
Exponential Determinization for ω-Automata with

Strong-Fairness Acceptance Condition

Shmuel Safra∗

Tel-Aviv University

Abstract

In [Saf88] an exponential determinization procedure for Büchi au-
tomata was shown, yielding tight bounds for decision procedures of
some logics ([EJ88, Saf88, SV89, KT89]). In [SV89] the complexity
of determinization and complementation of ω-automata was further
investigated, leaving as an open question the complexity of the deter-
minization of a single class of ω-automata. For this class of ω-automata
with strong fairness as acceptance condition (Streett automata), [SV89]
managed to show an exponential complementation procedure, however
the blow-up of translating these automata, to any of the classes known
to admit exponential determinization, is inherently exponential. This
might suggest that the blow-up of the determinization of Streett au-
tomata is inherently doubly exponential.

This paper shows an exponential determinization construction for
Streett automata. In fact, the complexity of our construction is roughly
the same as the complexity achieved in [Saf88] for Büchi automata.
Moreover, a simple observation extends this upper bound to the com-
plementation problem. Since any ω-automaton that admits exponen-
tial determinization can be easily converted into a Streett automaton,
we have obtained a single procedure that can be used for all of these
conversions. Furthermore, this construction is optimal (up to a con-
stant factor in the exponent) for all of these conversions.

Our results imply that Streett automata (with strong fairness as
acceptance condition) can be used instead of Büchi automata (with
the weaker acceptance condition) without any loss of efficiency.

∗Part of this work was carried out while the author was at M.I.T. supported in part
by a Weizmann Fellowship and NSF grant CCR-8912586. Another part of this work was
carried out while the author was at IBM Almaden & Stanford University

1

1 Introduction

Finite automata on infinite words (ω-automata), despite their seemingly fan-
tastic definition, have quite an earthly role in the formal analysis of on-going
(reactive) systems. A reactive system is one whose goal is to continuously
interact with its environment, as opposed to computing a function on an
input and terminating. Take, for example, a file editor; it is not computing
a function of a preset input, and its execution should not terminate, unless
the environment so insists. (Other examples of such systems are control
programs of a robot or an unmanned spacecraft.) Suppose one would like
to make sure that a reactive system functions properly. For systems that
compute functions, we need to verify that the system always terminates
and computes the correct value of the function; what would be the reactive
system’s equivalent?

First, one needs to make sure that every reaction produced by the system
is proper (safety), and second, that every anticipated reaction is eventually
produced (liveness). In our file editor example, once an editor command
is given, it must eventually be carried out. This demonstrates the notion
usually referred to as weak fairness:

• Weak Fairness: Any continuously enabled action is eventually carried
out.

Now suppose we work on a paper1 on an operating system that can run
several file editors concurrently, but there is only one display on which we
can see how the paper will look once printed. So, every now and then, while
we continue to work on the paper, we try to display it, but each time there is
someone else’s paper already on display. The system might be “weakly fair”
and yet not display the paper, since this action is not continuously enabled.
Still, some might find it unfair if they try again and again to display their file
but never get the chance. This demonstrates the stronger notion of fairness
usually referred to as strong fairness:

• Strong Fairness: Any action that is repeatedly enabled is eventually
carried out.

Notice a problem here; suppose some action is enabled every now and
then, and the computation ends without the action having been carried out.
Just by observing a finite computation, how can one distinguish between the
two cases a) the system is not strongly fair, and b) the system is slow and

1at the latest possible time to meet the deadline, quite naturally

2

whoever wanted the action taken, eventually gave up. (Decided to print the
paper?)

Our solution is to interpret reactive systems over infinite computations; it
does not mean we actually run infinite computations2, rather that we analyze
the fairness of the system on infinite computations. On such computations
we can distinguish between the case of a slow system and an unfair one,
using algorithms that run in finite time. The two fairness conditions above
look as follows:

• Weak Fairness: A computation is unfair if there is an action that is
enabled continuously from some point on but is carried out only finitely
many times.

• Strong Fairness: A computation is unfair if there is an action that is
enabled infinitely often but is carried out only finitely many times.

Therefore, our computations are infinite objects (an infinite sequence for
linear time, and an infinite tree for branching time), and the formal meaning
(semantics) of a system is the set of computations it may produce. The
specification of the system is given in some specification language (logic)
over these infinite objects. In order to verify that the system functions
properly, we check that the set of computations produced by the system is
a subset of the computations that meet the specification.

For a complete exposition of the above subjects and related ones the
reader is referred to [HP85, Fra86, MP91].

