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ABSTRACT. In 1969 Rabin introduced tree automata 
and proved one of the deepest decidability results. 
If you worked on decision problems you did most 
probably use Rabin's result. But did you make your 
way through Rabin's cumbersome proof with its 
induction on countable ordinals? Buildimg on ideas 
of our predecessors--and especially those of 
B~chi--we give here an alternative and transparent 
proof of Rabin's result. Generalizations and 
further results will be published elsewhere. 

~I. INTRODUCTION. Here Z is an alphabet. All 
our alphabets are finite and not empty. Recall 
that a non-deterministic Z-automaton is a quad- 
ruple (S,T,Sin,F) where S is an alphabet (of 

states), T ~S × Z × S is the transition table, 
s. ~ S is the initial state, and F ~S is the 
in 

set of final states. The automaton is said to 
accept a string al...a n of letters in Z if 

there is a string S@Sl...s n of states such that 

= Sin and every (si,ai+l,Si+ I) ~ T and s 0 

s 6 F. The theory of automata working on finite 
n 

strings is well-known. It was generalized in the 
1960s for a theory of automata on finite trees; an 
algebraic treatment of automata on finite trees, a 
survey of results and further references can be 
found in Thatcher & Wright 1968. (The game 
technique, developed in this paper, gives an 
alternative and simple way to handle automata on 
finite trees.) 

The idea to use automata for recognizing 
infinite sequences is due to BUchi 1962. A B~chi 
Z-automaton is a usual non-determinlstic Z-auto- 
maton (S,T,Sin,F) working on infinite sequences 
of letters of Z. It accepts a sequence ala2... 

if there is a sequence S0SlS2... of states such 

that s O = Sin , every Snan+iSn+ I E T and 
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{n: s £ F] is infinite. 
n 
B[chi used sequential automata to prove 

decidability of the monadic second-order theory of 
natural numbers with the successor relation which 
is called, for short, the second-order theory of 
one successor, or SiS. The variables of SIS range 
over sets of natural numbers. SIS atomic formulas 
have a form X ~ Y or Suc(X,Y). The latter means 
that there is a natural number n with X = {n}, 
Y = {n + I}. Other SiS formulas are built from 
SIS atomic formulas using conjunction, disjunction, 
negation and the existential quantifier. Every 
set X of natural numbers can be identified with 
its characteristic function, i.e. X(n) = I if 
n { X, and X(n) = 0 otherwise. For any natural 
number m, let Z be the direct product of m 

m 
copies of the set {0,I}. 

THEOREM I (B~chi 1962). For every SIS 
formua~¢--w~th m variables there is a B~chi 
Zm-automaton M such that for all sets X 1 ...... X m 

of natural numbers, @(X1,...,X m) holds iff M 

accepts the Zm-Sequence 

x I ( o ) . . .  Xm(O),X I ( I ) . . .  Xm(1),x I ( 2 ) . . .  Xm(~) . . . . .  

The desired automaton M is constructed by 
induction on ¢. The atomic case and the cases of 
conjunction, disjunction and the existential 
quantifier are easy. A natural way to handle the 
negation case would be to show that every B~chi 
automaton is equivalent to a deterministic B~chi 
automaton. This is not true however, and BHchi 
used Ramsey's theorem to solve the complementation 
problem. 

THEOREM 2 (B~chi 1962). The emptiness problem 
for B~c~ automata is decidable. 

Theorem 2 is easy. Theorems i and 2 give 
decidability of SiS. 

~ller 1969 entered the field through study- 
ing a problem in asynchronous switching theory. 
A deterministic Muller automaton is a quadruple 
(S,T,Sin,F) where S is the alphabet of states, 

T: S × ~ + S, s. ~ S, and F is a set of sub- 
in 

sets of S. It accepts a Z-sequence ala2.., if 

F contains the set of states appearing infinitely 
often in the sequence 

s O = Sin, s I = T(s0,al), s 2 = T(Sl,a2), .... 

