\ ? n is satisfiable in an L-model then A is also satisfiable in
 an L-model with at most pL(n) worlds.

 Using this, we can get the following decision algorithm to check the
 satisfiability (in ?) of a given formula :

 Let a formula A with \A\ = n he given. First, compute pL(n). Next,
 enumerate all ?-models with at most pL(n) worlds. It suffices to check
 the satisfiability of A only in these models. In each ?-model (if, R, W),
 the satisfiability of A can be checked within qL(n) steps, where qL(x)
 is some polynomial on x which is determined by p?(x) and does not de?
 pend on a given model.
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 On the size of refutation Kripke models...  333

 But, if we can guess correctly an ?-model in which A is satisfiable from
 the beginning, then the whole decision procedure can be done within
 qL(n) steps. In such a situation, it is said that the satisfiability problem
 of ? is computable in nondeterministic polynomial time (abbreviated as
 computable in HP-time). There are a lot of problems which are known to
 be computable in JVP-time. The satisfiability problem Bx of the classical
 propositional logic is such an example.

 If a problem P can be reduced to another problem Q and if this re?
 duction can be simulated by a Turing machine, using at most log n distinct
 tape cells on the work tape for each input with length n, then P is said
 to be log space reducible to Q. In [1], it is shown that every problem compu?
 table in JVP-time is log space reducible to Bx. In this case, Bx is said to be
 log space complete in HP-time. (As for precise definition of notions in the the?
 ory of computational complexity, see e.g. [2].) Eoughly speaking, Bx
 is one of the most complicated problems among problems computable
 in JVP-time.

 It is clear that for each formula A without modal or tense operators,
 A is satisfiable in the two-valued Boolean algebra if and only if it is sa?
 tisfiable in some ?-model. Thus, Bx is also log space reducible to the
 satisfiability problem of ?. Hence, we have the following theorem.

 Theorem 8. Let L be any one of CL, SL, PL, S4.3, S4.3Diim and S4.3Grz.
 Then, the satisfiability problem of L is log space complete in NP-time.

 Faculty of Integrated arts
 and Sciences
 Hiroshima University
 Hiroshima, Japan

 and Department of Applied
 Mathematics
 Hiroshima University
 Hiroshima, Japan
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