Finite Memory Systems

We now restrict our attention to systems that can be described as finite
state machines (at least for the purpose of the formal analysis). It turns out
that any reasonable logic for specification in the finite-state case describes
a set of computations acceptable by a finite automaton over infinite ob-
jects (described below). Moreover, the most efficient decision procedures for
these logics are usually obtained by translating a formula in the logic to an
automaton and checking emptiness of the language this automaton accepts
([VW86]). The most efficient procedures for the problem of model checking
(checking that a program meets some specification) are also usually obtained
using automata. A finite-state program can be viewed as a finite-state ma-
chine, and in order to check that it meets some specification, it is enough to

2if anyone has doubts

3

check the containment of the language accepted by this finite-state machine
in the language accepted by the specification automaton ([VW86a]).

There are two basic automata conversions that come up in these proce-
dures: complementation and determinization.

This type of procedure was first suggested by Büchi ([Büc62]) in his
original paper introducing ω-automata, in order to show that the validity of
S1S (the monadic second order theory of one successor) is decidable. Büchi
showed that ω-automata are closed under complementation, however, the
blow-up of the complementation procedure he suggested is doubly exponen-
tial. McNaughton ([McN66]) showed that ω-automata can be determinized
(into a deterministic automaton with a stronger acceptance condition than
the one Büchi suggested). The blow-up of his determinization construction,
however, is also doubly-exponential. Rabin introduced tree automata, and
used McNaughton’s result to show that these automata are closed under
complementation. He could then give a decision procedure for a stronger
logic — S2S (the monadic second order theory of many successors).

The decision of these logics is known to be non elementary ([Mey75])
and thus there is no hope to achieve a reasonable complexity. However,
when considering simpler logics and attempting to obtain more efficient
procedures, the blow-up of the above constructions was prohibitive.

Sistla, Vardi and Wolper ([SVW87]) showed an exponential complemen-
tation procedure for Büchi automata, and utilized this result to obtain tight
bounds for various logics. The exponential determinization of Büchi au-
tomata ([Saf88]), which also improves on [SVW87], was used ([EJ88]) to
show a tight bound for the complexity of the decision procedure of various
logics, which allow quantification over time-paths and thus require transla-
tion to tree automata (e.g. CTL*, ∆-PDL, µ-calculus etc.). An exponential
complementation for Streett automata was shown ([SV89]) and was utilized
so as to improve the upper bound for the decision of linear-time logics that
are translatable more efficiently to automata with strong fairness as accep-
tance condition.

Finite Automata over Infinite Objects

Automata on infinite words (ω-Automata) are the same as automata on
finite words except that, since a run over a word does not have a final state,
the acceptance condition is on the set of states visited infinitely often in the
run. The simplest acceptance condition was suggested by Büchi ([Büc62]), in
which some of the states are designated as accepting, and a run is accepting
if it visits infinitely many times the accepting set of states.

4

Muller ([Mul63]) suggested deterministic ω-automata, with a different
acceptance condition, as a means of describing the behavior of non-stabilizing
circuits. The acceptance condition he suggested is to specify explicitly all
the ‘good’ infinity sets (the infinity set of a run ξ is the set of states that
occur infinitely many times in ξ). A run is accepting if its infinity set is one
of the designated accepting sets. When we consider acceptance conditions
based on the infinity set, this is obviously the most expressive condition.

A Rabin acceptance condition is, syntactically, a set of pairs of subsets
of the states, {(Li, Ui)}i. A run ξ is accepting if, for one of the pairs i, ξ
visits infinitely many times some states in Li (the ‘good’ states), and only
finitely often the states in Ui (the ‘bad’ states).

Streett ([Str82]) suggested the complementary condition to Rabin’s con-
dition, which is syntactically the same, a set of pairs of subsets of the states.
A run ξ is accepting according to Streett’s condition if for all pairs i, if the
run visits infinitely many times Li it also visits infinitely many times Ui.

We may write Rabin’s condition as
∨

i Li ∧ ¬Ui, and Streett’s condition
as

∧
i Li → Ui. Streett’s condition corresponds to strong fairness (as defined

above) since for each event e the acceptance condition could contain a pair
〈Li, Ui〉, in which Li is the set of states in which e is enabled and Ui is the
set of states in which e is taken (weak fairness can be expressed by Büchi
automata).

Previous Best Results on Determinization and Complemen-
tation

In [Saf88, SV89, Kla91] the complexities of determinization and comple-
mentation of different classes of ω-automata were studied, and solved in
full except for the complexity of determinization of Streett automata. An
exponential complementation procedure was shown for Streett automata in
[SV89] and with a better exponent in [Kla91]. It was shown ([SV89]) that
the blow-up of the translation of Streett automata to any of the classes of
ω-automata that were known to admit exponential determinization is inher-
ently exponential.

