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ABSTRACT
The essence of the routing problem in real networks is that
the traffic demand from a source to destination must be sat-
isfied by choosing a single path between source and destina-
tion. The splittable version of this problem is when demand
can be satisfied by many paths, namely a flow from source
to destination. The unsplittable, or discrete version of the
problem is more realistic yet is more complex from the al-
gorithmic point of view; in some settings optimizing such
unsplittable traffic flow is computationally intractable.

In this paper, we assume this more realistic unsplittable
model, and investigate the ”price of anarchy”, or deterio-
ration of network performance measured in total traffic la-
tency under the selfish user behavior. We show that for
linear edge latency functions the price of anarchy is exactly
2.618 for weighted demand and exactly 2.5 for unweighted
demand. These results are easily extended to (weighted or
unweighted) atomic ”congestion games”, where paths are
replaced by general subsets. We also show that for polyno-
mials of degree d edge latency functions the price of anarchy
is dΘ(d). Our results hold also for mixed strategies.

Previous results of Roughgarden and Tardos showed that
for linear edge latency functions the price of anarchy is ex-
actly 4

3
under the assumption that each user controls only a

negligible fraction of the overall traffic (this result also holds
for the splittable case). Note that under the assumption of
negligible traffic pure and mixed strategies are equivalent
and also splittable and unsplittable models are equivalent.
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1. INTRODUCTION

1.1 The model
A major component of any large-scale network system is

the routing mechanism, namely choosing a communication
path between a sender and a receiver of traffic. In most
cases, such as the Internet, wireless networks, or overlay
networks built on top of the Internet, traffic from a sender
to a receiver is sent over a single path; splitting the traffic
causes the problem of packet reassembly at the receiver and
thus is generally avoided. When choosing routing paths, the
typical objective is to minimize the total latency. In most of
these network systems it is infeasible to maintain one cen-
tralized authority that imposes efficient routing strategies
on the network traffic. As a result users act independently
and “selfishly”: each user tries to minimize her traffic cost
based on current network traffic.

This problem can be mathematically formalized using clas-
sical game theory as follows. The network users are viewed
as independent agents participating in a noncooperative game.
Each agent wishes to use the minimum latency path from
its source to its destination, given the link congestion caused
by the rest of the agents. This system is said to be in Nash
Equilibrium if no agent has an incentive to change his path
from its source to its destination. It is well known that Nash
Equilibria do not in general optimize the social welfare (see,
e.g, ”The Prisoner’s Dilemma” [9, 18]) and can be far from
the global optimum.

Equilibria can be defined for pure strategies, where a sin-
gle path is chosen by each user and for mixed strategies,
where a probability distribution over the paths is used in-
stead of a single path. In this paper we consider both pure
and mixed strategies. This is in contrast to the case where
each user controls only a negligible fraction of the overall
traffic in which pure and mixed strategies are the same [24].

57



An additional complication that raised when considering
arbitrary unsplittable traffic is that in this general case there
is not necessarily pure Nash Equilibrium. Nash [17] proved
that every game has a randomized Nash Equilibrium. In
a classical paper Rosenthal [20] proved that every conges-
tion game (i.e. when all demands are of unit size) has a
pure Nash Equilibrium. Hence when the problem can be
represented as a congestion game a pure Nash Equilibrium
always exists, e.g, when all network users control the same
amount of traffic. For general demands the existence of pure
Nash Equilibrium is still open. Recently for linear edge la-
tency functions Fotakis et. al [11] proved that pure Nash
Equilibrium always exists.

The degradation of network performance caused by the
lack of a centralized authority can be measured using the
worst-case coordination ratio (price of anarchy) suggested
by Koutsoupias and Papadimitriou [14, 19] which is the
ratio between the worst possible Nash Equilibrium and the
social optimum.

Previous results (Roughgarden and Tardos [24]) showed
that under the assumption that each user controls only a
negligible fraction of the overall traffic the price of anarchy
is exactly 4

3
for linear edge latency functions and they also

showed bicriteria results for continuous and nondecreasing
edge latency functions. The above results were extended to
the splittable case by Roughgarden [21].

1.2 Our Results
We prove the following results for general networks with

unsplittable flow:

• For linear latency functions we prove that the worst-
case coordination ratio for weighted demand is exactly
2.618 for pure and mixed strategies. For unweighted
demand we show that the worst-case coordination ra-
tio is exactly 2.5 for pure strategies.

• For polynomials of degree d latency functions we prove
that the worst-case coordination ratio is dΘ(d) for pure
and mixed strategies. More precisely the worst-case
coordination ratio is at most O(2ddd+1) and at least

Ω(dd/2).

• All the above results can be extended to weighted and
unweighted atomic congestion games, where arbitrary
subsets are used instead of paths (see [20, 10] for def-
inition of congestion games).

Our results for the price of anarchy for bounded degree
polynomials is a constant (independent of the network size),
which stands in contrast to the maximum load in the Kout-
soupias/Papadimitriou model. On the other hand we note
that the lower bound for bounded degree polynomials im-
plies that there is no constant c > 0 that applies for all
polynomials such that the total latency of selfish users is
bounded from above by the total latency incurred by opti-
mally routing c times as much traffic. We note that consid-
ering mixed strategies is essential (and a complication that
does not exist in most previous work), since Nash equilib-
rium for pure strategies need not exist in this model (see
[20]). We also note that for unsplittable (atomic) network
congestion games only special cases were previously consid-
ered. Recently and independently Christodoulou and Kout-
soupias [4] showed similar results to our results for the spe-
cial case of unweighted demands.

