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Abstract. The semantics of timed automata is defined
using an infinite-state transition system. For verification
purposes, one usually uses zone based abstractions w.r.t.
the maximal constants to which clocks of the timed au-
tomaton are compared. We show that by distinguishing
maximal lower and upper bounds, significantly coarser
abstractions can be obtained. We show soundness and
completeness of the new abstractions w.r.t. reachabil-
ity. We demonstrate how information about lower and
upper bounds can be used to optimise the algorithm for
bringing a difference bound matrix into normal form. Fi-
nally, we experimentally demonstrate that the new tech-
niques dramatically increases the scalability of the real-
time model checker Uppaal.

1 Introduction

Since their introduction by Alur and Dill in [AD90,AD94],
timed automata have become one of the most well es-
tablished models for real-time systems with well-studied
underlying theory and development of mature model-
checking tools such as Uppaal [LPY97] and Kronos
[BDM+98]. By their very definition timed automata de-
scribe (uncountable) infinite state-spaces. Thus, algo-
rithmic verification relies on the existence of exact finite
abstractions. In the original work by Alur and Dill, the
so-called region-graph construction provided a “univer-
sal” such abstraction. However, whereas well-suited for
establishing decidability of problems related to timed
automata, the region-graph construction is highly im-
practical from a tool-implementation point of view. In-
stead, most real-time verification tools apply abstrac-
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Fig. 1. A small timed automaton. The state space of the au-
tomaton when in location � is shown. The area to the right is the
abstraction of the last zone.

tions based on so-called zones, which in practise provide
much coarser (and hence smaller) abstractions.

To ensure finiteness, it is essential that the given ab-
straction (region as well as zone based) takes into ac-
count the actual constants with which clocks are com-
pared. In particular, the abstraction could identify states
which are identical except for the clock values which ex-
ceed the maximum such constants. Obviously, the smaller
we may choose these maximum constants, the coarser
the resulting abstraction will be. Allowing clocks to be
assigned different (maximum) constants is an obvious
first step in this direction, and in [BBFL03] this idea has
been (successfully) taken further by allowing the max-
imum constants not only to depend of the particular
clock but also of the particular location of the timed
automaton. In all cases the exactness is established by
proving that the abstraction respects bisimilarity, i.e.
states identified by the abstraction are bisimilar.



Consider now the timed automaton of Fig. 1. Clearly
106 is the maximum constant for x and 1 is the maximum
constant for y. Thus, abstractions based on maximum
constants will distinguish all states where x ≤ 106 and
y ≤ 1. In particular, a forward computation of the full
state space will – regardless of the search-order – create
an excessive number of abstract (symbolic) states includ-
ing all abstract states of the form (�, x − y = k) where
0 ≤ k ≤ 106 as well as (�, x− y > 106). However, assum-
ing that we are only interested in reachability proper-
ties (as is often the case in Uppaal), the application of
so-called downwards closure with respect to simulation
will lead to an exact abstraction which could potentially
be substantially coarser than closure under bisimilarity.
Observing that 106 is an upper bound on the edge from
� to �2 in Fig. 1, it is clear that for any state where
x ≥ 10, increasing x will only lead to “smaller” states
with respect to simulation preorder. In particular, apply-
ing this downward closure results in the radically smaller
collection of abstract states, namely (�, x−y = k) where
0 ≤ k ≤ 10 and (�, x − y > 10).

The fact that 106 is an upper bound in the example
of Fig. 1 is crucial for the reduction we obtained above.
In this paper we present new, substantially coarser yet
still exact abstractions which are based on two max-
imum constants obtained by distinguishing lower and
upper bounds. In all cases the exactness (w.r.t. reacha-
bility) is established by proving that the abstraction re-
spects downwards closure w.r.t. simulation, i.e. for each
state in the abstraction there is an original state sim-
ulating it. The variety of abstractions comes from the
additional requirements to effective representation and
efficient computation and manipulation. In particular
we insist that zones can form the basis of our abstrac-
tions; in fact the suggested abstractions are defined in
terms of low-complexity transformations of the differ-
ence bound matrix (DBM) representation of zones. Fur-
thermore, we demonstrate how information about lower
and upper bounds can be used to optimise the algorithm
for bringing a DBM into normal form. Finally, we ex-
perimentally demonstrate the significant speedups ob-
tained by our new abstractions, to be comparable with
the convex hull over-approximation supported by Up-
paal. Here, the distinction between lower and upper
bounds is combined with the orthogonal idea of location-
dependency of [BBFL03].

Related Work: This paper is a full and extended ver-
sion of [BBLP04]. In particular, proof of the correct-
ness of our abstraction techniques is given in Appendix.
Also, full information on how to exploit lower and upper
bounds to obtain smaller asymmetric DBMs and faster
successor computation is given. Finally, we show that ap-
plying our abstraction techniques to jobshop scheduling
problems extends the notion of dominating point pro-
posed in [AM01,AAM04].

The classical abstraction method for timed automata
takes into account the maximum constants to which the
various clocks are compared. This method — termed ex-
trapolation or normalization — is described in [DT98]
and rigorously proved in [Bou03]. In [BBFL03] the max-
imum constrants used in the abstraction do not only
depend on the clocks but also on the particular loca-
tions of the timed automata. [DT98] describes a num-
ber of additional abstraction techniques including active
clock reduction and the over-approximating convex hull
abstraction. In [BBFL03] it is shown that active clock
reduction is obtained as a special case of the location-
dependent abstraction. In this paper we compare the
performance of our new (exact) abstraction technique
to that of convex hull approximation.

Most of the above zone based abstractions — in-
cluding the ones examined in this paper — require that
guards are restricted to conjunctions of simple lower or
upper bounds (strict or non-strict) on individual clocks.
Thus, constraints on clock differences are generally not
allowed. We refer the reader to [Bou03] to learn more
about the intricacies of zone based abstractions in the
presence of difference constraints, and to [BY03] for a
solution based on zone splitting.

2 Preliminaries

Although we perform our experiments in Uppaal, we
describe the theory on the basic timed automaton model.
Variables, committed locations, networks, urgency, and
other things supported by Uppaal are not important
with respect to presented ideas and the technique can
easily be extended for these ”richer” models. Let X be
a set of non-negative real-valued variables called clocks.
The set of guards G(X) is defined by the grammar g :=
x �� c | g ∧ g, where x ∈ X, c ∈ N and ��∈ {<,≤,≥, >}.
Definition 1 (Timed Automata Syntax). A timed
automaton is a tuple A = (L, X, �0, E, I), where L is a
finite set of locations, X is a finite set of clocks, �0 ∈ L
is an initial location, E ⊆ L×G(X)× 2X ×L is a set of
edges labelled by guards and a set of clocks to be reset,
and I : L → G(X) assigns invariants to clocks.