Our Results

Our main result (Theorem 1) is a new determinization construction for
Streett automata. Given a Streett automaton with n state and h accepting
pairs, we construct a deterministic Rabin automaton with 2O(nh log nh) states
and nh accepting pairs. Using the small number of accepting pairs in the

5

determinized Rabin automaton, and a simple complementation construction
for deterministic Rabin automata, which is exponential only in the number
of accepting pairs (Lemma 3), we show that nondeterministic Streett au-
tomata can be converted into deterministic Streett automata with the same
(exponential) blow-up (Corollary 4). Since the same deterministic automa-
ton interpreted as Streett or Rabin automaton accepts two complementary
languages, this implies that Streett automata can be simultaneously com-
plemented and determinized (co-determinized) into both Streett or Rabin
automata with only an exponential blow-up.

The exact complexity of the complementation procedures obtained in
this way matches the complexity of the complementation procedure of [Kla91].

The results reported herein were first published as an extended ab-
stract [Saf92]. It is worthwhile noting an independent work reported in [Wa93]
may share some of methods in a somewhat different settings.

2 Basic Definitions

An ω-automaton over an alphabet Σ, A = 〈Σ, Q, q0, δ, C〉, consists of a finite
set of states Q, an initial state q0 ∈ Q, a transition relation δ:Q× Σ → 2Q,
and an acceptance condition C. We extend δ to sets of states and sequences
of letters in the usual way.

A sequence of states, ξ ∈ Qω, is an A-run over a word σ ∈ Σω, if ξ0 = q0

and for every i, ξi+1 is a σi successor of ξi, i.e., ξi+1 ∈ δ(ξi, σi).
The infinity set of a sequence of letters (or states) σ, inf(σ), is the set of

letters that appear infinitely many times in σ (i.e., inf(σ) = {a s.t. |{i s.t. σi = a}| = ∞}).
An infinite word σ ∈ Σω is accepted by an automaton A, if there exists

an accepting A-run over σ. The language accepted by an automaton is the
set of all words accepted by it.

An automaton is deterministic if for all a ∈ Σ, q ∈ Q, |δ(q, a)| = 1,
i.e., δ is a function into Q. Obviously, any word has exactly one run in a
deterministic automaton.

We define classes of automata corresponding to the different acceptance
conditions. We write N for nondeterministic and D for deterministic, and
B, M, R, S for Büchi, Muller, Rabin, and Streett, respectively.

The acceptance conditions are summarized in the following table:

6

Syntax Semantics
B F ⊆ Q inf(ξ) ∩ F 6= φ

M F ⊆ 2Q inf(ξ) ∈ F
R

∨
i Li ∧ ¬Ui ∃i: inf(ξ) ∩ Li 6= φ ∧

inf(ξ) ∩ Ui = φ

S
∧

i Li → Ui ∀i: inf(ξ) ∩ Li 6= φ →
inf(ξ) ∩ Ui 6= φ

Concerning the size of an automaton, we denote both the number of
states and the size of the acceptance condition (except for Büchi automata
were the acceptance condition may be neglected). For example, our main
result can be written as NS(n, h) → DR(2O(nh log(nh)), nh).

3 Determinization of NS

Theorem 1 NS(n, h) → DR(2O(nh log nh), nh); i.e. for any NS automa-
ton A =

〈
Σ, Q, q0, δ,

∧
0<i≤h Li → Ui

〉
with n states and h acceptance pairs,

there exists an equivalent DR automaton D =
〈
Σ, Q̃, q̃0, δ̃,

∨
0<i≤nh Gi ∧ ¬Bi

〉
,

with 2O(nh log(nh)) states and nh acceptance pairs.

Proof: Throughout this proof we denote by H the set of indexes [1..h].

Intuition: It is easier to look at the deterministic Rabin
automaton D as a program with bounded memory and some
infinitary acceptance condition. This program reads the input
one letter at a time, and changes its memory accordingly. The
corresponding finite ω-automaton has a different state for each
of the possible states of the program’s memory. The infinite
string is accepted if the set of memory states visited infinitely
often satisfies the acceptance condition. We now describe D
informally.

An accepting A-run ξ has a witness set J ⊆ H for which ξ
visits infinitely many times each Uj for j ∈ J and only finitely
many time any Lj for j /∈ J .