Techniques: The lower bounds imply that the bounds
of Roughgarden and Tardos for the splittable model cannot
carry over to this model, so new techniques must be needed.
In our proofs for evaluating the price of anarchy for pure
strategies we compare the delay encountered by each agent
to the delay it would encounter if it changes to the opti-
mal route. We combine these bounds in a weighted fashion
and transform it to a relation between the total delay of the
Nash Equilibrium and the total delay of the optimal routes.
For mixed strategies we separate the problem into two log-
ical steps. In the first step we consider the latency of the
expected load of each edge and in the second step we aug-
ment it to the expectation of the total latency. The first
step turns out to be equivalent to the pure strategies case
where requests are allowed to be split. The second step adds
technical complications that does not occur in the proofs
for pure strategies. Although the results for pure strategies
follows from the results of mixed strategies for simplifying
the presentation we start with proving the results for pure
strategies. We note that in our proofs we also use techniques
and inequalities appear in [1, 25].

1.3 Related Work
Splittable or negligible flows. Unregulated traffic rout-
ing for general networks has been modeled as network flow
model since the 1950’s [3, 26] (see [24] for further histori-
cal references). Roughgarden and Tardos [24] initiated the
study of price of anarchy in this model (dubbed worst-case
coordination ratio by Papadimitriou [14]). Note that under
the assumption of negligible traffic as in Roughgarden and
Tardos model, splittable and unsplittable models are equiva-
lent and also pure and mixed strategies are equivalent. They
proved that for linear latency functions the worst-case co-
ordination ratio is exactly 4

3
. They also proved that for

general continuous and nondecreasing latency functions the
total latency of the routes chosen by selfish network users is
no more than the total latency incurred by optimally rout-
ing twice as much traffic. Specifically, for polynomial of
degree d they showed that the coordination ratio is linear
in d. When network users can control a significant por-
tion of the overall traffic, but are permitted to route their
flow fractionally Roughgarden [21] showed that all known
bounds on the price of anarchy for nonatomic selfish routing
games carry over to the atomic splittable case. Roughgar-
den [23] also showed that the cost of unregulated traffic does
not depend on the complexity of network topology. He also
studied the impact of latency functions belonging to specific
classes. Roughgarden et al. [5, 6, 22] studied various ways
to construct and price networks such that the cost incurred
in unregulated traffic is minimized.
Coordination ratio for parallel links. Most of the work
on the parallel links model was done with the maximum
load measure. Koutsoupias and Papadimitriou [14] initi-
ated the study of worst-case coordination ratio in networks
composed of m parallel links with possibly different speeds.
They showed that for two links the worst-case coordination

ratio is exactly 3
2
for identical links and φ = 1+

√
5

2
for links

with possibly different speeds. They also obtained non-tight
bounds for the general case of m identical links. Mavronico-
las and Spirakis [16] obtained tight results for the general
case of any number of links. Their results are for the spe-
cial case of fully-mixed strategies in which the probability
of assigning any task to any link is non-zero. They proved
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that for the identical links model the worst-case coordina-
tion ratio is Θ( log m

log log m
). They proved the same result for

the general related links model where all tasks have equal
weights and m ≤ n. Czumaj and Vöcking [8] improved
these results by proving tight bounds for the m parallel links
model. They showed that for the identical links model the
worst-case coordination ratio is Θ( log m

log log m
) and for the gen-

eral related links model the worst-case coordination ratio
is Θ( log m

log log log m
). In [2] additional models were considered.

Czumaj et. al [7] continued to study this problem and char-
acterized the coordination and bicriteria ratios for different
families of cost functions. For other results in this model
with other social costs see, e.g, [12, 13, 15, 25].

1.4 Paper structure
The paper is organized as follows. Section 2 includes for-

mal definitions and notations. In section 3 we prove the
results for networks with linear latency functions. In sec-
tion 4 we prove the results for networks with polynomials of
degree d latency functions.

2. DEFINITIONS AND PRELIMINARIES

2.1 The Model
We consider the following model: there is a directed graph

G = (V,E). Each edge e ∈ E is given a load-dependent
latency function fe : R+ → R+. There are n users, where
user j (j = 1, . . . , n) has a bandwidth request defined by a
tuple (sj , tj , wj), where sj , tj ∈ V are the source/destination
pair, and wj ∈ R+ corresponds to the required bandwidth.
We denote the set of (simple) sj −tj paths by Qj . Request j
can be assigned to any path Q from the set of paths Qj , such
that the required bandwidth wj has to be reserved along the
path Q.

We assume that the users are non-cooperative and each
one wishes to minimize its own cost with no regard to the
global optimum. We consider two types of users strategy
systems:

1. Pure strategies: user j selects a single path Q ∈ Qj

and assigns his request to it. Each user is aware of
the choices made by all other user when making his
decision.

2. Mixed strategies: user j selects a probability distri-
bution {pj} (Q ∈ Qj) over all the set of paths from
the source sj to the destination tj . Each user is aware
of the probability distributions selected by all other
users.

2.2 Pure strategies definition
First, we give some simpler notations we use for system

S of pure strategies. Let Qj be the path associated with
request j and let Q = ∪jQj be the set of paths associated
with all the requests. We define J(e) = {j|e ∈ Q} the set of
requests assigned to a path containing the edge e. The load
on edge e is defined by: le =

∑
j∈J(e) wj .

For the optimal routes let Q∗
j be the path associated with

request j and let Q∗ = ∪jQ
∗
j be the set of paths associated

with all the requests. We define J∗(e) = {j|e ∈ Q∗} the set
of requests assigned to a path containing the edge e. We
denote the load on edge e by l∗e .