A clock valuation is a function ν : X → R≥0. If
δ ∈ R≥0 then ν + δ denotes the valuation such that for
each clock x ∈ X , (ν + δ)(x) = ν(x) + δ. If Y ⊆ X
then ν[Y := 0] denotes the valuation such that for each
clock x ∈ X �Y , ν[Y := 0](x) = ν(x) and for each clock
x ∈ Y , ν[Y := 0](x) = 0. The satisfaction relation ν |= g
for g ∈ G(X) is defined in the natural way.

Definition 2 (Timed Automata Semantics). The
semantics of a timed automaton A = (L, X, �0, E, I) is
defined by a transition system SA = (S, s0,−→), where
S = L × R

X
≥0 is the set of states, s0 = (�0, ν0) is the

initial state, ν0(x) = 0 for all x ∈ X , and −→⊆ S × S is
the set of transitions defined by:
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– (�, ν) −−→ (�, ν + δ) if ∀0 ≤ δ′ ≤ δ : (ν + δ′) |= I(l)
– (�, ν) −−→ (�′, ν[Y := 0]) if there exists (�, g, Y, �′) ∈

E such that ν |= g and ν[Y := 0] |= I(�′)

The reachability problem for an automaton A and a loca-
tion � is to decide whether there is a state (�, ν) reachable
from (�0, ν0) in the transition system SA. As usual, for
verification purposes, we define a symbolic semantics for
timed automata.

Definition 3 (Symbolic Semantics). The symbolic
semantics of a timed automaton A = (L, X, �0, E, I) is
defined by the abstract transition system (S, s0, =⇒),
where S = L × P(RX

≥0)
1, s0 = (�0, {ν0}) and ‘=⇒’ is

defined by the following two rules:

Delay: (�, W ) =⇒ (�, W ′), where W ′ =
{
ν + d | ν ∈

W ∧ d ≥ 0 ∧ ∀0 ≤ d′ ≤ d : (ν + d′) |= I(�)
}
.

Action: (�, W ) =⇒ (�′, W ′) if there exists a transition

�
g,Y−−−→ �′ in A, such that W ′ =

{
ν′ | ∃ν ∈ W : ν |=

g ∧ ν′ = ν[Y := 0] ∧ ν′ |= I(�′)
}
.

The symbolic semantics of a timed automaton may in-
duce an infinite transition system. To obtain a finite
graph one may, as suggested in [BBFL03], apply some
abstraction a : P(RX

≥0) −−→ P(RX
≥0), such that W ⊆

a(W ) and a(a(W )) = a(W ). The abstract transition sys-
tem ‘=⇒a’ is then given by the following inference rule:

(�, W ) =⇒ (�′, W ′)

(�, W ) =⇒a

(
�′, a(W ′)

) if W = a(W )

A simple way to ensure that the reachability graph in-
duced by ‘=⇒a’ is finite is to establish that there is only
a finite number of abstractions of sets of valuations; that
is, the set {a(W ) | a defined on W} is finite. In this case a
is said to be a finite abstraction. Moreover, ‘=⇒a’ is said
to be sound and complete (w.r.t. reachability) whenever:

Sound: (�0, {ν0}) =⇒∗
a (�, W ) implies ∃ν : ν ∈ W and

(�0, ν0) −→∗ (l, ν).
Complete: (�0, ν0) −→∗ (�, ν) implies ∃W : ν ∈ W and

(�0, {ν0}) =⇒∗
a (�, W ).

By language misuse, we say that an abstraction a is
sound (resp. complete) whenever ‘=⇒a’ is sound (resp.
complete). Completeness follows trivially from the defi-
nition of abstraction. Of course, if a and b are two ab-
stractions such that for any set of valuations W , a(W ) ⊆
b(W ), we prefer to use abstraction b because the graph
induced by it is a priori smaller than the one induced
by a. Our aim is thus to propose an abstraction which is
finite, as coarse as possible, and which induces a sound
abstract transition system. We also require that abstrac-
tions are effectively representable and may be efficiently
computed and manipulated.

A first step in finding an effective abstraction is realising
that W will always be a zone whenever (�,{ν0}) =⇒∗

1 P(A) denotes the set of all subsets of A.

(�, W ). A zone is a conjunction of constraints of the
form x �� c or x − y �� c, where x and y are clocks,
c ∈ Z, and �� is one of {≤,≤, =,≥, >}. Zones can be
represented using Difference Bound Matrices (DBM).
We will briefly recall the definition of DBMs, and re-
fer to [Dil89,CGP99,Ben02,Bou04] for more details. A
DBM is a square matrix D = 〈ci,j ,≺i,j〉0≤i,j≤n such that
ci,j ∈ Z and ≺i,j∈ {<,≤} or ci,j = ∞ and ≺i,j = <.
The DBM D represents the zone �D� which is defined
by �D� = {ν | ∀0 ≤ i, j ≤ n, ν(xi) − ν(xj) ≺i,j ci,j},
where {xi | 1 ≤ i ≤ n} is the set of clocks, and x0

is a clock which is always 0, (i.e. for each valuation ν,
ν(x0) = 0). DBMs are not a canonical representation of
zones, but a normal form can be computed by consid-
ering the DBM as an adjacency matrix of a weighted
directed graph and computing all shortest paths. In par-
ticular, if D = 〈ci,j ,≺i,j〉0≤i,j≤n is a DBM in normal
form, then it satisfies the triangular inequality, that is,
for every 0 ≤ i, j, k ≤ n, we have that (ci,j ,≺i,j) ≤
(ci,k,≺i,k) + (ck,j ,≺k,j), where comparisons and addi-
tions are defined in a natural way (see [Bou04]). All op-
erations needed to compute ‘=⇒’ can be implemented
by manipulating the DBMs.

3 Maximum Bound Abstractions

The abstraction used in real-time model-checkers such
as Uppaal [LPY97] and Kronos [BDM+98], is based
on the idea that the behaviour of an automaton is only
sensitive to changes of a clock if its value is below a
certain constant. That is, for each clock there is a max-
imum constant such that once the value of a clock has
passed this constant, its exact value is no longer relevant
— only the fact that it is larger than the maximum con-
stant matters. Transforming a DBM to reflect this idea
is often referred to as extrapolation [Bou03,BBFL03] or
normalisation [DT98]. In the following we will choose
the term extrapolation.