Given a witness set J one can construct a small nondetermin-
istic Büchi automaton that accepts all strings for which there is
an accepting run ξ with witness set J . This automaton consists
of two parts; the first one is a copy of A (without the accep-
tance condition). Each run at each point can nondeterministi-
cally guess that no state in any of the sets Lj , for j /∈ J , will be

7

visited from now on, and choose to move to the second part. The
second part consists of |J |+ 1 copies of A, in which the run can
move to the next copy only after visiting the set Uj correspond-
ing to the current copy. A run is accepting if it cycles infinitely
through all the copies. All states q ∈ Lj for j /∈ J are removed
from all the copies of A in the second part. Hence an accepting
run visits only finitely many times copies of q ∈ Lj for j /∈ J ,
and infinitely many times copies of q ∈ Uj for each j ∈ J .

This automaton can be determinized with only an exponen-
tial blow-up ([Saf88]). However, since the number of possible
witness sets is exponential, a construction of an automaton that
deterministically considers all the witness sets results in a doubly
exponential blow-up.

The determinization construction suggested here may be viewed
as a deterministic dynamic process that at each point in time
considers only a polynomial number of witness sets.

The deterministic automatonD, while maintaining the subset
of A-states reached by reading the prefix of the input, starts by
assuming that the witness set of the accepting run (if exists)
is H, i.e., D tries, for each run, to cycle through all the Ujs.
Whenever a run is waiting to visit some Uj1 , D, assuming (the
worst) that the run will never again visit Uj1 , spawns off a parallel
construction, with possibly a smaller subset of the A-states, and
with the witness set J ′ = J\{j1} (disallowing any state q ∈ Lj1 in
the sub-process). Any run that eventually visits Uj1 is advanced
to the next index. In the sub-process, if again a run is waiting
for Uj2 , D branches off recursively with a smaller witness set.
An important observation is that, for each such parallel process
and for each state that appears in the subset maintained by
the process, one needs to consider only one index — the most
advanced one — hence the subset of the A-states maintained
by the process is partitioned among the different indexes. In
the good case, in which eventually all A-states have runs that
completed a cycle, all the sub-processes are killed and the process
is restarted. If any of these processes is restarted infinitely many
times D accepts.

However, suppose that some runs completed a cycle, but
some other runs are stuck waiting for some Uj1 . The latter runs
prevent the former runs from restarting the process. Therefore,
for all runs that completed a cycle through Uj for every j ∈ J , D

8

spawns off a parallel process with a smaller set of A-states (this
is simillar to the determinization construction of [Saf88]). In ad-
dition (again following [Saf88]) D maintains an order among the
subprocesses according to which was spawned first. Whenever
a state appears in more than one sub-process (with the same
index; otherwise, as mentioned above, the more advanced index
takes priority) it is removed from all but the one spawned first.

Since for each state in each process one needs to consider only
one Uj it is waiting for, the number of witness sets we need to
try in parallel at any given time is polynomial.

We now return to the formal proof of Theorem 1. We start with some
definitions we need for the construction of the set Q̃ of states of D.

Let V = [1..2nh] be the set of names (these are used by D to preserve
the identity of different parallel applications of some basic construction).

For S ⊆ Q, let an S-atom be 〈v, S〉 where v ∈ V .
For S ⊆ Q and J ⊆ H, we give a recuresive definition of an (S, J)-

decomposition:

1. An S-atom is an (S, J)-decomposition.

2. Let v ∈ V .
Let S1, ..., Sl be a partition of S (i.e.

⋃
i Si = S and for any i 6= j ∈

[1..l], Si ∩ Sj = φ).
Let j1, ..., jl ∈ J ∪ {0}, where at least one of the j’s is non 0. Denote,
for each i ∈ [1..l], by Ji the set J \ {ji}.
Let Π1, ..., Πl be such that for each i ∈ [1..l], Πi is an (Si, Ji)-
decomposition.
Then, 〈v, (Π1, j1), ..., (Πl, jl)〉 is an (S, J)-decomposition.

For an (S, J)-decomposition we refer to the decompositions used in the re-
cursion of this definition as sub-decompositions.

An (S, J)-decomposition has a good name if the names assigned to each
of the sub-decompositions are all different. We consider, from now on, only
decompositions with a good name.

Note that the recursion in the definition of an (S, J)-decompositions is
finite, since not all the indexes j can be 0, and thus either the set of states
S or the set of indexes J decreases each level down the recursion.

We can even give a more specific bound on the size and number of
decompositions:

9

Lemma 2 The number of sub-decompositions in an (S, H)-decomposition
(S ⊆ Q) is at most nh. The total number of (S, H)-decompositions (S ⊆ Q)
is at most 2O(nh log(nh)).