Definition 2.1. The latency of user j for assigning his
request in system S to path Q (instead of path Qj) is defined
as:

cQ,j =
∑

(e∈Q)∧(e∈Qj)

fe(le) +
∑

(e∈Q)∧(e�∈Qj)

fe(le + wj). (1)

2.3 Mixed strategies definition
Given a system S of mixed strategies with probability

distribution {pj}, we denote the probability of assigning re-
quest j to edge e by pe,j . We define the following random
variables:

• A set of indicator random variables {XQ,j} , where
XQ,j indicates whether request j is assigned to path
Q. By definition: Pr[XQ,j = 1] = pQ,j .

• A set of indicator random variables {Xe,j} , where Xe,j

indicates whether request j is assigned to edge e. By
definition: Xe,j =

∑
Q|e∈Q XQ,j and Pr[Xe,j = 1] =

pe,j .

• For each edge e (e ∈ E) we define a random vari-
able le, indicating the total load on the edge: le =∑n

j=1 Xe,jwj .

Definition 2.2. The expected latency of user j for as-
signing his request in system S to path Q is defined as:
cQ,j = E[

∑
e∈Q fe(le)|XQ,j = 1] =

∑
e∈Q E[fe(le + (1 −

XQ,j)wj)

Notice that for a system S of pure strategies we have XQ,j =
{0, 1}, matching equation 1.

2.4 Nash equilibrium and Coordination ratio
Nash equilibrium is characterized by the property that

there is no incentive for any user to change its strategy and
defined as follows

Definition 2.3. (Nash Equilibrium) A system S is said
to be in Nash Equilibrium if and only if for every j ∈ {1, . . . , n}
and Q,Q′ ∈ Qj, with pQ,j > 0, cQ,j ≤ cQ′,j .

Definition 2.4. The expected cost C(S) for a given sys-
tem S of pure or mixed strategies is defined as the expected
total latency incurred by S, that is C(S) = E

[∑
e∈E fe(le)le

]
.

We are interested in estimating the worst-case coordina-
tion ratio when Nash equilibrium exists. We denote the
optimal system of pure strategies by S∗.

Definition 2.5. (Coordination Ratio) The coordina-

tion ratio is defined as R = maxS
C(S)

C(S∗)
, where the maxi-

mum is taken over all strategies S in Nash equilibrium.

3. NASH EQUILIBRIUM FOR LINEAR
LATENCY FUNCTIONS

In this section we consider the case where the latency
of each edge is linear in the edge congestion. Specifically
fe(x) = aex + be for each edge e ∈ E, where ae and be are
nonnegative reals. We show that for linear latency functions
the worst-case coordination ratio is exactly 2.618 for pure
and mixed strategies.
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3.1 Upper Bounds for Linear Latency
Functions

We begin by proving an upper bound on the worst-case
coordination ratio in the case of linear latency functions.

3.1.1 Pure Strategies
We start with the following Lemma.

Lemma 3.1. Let �l, �l′ be any load vectors of the edges.
Then ∑

e∈E

aelel
′
e ≤

√∑
e∈E

(aele + be)le
∑
e∈E

(ael
′
e + be)l

′
e.

Proof. We use Cauchy-Schwartz inequality and get

∑
e∈E

aelel
′
e ≤

√∑
e∈E

ael2e
∑
e∈E

ael
′
e
2

≤
√∑

e∈E

(aele + be)le
∑
e∈E

(ael
′
e + be)l

′
e.

This completes the proof.

Theorem 3.1. For linear latency functions and pure strate-

gies the worst-case coordination ratio R is at most 3+
√

5
2

≈
2.618.

Proof. Let Q be the routes of system S of pure strategies
in Nash equilibrium and let Q∗ be the optimal routes for
these linear latency functions. Let Qj be the path of request
j in Q and let Q∗

j be the path of request j in Q∗. Recall
that we denote by l the load vector of the system S in Nash
Equilibrium and we denote by l∗ the load vector of the global
optimum. According to the definition of Nash Equilibrium
2.3 we have

∑
e∈Qj

aele + be

≤
∑

(e∈Q∗
j
)∧(e∈Qj)

aele + be +
∑

(e∈Q∗
j
)∧(e�∈Qj)

ae(le + wj) + be

≤
∑

e∈Q∗
j

ae(le + wj) + be.

We multiply the above inequality by wj and get∑
e∈Qj

(aele + be)wj ≤
∑

e∈Q∗
j

(aele + be)wj + aew
2
j .

We sum all the above inequalities for all j and get

∑
j

∑
e∈Qj

(aele + be)wj ≤
∑

j

∑
e∈Q∗

j

(aele + be)wj + aew
2
j .

Classifying the above sums according to the edges indices
J(e) for the left hand-side and J∗(e) for the right hand-side
yields∑
e∈E

∑
j∈J(e)

(aele + be)wj ≤
∑
e∈E

∑
j∈J∗(e)

(aele + be)wj + aew
2
j .

(2)

Note that for any d ≥ 1 we have∑
j∈J(e)

wj = le,
∑

j∈J∗(e)

wj = l∗e ,
∑

j∈J∗(e)

wd
j ≤ l∗e

d
. (3)

Substituting (3) in (2), we get

∑
e∈E

(aele + be)le ≤
∑
e∈E

(aele + be)l
∗
e + ael

∗
e
2

=
∑
e∈E

aelel
∗
e +

∑
e∈E

(ael
∗
e + be)l

∗
e .