Simulation & Bisimulation. The notion of bisimula-
tion has so far been the semantic tool for establishing
soundness of suggested abstractions. In this paper we
shall exploit the more liberal notion of simulation [Mil71,
TARB96] to allow for even coarser abstractions. Let us
fix a timed automaton A = (L, X, �0, E, I). We consider
a � relation on L×R

X
≥0 satisfying the following transfer

properties:
1. if (�1, ν1) � (�2, ν2) then �1 = �2

2. if (�1, ν1) � (�2, ν2) and (�1, ν1) −−→ (�′1, ν
′
1), then

there exists (�′2, ν
′
2) such that (�2, ν2) −−→ (�′2, ν

′
2) and

(�′1, ν′
1) � (�′2, ν′

2)
3. if (�1, ν1) � (�2, ν2) and (�1, ν1) −−→ (�1, ν1 + δ), then

there exists δ′ such that (�2, ν2) −−→ (�2, ν2 + δ′) and
(�1, ν1 + δ) � (�2, ν2 + δ′)

We call such a relation a (location-based) simulation re-
lation or simply a simulation relation. A simulation re-
lation � such that �−1 is also a simulation relation, is
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called a (location-based) bisimulation relation. When-
ever (�1, ν1) � (�2, ν2), we say that (�1, ν1) is simulated
by (�2, ν2) or that (�2, ν2) simulates (�1, ν1).

Proposition 1. Let � be a simulation relation, as de-
fined above. If (�, ν1) � (�, ν2) and if a discrete state �′

is reachable from (�, ν1), then it is also reachable from
(�, ν2).

Reachability is thus preserved by simulation as well as
by bisimulation. However, in general the weaker notion
of simulation preserves fewer properties than that of
bisimulation. For example, deadlock properties as ex-
pressed in Uppaal 2 are not preserved by simulation
whereas it is preserved by bisimulation. In Fig. 1, (�, x =
15, y = .5) simulates (�, x = 115, y = .5) as well as
(�, x = 106 + 1, y = .5).

Classical Maximal Bounds. The classical abstraction
for timed automata is based on maximal bounds, one
for each clock of the automaton. Let A = (L, X, �0, E, I)
be a timed automaton. The maximal bound of a clock
x ∈ X , denoted M(x), is the maximal constant k such
that there exists a guard or invariant containing x �� k
in A. Let ν and ν′ be two valuations. We define the
following relation: ν ≡M ν′ def⇐⇒ ∀x ∈ X : either ν(x) =
ν′(x) or (ν(x) > M(x) and ν′(x) > M(x)).

Lemma 1. The relation R = {((�, ν), (�, ν′)) | ν ≡M

ν′} is a bisimulation relation.

We can now define the abstraction a≡M w.r.t. ≡M . Let
W be a set of valuations, then a≡M (W ) = {ν | ∃ν′ ∈
W, ν′ ≡M ν}.

Lemma 2. The abstraction a≡M is sound and complete.

These two lemmas come from [BBFL03]. They will more-
over be consequences of our main result.

Lower & Upper Maximal Bounds. The new abstrac-
tions introduced in the following will be substantially
coarser than a≡M . It is no longer based on a single max-
imal bound per clock but rather on two maximal bounds
per clock allowing lower and upper bounds to be distin-
guished.

Definition 4. Let A = (L, X, �0, E, I) be a timed au-
tomaton. The maximal lower bound denoted L(x), (resp.
maximal upper bound U(x)) of clock x ∈ X is the maxi-
mal constant k such that there exists a constraint x > k
or x ≥ k (resp. x < k or x ≤ k) in a guard of some
transition or in an invariant of some location of A. If
such a constant does not exist, we set L(x) (resp. U(x))
to −∞.

2 There is a deadlock whenever there exists a state (�, ν) such
that no further discrete transition can be taken.

Let us fix for the rest of this section a timed automaton A
and bounds L(x), U(x) for each clock x ∈ X as above.
The idea of distinguishing lower and upper bounds is
the following: if we know that the clock x is between
2 and 4, and if we want to check that the constraint
x ≤ 5 can be satisfied, the only relevant information
is that the value of x is greater than 2, and not that
x ≤ 4. In other terms, checking the emptiness of the
intersection between a non-empty interval [c, d] and ]−
∞, 5] is equivalent to checking whether c > 5; the value
of d is not useful. Formally, we define the LU-preorder
as follows.

Definition 5 (LU-preorder �LU). Let ν and ν′ be
two valuations. Then ν′ �LU ν if and only if for each
clock x:

– either ν′(x) = ν(x),
– or L(x) < ν′(x) < ν(x),
– or U(x) < ν(x) < ν′(x).

Lemma 3. The relation R = {((�, ν), (�, ν′)) | ν′ �LU

ν} is a simulation relation.

Proof: The only non-trivial part in proving that R in-
deed satisfies the three transfer properties of a simu-
lation relation is to establish that if g is a clock con-
straint, then “ν |= g implies ν′ |= g”. Consider the con-
straint x ≤ c. If ν(x) = ν′(x), then we are done. If
L(x) < ν′(x) < ν(x), then ν(x) ≤ c implies ν′(x) ≤ c.
If U(x) < ν(x) < ν′(x), then it is not possible that
ν |= x ≤ c (because c ≤ U(x)). Consider now the con-
straint x ≥ c. If ν(x) = ν′(x), then we are done. If
U(x) < ν(x) < ν′(x), then ν(x) ≥ c implies ν′(x) ≥ c.
If L(x) < ν′(x) < ν(x), then it is not possible that ν
satisfies the constraint x ≥ c because c ≤ L(x). �

Using the above LU-preorder, we can now define a
first abstraction based on the lower and upper bounds.

Definition 6 (a�LU , abstraction w.r.t. �LU). Let
W be a set of valuations. We define the abstraction w.r.t.
�LU as a�LU (W ) = {ν | ∃ν′ ∈ W, ν′ �LU ν}.
Before going further, we illustrate this abstraction in
Fig. 2. There are several cases, depending on the rel-
ative positions of the two values L(x) and U(x) and of
the valuation we are looking at. We represent with a
plain line the value of a�LU ({ν1}) and with a dashed
line the value of a≡M ({ν2}), where the maximal bound
M(x) corresponds to the maximum of L(x) and U(x). In
each case, we indicate the “quality” of the new abstrac-
tion compared with the “old” one. We notice that the
new abstraction is coarser in three cases and matches
the old abstraction in the fourth case.

Lemma 4. Let A be a timed automaton. Define the
constants M(x), L(x) and U(x) for each clock x as de-
scribed before. The abstraction a≺LU is sound, complete,
and coarser or equal to a≡M .
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L(x) U(x)

ν1

ν2

Coarser!

L(x) U(x)

ν1

ν2

As good as...

U(x) L(x)

ν1

ν2

Coarser!

U(x) L(x)

ν1

ν2

Coarser!

Fig. 2. Quality of a�LU
compared with a≡M for M = max(L, U).