Proof: For an (S, J)-decomposition Π we say that a pair (q, j), for q ∈ Q,
j ∈ H, is special for a (S′, J ′)-sub-decomposition Π′ of Π, if the following
three conditions hold:

• q ∈ S′

• the index set of the immediate sub-decomposition of Π′ that contains
q is a strict subset of J ′ (i.e. this sub-decomposition is not indexed by
0)

• if a sub-decomposition has index set J ′′ 6= J ′ such that J ′ ⊆ J ′′, then
j ∈ J ′′

Now, each pair (q, j) is special for a sub-decomposition, and each sub-
decomposition Π′ has a pair (q, j) which is special for it. Therefore, Π can
be represented as a partial function from the set of pairs (q, j) to the set of
names V . �

The Construction of D

The Set of States: Q̃ is the set of all (S, H)-decompositions for a subset
of the states S ⊆ Q.

The Initial State: q̃0 = 〈1, {q0}〉, i.e. the {q0}-atom with 1 (arbitrarily)
as its name.

The Transition Function: For each D-state q̃ ∈ Q̃ and a letter a ∈ Σ,
δ̃(q̃, a) is the result of applying the following sequence of operations to q̃:

1. Replace each atom 〈v, S〉 in q̃ by 〈v, δ(S, a)〉.
This results in some structure that may violate the requirement, in
the definition of an (S, J)-decomposition above, that the sets S1, ..., Sl

are disjoint. At the end of the next several steps this requirement is
restored.

2. For any non atomic (S, J)-sub-decomposition in q̃, let j1, ..., jl be the
indexes as in the definition of a decomposition above, and S′1, ..., S

′
l be

its sets of A-states after step 1. For each A-state q and i such that
q ∈ S′i

10

• if q ∈ Lji then remove q from S′i and append to the list of sub-
decompositions an atom 〈v, {q}〉 with index j = max {J}

• otherwise, if q ∈ Uji , then append an atom 〈v, {q}〉 with index
j = max {(J ∪ {0}) ∩ {0, ..., ji − 1}}.

In both cases v ∈ V is an unused name in q̃, and each new atom
is assigned a different name. This is possible since, by Lemma 2,
only nh out of 2nh names in V are used in q̃. For atomic (S, J)-sub-
decompositions, we follow the same procedure, assuming S is a one
item list with the maximal index in J as its index.

3. For a non-atomic sub-decomposition in q̃ for which, after the previous
steps, an A-state q appears in a set S′i with index j and a set S′i′ with
index j′ > j, remove q from S′i′ .

4. For a non-atomic sub-decomposition in q̃ for which, after the previous
steps, an A-state q appears in a set S′i and a set S′i′ , where i′ > i,
remove q from S′i′ .

5. Remove any empty set from any list.

6. Replace any non-atomic (S, J)-sub-decomposition, whose name is v,
in which after the previous steps all indexes are 0, by an atom 〈v, S〉.

The Acceptance Condition: For each name v ∈ V , let Gv be the set of
states q̃ in which v is the name of an atom, and Bv be the set of states q̃ in
which v is not used in the decomposition.

Correctness:

L(D) ⊆ L(A): Given that there is a name v, which in the D-run ξ over a
word σ is used (in the decompositions ξi) continuously from some point on,
and is the name of an atom infinitely many times, we prove that there is an
accepting A-run over σ.

For two positions 0 ≤ l < k, we denote by σ[l, k) the finite word
σl, ..., σk−1.

Let l be the largest such that v is not used in the decomposition ξl,
and let Si, for i > l, be the set such that v is the name of an (Si, J)-sub-
decomposition of ξi. Let l1 < l2 < ... (where l1 > l) be the positions at which
v is the name of an atom in ξlk . By the construction, Sl1 ⊆ δ(q0, σ[1, l1)).
The condition to make a sub-decomposition become an atom (step 6), and
the conditions to create new sub-decomposition and maintain them (steps 2

11

and 1) ensure that for each q ∈ Slk+1
, for k > 0, there exists some q′ ∈ Slk ,

and an A-run over σ[lk, lk+1) which leads from q′ to q while visiting all Uj

for j ∈ J and no Lj for j /∈ J .
Intending to use König’s Lemma, we construct a tree whose nodes are

all the pairs of the form (q, k) for q ∈ Slk . As the parent of a node (q, k + 1)
we pick one of the pairs (q′, k) such that q′ ∈ Slk and there exists an A-run
from q′ to q as described above. The root of the tree is (q0, 0).

By König’s Lemma, since there are infinitely many pairs, and the num-
ber of pairs at each level of the tree is bounded, there is an infinite path,
(q0, 0), (q1, 1), ..., in the tree. By the construction of this tree, for each k > 0
there is an A-run, as described above, from qk to qk+1, over σ[lk, lk+1). The
infinite concatenation of these segments gives an A-run over σ which visits
each A-state in Uj for j ∈ J infinitely many times, and visits any state in
Lj for j /∈ J only at the first segment. This A-run is accepting.