Applying Lemma 3.1 to the first term of the right-hand side
of the inequality, we obtain∑
e∈E

(aele + be)le

≤
√∑

e∈E

(aele + be)le
∑
e∈E

(ael∗e + be)l∗e +
∑
e∈E

(ael
∗
e + be)l

∗
e .

We denote the square root of the ratio of the Nash routes
cost and the optimal routes cost by

x =

√∑
e∈E(aele + be)le∑
e∈E(ael∗e + be)l∗e

.

Then, we divide the above inequality by
∑

e∈E(ael
∗
e + be)l

∗
e

and express the result in terms of x. Thus x2 ≤ x + 1 and

hence x2 ≤ 3+
√

5
2

, which completes the proof.

The result of Theorem 3.1 is tight as we show in the lower
bounds section. However for unweighted demand the result
can be improved as follows.

Theorem 3.2. For linear latency functions, unweighted
demand and pure strategies the worst-case coordination ratio
R is at most 2.5.

Proof. According to inequality ( 2) obtained in the proof
of Theorem 3.1 for weighted network congestion games with
linear latency functions and pure strategies we have

∑
e∈E

∑
j∈J(e)

(aele + be)wj ≤
∑
e∈E

∑
j∈J∗(e)

(aele + be)wj + aew
2
j .

(4)
Substituting (3) in (4) and using the fact that wj = w2

j = 1
, we get

∑
e∈E

(aele + be)le ≤
∑
e∈E

(aele + be)l
∗
e + ael

∗
e

=
∑
e∈E

aelel
∗
e + ael

∗
e +

∑
e∈E

bel
∗
e . (5)

The proof requires the following Lemma which properties
appear in [25] and have simple proofs.

Lemma 3.2. Let i ≥ 0, j ≥ 0 be integers. Then

1. ij = 1
3
j2 + 3

4
i2 − 1

3
(j − 3

2
i)2

2. 9
8
i2 + 3

2
i − 1

2
(j − 3

2
i)2 ≤ 5

2
i2.
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Applying property 1 of Lemma 3.2 to the first term of the
right-hand side of inequality (5), we obtain∑

e∈E

(aele + be)le

≤
∑
e∈E

ae

(
1

3
l2e +

3

4
l∗e

2 − 1

3
(le − 3

2
l∗e)

2 + l∗e

)
+ bel

∗
e ,

and this is equivalent to

∑
e∈E

(aele +
3

2
be)le

≤
∑
e∈E

ae

(
9

8
l∗e

2
+

3

2
l∗e − 1

2
(le − 3

2
l∗e)

2

)
+

3

2
bel

∗
e .

Hence∑
e∈E

(aele + be)le

≤
∑
e∈E

ae

(
9

8
l∗e

2
+

3

2
l∗e − 1

2
(le − 3

2
l∗e)

2

)
+

3

2
bel

∗
e .

Applying property 2 of Lemma 3.2 to the first term of the
right-hand side of the inequality, we obtain

∑
e∈E

(aele + be)le ≤
∑
e∈E

5

2
ael

∗
e
2
+

3

2
bel

∗
e ≤ 5

2
(ael

∗
e
2
+ bel

∗
e).

This completes the proof.

3.1.2 Mixed Strategies

Theorem 3.3. For linear latency functions and mixed strate-

gies the worst-case coordination ratio R is at most 3+
√

5
2

≈
2.618.

Proof. Let {pQ,j} be the probability distribution of the
system S of mixed strategies. Let Q∗ be the optimal routes
for these linear latency functions. Let Q∗

j be the path of
request j in Q∗. According to definition 2.2, the expected
latency of user j for assigning his request to path Q in system
S is

cQ,j = E[
∑
e∈Q

ae(le + (1− XQ,j)wj) + be]

=
∑
e∈Q

ae(E[le] + (1− pQ,j)wj) + be.

According to definition 2.3, at Nash Equilibrium we have for
any path Q with pQ,j > 0, the inequality cQ,j ≤ cQ∗

j ,j . By

substituting cQ,j and cQ∗
j ,j in the inequality we have

∑
e∈Q

ae(E[le] + (1− pQ,j)wj) + be

≤
∑

e∈Q∗
j

ae(E[le] + (1− pQ∗
j ,j)wj) + be

≤
∑

e∈Q∗
j

ae(E[le] + wj) + be.

We multiply the above inequality by pQ,j · wj and get

∑
e∈Q

(aeE[le] + be)pQ,jwj + ae(1− pQ,j)pQ,jw
2
j

≤
∑

e∈Q∗
j

ae(E[le]pQ,jwj + pQ,jw
2
j ) + bepQ,jwj .

We sum all the above inequalities for all the paths Q for
request j and classifying them according to the edges paths.
This yields

∑
e∈E

(aeE[le] + be)
∑

Q|e∈Q

pQ,jwj

+
∑
e∈E

ae

∑
Q|e∈Q

(1− pQ,j)pQ,jw
2
j

≤
∑

e∈Q∗
j

ae(E[le]wj + w2
j ) + bewj ,

where in the right-hand side we use the fact that
∑

Q pQ,j =
1. We sum all the above inequalities for all j, exchange the
order of summation in the left hand-side of the inequality
and get

∑
e∈E

(aeE[le] + be)
∑

j

∑
Q|e∈Q

pQ,jwj

+
∑
e∈E

ae

∑
j

∑
Q|e∈Q

(pQ,j − p2
Q,j)w

2
j

≤
∑

j

∑
e∈Q∗

j

ae(E[le]wj + w2
j ) + bewj . (6)

The proof requires the following Lemmas.