Proof: Completeness is obvious, and soundness comes
from lemma 3. Definitions of a≺LU and a≡M give the
last result because for each clock, x, we have M(x) =
max (L(x), U(x)). �
This result could suggest to use a�LU in real time model-
checkers. However, we do not yet have an efficient method
for computing the transition relation ‘=⇒a�LU

’. Indeed,
even if W is a zone, it might be the case that a�LU (W ) is
not even convex (we urge the reader to construct such an
example for herself). For effectiveness and efficiency rea-
sons we prefer abstractions which transform zones into
zones because we can then use the DBM data structure.
In the next section we present DBM-based extrapolation
operators that will give abstractions which are sound,
complete, finite and also effective.

4 Extrapolation Using Zones

The (sound and complete) symbolic transition relations
induced by abstractions considered so far unfortunately
do not preserve convexity of sets of valuations. In order
to allow for sets of valuations to be represented efficiently
as zones, we consider slightly finer abstractions aExtra

such that for every zone Z, Z ⊆ aExtra(Z) ⊆ a�LU (Z)
(resp. Z ⊆ aExtra(Z) ⊆ a≡M (Z)) (this ensures correct-
ness) and aExtra(Z) is a zone (this gives an effective rep-
resentation). These abstractions are defined in terms of
extrapolation operators on DBMs. If Extra is an extrapo-
lation operator, it defines an abstraction, aExtra, on zones
such that for every zone Z, aExtra(Z) = �Extra(DZ)�,
where DZ is the DBM in normal form which represents
the zone Z.

In the remainder, we consider a timed automaton A
over a set of clocks X = {x1, .., xn} and we suppose
we are given another clock x0 which is always zero. For
all these clocks, we define the constants M(xi), L(xi),
U(xi) for i = 1, ..., n. For x0, we set M(x0) = U(x0) =
L(x0) = 0 (x0 is always equal to zero, so we assume

we are able to check whether x0 is really zero). In our
framework, a zone will be represented by DBMs of the
form 〈ci,j ,≺i,j〉i,j=0,...,n.

We now present several extrapolations starting from
the classical one and improving it step by step. Each
extrapolation will be illustrated by a small picture of a
zone, shown in black, over two clocks, x and y, and its
corresponding extrapolation, shown as a dashed area. In
succession, the pitures illustrate the increasing coarse-
ness of each extrapolation.

Classical extrapolation based on maximal bounds
M(x). If D be a DBM 〈ci,j ,≺i,j〉i,j=0...n, ExtraM (D) is
given by the DBM 〈c′i,j ,≺′

i,j〉i,j=0...n defined and illus-
trated below:

(c′i,j ,≺′
i,j) =



∞ if ci,j > M(xi)
(−M(xj), <) if −ci,j > M(xj)
(ci,j ,≺i,j) otherwise
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�������
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�������
�������
�������

M(x)

M(y)

x

y

This is the extrapolation operator used in the real-time
model-checkers Uppaal and Kronos. This extrapola-
tion removes bounds that are larger than the maximal
constants. The correctness follows from aExtraM

(Z) ⊆
a≡M (Z) and is proved in [Bou03] and for the location-
based version in [BBFL03].

In the remainder, we will propose several other ex-
trapolations that will improve the classical one, in the
sense that the zones obtained with the new extrapola-
tions will be larger than the zones obtained with the
classical extrapolation.

Diagonal extrapolation based on maximal con-
stants M(x). The first improvement consists in notic-
ing that if the whole zone is above the maximal bound
of some clock, then we can remove some of the diago-
nal constraints of the zones, even if they are not them-
selves above the maximal bound. More formally, if D =
〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, Extra+

M (D) is given by
〈c′i,j ,≺′

i,j〉i,j=0,...,n defined as:

(c′i,j ,≺′
i,j) =




∞ if ci,j > M(xi)
∞ if −c0,i > M(xi)
∞ if −c0,j > M(xj), i �= 0
(−M(xj), <) if −ci,j > M(xj), i = 0
(ci,j ,≺i,j) otherwise

5



���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

M(x)

M(y)

x

y

For every zone Z it then holds that Z ⊆ aExtraM
(Z) ⊆

aExtra+
M

(Z).

Extrapolation based on LU-bounds L(x) and U(x).
The second improvement uses the two bounds L(x) and
U(x). If D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, ExtraLU (D)
is given by 〈c′i,j ,≺′

i,j〉i,j=0,...,n defined as:

(c′i,j ,≺′
i,j) =



∞ if ci,j > L(xi)
(−U(xj), <) if −ci,j > U(xj)
(ci,j ,≺i,j) otherwise
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L(x) = U(x)

U(y)

x

y

This extrapolation benefits from the properties of the
two different maximal bounds. It does generalise the op-
erator aExtraM

. For every zone Z, it holds that Z ⊆
aExtraM

(Z) ⊆ aExtraLU
(Z).

Diagonal extrapolation based on LU-bounds L(x)
and U(x). This last extrapolation is a combination of
the extrapolation based on LU-bounds and the improved
extrapolation based on maximal constants. It is the most
general one. If D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, then
Extra+

LU (D) is given by the DBM 〈c′i,j ,≺′
i,j〉i,j=0,...,n de-

fined as:

(c′i,j ,≺′
i,j) =




∞ if ci,j > L(xi)
∞ if − c0,i > L(xi)
∞ if − c0,j > U(xj), i �= 0
(−U(xj), <) if − c0,j > U(xj), i = 0
(ci,j ,≺i,j) otherwise
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L(x) = U(x)

aExtraM (Z)

Z

a
Extra+

M
(Z)

a
Extra+

LU
(Z)

aExtraLU (Z)

a≡M (Z)

a≺LU (Z)

Fig. 3. For any zone Z, we have the inclusions indicated by the
arrows. The sets a

Extra+
M

(Z) and aExtraLU
(Z) are incomparable.

The aExtra operators are DBM based abstractions whereas the
other two are semantic abstractions. The dashed arrow was proved
in [BBFL03] whereas the dotted arrow is the main result of this
paper.

Correctness of these Abstractions. We know that
all the above extrapolations are complete abstractions as
they transform a zone into a clearly larger one. Finite-
ness also comes immediately, because we can do all the
computations with DBMs and the coefficients after ex-
trapolation can only take a finite number of values. Ef-
fectiveness of the abstraction is obvious as extrapolation
operators are directly defined on the DBM data struc-
ture. The only difficult point is to prove that the ex-
trapolations we have presented are correct. To prove the
correctness of all these abstractions, due to the inclusions
shown in Fig. 3, it is sufficient to prove the correctness
of the largest abstraction, viz aExtra+

LU
.

Proposition 2. Let Z be a zone. Then aExtra+
LU

(Z) ⊆
a�LU (Z).

The proof of this proposition is quite technical. However,
as it is a key result we provide a proof in the Appendix.
Using all what precedes we are able to claim the follow-
ing theorem which states that aExtra+

LU
is an abstraction

which can be used in the implementation of timed au-
tomata.

Theorem 1. aExtra+
LU

is sound, complete, finite and ef-
fectively computable.

