Check for
Updates

See page ii

The recognition of Series Parallel digraphs

Jacobo Valdes*
Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08540

Robert E. Tarjan*
Computer Science Department
Stanford Uhiversity
Stanford, Ca. 94305

Eugene L. Lawlerf
_ Computer Science Division
University of California at Berkeley
Berkeley, Ca. 94720

Abstract: we present an algorithm that recognizes the class of
General Series Parallel digraphs and runs in time proportional to
the size of its input. To perform this recognition task it is neces-
sary to compute the transitive reduction and transitive closure of
any General Series Parallel digraph. Our analysis is based on the
relationship between General Series Parallel digraphs and a class
of well known models of electrical networks.

1. Introduction

The interest of the directed acyclic graphs that we study in this
paper is due to their application to the problem of scheduling
under constraints. A number of problems of this type known to
be NP-complete when the constraints between the tasks to be
scheduled are arbitrary, can be solved efficiently when the con-
straints form a General Series Parallel (GSP) digraph (ILAW],
[MON], [SID]). These efficient algorithms use the simple recur-
sive structure of the GSP constraints in a "divide and conquer”
approach.

Qur main result is a linear time algorithm that determines
whether any given digraph is GSP, and if it is, describes its struc-
ture in a concise form suitable to be used by the scheduling algo-
rithms mentioned above. This recognition procedure works by
exploiting the relationship between GSP digraphs and the well stu-
died class of Two Terminal Series Parallel (TTSP) multidigraphs
([ADA], [DUF], [RIO], [WALI, [WEI]).

Additionally, our analysis allows us to prove a simple forbid-
den subgraph characterization of GSP digraphs and design linear
time algorithms for the transitive closure and transitive reduction
of GSP digraphs as well as for the isomorphism of GSP digraphs
that are minimal.

Our work also raises the possibility of the existence of a poly-
nomial time algorithm to solve the subgraph isomorphism problem
for transitive and minimal GSP digraphs, and relates this problem
to a particular case of the subtree homomorphism problem.

The remainder of this paper is divided into four sections. The
first one provides the definitions and elementary facts needed to
understand the recognition procedure. In the second, the pro-
cedure itself is first outlined and shown correct, and an implemen-

* Work supported by NSF Grant MCS-75-22870 and ONR Grant
NO0014-76-C-0688.
+ Work supported by NSF Grant MCS-76-17605.

©1979 ACM 0-89721-002-6/79/0400-001- $00.75

tation of it that runs in linear time discussed in detail. The third
section presents the forbidden subgraph characterization of GSP
digraphs and the last section presents some of the consequences of
our work.

2. Basic definitions and relations

2.1. Graph theoretical definitions

Most of the graph theoretical terms used are standard (see
[HAR] for instance). We therefore limit ourselves to defining the
most commonly used terms and those that may produce confu-
sion.

A graph G=<V _ E>, consists of a finite set of verrices V and a
finite set of edges E. Edges are pairs of distict vertices; if the edges
of a graph are unordered pairs the graph is undirected and if they
are ordered the graph is directed. We will abreviate directed graph
as digraph.

A digraph G=<V . E> is complete bipartite if V can be parti-
tioned into H and T so that E=HxT. The set H is called the fiead
and T is called the il of G.

If the set of edges of a graph may be a multiset, that is, if we
allow multiple edges between the same two vertices, the graph is
called a multigraph. We will abreviate directed multigraph as mui-
tidigraph. The terms that we define for graphs in the rest of this
section can be applied to multigraphs as well.

A vertex v of a digraph G is a source if no edge of G enters v.
Similarly a vertex v is a sink if no edge of G leaves v.

A path in a graph (directed or undirected) is a sequence of
vertices v|,v,,...,v, such that for all I<i<n+1 the pair (v;_,v)) is
an edge of the graph. If v,=v, the path is called a cycle. A graph
(directed or undirected) that does not contain cycles is called acy-
clic. We will abreviate directed acyclic graph as dag.