L(A) ⊆ L(D): Given that, for a string σ, there is an accepting A-
run, ξ, we prove that there is a name v which in the D-run over σ is used
continuously from some point on and is the name of an atom infinitely many
times.

Let l be the length of the finitary prefix of ξ; i.e. every state ξk for k > l
appears infinitely many times in ξ. Let the i

th state q̃i of the D̃-run over σ
be an (Si,H)-decomposition, then it must be that ξi ∈ Si. Therefore, Si is
never empty and its name v1 remains fixed in all q̃i. If q̃i becomes an atom
infinitely many times, we are done. Otherwise, let i1 be the largest such
that q̃i is an atom. For i > i1, as i increases, the A-state ξi appears in sub-
decompositions with monotonically non increasing index, and thus its index
is eventually fixed. Thereafter, ξi can move only closer to the beginning of
the sequence of immediate sub-decompositions. Hence, there is an i′1 such
that for all i > i′1, ξi appears in a sub-decomposition with a fixed name v2.
We can now repeat the argument, and show that if v2 is not a name of an
atom infinitely many times, then eventually the state of ξ appears one level
down in the decomposition. Since the depth of the decomposition is finite,
there must be a sub-decomposition which becomes an atom infinitely many
times.

This completes the proof of our main theorem. �

4 Complementation of DR

In order to see how to co-determinize (construct a deterministic automa-
ton that accepts the complement) Streett automata we need the following

12

lemma3:

Lemma 3 DS(n, h) → DR(n · 2h log h, h + 1); i.e. for any deterministic
Streett automaton with n states and h accepting pairs, there exists an equiv-
alent deterministic Rabin automaton with n·2h log h states and h+1 accepting
pairs.

One should comment here that one can quite easily complement such au-
tomata while leaving the set of states fixed, translating the acceptance con-
dition from Rabin’s to Streett’s. Such a translation, however, would incur
an exponential blow-up in the size of the acceptance condition. The above
lemma is useful when applying it to the main theorem, as the size of the
acceptance condition remains polynomial in the size of original automaton,
while the number of states becomes exponential. Proof: We show an ex-
plicit construction, given a DS automaton, D =

〈
Σ, Q, q0, δ,

∧
1≤i≤h Li → Ui

〉
,

of a DR automaton, D̃ =
〈
Σ, Q̃, q̃0, δ̃,

∨
1≤i≤h+1 ¬L̃i ∧ Ũi

〉
.

Intuition: Again let us think of the automaton D̃ as a pro-
gram with bounded memory; the states of D̃ will be all possible
data states that this program’s memory can be in.

D̃ maintains, aside from the state D reaches after reading
the prefix of the input, a permutation of the set of indexes [1..h].
Whenever a state in some Uj is visited, the index j is moved
to the end of the permutation (if several are visited, all of their
indexes are moved to the end with no particular order). Hence,
for every accepting run, let J be its witness set and i = h− |J |,
then eventually the first i elements of the permutation are fixed,
and for each index j in the suffix of the permutation, Uj is visited
infinitely many times. The Rabin acceptance condition contains,
for each i ∈ [0..h] a pair in which the “bad” set contains all states
in which some Lj for j in the first i elements in the permutation
is visited, and the “good” set contains all states in which Uj is
visited for j being the (i + 1)th element in the permutation.

We now give the formal proof of the lemma.
The construction: The states of D̃, Q̃, have the form of a tuple,

(q, π, r, g), where q ∈ Q, π is a permutation of [1..h], and r, g ∈ [1..h + 1].
The initial state q̃0 = (q0, 〈1, ..., h〉 , h + 1, h + 1).

3This lemma appears in [Saf88] but only in the journal version and is repeated here for

the 21st century’ reader

13

Consider a state q̃ = (q, π, r, g), where π = 〈i1, ..., ih〉. For a letter a ∈ Σ
define δ̃(q̃, a) to be the state q̃′ = (q′, π′, r′, g′) as follows:

q′ = δ(q, a).

g′ is the minimal index i such that q′ ∈ Uji , if it exists, and otherwise
g′ = h + 1.

r′ is the minimal index i such that q′ ∈ Lji , if it exists, and otherwise
r′ = h + 1.

π′ =
〈
j1, ..., jg′−1, jg′+1, ..., jh, jg′

〉
if g′ ≤ h; otherwise, π′ = π.