Lemma 3.3. For any system of mixed strategies: E[l2e ]−
(E[le])

2 =
∑

j pe,j(1− pe,j)w
2
j .

Proof. We have

E[l2e ]− (E[le])
2 = V ar[le] =

∑
j

pe,j(1− pe,j)w
2
j .

The first equality follows from the definition of the variance.
The second equality follows from the linearity of expecta-
tion and the independence of the indicator random variables
Xe,j and Xe,k for j �= k. This completes the proof of the
Lemma.

Lemma 3.4. For any system of mixed strategies:

∑
e∈E

∑
j

(aeE[le] + be)
∑

Q|e∈Q

pQ,jwj

+
∑
e∈E

ae

∑
j

∑
Q|e∈Q

(pQ,j − p2
Q,j)w

2
j

≥
∑
e∈E

aeE[l2e ] +
∑
e∈E

beE[le].
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Proof. We have∑
e∈E

∑
j

(aeE[le] + be)
∑

Q|e∈Q

pQ,jwj

+
∑
e∈E

ae

∑
j

∑
Q|e∈Q

(pQ,j − p2
Q,j)w

2
j

≥
∑
e∈E

∑
j

(aeE[le] + be)pe,jwj

+
∑
e∈E

ae

∑
j

(pe,j − p2
e,j)w

2
j

=
∑
e∈E

ae

∑
j

E[le]pe,jwj + (pe,j − p2
e,j)w

2
j

+
∑
e∈E

be

∑
j

pe,jwj

=
∑
e∈E

ae

(
(E[le])

2 +
∑

j

pe,j(1− pe,j)w
2
j

)
+
∑
e∈E

beE[le]

=
∑
e∈E

aeE[l2e ] +
∑
e∈E

beE[le],

where the first inequality follows from the fact that pe,j =∑
Q|e∈Q pQ,j . The second equality follows from the fact that

E(le) =
∑

j pe,jwj . The last equality follows from Lemma
3.3. This completes the proof of the Lemma.

Lemma 3.5. For any system of mixed strategies and for
the global optimal solution:∑

j

∑
e∈Q∗

j

ae(E[le]wj + w2
j ) + bewj

≤
√∑

e∈E

aeE[l2e ] + beE[le]

√∑
e∈E

ael∗e
2 + bel∗e

+
∑
e∈E

(ael
∗
e + be)l

∗
e .

Proof. Classifying the sum of the optimal paths accord-
ing to the edges indices J∗(e), we get∑

j

∑
e∈Q∗

j

ae(E[le]wj + w2
j ) + bewj

=
∑
e∈E

ae

∑
j∈J∗(e)

(E[le]wj + w2
j ) + bewj . (7)

Substituting (3) in (7), we obtain∑
e∈E

ae

∑
j∈J∗(e)

(E[le]wj + w2
j ) + bewj

≤
∑
e∈E

ae(E[le]l
∗
e + l∗e

2
) + bel

∗
e

=
∑
e∈E

aeE[le]l
∗
e +

∑
e∈E

(ael
∗
e + be)l

∗
e

≤
√∑

e∈E

ae(E[le])2
∑
e∈E

ael∗e
2 +

∑
e∈E

(ael
∗
e + be)l

∗
e

≤
√∑

e∈E

aeE[l2e ] + beE[le]

√∑
e∈E

ael∗e
2 + bel∗e

+
∑
e∈E

(ael
∗
e + be)l

∗
e ,

where the second inequality follows from Lemma 3.1. The
last inequality follows from the fact that E[l2e ] ≥ (E[le])

2.
This completes the proof of the Lemma.

To complete the proof of Theorem 3.3 we apply Lemma
3.4 and Lemma 3.5 to inequality (6) and obtain∑

e∈E

aeE[l2e ] +
∑
e∈E

beE[le]

≤
√∑

e∈E

aeE[l2e ] + beE[le]

√∑
e∈E

ael∗e
2 + bel∗e

+
∑
e∈E

(ael
∗
e + be)l

∗
e .

We denote the square root of the ratio of the Nash routes
cost and the optimal routes cost by

x =

√∑
e∈E aeE[l2e ] + beE[le]∑

e∈E(ael∗e + be)l∗e
.

Then we divide the above inequality by
∑

e∈E(ael
∗
e + be)l

∗
e

and express the result in terms of x. Thus, x2 ≤ x + 1

and therefore x2 ≤ 3+
√

5
2

, which completes the proof of the
Theorem.

3.2 Lower Bounds for Linear Latency
Functions

In this section we prove a lower bound on the worst-case
coordination ratio in the case of linear latency functions.

Figure 1: A network congestion game

Theorem 3.4. For pure strategies and linear latency func-
tions, R ≥ 2.618.

Proof. Let denote the golden ratio by φ = 1+
√

5
2

. We
construct the following example which uses the network shown
in Figure 1. We consider an atomic weighted network con-
gestion game with four players. Player 1 has a bandwidth
request (U, V, φ) (player 1 has to move φ unit of bandwidth
from U to V ), player 2 has a bandwidth request (U,W, φ),
player 3 has a bandwidth request (V,W, 1) and player 4 has a
bandwidth request (W,V, 1). In the optimal solution player
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1 uses the path UV , player 2 uses the path UW , player 3
uses the path V W and player 4 uses the path WV . The
costs of the players are φ2, φ2, 1 and 1 respectively. The to-
tal cost is 2φ2+2. If player 1 chooses the path UWV , player
2 chooses the path UV W , player 3 uses the path V UW and
player 4 uses the path WUV , then this is a Nash equilibrium
and the costs of the players are φ(2φ+1), φ(2φ+1), (φ+1)
and (φ + 1) respectively. The total cost is 4φ2 + 4φ + 2.
Thus R = (4φ2 + 4φ + 2)/(2φ2 + 2) = (8φ + 6)/(2φ + 4) =
1 + φ ≈ 2.618, by the fact that φ2 = φ + 1. This completes
the proof.