A dag is wransitive if it contains an edge (u,v) between any two
vertices such that there is a path from u to v. The ransitive closure
of a dag G=<V.E>, is the dag Gy=<V,E;> for which E; is
the minimal subset of VxV that includes E and makes Gy transi-
tive.

An edge (u,v) of a dag is redundant under transitive closure or
simply redundant if there is a path from u to v in the dag that does
not include the edge. A dag that does not contain any redundant
edge is called minimal. The trausitive reduction of a dag G is the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800135.804393&domain=pdf&date_stamp=1979-04-30

unique minimal dag having the same transitive closure as G.
The line digraph of a digraph G is a digraph L{G) that has:
- a vertex f(e) for each edge e of G; and

- an edge (f(e,),f(e,)) for each pair of edges of G of the form
e;=(u,v), e;=(v,w).

A graph G| =<V,|,E,;> is a subgraph of another G=<V,E>
if V, is a subset of V and E, is a subset of E. For any subset S of
the vertices of a graph G, the induced subgraph of S is the maxi-
mal subgraph of G with vertex set S. We sat that G contains a
subgraph homeomorphic to H if H can be obtained from G by a
sequence of the following operations:

- removal of an edge;

- replacement of two edges of the form (u,v), (v,w) by an
edge (u,w) when v has degree 2.

The assumptions used to analyze our algorithms are standard
and can be found in [AHUI.

2.2. Minimal Series Parallel digraphs

We define the class of GSP dags in relation to the subclass of
its members that are minimal. The dags in this subclass are called
Minimal Series Parallel (MSP), and are defined recursively as fol-
lows:

Definition 1: [Minimal Series Paralle! dags]

(i) The dag having a single vertex and no edges is MSP.

Gi) If Gy=<V E> and G,=<V,,E;> are two MSP dags,
so is either of the dags constructed by the following opera-
tions:

(a) Parallel composition: G, =<V ,UV,,E|UE;>.

(b) Series composition: G,=<V U V,,E\UE,U (N;xRy)>,
where N, is the set of sinks of G| and R, the set of
sources of G,. 1

We now define the class of GSP dags as follows:
Definition 2: [General Series Parallel dags]

A dag is GSP if and only if its transitive reduction is a MSP
dag. O

Figure 1 shows the construction of a MSP dag by a sequence
of series and parallel compositions. Figure 2 shows a GSP dag
whose transitive reduction is the MSP dag of fig.1.

A MSP dag constructed by the operations of def.l can be
represented in a natural way by a binary tree as shown in fig.3.
This tree has been constructed by (i) associating the trivial tree
having one node with the MSP dag having one vertex and no
edges, and (ii) using the rules of fig.4 to build larger trees from

* smaller ones as the process of building the MSP dag by series and
parallel compositions progresses.

The result is what we call a binary decomposition iree: a binary
tree having a leaf for each vertex of the MSP dag it represents,
and whose internal nodes are labelied S or P to indicate respec-
tively the series or parallel composition of the MSP dags
represented by the subtrees rooted at the children of the node.
Binary decomposition trees provide a concise description of the
structure of a MSP dag.

It should be noticed that several non isomorphic binary
decomposition trees may represent the same MSP dag. This is due
to the symmetry of the parallel composition operation and to the

b & ¢
\ / \ /
be de
3 h
Ceo ee [} [

a
¢ i h i
N
b d
aﬁ>’€
\.—.»—-—oc

Fig.1
Construction of a MSP dag by series and paralle! compositions.

Fig.2
A GSP dug.

associativity of consecutive series or parallel compositions. The
symmetry of parallel compositions makes the left-right ordering of
the children of a P node irrelevant and the associativity of each of
the two operations introduces the ambiguity typical of
unparenthesized infix expressions. These characteristics are illus-
trated in fig.5.

A property of MSP and GSP dags that plays an important role
in our recognition procedure, involves the partial order induced by
the edges of a MSP dag on the set of its vertices.

b ¢

\/ \/ s b

N N
\,S'/ \.S/

Fig.3
Binary decomposition tree representing
the MSP dag of fig.1.