For i, 1 ≤ i ≤ h + 1, L̃i consists of all the states q̃ in which r < i, and Ũi

consists of all the states q̃ in which g = i.
Note that after reading a finite prefix of the input, there is a part to the

left of π which is fixed from then on, and that contains all the indexes j
such that Uj is visited only finitely many times. If that prefix is of length i,
then from then on g > i.

L(D̃) ⊆ L(D): Assume that for some i, r ≥ i from some point on, and
g = i infinitely many times. Since g = i infinitely many times, for every j,
if Uj is visited only finitely many times, eventually j is placed in π with an
index smaller than i (j = jk for k < i) and by the construction, from then
on, Lj is never visited.

L(D) ⊆ L(D̃): Assume there is an accepting D-run, then there exists a
maximal set J ⊆ [1..h] such that for k ∈ J , Ujk

is visited infinitely many
times, and for k /∈ J , neither Ljk

nor Ujk
are visited from some point on.

There exists a further point, after which [1..h] \ J occupies the leftmost
positions in π, and none of its indexes changes its place. Let i = h − |J |.
Obviously, r ≥ j beyond this point. We claim that g = i infinitely many
times. At any point, let ji = k. Since the run visits Uk infinitely many
times, on the next visit to Uk, g will be i.

Complexity: The number of states is n · h! · (h + 1)2 < n · 2h log h (for
h > 5). �

Since in their deterministic versions the same automaton interpreted as
a Rabin automaton and as a Streett automaton accept two complementary
languages, we can conclude the following:

Corollary 4 NS(n, h) → DR(2O(nh log(nh)), nh + 1). �

Hence, NS can be translated to DS with this complexity.

14

5 Complementation of Streett Tree Automata

Rabin ([Rab69, Rab70]) introduced automata on infinite trees. The input
of such an automaton is an infinite binary tree, whose nodes are labeled by
letters from some finite alphabet Σ, T : {0, 1}∗ → Σ. A Σ-tree automaton,
T = 〈Σ, Q, q0, δ, C〉, is similar to an ω-automaton except that the transition
function specifies, for a state q ∈ Q and a letter a ∈ Σ, a set of pairs
of states containing both a left successor state ql, and a right successor
state qr (i.e., δ:Q × Σ → 2Q×Q). A T -run is a Q-tree, Γ: {0, 1}∗ → Q, in
which the root node is q0, and all the nodes satisfy δ, i.e., for each node
p ∈ {0, 1}∗, (Γ(p0),Γ(p1)) ∈ δ(Γ(p), T (p)). The acceptance condition C is
any ω-condition, such as those of Büchi, Rabin, Muller or Streett. A T -run
Γ is defined to be accepting if the infinity set of every infinite path in Γ
satisfies C.

Given a tree automaton A, the complementary tree automaton Ā may
be viewed as supplying a proof, given some input tree, that every nondeter-
ministic A-run has a path that does not satisfy A’s acceptance condition.
Following the procedure of Gurevich and Harrington ([GH82]) the proof is
supplied by a finite memory strategy. A finite memory strategy is one that
can be represented by a set of finite tables, for each node in the tree, giving
for each state and some finite information about the history of the run so
far, either a left direction or a right direction. Such a strategy serves as a
proof that the input tree is not accepted by A if, for any choice of nonde-
terministic moves, and following the direction the strategy supplies for each
move, the resulting infinite sequence of states is not accepted according to
A’s acceptance condition.

Using the techniques of [EJ91] it can be shown ([Jutla]) that the com-
plement of a Streett tree automaton have a memoryless strategy, i.e., Ā, for
each node in the input tree, needs to guess a table showing for each state
(i.e. no information at all on the history of the run) the direction to go for
a non accepting path. Using the exponential determinization for Streett au-
tomata shown here this implies an exponential complementation procedure
for Streett tree automata. A different proof for this theorem appeared first
in [Kla92].

Discussion

This paper shows that ω-automata with strong-fairness acceptance condition
can replace Büchi automata in all applications without loss of efficiency. This

15

should have further applications than showed here, in the formal analysis
of finite-state systems, and, in general, for a better understanding of the
notion of fairness.

The main result of this paper has application for complementation of tree
automata: Streett tree automata were shown to have exponential comple-
mentation construction ([Kla92]); the results reported herein imply a simple
such exponential complementation procedure for these automata. The main
open problem left in this area is the complexity of complementation of Ra-
bin tree automata; is it doubly exponential or can one show an upper bound
similar to the one for Streett tree automata?

Acknowledgment

I would like to thank Moshe Vardi and Amir Pnueli for many most insightful
discussions on this problem, and to unnamed referees for most constructive
comments.