60 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800070.802177&domain=pdf&date_stamp=1982-05-05


Given a deterministic Muller Z-automaton, it 
is easy to construct a B~chi Z-automaton accepting 
the same Z-sequences. 

THEOREM 3 (McNaughton 1966). For every B~chi 
Z-automaton there is a deterministic Muller 
Z-automaton accepting the same Z-sequences. 

McNaughton's proof is constructive and 
sophisticated. Theorem 3 gives another solution 
for the complementation problem for B~chl auto- 
mata. 

Then Rabin 1969 introduced automata working 
on infinite trees and proved decidability of the 
monadic second-order theory of the infinite binary 
tree which is called, for short, the second-order 
theory of two successors, or $2S. The second- 
order theories of 3,4 and even ~ successors 
reduce easily to $2S. 

The infinite binary tree can be seen as the 
set {~,r} ~ of all strings in the alphabet {~,r}. 
Variables of $2S range over subsets of the 
infinite binary tree. 82S formulas are defined in 
the same way as SiS formulas but instead of 
Suc(X,Y), atomic formulas Suc~(X,Y), SUCr(X,Y) 

are used. They mean that there is a string 
w ~ {~,r}* such that X = {w} and, Y = {w~} or 
Y = {wr} respectively. 

Rabin proved the analogues of Theorems i and 
2 for $2S. Once again the atomic case and the 
cases of conjunction, disjunctipn and existential 
quantifier were easy. The difficult parts of 
Rabin 1969 were the complementation and--to a 
lesser extent--the emptiness problem. Rackoff 
1972 found a simple reduction of the emptiness 
problem for Rabln automata to the emptiness 
problem for automata on finite trees. Also he 
simplified to an extent Rabin's solution for the 
complementation problem. Using games we give in 
the sequel a transparent solution for all these 
problems. Our exposition is essentially self- 
contained. 

The idea to use games is not new. It was 
aired by McNaughton and exploited in Landweber 
1967, BHchi & Landweber 1969 and especially in 
B~chi 1977 where the complementation problem was 
reduced (for an able reader) to a certain 
determinancy result. Our §2 gives such a reduc- 
tion too. Our §3 provides the necessary 
determinancy result. When this solution had been 
reported in several places including Purdue B~chi 
kindly sent us a manuscript, B[chi 1981. To be 
sure BHchi proved the determinancy result, and he 
certainly was the first to do so. His proof still 
is, however, a very complicated induction on 
countable ordinals, much more difficult than our 

Our games form a special case of games 
studied in set theory. The most relevant set- 
theoretic paper is Davis 1964. However the 
determinancy results of Davis 1964 and other set- 
theoretic papers do not suffice for our purposes 
because we are interested only in very special 
memory-restricted strategies. 

Let us mention that David E. Muller and 
Paul E. Schupp are developing an alternative 
approach to handle $2S. 

An impressive generalization of Rabin's 
decidability result was formulated in Shelah 1975 
and proved in details in Stupp 1975. The proof 
used Rabin's technique. The game technique, 

developed in the sequel, gives the generalized 
result fairly easily. 

A few words on negative results. Solving 
Rabin's uniformization problem, Gurevich & 
Shelah 198? prove that no tree automaton picks a 
unique element from any nonempty subset of the 
infinite binary tree. Using automata B[chi 1973 
proved decidability of monadic second-order theory 
of 91 . Gurevich & Magidor & Shelah 1987 prove 

that the corresponding theory of ~2 can be of 

any given Turing degree (in different set-theo- 
retic worlds). 

We thank ~enachem ~gidor and Saharon Shelah 
for useful discussions, and J. Richard Buchi for 
sending us his manuscript, and Anil Nerode and 
Andrew Glass for terms Pathfinder and Exposure 
respectively. 

~2. TREE AUTOMATA. The infinite binary tree is 
here the set 9~,r}* of words in the alphabet 
{Z,r}. Its root is the empty word e. The nodes 
xZ and xr are respectively the left and the 
right successors of a node x E {Z,r}*. A mapping 
V from the infinite binary tree to an alphabet Z 
will be called a Z-valuation or a Z-tree. 