[/ A /A

:\/
\?/ % \s

™~

Fig.4
Rules used to construct T, and T‘, (the binary
decomposition trees of G und G, of def.1)
from T, and T2 (the binary decomposition trees
of G| and G; in the same definition).

ie ! ? 2 ¢
@) \ / \/
2 ? P
14 & J \ /a z‘\ /3
(b) ——»0 ——30 a 3 1 <
\b/ \s/
40 i 2 X 3
N\ \
e . / /

?\ /3 l\ /‘P
3 e [4 14

Fig.5
Sources of multiplicity of binary decomposition trees.
(a) Symmetry of parallel compositions.
(b), (¢) Associativity of series and parallel compositions.

In general, the binary relation among vertices of a dag G
defined by : "u— v if and only if there is a path from u to v in G" is a
partial order. Any partial order on a set can be defined as the
intersection of several total orders on the same set, and the
minimum number of total orders needed to define the partial
order in this fashion is called its dimension. As an example, fig.6
shows a MSP dag and two total orders on the set of its vertices.

The intersection of the total orders defines the same partial order
as the relation "—" described earlier: there is a path from vertex u
to vertex v in the dag if and only if u appears before v in the two
total orders. Thus the partial order induced by the dag of fig.6 is
at most two-dimensional.

b 4 Torac oRpeRs :
abcdepghi
LT e { aghicbedy
5——’0——-’:

Fig.6
A MSP dag. and two total orders on its vertices whose
interscetion gives the partial order induced by its cdges.

It should be noted that the partial order induced by any dag is
the same as the one induced by its transitive closure or its transi-
tive reduction, since the relation "—" is defined in terms of paths
between vertices.

The partial order induced by the edges of any MSP dag is at
most two-dimensional, that is, it can be obtained as the intersec-
tion of at most two total orders. This fact will be proved by
describing an algorithm that takes a binary decomposition tree as
input and provides two partial orders whose intersection defines
the MSP dag represented by the tree. We postpone this descrip-
tion however until a global outline of the GSP recognition pro-
cedure in which it is used has been presented.

2.3. Two Terminal Series Parallel multidigraphs

In our recognition algorithm for GSP dags a central role is
played by the relationship between MSP dags and the class of Two
Terminal Series Parallel (TTSP) multidigraphs. Consequently this
section is devoted to the definition of this class and to a review of
the relevant properties of its members.

The class of TTSP multidigraphs (named in this fashion
because all its members have a single source and a single sink) is
defined recursively as follows:

Definition 3: [Two Terminal Series Parallel Multidigraphs]

(i) A digraph consisting of two vertices joined by a single
edge is TTSP.

(ii) If G, and G, are TTSP multidigraphs, so is the multidi-
graph obtained by either of the following operations:

(a) Two terminal parallel composition: identify the source of
G, with the source of G, and the sink of G with the
sink of G,.

(b) Two terminal series composition: identify the sink of G,
with the source of G,. O

The construction of a TTSP multidigraph using the operations
of def.3 is shown in fig.7. TTSP multidigraphs are obviously acy-
clic, since the trivial TTSP multidigraph has only one edge, and
the operations of def.3 do not create cycles when applied to acyclic
multidigraphs.

Fig.7
Construction of a TTSP multidigraph by two terminal
serics and two terminal paraltel compositions,

The class of multigraphs containing precisely the undirected
versions of all TTSP multidigraphs has been extensively studied
([ADA], [DUF], [RIO], [WAL], [WEI]) because of its relation-
ship with the networks constructed by connection in series or in
parallel of electrical components (resistors, capacitors, etc.). The
properties of TTSP multidigraphs described in this section are, for
the most part, simple extensions of known properties of their
undirected versions, and therefore only summary proofs are pro-
vided for them. A precise description of the relationship between
TTSP multidigraphs and their undirected versions, as well as com-
plete proofs of the properties we describe, can be found in [VALI.