Theorem 3.5. For pure strategies, unweighted demand
and linear latency functions, R ≥ 2.5.

Proof. We construct the same example as in the proof of
Theorem 3.4 with the modification that here we set φ = 1.
We obtain the same optimal solution and the same Nash
equilibrium as in the proof of Theorem 3.4. Thus R =
(4φ2 + 4φ + 2)/(2φ2 + 2) = 10/4 = 2.5. This completes
the proof.

4. NASH EQUILIBRIUM FOR POLYNOMIAL
LATENCY FUNCTIONS

In this section we consider the case where the latency of
each edge is a polynomial of degree d in the edge congestion.
Specifically fe(x) =

∑
i ae,ix

i for each edge e ∈ E, where
ae,i are nonnegative reals. We show that for polynomials of
degree d latency functions the worst-case coordination ratio
is at most O(2ddd+1) for pure and mixed strategies and we
show that for polynomials of degree d latency functions the
worst-case coordination ratio is lower bounded by Ω(dd/2).

4.1 Upper Bounds for Polynomial Latency
Functions

We begin by proving an upper bound on the worst-case
coordination ratio in the case of polynomial of degree d la-
tency functions.

4.1.1 Pure Strategies

Theorem 4.1. For polynomial latency functions of de-
gree d and pure strategies, we have R = O(2ddd+1).

Proof. Let Q be the routes of system S of pure strategies
in Nash equilibrium and let Q∗ be the optimal routes for
these polynomial latency functions. Let Qj be the path of
request j in Q and let Q∗

j be the path of request j in Q∗.
According to definition 2.3 of Nash Equilibrium we have 1

∑
e∈Qj

∑
i

ae,il
i
e ≤

∑
(e∈Q∗

j )∧(e∈Qj)

∑
i

ae,il
i
e

+
∑

(e∈Q∗
j )∧(e�∈Qj)

∑
i

ae,i(le + wj)
i

≤
∑

e∈Q∗
j

∑
i

ae,i(le + wj)
i.

We multiply the above inequality by wj and get∑
e∈Qj

∑
i

ae,il
i
ewj ≤

∑
e∈Q∗

j

∑
i

ae,i(le + wj)
iwj .

1To simplify the notation throughout the entire paper we
assume 00 = 0.

Next, we sum all the above inequalities for all j to get∑
j

∑
e∈Qj

∑
i

ae,il
i
ewj ≤

∑
j

∑
e∈Q∗

j

∑
i

ae,i(le + wj)
iwj .

Classifying the above sums according to the edges indices
J(e) for the left hand-side and J∗(e) for the right hand-side
yields

∑
e∈E

∑
i

∑
j∈J(e)

ae,il
i
ewj ≤

∑
e∈E

∑
i

∑
j∈J∗(e)

ae,i(le+wj)
iwj . (8)

The proof requires the following Lemma which appears in [1]
and has simple proof.

Lemma 4.1. The function f(x, y) = (x + y)d is bounded

by: cxd +
(
y
(

d
ln c

+ 1
))d

for any c > 1.

We also need the following Lemmas.

Lemma 4.2. Let fe(x) =
∑

i ae,ix
i be the polynomial of

degree d. Then for any system of pure strategy:∑
e∈E

∑
i

∑
j∈J(e)

ae,il
i
ewj =

∑
e∈E

fe(le)le.

Proof. We have∑
e∈E

∑
i

∑
j∈J(e)

ae,il
i
ewj =

∑
e∈E

∑
i

ae,il
i+1
e =

∑
e∈E

fe(le)le,

where the first equality follows from the fact that le =∑
j∈J(e) wj and the second equality follows from the defi-

nition of the polynomial fe(x). This completes the proof of
the Lemma.

Lemma 4.3. Let fe(x) =
∑

i ae,ix
i be the polynomial of

degree d and let c > 1. Then for any system of pure strate-
gies and for the global optimal solution:∑

e∈E

∑
i

∑
j∈J∗(e)

ae,i(le + wj)
iwj

≤ c(d + 1)(
∑
e∈E

fe(le)le)
d/(d+1)(

∑
e∈E

fe(l
∗
e)l

∗
e)

1/(d+1).

Proof. We have

∑
e∈E

∑
i

∑
j∈J∗(e)

ae,i(le + wj)
iwj

=
∑
e∈E

∑
i

ae,i

∑
j∈J∗(e)

(le + wj)
iwj

≤
∑
e∈E

∑
i

ae,i

∑
j∈J∗(e)

(
cliewj +

(
i

ln c
+ 1

)i

wi+1
j

)

≤
∑
e∈E

∑
i

ae,i

(
cliel

∗
e +

(
d

ln c
+ 1

)d

l∗e
i+1

)

= c
∑
e∈E

∑
i

ae,il
i
el

∗
e +

(
d

ln c
+ 1

)d ∑
e∈E

∑
i

ae,il
∗
e

i+1
,

where the first inequality follows from Lemma 4.1. The sec-
ond inequality follows from (3) and the fact that the function
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(
x

ln c
+ 1
)x

is an increasing function for x ≥ 0. We apply
Holder’s inequality:

∑
i

aα
i bβ

i ≤
(∑

i

ai

)α(∑
i

bi

)β

, (9)

for α + β = 1. We use ai = ae,il
i+1
e , bi = ae,il

∗
e

i+1, α =
i/(i + 1), and β = 1/(i + 1). This yields

∑
e∈E

∑
i

∑
j∈J∗(e)

ae,i(le + wj)
iwj

≤ c
∑

i

(
∑
e∈E

ae,il
i+1
e )i/(i+1)(

∑
e∈E

ae,il
∗
e

i+1
)1/(i+1)

+

(
d

ln c
+ 1

)d ∑
e∈E

∑
i

ae,il
∗
e

i+1

≤ c
∑

i

(
∑
e∈E

∑
k

ae,klk+1
e )i/(i+1)(

∑
e∈E

∑
k

ae,kl∗e
k+1

)1/(i+1)

+

(
d

ln c
+ 1

)d ∑
e∈E

∑
i

ae,il
∗
e

i+1

= c
∑

i

(
∑
e∈E

fe(le)le)
i/(i+1)(

∑
e∈E

fe(l
∗
e)l

∗
e)

1/(i+1)

+

(
d

ln c
+ 1

)d ∑
e∈E

fe(l
∗
e)l

∗
e

where the equality follows from the definition of the poly-
nomial fe(x). Next, we use the fact that for x ≥ y > 0 and
1 ≥ α ≥ α′ ≥ 0 we have

xαy1−α ≥ xα′
y1−α′

.

We apply it for x = C(S) =
∑

e∈E fe(le)le and y = C(S∗) =∑
e∈E fe(l

∗
e)l

∗
e to get

∑
e∈E

∑
i

∑
j∈J∗(e)

ae,i(le + wj)
iwj

≤ c
∑

i

(
∑
e∈E

fe(le)le)
d/(d+1)(

∑
e∈E

fe(l
∗
e)l

∗
e)

1/(d+1)

+

(
d

ln c
+ 1

)d ∑
e∈E

fe(l
∗
e)l

∗
e

= c(d + 1)(
∑
e∈E

fe(le)le)
d/(d+1)(

∑
e∈E

fe(l
∗
e)l

∗
e)

1/(d+1)

+

(
d

ln c
+ 1

)d ∑
e∈E

fe(l
∗
e)l

∗
e .

This completes the proof of the Lemma.

To complete the proof of Theorem 4.1 we Apply Lemma
4.2 to the left-hand side of (8) and we apply Lemma 4.3 to
the right-hand side of (8). This yields∑

e∈E

fe(le)le

≤ c(d + 1)(
∑
e∈E

fe(le)le)
d/(d+1)(

∑
e∈E

fe(l
∗
e)l

∗
e)

1/(d+1)

+

(
d

ln c
+ 1

)d ∑
e∈E

fe(l
∗
e)l

∗
e .

Let

x =
(
∑

e∈E fe(le)le))
1/d

(
∑

e∈E fe(l∗e)l∗e))1/d
.

Then we divide the above inequality by
∑

e∈E fe(l
∗
e)l

∗
e and

express the result in terms of x. Thus,

xd+1 ≤ c(d + 1)xd +

(
d

ln c
+ 1

)d

.

Next we divide by xd to get

x ≤ c(d + 1) +

(
d

ln c
+ 1

x

)d

.

It is easy to see that for c = 2−ε we get x ≤ 2(d+1). Hence
C(Q)

C(Q∗)
= xd+1 = O(2ddd+1). This completes the proof of the

Theorem.

4.1.2 Mixed Strategies

Theorem 4.2. For polynomial latency functions of de-
gree d and mixed strategies, we have R = O(2ddd+1).

Proof. Let {pQ,j} be the probability distribution of the
system S of mixed strategies. Let Q∗ be the optimal routes
for these polynomial latency functions. Let Q∗

j be the path
of request j in Q∗.

According to definition (2.2), the expected latency of user
j for assigning his request to path Q in system S is

cQ,j =
∑
e∈Q

E[fe(le + (1− XQ,j)wj)]

According to definition 2.3, at Nash Equilibrium we have
for any path Q with pQ,j > 0, the inequality cQ,j ≤ cQ∗

j ,j .

By substituting cQ,j and cQ∗
j ,j in the inequality we have

∑
e∈Q

E[fe(le + (1− XQ,j)wj)]

≤
∑

e∈Q∗
j

E[fe(le + (1− XQ∗
j ,j)wj)]

≤
∑

e∈Q∗
j

E[fe(le + wj)].

We multiply the above inequality by pQ,j · wj and get

∑
e∈Q

E[fe(le + (1− XQ,j)wj)]pQ,jwj

≤
∑

e∈Q∗
j

E[fe(le + wj)]pQ,jwj .

Then, we sum all the above inequalities for all the paths Q
and classify them according to the edges paths. This Yields

∑
e∈E

∑
Q|e∈Q

E[fe(le + (1− XQ,j)wj)]pQ,jwj

≤
∑

e∈Q∗
j

E[fe(le + wj)]wj ,
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where in the right-hand side of the inequality we use the fact
that

∑
Q pQ,j = 1. We sum all the above inequalities for all

j and get

∑
j

∑
e∈E

∑
Q|e∈Q

E[fe(le + (1− XQ,j)wj)]pQ,jwj

≤
∑

j

∑
e∈Q∗

j

E[fe(le + wj)]wj . (10)

The proof requires the following Lemmas.