Rabin 1969 defined automata working on 
Z-trees. They are somewhat ~nconvenient to play 
our games. Here is an alternative definition of 
tree automata. 

A tree Z-automaton is a quadruple 
(S,T,Tin,F) where S is an alphabet (of states), 

and T ~S x (Z,r} x Z x S is the transition 
table, and T. ~ Z x S is the initial state im 

table, and F is a family of subsets of S. 
Given a tree z-automaton M = (S,T,Tin,F) 

and a Z-tree V consider the followimg game 
r(M,V) between the automaton M and another 
player called Pathfinder: 

The automaton chooses: Pathfinder chooses: 

s O 
d I 

s I 
d 2 

s 2 
d 3 

s 3 

Here (V(e),s O) E Tdn, and every d n £ {~,r}, 

and every (Sn,dn+l,V(dl...dn+l),Sn+ I) ~ T. 

The automaton wins a play SodlSld2... if F 

contains {s 6 S: s = s for infinitely many m}, 
n 

otherwise Pathfinder wins the play. The automaton 
accepts V if it has a winning strategy in the 
game r(M,V). 

We clarify the notion of a strategy. Any 
finite prefix of any play S0dlSld2... will be 

called a position. Note that the automaton makes 
a move in a position p iff the length Ipl is 
even. A (deterministic) 
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strategy for the automaton is a function f 
assigning a state s = f(p) to each position p 
of even length in such a way that ps is a posi- 
tion. A (deterministic) strategy for Pathfinder 
is a function assigning a letter ~ or r to each 
position of odd length. 

Exercises: 
i. Let Z 2 be the alphabet {0,i} x {0,I). 

Construct tree Z2-automata M that accepts a 

Z2-tree V iff the range of V avoids the letter i0. 
Construct a tree Z2-automaton N~ (respectively 

Nr) that accepts a Z2-tree V iff there is 

u £ {Z,r}* such that V(u) = I0 and V(u~) = Ol 
(respectively V(ur) = 01) and V(w) = O0 for any 
other node w. 

2. Given tree Z-automata Mi,M 2 construct 

tree Z-automata MyM 4 such that M 3 accepts a 

Z-tree V iff either M I or M 2 accepts V, and 

M 4 accepts a Z-tree V iff both ~I and M 2 

accept V. 
3. Given a tree ZlXZ2-automaton N construct 

a tree Zl-automaton N I such that N I accepts a 

Zl-tree V I iff there is a Z2-tree V 2 such that 

N accepts the ZlXZ2-tree given by V I and V 2. 

N I will be called a Zl-projection of N. 

4. Given a Rabin Z-automaton construct a 
tree Z-automaton accepting exactly the same 
Z-trees. 

In the rest of this section M is a tree 
Z-automaton (S,T,Tin, F), V ranges over E-trees, 

and p,q range over positions in F(~,V). 
The node of a position p is the string 

Node(p) of even letters in p, so that 

Node(S0dlSl...dn) = Node(sOdlSl...dnSn) 

= dl...d n . 

Given a node x of the infinite binary 
tree, we define the x-residue of V. It is the 
Z-tree Vx: {~,r}* ÷ Z given by Vx(Y) = V(xy). 

The following definition will be used in this 
section and later. 

DEFINITION. Let A,B be alphabets and 

{ca: a C A} be a family of disjoint subsets of 
B*. A word x ~ A ~ is an A-display if each 
letter appears in x at most once. For every 
letter a C A, Exposure a is a unary operation on 

the set of A-displays: if x = xlax 2 then 

ExposUrea(X) = XlX2a, if a does not appear in 

x then Exposurea(X) = xa. By induction on 

y C B* we define the later appearance record R(y) 

with respect to sets C a , a £ A. If e £ C a for 
some a then R(e) = a, otherwise R(e) = e. 
Suppose x = R(y) and b ~ B. If yb ~ C a for 
some a then R(yb) = ExposUrea(X) , otherwise 

~(yh) = x. 