5 Acceleration of Successor Computation

In the preceding section it was shown that the abstrac-
tion based on the new extrapolation operator is coarser
than the one currently used in timed automata model-
checkers. This can result in a smaller symbolic represen-
tation of the state space of a timed automaton. As we
will see in this section, besides reducing the memory re-
quirements, identifying lower and upper bounded clocks
can be used to speed up the successor computation.
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Low

Up

Low

Up

Fig. 4. DBM in LU-form. All DBM entries in the white areas
are +∞. DBMs in LU-form can be represented as an asymmetric
DBM, in which only rows for lower bounded clocks and columns
for upper bounded clocks are included.

In certain models some clocks only have lower bounds
or only have upper bounds. We say that a clock x is
lower-bounded (resp. upper-bounded) if L(x) > −∞ (resp.
U(x) > −∞). Let D be a DBM and D′ = Extra+

LU (D). It
follows directly from the definition of the extrapolation
operator that for all xi, U(xi) = −∞ implies c′j,i = +∞
and L(xi) = −∞ implies c′i,j = +∞. We say that a
DBM D is in LU-form whenever all coefficients ci,j =
∞, except when xi is lower bounded and xj is upper
bounded. Thus, D′ is in LU-form. If we let Low = {i |
xi is lower bounded}, Up = {i | xi is upper bounded}
and Clocks = Low ∪ Up, then it follows that a DBM
in LU-form can be represented by a |Low|× |Up| matrix
rather the normal |Clocks|×|Clocks|, since all remaining
entries in the DBM will be +∞, see Fig. 4.

The projection of a DBM onto the LU-form is given
by the function LU-Projection(D) = D′, where

D′
ij =

{
Dij i ∈ Low, j ∈ Up

∞ otherwise

Lemma 5. Let D be a DBM in normal form. Then
LU-Projection(D) is

– in normal form
– in LU-form
– reachability equivalent to D

Proof: Canonicity is easy to show. The LU-form follows
directly from the definition of the LU-form and the def-
inition of the projection function. Reachability equiva-
lence is a consequence of �D� ⊆ �LU-Projection(D)� ⊆
�Extra+

LU (D)� ⊆ a�LU (�D�). �
In the remainder of this section, we will alter the suc-
cessor computation such that we retain during the en-
tire successor computation. We first summarise how the

DBM based successor computation is currently performed.
Let D be a DBM in normal form. We want to com-
pute the successor of D w.r.t. an edge �

g,Y−−−→ �′. In
Uppaal, this is broken down into a number of elemen-
tary DBM operations, quite similar to the symbolic se-
mantics of timed automata, see Table 1. After applying
the guard and the target invariant, the result must be
checked for consistency and after applying the extrap-
olation operator, the DBM must be brought back into
normal form. Checking the consistency of a DBM is done
by computing the normal form and checking the diag-
onal for negative entries. In general, the normal form
can be computed using the O(n3)-time Floyd-Warshall
all-pairs-shortest-path algorithm, but when applying a
guard or invariant, resetting clocks, or computing the de-
lay successors, the normal form can be recomputed much
more efficiently [Rok93], see the left column of Fig. 5.3

Table 1 shows the operations involved and their com-
plexity (all DBMs except D5 are in normal form). The
last step is clearly the most expensive. As mentioned,
with the new extrapolation operator D5 is in LU-form.
Using LU-Projection, the successor computation can
be changed such that all intermediate DBMs are in LU-
form:

D1 = LU-Projection(Intersection(g, D))
D2 = LU-Projection(ResetY (D1))
D3 = LU-Projection(Elapse(D2))
D4 = LU-Projection(Intersection(I(�), D3))
D5 = Extrapolation(D4)
D6 = LU-Projection(Canonize(D5))

The correctness of this change follows from Lemma 5.
The final step in creating a more efficient successor com-
putation is to replace the operations on the left of Fig. 5
with those on the right:

D1 = LU-Intersection(g, D)
D2 = LU-ResetY (D1)
D3 = LU-Elapse(D2)
D4 = LU-Intersection(I(�), D3)
D5 = LU-Extrapolation(D4)
D6 = LU-Canonize(D5)

The correctness of this change is ensured by the fol-
lowing lemmas.

Lemma 6. Let D be a DBM in normal form and LU-
form. Then we have the following syntactic equalities:

LU-Projection(Inters(g, D)) = LU-Inters(g, D)
LU-Projection(ResetY (D)) = LU-ResetY (D)

Elapse(D) = LU-Elapse(D)

Proof: For all LU operations, we must argue, that the
constraints in the LU-projection of the DBM are pre-
served.

3 The pseudo code is in a procedural style rather than a func-
tional style. The latter would require a copy of the input DBM.
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proc Tighten(D, x, y, v)
Dxy := min(Dxy , v)
Close1(D, x)
Close1(D, y)

where
proc Close1(D, k)

for i : Clocks do
for j : Clocks do

Dij := min(Dij , Dik + Dkj)
od od

end

proc LU-Tigthen(D, x, y, v)
if x ∈ Low ∩ Up ∧ y ∈ Low ∩ Up

then Dxy := min(Dxy , v)
LU-Close1(D, x)
LU-Close1(D, y) fi

if x ∈ Low \ Up implies y = 0
then for i : Low do

Di0 := min(Di0, Dix + v)
od fi

if y ∈ Up \ Low implies x = 0
then for j : Up do

D0j := min(D0j , v + Dyj)
od fi

where
proc LU-Close1(D, k)

for i : Low do
for j : Up do

Dij := min(Dij , Dik + Dkj)
od od

end

proc Reset(D, x, v)
D0x := −v
Dx0 := v
for y : Clocks+ do

Dxy := v + D0y

Dyx := Dy0 − v
od

end

proc LU-Reset(D, x, v)
if x ∈ Up then D0x := −v fi
if x ∈ Low then Dx0 := v fi
if x ∈ Low

then for y : Up+ do
Dxy := v + D0y

od fi
if x ∈ Up

then for y ∈ Low+ do
Dyx := Dy0 − v

od fi
end

proc Elapse(D)
for x : Clocks+ do

Dx0 := ∞
od

end

proc LU-Elapse(D)
for x : Low+ do

Dx0 := ∞
od

end

proc Canonize(D)
for k : Clocks do

for i : Clocks do
for j : Clocks do

Dij = min(Dij , Dik + Dkj)
od od od

end

proc LU-Canonize(D)
for k : Low ∩ Up do

for i : Low do
for j : Up do

Dij = min(Dij , Dik + Dkj)
od od od

end

Fig. 5. On the left: Operations on symmetric DBMs for computing successors. On the right: The corresponding operations on asymmetric
DBMs. All operations maintain the canonical form. Notice that our model does not allow guards over clock differences, hence one of the
clocks given to Tighten will be zero.
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Operation Symmetric Asymmetric

D1 = Intersection(g,D) O(n2 · |g|) O(|Low| · |Up| · |g|)
D2 = ResetY (D1) O(n · |Y |) O(|Low| · |Y | + |Up| · |Y |)
D3 = Elapse(D2) O(n) O(|Low| · |Y |)
D4 = Intersection(I(�),D3) O(n2 · |I(l)|) O(|Low| · |Up| · |I(l)|)
D5 = Extrapolation(D4) O(n2) O(|Low| · |Up|)
D6 = Canonize(D5) O(n3) O(|Low| · |Up| · |Low ∩ Up|)

Table 1. Steps in computing the zone of a symbolic successor. The Intersection operation computes the intersection of a DBM and
a guard by repeatedly running the Tighten algorithm given in Fig. 5. The complexity of performing each step with symmetric and
asymmetric DBMs is shown in the second and third column, respectively.