Lemma 4.4. For any system of mixed strategies:

E[fe(le)le] =
∑

j

E[fe(le + (1− Xe,j)wj)]pe,jwj .

Proof. We have

E[fe(le)le] = E[(
∑

j

Xe,jwj)fe(le)] =
∑

j

wjE[Xe,jfe(le)]

=
∑

j

wjPr[Xe,j = 0]E[Xe,jfe(le)|Xe,j = 0]

+wjPr[Xe,j = 1]E[Xe,jfe(le)|Xe,j = 1]

=
∑

j

pe,jwjE[Xe,jfe(le)|Xe,j = 1]

=
∑

j

E[fe(le + (1− Xe,j)wj)]pe,jwj ,

where the second equality follows from the linearity of ex-
pectation and the fourth equality follows from the fact that
pe,j = Pr[Xe,j = 1]. This completes the proof of the
Lemma.

Lemma 4.5. For any system of mixed strategies:∑
j

∑
e∈E

∑
Q|e∈Q

E[fe(le+(1−XQ,j)wj)]pQ,jwj ≥
∑
e∈E

E[fe(le)le]

Proof. We have∑
j

∑
e∈E

∑
Q|e∈Q

E[fe(le + (1− XQ,j)wj)]pQ,jwj

≥
∑

j

∑
e∈E

∑
Q|e∈Q

E[fe(le + (1− Xe,j)wj)]pQ,jwj

=
∑

j

∑
e∈E

E[fe(le + (1− Xe,j)wj)]pe,jwj

=
∑
e∈E

∑
j

E[fe(le + (1− Xe,j)wj)]pe,jwj

=
∑
e∈E

E[fe(le)le].

The inequality follows from the fact that for every edge e ∈
Q, it holds Xe,j ≥ XQ,j . The first equality follows from the
fact that pe,j =

∑
Q|e∈Q pQ,j . The last equality follows from

Lemma 4.4. This completes the proof of the Lemma.

Lemma 4.6. Let c > 1. Then for any system of mixed

strategies and for the global optimal solution:∑
j

∑
e∈Q∗

j

E[fe(le + wj)]wj

≤ c(d + 1)(
∑
e∈E

E[fe(le)le])
d/(d+1)(

∑
e∈E

fe(l
∗
e)l

∗
e)

1/(d+1)

+

(
d

ln c
+ 1

)d ∑
e∈E

fe(l
∗
e)l

∗
e .

Proof. Omitted.

To complete the proof of Theorem 4.2 we apply Lemma
4.5 to the left-hand side of (10) and we apply Lemma 4.6 to
the right-hand side of (10). This yields

∑
e∈E

E[fe(le)le]

≤ c(d + 1)(
∑
e∈E

E[fe(le)le])
d/(d+1)(

∑
e∈E

fe(l
∗
e)l

∗
e)

1/(d+1)

+

(
d

ln c
+ 1

)d ∑
e∈E

fe(l
∗
e)l

∗
e .

Let

x =
(
∑

e∈E E[fe(le)le)])
1/d

(
∑

e∈E fe(l∗e)l∗e))1/d
.

Then we divide the above inequality by
∑

e∈E fe(l
∗
e)l

∗
e and

express the result in terms of x. Thus,

xd+1 ≤ c(d + 1)xd +

(
d

ln c
+ 1

)d

and hence as in Theorem 4.1 we obtain R = O(2ddd+1).
This completes the proof of the Theorem.

4.2 Lower Bounds for Polynomial Latency
Functions

In this section we prove a lower bound on the worst-case
coordination ratio in the case of polynomial of degree d la-
tency functions.

Theorem 4.3. For pure strategies and polynomial latency
functions of degree d, R = Ω(dd/2).

Proof. We use the construction given for the maximum
latency in [2] and apply it for the average latency. This
construction can be easily modelled as a directed graph. We
construct the following problem instance for the restricted
assignment model. Let T > 0 and let l > 0 be large enough.
We consider l + 1 groups of links such that in group k =
0, . . . , l there are T

k!
links. Denote the number of links in

group k by nk. For each link we consider the latency function
f(x) = xd. We partition the tasks to l groups. In group
k = 1, . . . , l there are k · nk unit jobs, each can be assigned
to any link from groups [k − 1, . . . , l]. Observe that the
optimal solution assigns the jobs of group k (k = 1, . . . , l)
to the links in group k − 1, one job per link. We define the
following system of pure strategies, denote it by S: all jobs
from group k (k = 1, . . . , l) are assigned to links from group
k, k jobs per link. We choose T = l! to maintain integrality.

Lemma 4.7. The system S is in Nash Equilibrium.
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Proof. Denote by Sk (k = 1, . . . , l) the set of links to
which jobs from job group k can be assigned. Let j be a job
from group k and consider the assignment of j to link i from
link group k. Clearly, cij = kd, and for each link t ∈ Sk we
have ctj ≥ ((k − 1) + 1)d = kd = cij . Hence the system S is
in Nash Equilibrium. This completes the proof.

We assume that l > d. We denote the optimal solution
cost by OPT . For large enough l we have

OPT =

l−1∑
k=0

T

k!
· 1d = T

l−1∑
k=0

1

k!
≈ T · e.

and

C(S) =

l∑
k=1

T

k!
· kd ≥ T

�d/2�! · (�d/2�)d = T · Ω(dd/2),

where the second equality follows from Stirling’s formula.
Hence

R ≥ C(S)

OPT
= Ω(dd/2).

This completes the proof.
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