To define the later appearance record of a 
position p (shortly LAP(p)) apply the preceding 

definition with A = S, B = S U {~,r), and 

C s = (y E B*: s is the last letter in y) for 
s ~ S. 

THEOREM i (Forgetful Determinancy). One of 
the p aye~h~s a strategy f winning F(M,V) 
and satisfying the following condition. If p,q 
are positions where the winner makes moves, and 
the Node(p)-residue of V coincides with the 
Node(q)-residue of V, and LAP(p) = LAP(q) then 
f(p) = f(q). 

NOTE. Suppose that the same player makes 
moves in positions p,q, the Node(p)-residue of 
V coincides with the Node(q)-residue of V and 
LAP(p) = LAP(q). Then p and q have the same 
future, i.e. the naturally defined p-residue and 
q-residue of F(M,V) coincide. However p,q may 
have different histories in the game (i.e. p,q 
may be different) except for the later appearance 
records. This explains the adjective forgetful in 
the name of Theorem I. 

Theorem i will be proved in the next section. 

COROLLARY 2. Suppose that Z is a one-letter 
alphabet. Then--one of the players has a strategy 
f winning F(M,V) such that if p,q are 
positions where the winner makes moves and 
LAP(p) = LAP(q) then f(p) = f(q). 

Corollary 2 solves the emptiness problem for 
tree automata. 

COROLLARY 3. One of the players has a 
strategy f winning F(M,V) such that if p,q 
are positions where the winner makes moves, 
Node(p) = Node(q) and LAP(p) = LAP(q), then 
f(p) = f(q). 

THEORE~ 4 (Complementation). There is a tree 
Z-automaton accepting exactly those Z-trees that 
are not accepted by M. 

In the rest of this section we deduce 
Theorem 4 from Corollary 3. 

Let Z' be the set of mappings 

~': (the set of S-displays) ÷ {~,r}. 

A Z'-valuation V' yields the following 
strategy for Pathfinder: if x is the node of a 
position p, s' = V'(x) and r is the later 
appearance record of p, then make the move 
~'(r). 

We break the proof of Theorem 4 into several 
lemmas. 

LEMMA 5. The following statements are 
equiva e~for every V: 

(1) M does not accept V, 
(2) There is a Z'-tree V' that yields a 

winning strategy for Pathfinder in 
F(M,V). 

Proof: The implication (2) ÷ (i) is clear. 
To prove the implication (i) ÷ (2) use Corollary 

3.7 

L~AMA 6. For every Z'-tree V', the follow- 
ing statements are equivalent: 

(3) V' yields a winning strategy for Path- 
finder in F(M,V), and 

(4) Every path (e,dl,dld2,...) throzigh 

{~,r)* satisfies the followin:~ 
condition. Let x n = dl...d n, 
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V(Xn) , e'n ~ V'(Xn) for all n. 
n 

Then 

(*) For every sequence So, S 1 .... of 

states and every sequence ro, rl,... 

of S-displays, 

if r 0 ~ s O and (ao, So) ~ Tin , 

and dn+ 1 = ~(rn) , 

(sn, dn+l,an+l, Sn+ 1) ~ T, 

rn+ 1 = Exposure (r n) for 
Sn+1 

all n 
then {s: s = s n for infinitely 

many n} ~ F. 
Proof is obvious. 

It is easy to see that (,) is expressible in 
SIS. Use the B~chi-McNaughton technique, described 
in the introduction, to construct a deterministic 
Muller {e,~,r}xZxZ'-automaton M' = (S',T',Sin,F') 

that accepts a sequence 

eOO%, dlOS , . . . .  

iff (~) holds. Let M" be a deterministic tree 
Z×Z'-automaton (S',T",T~n,F') where 

T~'zn(aa') = T~(Sin'e°a') and 

T"(s,d,ga') = T ' ( s , d a a ' ) .  