Given the formal similarities between def.3 and def.l, it
should come as no surprise that everything said about decomposi-
tion trees for MSP dags applies to TTSP multidigraphs almost ver-
batim. As an example, fig.8 shows the binary decomposition tree
corresponding to the construction process of fig.7; note that the
decomposition tree has now a leaf for each of the edges of the
TTSP multidigraph it represents.

The formal similarity of their definitions suggests also a
vertex-edge duality between MSP dags and TTSP multidigraphs.
The following lemma shows that this is indeed the case, and
relates the two classes through the line digraph transformation.

Lemma 1: An acyclic multidigraph with a single source and a
single sink is TTSP if and only if its line digraph is a MSP dag.

Fig.8
A binary decomposition tree for the TTSP
multidigraph of fig.7.

Proof: follows by induction on the number of edges of the
multidigraph with the aid of two facts:

(i) the line digraph of the trivial TTSP multidigraph (two ver-
tices joined by a directed edge) is the trivial MSP dag (one
vertex and no edges),

(ii) the line digraph of the two terminal series (parallel) com-
position of G and G, is the series (parallel) composition
of the line digraph of G, and the line digraph of G,. O

A further consequence of the relation given by (i) and (i) in
the above proof is that if T is a binary decomposition tree of a
TTSP multidigraph G, and we regard it as the binary decomposi-
tion tree of a MSP dag, then T represents the line digraph of G.
As an example, it is trivial to test that the line digraph of the
TTSP multidigraph of fig.7 is the MSP dag of fig.1 and that both
can be represented by the same binary decomposition tree {shown
in fig.3 and fig.8).

Another important characterization of TTSP multidigraphs
based on the reductions shown in fig.9 is given by the following
lemma:

@) et » Y
B e >t
Fig.9

() Series reduction. (b) Paralle! reduction.

Lemma 2: A multidigraph is TTSP if and only if it can be
reduced to the trivial TTSP multidigraph {two vertices joined
by a single edge) by a sequence of series and parallel reduc-
tions.

Proof: This lemma is a trivial generalization of the results of
Duffin [DUF] for undirected TTSP multigraphs, and can be
established by an easy induction (on the number of reductions
applied for the "if" part, and on the number of edges for the
"only if"). The details can be found in [VAL] or [DUF]. O

This characterization is the basis of an efficient algorithm to
recognize the class of TTSP multidigraphs that we will use later on
as part of our recognition procedure for GSP dags: to test whether

a multidigraph is TTSP we repeatedly apply series and parallel
reductions to it until no more reductions are possible, and then
test whether the remaining digraph consists of a single edge.

Lemma 2 is not sufficient however to guarantee that the
recognition procedure just outlined will provide the correct answer.
The lemma does indeed say that we will succeed in reducing the
multidigraph to a single edge only if it is TTSP. Nevertheless the
‘emma does not guarantee that we will succeed in reducing a TTSP
multidigraph by applying to it arbitrarily selected series and parallet
-eductions and only states that there exists at least one sequence
of such reductions that will reduce the multidigraph.

Fortunately, the reduction system that we are using has a
property — known as the Church-Rosser property — that guarantees
that the characteristic of being reducible to a single edge is
preserved by the application of any series or parallel reduction.
We can therefore carry out any applicable reduction at any point
without fear of hurting our chances of ultimately reducing the
multidigraph to a single edge.

Symbol manipulation systems possessing the Church-Rosser
ICR) property are useful in many areas of Mathematics and Com-
puter Science, and several sufficient conditions for a system to
rosses this property are known ([ROS], [SET]). Using these
sufficient conditions it is simple to prove that the reduction system
consisting of series and parallel reductions has the CR property.
The proof requires however a good deal of background irrelevant
for our purposes and is omitted (see [HKS] or [WAL] for a proof
of the CR property of the undirected version of our reduction sys-
tem that can be easily generalized to the directed case.)

Just as important for our purposes as the simplicity of the
recognition algorithm for TTSP multidigraphs described, is the fact
that a binary decomposition tree of the multidigraph being reduced
can be obtained as a byproduct of the reduction process.