For the first equality we observe that LU-Tighten
is always called for a guard k �� v, where either x or y
is k and the other is zero, since guards on clock differ-
ences are not allowed in our model. If k is both a lower
bounded and upper bounded clock, then LU-Tighten
behaves like Tighten except that LU-Close1 only it-
erates over lower and upper bounded clocks (for all other
clocks, the sum in the loop-body is infinity). If k is lower
bounded, but not upper bounded, then the Dxy is not in
the DBM: In this case, the loop over the lower bounded
clocks propagates the effect that tightening Dxy would
have had had Canonize been called (the correctness of
this can be observed by reordering how Canonize visits
the clocks – then all iterations but the last do not mod-
ify the DBM). The case for k being upper bounded, but
not lower bounded, is similar.

The second equality follows a similar observation for
reset: For the constraints in the projection, LU-Reset
behaves exactly like Reset. Changes to constraints not
in the projection can be ignored, since they do not prop-
agate to constraints in the projection.

The final equality follows from the observation that
Elapse preserves the LU-form. �

Lemma 7. Let D be a DBM in LU-form. Then we have
the following syntactic equality:

Canonize(D) = LU-Canonize(D)

Proof: Follows from the observation that Canonize
preserves the LU-form. �

Table 1 gives the complexity of the new algorithms.
As can be seen, the complexity of the new algorithms is
bound by the number of lower and upper bounded clocks
rather than the total number of clocks. For some mod-
els, and in particular in combination with the location-
based abstraction of [BBFL03], we expect this change
to provide a significant speedup. One such example is
presented in the following section.

6 Job Shop Scheduling

Let M be a finite set of machines. A job is a finite se-
quence of pairs (m1, d1)...(mk, dk), where each mi is a

job J1

m1

m1

m2

m2

f

x1 := 0

x1 ≥ 4

x2 := 0

x2 ≥ 5

job J2

m1

m1

f

x2 := 0

x2 ≥ 3

Fig. 6. Timed automata encoding of job shop scheduling problem
with two jobs J1 = (m1, 4)(m2, 5) and J2 = (m1, 3) and set of ma-
chines M = {m1, m2}. A state mi means that the job is waiting
for machine mi to be free for doing some work. A state mi means
that machine mi is working on the given job. By a cartesian prod-
uct of these automata which forbids two jobs being together in a
state mi, we get all possible schedules for these jobs. The problem
thus reduces to computing the minimal time for reaching state f
of all jobs.

machine of M and di is an integer representing a dura-
tion. A pair (mi, di) means that the job needs the ma-
chine mi for di units of time. The jobshop scheduling
problem consists in scheduling a finite sets of jobs on the
machines of M (two jobs can not use the same machine
at the same time) such that all jobs are completed in the
shortest amount of time. As done in [AM01,AAM04],
jobs can be represented by simple timed automata, see
Fig. 6 for an example.

We first notice that all clocks xi are only lower bounded,
that is, U(xi) = −∞. We add a clock t which will repre-
sent universal time. This clock is never reset and never
checked. However we want to be able to check that the
time when reaching the configuration where all jobs are
in state f is less than some given value (because we look
for an optimal scheduling). Thus, we can say that clock
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t is only upper bounded, thus that L(t) = −∞. As-
sume now that we apply the forward computation to
this system. We notice that no constraint xi ≤ c for
some constant c can be generated (see Table 1, there is
no bounding invariant in the states and in the guards).
Using what precedes, at each step of the forward com-
putation, if M is the current DBM (after the 6 steps
described in Table 1), only the following coefficients are
different from +∞: mxi,t for each i and m0,t. Notice that
we thus only need to store (n + 1) coefficients (where n
is the number of jobs) at each step of the computation,
instead of (n + 1)2 as is usually the case.

What we will see now is that the inclusion check-
ing with these DBMs in LU-form is more general than
the domination test presented in [AM01,AAM04]. The
idea of the dominating point is the following: if (t, v)
and (t′, v′) are two valuations, then we say that (t, v)
is better than (t′, v′) if t ≤ t′ and v ≥ v′. This means
that all possible runs from (t′, v′) can also be done from
(t, v). The zones (after LU-extrapolation) we compute
can be represented as follows (when projecting on the
plan (t, xi)):

xi

t

The domination point of the zone (as defined in [AM01,
AAM04]) is represented on the previous picture by a
bullet. The valuation v corresponding to this domina-
tion point is such that v(xi) = mxi,t − m0,t for every
i and v(t) = −m0,t. However notice that this point is
not better than any point in the zone but is better than
any point with a minimal time (clock t). Given two such
zones Z and Z ′, the domination test as done in [AM01,
AAM04] is then equivalent to checking that:{−m0,t ≤ −m′

0,t

mxi,t − m0,t ≥ m′
xi,t − m′

0,t for any i
(dp)

In contrast, checking inclusion of Z ′ into Z is equivalent
to checking that:{

m′
0,t ≤ m0,t

m′
xi,t ≤ mxi,t for any i

(inc)

One can easily check that equations (dp) imply equations
(inc). We have thus that the domination test implies
the inclusion checking. Checking inclusion with this new
extrapolation is thus more general than the domination
test of [AM01,AAM04]. Intuitively, if Z ′ is included in
Z then the domination points (t, v) of Z and (t′, v′) of
Z ′ are such that (t, v)+t′−t ≥ (t′, v′) which also implies
that all possible paths from (t′, v′) are also possible from
(t, v) after having waited t′ − t units of time (thus (t, v)
is somehow also “better” than (t′, v′)).

7 Implementation & Experiments

We have implemented a prototype of a location based
variant of the Extra+

LU operator in Uppaal 3.4.2. Max-
imum lower and upper bounds for clocks are found for
each automaton using a simple fixed point iteration.
Given a location vector, the maximum lower and up-
per bounds are found by taking the maximum of the
bounds in each location, similar to the approach taken in
[BBFL03]. At the moment we have only implemented the
LU-Canonize operation on top of a symmetric DBM
representation. For storing visited states, we rely on the
minimal constraint form representation of a zone de-
scribed in [LLPY97], which does not store +∞ entries.