LFE~A 7. For every Z'-tree V', the state- 
ment 7~-Ts-equivalent to the statement 

(5) M" accepts the Z×z'-tree given by V 
and V'. 

PreCis obvious. 

Thus M does not accept an arbitrary Z-tree 
V iff the Z-projection of M" accepts V. 
Theorem ~ is now proved. 

§3. FORGETFUL DETERMINANCY. In order to prove the 
Forgetful Determinancy Theorem we generalize our 
games and make them more syn~netrical. 

Here ~0VE is an alphabet, and p ranges over 
MOVE, and p,q,r range over MOVE*. A subset A 
of MOVE* will be called an arena if it contains the 
empty word e, and it is closed under prefixes 
(i.e. pq Q A implies p a A), and for every 
p ~ A there is ~ with pu ~ A. An arena A can 
be considered as a tree. The empty word is the 
root, and every Pu ~ A is an A-successor of p. 
A subset P of an arena A will be called an 
A-path if e ~ P and for every p £ P there is a 
unique v with Pu 6 P. 

Given an arena A, a ~ {0,i) and a s~+ 
W of A-paths consider the followin~ game 
F = (A,a,W) between Mr. 0 and Mr. i. 

Mr. s chooses Mr. 2 - s chooses 

~0 ~ ( ~ :  ~ ~ A} 

u I ~ {~: u0~ I ~ A} 
~2 ~ {u: VO~l ~ ~ A) 

u3 ~ (~: U0VlV2 v ~ A) 

M&. s wins a play P0,Ul .... if the 

corresponding A-path e,v0,~0~l,.., belongs to W, 

otherwise Mr. 2 - s wins the play. W is called 
the winning set for ~. s, the complementing set 
of A-paths is called the winning set for Mr. 2 - s. 
Elements of A are positions of F. 

In the rest of this section A is an arena, 
s E {0,I], ~ = 2 - s, and r is a game of the 
described type on A (i.e. F = (A,s',W) for some 
s ' ,W) .  

DEFINITION (Residual arenas and games). 
Suppose that p E A. Then A ~ {q: pq ~ A}. 

P 
Evidently A is also an arena. If C ~ A let 

P 
Cp {q: pq e C}, so that Cp = ~_Ap. If E is an 

equivalence relation on A let 
E = {(q,r): (pq,pr) £ E), so that E is an 
P P 

equivalence relation on A . If f is a partial 
P 

function from A to the set of natural numbers or 
to MOVE let fp(q) = f(pq) for pq E dom(f), so 

that f is a partial function on A and 
P P 

dom(fp) = (dom f)p. If W is a set of A-paths let 

= {Xp Wp : X E W}, so that Wp is a set of 

= Ap-paths. Let Sp s if the length of p is 

even, and s = 6 otherwise. If F is a game 
P 

= (Ap,~p,W , (A,s,W), let Fp ) so that rp is a 

game on A . It is easy to see that F is a 
P P 

residue of F. 

DEFINITION. Let C ~ A. The F-C-a-rank is a 
partial function f from A into the set ~ of 
natural numbers such that 

f(p) = 0 iff p E C, and 

f(p) = n + i iff there is no m < n with 

f(p) = m, and if Mr. s makes a move in the 
position p then there is an A-successor pp of 
p with f(p~) < n, and if ~@. 6 makes a move in 
p then f(p~) ! n for every A-successor pp of 
p. 

LEMMA I. I~ g ~ A, r is the r-C-s-rank 
and p c A then c is the Fp-Cp-a-rank. 

Proof is easy', p 

A (non-deterministic) strateay for ~@. s in 
game F is a fumction F assigning a subset of 
MOVE to each posfftion where ~. s makes a move. It 
respects an equivalence relation E on A if 
(p,q) ~ E and p ~ dom(F) ffmply Q E dom(F) and 
~(p) = F(q) .  

THEOR~ 2. Suppose that C ~ A and the 
winning set for Mr. a in P is the set of all 
those A-paths that meet C. Then one of the 
players has a strategy that wins F and respects 
the relation 

E = {(p,g): p,q C A, [pl ~ lql modulo 2, 

Ap = Aq, and C) = Cq). 