In order to obtain the decomposition tree, we associate a label
with each edge of the multidigraph being reduced. Initially the
label of each edge is a trivial binary tree consisting of a single
nade. As the reduction process introduces new edges we use the
rules of fig.10 to compute the binary trees used to label them.

T T

N/
.__TL_.,.-—E—-,. $ ——.S__,.
T ‘\ /T‘

vl

Fig.10
Computing the label of a new edge
introduced by a series or parallel reduction.

The binary decomposition tree of the initial multidigraph is
obtained as the label of the only remaining edge after the reduc-
tion, a fact that can be proved by an easy induction that we omit
(see [VAL]). An example of this process is shown in fig.11.

5 6
ss %3
AV N/
i\ /? 4\ ;g
S\?/S
“
l\s/?
56
.
?
NP
S
2
\7
1 ?
4 o{‘ 4 :5£
\
?\s/? \S/?
Fig.11

Example of how a binary decomposition tree of o TTSP
multidigraph can be obtained from the reduction process.

3. The GSP recognition algorithm

We have finally collected enough facts to be able to outline
our procedure to recognize the class of GSP dags and provide a
proof of its correctness.

Algorithm 1: [Recognition procedure for the class of GSP
dagsl

Input: a dag G.

Output: YES if G is GSP, NO otherwise.

Step 1: Pseudo transitive reduction of G. Given G=<V E>,
partition E into E; and E,; so that if G is GSP, then
Gy=<V,E\/> is its transitive reduction (and therefore
MSP). If G is not GSP, Gy may be MSP (we have to pay this
price in order to be able to implement this step in linear time
since it is unlikely that a linear time transitive reduction algo-
rithm exists for arbitrary dags [AGU])).

Step 2: Compuie the line digraph inverse of Gyy. Test whether
G satisfies a sufficient condition (satisfied by all MSP dags)
for having a line digraph inverse L=(Gy,). If Gy does not
satisfy this condition we answer NO and stop, otherwise we
compute L=1G) so that Gy is MSP if and only if L™Gyy)
is TTSP (temma 1).

Step 3: Test whether L='(Gy,) is TTSP using the characteriza-
tion of lemma 2. If L"(GM) is TTSP compute a binary
decomposition tree T for it, otherwise answer NO and stop.
According to what we said earlier, T is a decomposition tree of
L-"(Gy) as a TTSP multidigraph and of Gy, (its line digraph)
as a MSP dag.

Step 4: Test whether Gy, is the ransitive reduction of G. That is,
test that the edges in Eq belong to the transitive closure of
Gy If they do, answer YES and output T, otherwise answer
NO and stop. This step will be performed by using T to com-
pute two total orders on V whose intersection defines the par-
tial order — on Gy, then using them to test, for each edge
(u,v} of Ep, whether there is a path from u to v in Gy by
testing whether u appears before v on both total orders. O

We can prove this procedure correct by the following argu-
ment.

If G is GSP, then Gy will be MSP and will satisfy the test of
Step 2. If Gy is MSP, according to lemma 1 L™1(G,,) will be
TTSP and thus will satisfy the test of Step 3. Step 4 will simply
certify that Step 1 performed the transitive reduction of G and the
algorithm will answer YES.

If, on the other hand, G is not GSP we have two possibilities:
either Gy; is not MSP or it is not the transitive reduction of G. In
the first case the algorithm will answer NO in either Step 2 or Step
3, since according to lemma | L“(GM) cannot be TTSP if Gy, is
not MSP, and in the second case the algorithm will answer NO in
Step 4.

In either case the algorithm produces the right answer, and we
conclude that it recognizes the class of GSP dags as claimed.

Unfortunately, the above description of the algorithm is far
from being precise enough to establish the linear upper bound on
its running time that we want. We will therefore devote the rest
of this section to providing enough details about its implementa-
tion so this linear bound can be established.

3.1. The transitive reduction of GSP dags

We will now describe how to implement Step 1 of the GSP
recognition algorithm so it runs in a number of steps that grows
linearly with the size of the input dag. Remember that we want a
procedure that computes the transitive reduction of GSP dags and
may do anything on a dag that is not GSP.