References

[BL69] J. R. Büchi and L. H. Landweber. Solving sequential conditions
by finite-state strategies. Trans. Amer. Math. Soc., 138:295–311,
1969.

[Büc62] J. R. Büchi. On a decision method in resricted second order arith-
metics. In E. Nagel et al., editor, Proc. International Congr. on
Logic, Method. and Phil. of Sci., 1960, pages 1–12. Stanford Uni.
Press, 1962.

[EJ88] A. E. Emerson and C. Jutla. The complexity of tree automata and
logics of programs. In Proc. 29th IEEE Symp. on Foundations of
Computer Science, pages 328–337, 1988.

[EJ91] A. E. Emerson and C. Jutla. Tree automata mu-calculus and
determinacy. In Proc. 32nd IEEE Symp. on Foundations of Com-
puter Science, pages 368–377, 1991.

[ES84] A. E. Emerson and P. A. Sistla. Deciding full branching time logic.
Information and Control, 61:175–201, 1984.

16

[HP85] D. Harel and A. Pnueli. On the development of reactive systems.
In K. R. Apt, editor, Logics and Models of Concurrent Systems,
pages 477–498. Springer, 1985.

[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.

[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. In
Proc. 14th ACM Symp. on Theory of Computing, pages 60–65,
1982.

[Jutla] C. Jutla. Personal Communication.

[Kla91] N. Klarlund. Progress measures for complementation of ω-
automata with application to temporal logic. In Proc. 32nd IEEE
Symp. on Foundations of Computer Science, pages 358–367, 1991.

[Kla92] N. Klarlund. Progress measures, immediate determinacy, and a
subset construction for tree automata. In Proc. 7th IEEE Symp.
on Logic in Computer Science, 1992. To Appear.

[KT89] D. Kozen and J. Tiuryn. Logics of program. In J. Van
Leeuwen, editor, Handbook of Theoretical Computer Science.
North-Holland, 1989.

[McN66] R. McNaughton. Testing and generating infinite sequences by a
finite automaton. Information and Control, 9:521–530, 1966.

[Mey75] A. R. Meyer. Weak monadic second order theory of successor is
not elementary recursive. In Proc. Boston Univ. Logic Colloquium,
1973, volume 453, pages 132–154. Lecture Notes in Mathematics
453, Springer, 1975.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer Verlag, New York,
1991.

[Mul63] D. E. Muller. Infinite sequences and finite machines. In Proc.
4th IEEE Symp. on Switching Circuit Theory and Logical Design,
pages 3–16, 1963.

[Pec86] J. P. Pecuchet. On the complementation of büchi autamata. The-
oretical Computer Science, 47:95–98, 1986.

[Rab69] M. O. Rabin. Decidability of second-order theories and automata
on infinite trees. Trans. AMS, 141:1–35, 1969.

17

[Rab70] M. O. Rabin. Weakly definable relations and special automata.
In Y. Bar-hillel, editor, Proc. Symp. Math. Logic and Foundation
of Set Theory, pages 1–23. North-Holland, 1970.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE
Symp. on Foundations of Computer Science, pages 319–327, 1988.
An extended version to appear in Journal of Computer and System
Science.

[Saf92] S. Safra. Exponential determinization for ω-automata with strong-
fairness acceptance condition (extended abstract). Proc. ACM
Symposium on Theory of Computing, pages 275–282, 1992.

[Str82] R. S. Streett. Propositional dynamic logic of looping and converse
is elementary decidable. Information and Control, 54:121–141,
1982.

[SV89] S. Safra and M. Y. Vardi. On ω-automata and temporal logic.
In Proc. 21th ACM Symp. on Theory of Computing, 1989. To
appear.

[SVW87] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation
problem for Büchi autamata with application to temporal logic.
Theoretical Computer Science, 49:217–237, 1987.

[Var85] M. Y. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. In Proc. 26th IEEE Symp. on Foundations
of Computer Science, pages 327–338, 1985.

[VS85] M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds
for modal logics of program. In Proc. 17th ACM Symp. on Theory
of Computing, pages 240–251, 1985.

[VW86] M.Y. Vardi and P. Wolper. Automata theoretic techniques for
modal logics of programs. Journal of Computer and System Sci-
ence, 32:183–221, 1986.

[VW86a] M.Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In Proc. 1st IEEE Symp. on Logic
in Computer Science, pages 332–344, 1986.

[Wa93] I. Walukiewicz. A Complete Deductive System for the µ-Calculus.
In Proc. LICS 1993.

18

	Introduction
	Basic Definitions
	Determinization of NS
	Complementation of DR
	Complementation of Streett Tree Automata