As expected, experiments with the model in Fig. 1
show that with LU extrapolation, the computation time
for building the complete reachable state space does not
depend on the value of the constants, whereas the com-
putation time grows with the constant when using the
classical extrapolation. We have also performed experi-
ments with models of various instances of the CSMA/CD
protocol and Fischer’s protocol for mutual exclusion.
Finally, experiments using a number of industrial case
studies were made. For each model, Uppaal was run
with four different options: (-n1) classic non-location
based extrapolation (without active clock reduction), (-
n2) classic location based extrapolation (active clock re-
duction is a side-effect of this), (-n3) LU location based
extrapolation, and (-A) classic location based extrapola-
tion with convex-hull approximation. In all experiments
the minimal constraint form for zone representation was
used [LLPY97] and the complete state space was gener-
ated. All experiments were performed on a 1.8GHz Pen-
tium 4 running Linux 2.4.22, and experiments were lim-
ited to 15 minutes of CPU time and 470MB of memory.
The results can be seen in Table 2.

Looking at the table, we see that for both Fischer’s
protocol for mutual exclusion and the CSMA/CD pro-
tocol, Uppaal scales considerably better with the LU
extrapolation operator. Comparing it with the convex
hull approximation (which is an over-approximation), we
see that for these models, the LU extrapolation operator
comes close to the same speed, although it still generates
more states. Also notice that the runs with the LU ex-
trapolation operator use less memory than convex hull
approximation, due to the fact that in the latter case
DBMs are used to represent the convex hull of the zones
involved (in contrast to using the minimal constraint
form of [LLPY97]). For the three industrial examples,
the speedup is less dramatic: These models have a more
complex control structure and thus little can be gained
from changing the extrapolation operator. This is sup-
ported by the fact that also the convex hull technique
fails to give any significant speedup (in the last example
it even degrades performance). During the course of our
experiments we also encountered examples where the LU
extrapolation operator does not make any difference: the
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token ring FDDI protocol and the B&O protocols found
on the Uppaal website4 are among these. Finally, we
made a few experiments on Fischer’s protocol with the
LU extrapolation, but without the LU-Canonize oper-
ator. This showed that LU-Canonize gives a speedup
in the order of 20% compared to Canonize.

As a result of the superior performance of the LU-
extrapolation, this abstraction technique will be used as
the default option in the forth-coming verions 3.6 of Up-
paal.

8 Remarks and Conclusions

In this paper we extend the status quo of timed automata
abstractions by contributing several new abstractions.
In particular, we proposed a new extrapolation operator
distinguishing between guards giving an upper bound
to a clock and guards giving a lower bound to a clock.
The improvement of the usual extrapolation is orthogo-
nal to the location-based one proposed in [BBFL03] in
the sense that they can be easily combined. We prove
that the new abstraction is sound and complete w.r.t.
reachability, and is finite and effectively computable. We
implemented the new extrapolation in Uppaal and a
new operator for computing the normal form of a DBM.
The prototype showed significant improvements in veri-
fication speed, memory consumption and scalability for
a number of models.

For further work, we aim at implementing and exper-
imentally evaluate the technique of Section 5 for acceler-
ating successor computation by exploiting an asymmet-
ric DBM using an n×m matrix, where n is the number
of lower bounded clocks and m is the number of upper
bounded clocks. We expect this to significantly improve
the successor computation for some models.

As we have indicated in Section 6, job shop schedul-
ing problems may in particular benefit from the accel-
eration technique as all clocks of the corresponding au-
tomaton are without upper bounds, with the exception
of one clock (the clock measuring global time), which
lacks lower bounds . Thus, an asymetric DBM represen-
tation for such systems will have a size linear in the num-
ber of clocks. As we have also demonstrated the inclu-
sion checking done on LU extrapolated zones turns out
to be more general than the dominating point checki in
[AM01].We need to investigate to what extent a generic
timed automaton reachability checker using LU extrapo-
lation can compete with the problem specific implemen-
tation in [AM01].
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Technical Proofs

This appendix presents the proof of proposition 2. It is
quite technical but we will detail it because it is funda-
mental. Let us recall the statement of the proposition we
want to prove.

Proposition 2. Let Z be a zone. Then aExtra+
LU

(Z) ⊆
a�LU (Z).

Proof: Let D = 〈ci,j ; ≺i,j〉i,j=0...n be a DBM in nor-
mal form representing a non-empty zone. We note D′ =
〈c′i,j ; ≺′

i,j〉i,j=0...n be the DBM Extra+
LU (D). Let us fix

ν ∈ �Extra+
LU (D)�. We want to prove that ν ∈ a�LU (�D�).

For this, we define the set Pν as {ν′ ∈ �D� | ν′ �LU

ν}, and we will prove that Pν is not empty. This will
be sufficient as, by definition of a�LU , we have ν ∈
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a�LU (�D�) ⇐⇒ Pν �= ∅. The set Pν is defined by
the constraints:

{xi − xj ≺i,j ci,j | i, j ∈ {0, 1, ..., n}}
∪ {xi > L(xi) | ν(xi) > L(xi) and i ∈ {1, ..., n}}
∪ {xi ≤ ν(xi) | ν(xi) ≤ U(xi) and i ∈ {1, ..., n}}
∪ {xi ≥ ν(xi) | ν(xi) ≤ L(xi) and i ∈ {1, ..., n}}

The first set of constraints represents the constraints
of D. The other lines represent the constraints due to
· �LU ν. Indeed, it is easy to check that for each i, the
constraint (xi = ν(xi))∨(L(xi) < xi < ν(xi))∨(U(xi) <
ν(xi) < xi) which is the direct definition of �LU is
equivalent to the constraint (ν(xi) > L(xi) =⇒ xi >
L(xi)) ∧ (ν(xi) ≤ U(xi) =⇒ x ≤ ν(xi)) ∧ (ν(xi) ≤
L(xi) =⇒ xi ≥ ν(xi)). The three last lines above cor-
respond to this set of constraints.

We will simplify the constraints defining Pν For this, we
need the following three lemmas.

Lemma 8. If cj,0 < +∞, then (c′j,0,≺′
j,0) = ∞ implies

cj,0 > L(xj).

Lemma 9. (c′0,i,≺′
0,i) �= (c0,i,≺0,i) implies −c0,i > U(xi)

(and (c′0,i,≺′
0,i) = (−U(xi), <)).