Consider the following functions defined on a dag G with n
vertices:

The layer function: L¢;: V—{0,1,2,...n-1}.

L;(v)=0if v is a source, otherwise the length of the longest
path from a source of Gtov. O

The jump function: J;: E—{1,2,...,n-1}.
J(}((U,V))=L(;(V)‘LG(U).]

The minimum jump function M¢;: V={0,1,2,....n-1}.

M (v)=0if v is a sink of G, otherwise the minimum value of
Ji; over all edges that leave v. O

Figure 12 shows the values of these three functions for the
MSP dag of fig.1.

L‘:D (U Y

Fig.12
Values of L¢;. J¢; and Mg; for the MSP dug of fig.1.

Our interest in these fuctions is due to the following facts:

Lemma 3: Let G be a dag. For any edge (u,v) of G that is
redundant under transitive closure M (u) < Jg((u,v)).

Proof: Because G has no multiple edges, the path fromuto v
not including (u,v) has to have at least two edges. Let (u,x)
be the first edge on that path; by definition, the values of L;
must increase along any path in G, and there is a path from x
to v therefore L;(v) > Lg(x). By definition Jg;((u,v)) >
J;((u,x)) and the prosition must be true since M¢;(u) cannot
be greater than J;{(u,x)). O

Lemma 4: If G is MSP then M (u)=J;((u,v)) for any edge
(u,v) of G.

Proof: We prove the proposition by induction on the number
of vertices of G.

If G has one vertex, the proposition is trivially true; oth-
erwise let the proposition hold for all MSP dags with fewer
than k vertices, and let G be the series or parallel composition
of G, and G,, each having at most k-/ vertices.

We discuss in detail only-the case when G is the series
composition of G, and G, since the analysis of the other case
is quite similar,

When G is the series composition of G, and G, there are
three possibilities: (i) (u,v) is an edge of Gy, (i) (u,v) is an
edge of G,, and (iii) (u,v) joins a sink of G, to a source of
024

When (u,v) is an edge of G, the proposition follows
immediately from the induction hypothesis and the fact that
JG((u,v))=JGI((u,v)) for all edges of G, (this is a trivial

consequence of the fact that Lg (v)=L01(v) for all vertices of

G, which in turn follows directly from the definitions of the
layer function and series composition).

Let now (u,v) be an edge of G, and q be the length of the
longest path in G,. This path has to end in a sink of G, and
therefore, by definition of the layer function,
L(;(X)=LGZ(X)+Q+] for any vertex x of G,. Because J; is

defined by the difference of two layer values, this implies
JG(e)=JGZ(e) for any edge e of G,; from this fact and the

induction hypothesis the proposition follows trivially.

Finally, if (u,v) joins a sink of G, to a source of G, we
know that L¢;(y)=q+1 for any source y of G;. Since any edge
¢ leaving a sink u of G| must enter a source of G, it must be
that J;(e)=q+1-L;(u) and therefore M (u)=J;(e) for all
edges leaving u. From this fact the proposition follows trivi-
ally once again. O

The jump and minimum jump functions were defined in terms
of the layer function, which in turn was defined in terms of long-
est paths in a dag. Because a path of this type cannot contain
edges that are redundant, the values of these three functions on a
dag are insensitive to the addition or removal of redundant edges.
As an example, it is trivial to test that the values given in fig.12
for the MSP dag of fig.]1 are identical to the values that one would
obtain for the GSP dag of fig.2.

This fact together with lemmas 3 and 4 directly implies the fol-
lowing:

Corollary 1: Let G be a GSP dag and (u,v) one of its edges.
The edge (u,v) is redundant under transitive closure in G if
and only if M¢(u) < J((u,v)). O

As a consequence, we know that it is enough to compute the
values of the jump and minimum jump functions to perform the
transitive reduction of a GSP dag. Because these two functions
can be trivially computed from the values of the layer function,
and the layer values can be computed by a trivial modification of
the topological sort algorithm ([KNU]), we can implement Step |
of the GSP recognition procedure to run in O(n+m) steps for a
dag with n vertices and m edges.