Proof~ Let f be the F-C-s-rank. If 
e C dom(f) then the following strategy (called 
"Decrease the rank") for ~r. s is winning: 

{(p,~): p~ ~ A, and ~r. a makes a move in 
p, and if p E don(f) and f(p) > 0 then 
pv 6 dom(f) and f(pv) < f(p)}. 
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If e # dom(f) then the following strategy 
(called "Keep out of dom(f)") for Mr. ~ is winning: 

((p,v): pv ~ A, and Mr. ~ makes a move in p, 
and if p ~ dom(f) then p~ # dom(f)~. 

Use Lemma i to check that both strategies 
respect E. [] 

DEFINITION. An equivalence relation E on A 
is right-invariant if (p,q) C E and pr £ A 
imply qr C A and (pr,qr) E E. 

If E is a right-invariant equivalence 
relation on A and (p,q) c E then E = E . 

P q 
For, suppose that (r,r') £ E . Then (qr,pr) E E, 

P 
(pr,pr ~) E E, (pr',qr') £ E. Hence (qr,qr') ~ E 
and (r,r') ~ E . 

q 

DEFINITION. A right-invariant equivalence 
relation E on A is a congruence for r if 
(p,q) £ E implies r = r . 

P q 
EXAMPLE. In Theorem 2 the equivalence 

relation E is a congruence for r. 

LEMMA 3 (The Sewing Lemma). Suppose that E 
is a congruence for ~, and F is a r-strategy 
for ~. ~ respecting E, and D is the set of 
positions p ~ A such that Mr. ~ has a 
rp-strategy respecting Ep and winning against 
any refinement of F . Then there is a strategy 

P 
G for Mr. ~ in ~ such that G respects E and 
for every p ~ dom(F-D-s-rank), G wins against 

P 
any refinement of F . 

P 
Proof: The idea of the desired strategy G 

is simple. First try to reach D. When in D 
pick up a winning strategy for the residual game. 
There is however a problem. G should respect E. 
Picking up a winning strategy for the residual 
game should respect E. Here is the formal proof. 

Order the alphabet MOVE in an arbitrary way. 
Let R ~ ((p,q): IPl ~ lqI or else IpI = Iql 
and p precedes q lexicographically), so thai. 
R is a linear order on MOVE* and every p has 
only a finite number of R-preceding positions. 

Let f be the r-D-s-rank. Check that 
f = f if (p,q) ~ E. 
P q 

For every p 6 D let G p be a ~ -strategy 
P 

for Mr. s that respects E and wins against any 
refinement of F . We are ready to construct the 

P 
desired strategy G. 

Suppose that Mr. ~ makes a move ~n a position 
p. If p ~ don(f) set G(p) = {~: p~ ~ A}. 
Suppose p ~ dom(f). If f(p) > 0 set 
G(p) = {V: pv @ dom(f) and f(p ) < f(p)}. 
Suppose that f(p) = 0 i.e. p ~ D. Pick the 
R-minimal q ~ D such that some r £ A 

q 
satisfies the following condition: r is a 
position in the subgame of r imposed by both 

q 
F and G q, and (p,qr) ~ E. Set G(p) = Gq(r). 
q 

(Note that G(p) does not depend on the choice of 
r.) [] 

For C ~A let [C] be the set of A-paths 
P such that C ~ P is infinite. 

THEOREM 4. Suppose that C ~ A and [C] 
is the~-w~nn~ng set for one of the players. Then 
one of the players has a strategy winning r and 
respecting the relation 

E = ((p,q): p,q C A, IPl = lql modulo 2, 
Ap = Aq, and Cp = Cq}. 

Proof: Evidently E is a congruence for r. 
Without loss of generality [C] is the winning 
set for Mr. 0. 