Lemma 10. Let ν ∈ �Extra+
LU (D)�. Then

1. If ν(xi) ≤ min{U(xi), L(xi)}, then ν(xi) ≺i,0 ci,0

and thus (ν(xi),≤) ≤ (ci,0,≺i,0).
2. If ν(xi) ≤ min{L(xi), U(xi)}, then −c0,i ≺0,i ν(xi)

and therefore (−ν(xi),≤) ≤ (c0,i,≺0,i).

Proof:

1. If ci,0 > L(xi), then we have ν(xi) ≺i,0 ci,0. If ci,0 ≤
L(xi), then (c′i,0,≺′

i,0) = (ci,0,≺i,0) and we are done
for the first inequality.

2. If −c0,i > U(xi), then it is not possible as (c′0,i,≺′
0,i

) = (−U(xi), <). Otherwise, (c′0,i,≺′
0,i) = (c0,i,≺0,i).

Thus we are also done for the second inequality.
�

Applying the previous lemmas, we get that Pν is repre-
sented by the DBM 〈pi,j ,⊂i,j〉i,j=0...n where (pi,0,⊂i,0

) =


(ν(xi),≤) if ν(xi) ≤ L(xi), U(xi)
min((ν(xi),≤), (ci,0,≺i,0)) if L(xi) < ν(xi) ≤ U(xi)
(ci,0,≺i,0) if ν(xi) > U(xi)

and (p0,i,⊂0,i) =


(−ν(xi),≤) if ν(xi) ≤ L(xi), U(xi)
min((c0,i,≺0,i), (−ν(xi),≤)) if U(xi) < ν(xi) ≤ L(xi)
min((c0,i,≺0,i), (−L(xi), <)) if ν(xi) > L(xi)

and (pi,j ,⊂i,j) = (ci,j ,≺i,j) if i, j �= 0.

We need to prove that Pν is non empty. If it is not the
case, it means that there is a negative cycle in any DBM

representing Pν . As the above DBM only differs from D
(which is non-empty and in normal form) by coefficients
(i, 0) and (0, i) (for all i’s), we get that there exist some
i and j (with potentially i = j) such that:

(pi,0,⊂i,0) + (p0,j ,⊂0,j) + (cj,i,≺j,i) < (0,≤) (1)

We want to prove that this is not possible. We will have
to distinguish several cases, depending on the values of
pi,0 and p0,j.

Case (pi,0,⊂i,0) = (ci,0,≺i,0).

We can simplify inequality (1) by applying the triangular
inequality and we get that

(cj,0,≺j,0) + (p0,j ,⊂0,j) < (0,≤)

1. Case (p0,j,⊂0,j) = (c0,j ,≺0,j).
In this case, we get

(cj,0,≺j,0) + (c0,j ,≺0,j) < (0,≤)

which implies that D is empty. Contradiction.
2. Case (p0,j ,⊂0,j) = (−ν(xj),≤). (hyp: ν(xj) ≤ L(xj))

We then get that

(cj,0,≺j,0) + (−ν(xj),≤) < (0,≤)

which implies that ν(xj) �≺j,0 cj,0. In particular we
have, (c′j,0,≺′

j,0) > (cj,0,≺j,0), which is possible only
if cj,0 > L(xj) (see Lemma 8). However, in this case,
we have that ν(xj) ≤ L(xj), which is a contradiction.

3. Case (p0,j ,⊂0,j) = (−L(xj), <). (hyp: (−L(xj), <
) ≤ (c0,j ,≺0,j) and ν(xj) > L(xj))
We get that

(cj,0,≺j,0) + (−L(xj), <) < (0,≤)

and thus that

cj,0 ≤ L(xj) < ν(xj)

As cj,0 ≤ L(xj), we get that (c′j,0,≺′
j,0) = (cj,0,≺j,0)

and thus there is a contradiction (because ν(xj) ≺′
j,0

c′j,0).

Case (pi,0,⊂i,0) = (ν(xi),≤) (hyp: ν(xi) ≤ U(xi)).

In this case, we get that

(ν(xi),≤) + (p0,j ,⊂0,j) + (cj,i,≺j,i) < (0,≤)

1. Case (p0,j,⊂0,j) = (c0,j ,≺0,j). (hyp not used)
Using the triangular inequality, we can simplify and
we get

(ν(xi),≤) + (c0,i,≺0,i) < (0,≤)

If (c0,i,≺0,i) = (c′0,i,≺′
0,i), this is not possible. Oth-

erwise, −c0,i > U(xi) and (c′0,i,≺′
0,i) = (−U(xi), <)

(see Lemma 9). Thus ν(xi) > U(xi), which is indeed
a contradiction.
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2. Case (p0,j ,⊂0,j) = (−ν(xj),≤). (hyp: ν(xj) ≤ L(xj))
We get that

(ν(xi) − ν(xj),≤) + (cj,i,≺j,i) < (0,≤)

If (c′j,i,≺′
j,i) = (cj,i,≺j,i), then this is not possible.

Thus, ∞ = (c′j,i,≺′
j,i) > (cj,i,≺j,i) and there are

three cases:
– cj,i > L(xj), thus (cj,i,≺j,i) > (ν(xj),≤) which

implies that (ν(xi),≤) < (0,≤), impossible. We
thus assume that cj,i ≤ L(xj).

– −c0,j > L(xj), thus −c0,j > ν(xj). From Lemma 10
(point 2.), this is not possible (as ν(xj) ≤ L(xj))
if ν(xj) ≤ U(xj). Assume thus that ν(xj) > U(xj).
In this case, −ν(xj) ≤ c0,j, i.e. ν(xj) ≥ −c0,j,
which leads to a contradiction.

– −c0,i > U(xi), contradiction with ν(xi) ≤ U(xi)

3. Case (p0,j ,⊂0,j) = (−L(xj), <). (hyp: ν(xj) > L(xj)
and (c0,j ,≺0,j) ≥ (−L(xj), <))
We get that

(ν(xi),≤) + (−L(xj), <) + (cj,i,≺j,i) < (0,≤)

If (cj,i,≺j,i) > (L(xj), <), then we get (ν(xi),≤) <
(0,≤) which is not possible. Assume now that (cj,i,≺j,i

) ≤ (L(xj), <). If (c′j,i,≺′
j,i) = (cj,i,≺j,i), then

(ν(xi) − ν(xj),≤) + (c′j,i,≺′
j,i) < (0,≤)

This is not possible. The only possibility is thus to
have ∞ = (c′j,i,≺′

j,i) > (cj,i. ≺j,i). Can we have
−c0,j > L(xj) or −c0,i > U(xi)? By hypothesis,
the first case is not possible. If −c0,i > U(xi), then
(c′0,i,≺′

0,i) = (−U(xi), <) which contradicts the fact
that ν(xi) ≤ U(xi).

In all cases, there is a contradiction with inequality 1,
Pν is thus non empty. This concludes the proof of propo-
sition 2. �
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