Let D = (p ~ A: Mr. I has a strategy winning 
rp and respecting Ep). If e E D there is 

nothing to prove. Suppose e ~ D. By the Sewing 
Lemma D is the domain of the r-D-l-rank. Let 
F be the strategy "Keep out of D" for ~. 0. 

For every p C A let fP be the 
rp-(Cp-(p))-0-rank. It is easy to see that if 

p ~ D then e C dom(f p) and fP(e) ~ 0. The 
strategy 

((p,v) E F: if p ~ D then vCdom(f p) and 

for ~. 0 wins r and respects E. [] 

THEOR]9~ 5. Suppose S is an alphabet and 

GaS: s c s) is a collection of disjoint subsets 
of A. For p E A let LAR(p) be the later 
appearance record of p with respect to 

(cS: s C S). Suppose that the r-winning sets are 

Boolean combinations of sets [cS], s C S. Then 
one of the players has a strategy winning r and 
respecting 

E = ((p,q): p,q C A, and IPl ~ lql modulo 2, 

and Ap ~ Aq, and Csp = C sq for s C S, and 

LAR(p) ~ LAR(q)]. 
~ro@~ by induction on IS1. We can suppose 

that ISI ~ 2 because Theorem 4 takes care about 
the case IS1 = I. We can suppose also that the 
r-winning set of ~. 0 includes the intersection 

of all sets [cS]. Evidently E is a congruence 
for r. 

Let D = (p ~ A: ~Ar. i has a strategy winning 
r and respecting E ). If e 6 D there is 
P P 

nothing to prove. Suppose e ~ D. By the Sewing 
Lemma D is the domain of the r-D-l-rank. We 
seek a winning strategy for ~. 0 among refine- 
ments of the strategy "Keep out of D". Thus we 
can suppose that D is empty. 

For every s ~ S let 

D s = A - dom(r-cS-o-rank), and F s be the 

strategy "Keep inside D s'' for ~. I, and r s be 

the subgame of r imposed by F s. If p ~ D s 
then--by the induction hypothesis--one of the 

players has a strategy winning F s and respecting 
P 

E . It can be only ~@. 0. By the Sewing Lemma 
P 

Mr. 0 has a P-strategy G s such that G s respects 

E and for every p E D s, G s wins r s. 
P P 

We are now ready to construct the desired 
winning strategy H for ~@. 0. Here is an idea. 

~. 0 tries to hit every C s. (Remember that his 
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winning set includes the intersection of sets 

[cS]. The latest appearance records tell him 

which C s is to be hit. If Mr. I can avoid hit- 

ting a certain C s then Mr. 0 plays G s. Here is 
a more formal definition of H. 

Suppose that p is a position where Mr. 0 
makes a move, and x = LAR(p). If every letter of 
S appears in x let s be the leftmost letter 
in x, otherwise let s be the first letter of 
S that does not appear in x. (We suppose that 

S was ordered a priori.) If p ~ D s decrease 

the p-cS-D-rank. If p E D s set H(p) = oS(p). [] 
To deduce the Forgetful Determinancy Theorem 

we describe a game F(M,V) in terms of this 
section. The alphabet MOVE is S U {~,r} where 
S is the alphabet of states of M. The arena A 
is the set of positions in E(M,V). Mr. 0 is the 
automaton M, Mr. I is Pathfinder. The alphabet 
S of Theorem 5 is the alphabet of states of M. 

Every C s = {p ~ A: s is the rightmost letter in 
p}. It is easy to see that F(M,V) is a game 
(A,0,W) where W is a Boolean combination of 

sets [cS]. By Theorem 5 one of the players has a 
strategy winning r(M,V) and respecting the 
equivalence relation E of Theorem 5. It 
respects also a finer equivalence relation 

{ ( p , q ) :  p , q  6 A, and IPl s lql modulo 2, 

and the  N o d e ( p ) - r e s i d u e  of V c o i n c i d e s  

wi th  the  N o d e ( q ) - r e s i d u e  of  V, and 

LAR(p) = mR(q)} 

and it can be refined to a deterministic strategy 
respecting this equivalence relation. 
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