3.2. The inverse line digraph of a dag

We now consider the problem of implementing Step 2 of the
recognition procedure.

The problem of characterizing the dags that have line digraph
inverses has been studied from a non-algorithmic point of view by
several authors ([HN], [KLE]), and the problem of computing the
inverse line graph for an arbitrary graph has been solved by Lehot
[LEH].

Unfortunately Lehot’s approach does not work for dags mostly
because several nonisomorphic multidigraphs may have the same
line digraph, as shown in fig.13.

We will solve the problem in two steps: first we use a charac-
terization due to Harary and Norman [HN] to determine whether
the dag has a line digraph inverse, and, once we know that it does,
we then compute a specific line digraph inverse out of the several
possible ones.

Definition 4: [Complete Bipartite Composite dags]

A dag G is Complete Bipartite Composite (CBC) if there
exists a set of complete bipartite subgraphs of G: B,B,,....B,,
called the bipartite components of G, such that:

6 _>¥ & :S—r

1 *3

L(6): L) + 2 —ea

Fig.13
Two nonisomorphic multidigraphs
that have the same line digraph.

(1) each edge of G belongs to exactly one bipartite com-
ponent;

(b) every vertex v of G, except the sinks, belongs to the head
of exactly one bipartite component denoted h(v);

(c) every vertex v of G, except the sources, belongs to the
tail of exactly one bipartite component denoted t(v). O

It is a trivial exercise to prove that the bipartite components of
a CBC dag are unique (see [VAL]).

The first part of the characterization we seek is given by the
following lemma:

Lemma 5: A dag has a line digraph inverse if and only if it is
CBC.

Proof: See [HN]. ©

This lemma solves the question of whether a dag has a line
digraph inverse, but says nothing about the multiplicity of inverses
mentioned earlier. Fortunately Harary and Norman provide the
answer to this problem as well:

Lemma 6: Let G, and G, be two multidigraphs such that
L(G|) = L(G,). The multidigraphs obtained from G, and G,
by merging the sources into a single source and the sinks into
a single sink are isomorphic.

Proof: Harary and Norman [HN] prove that the inverse line
digraph is unique if the sources and sinks are deleted instead
of merged. The modification of their argument to prove our
lemma is trivial and is omitted. O

From now on any mention of the line digraph inverse L~1(G)
of a CBC dag G, will refer to the unique multidigraph having a
single source and a single sink whose line digraph is G.

These results would be irrelevant for our purposes but for the
following fact:

Lemma 7: Every MSP dag is CBC.

Proof: In the construction of a MSP dag by series and parallel
compositions new edges are introduced exclusively by series
compositions, and each series composition introduces edges
that form a complete bipartite subgraph of the complete MSP
dag. It is trivial to check that the subgraphs defined by the
series compositions satisfy the conditions of def.4 and are
therefore the unique bipartite components of the MSP dag. O

We have therefore solved the first part of our task: we have
found a property (being CBC) satisfied by all MSP dags that is a

sufficient condition for a dag to posses an inverse line digraph.
We will now complete our task by showing (i) how to test a given
dag for this property and (ii) how to compute its line digraph
inverse in a number of steps proportional to the size of the dag.

We can test whether a dag is CBC as follows. We select an
edge (u,v) of the dag that has not been assigned to a bipartite
component yet and assign it to a new bipartite component B;, We
now mark all the predecessors of v as belonging to the head, and
all the succesors of u as belonging to the tail of B;. We then test
whether there is a complete bipartite subgraph of the dag with the
head and tail just identified; if no such subgraph is found, the dag
is not CBC. We continue the process by selecting a new edge and
repeating the operation until no edge remains unassigned. While
performing this process, we decide that the dag is not CBC if we
ever attempt to assign an edge to more than one bipartite com-
ponent, or mark a vertex as belonging to more than one head or
one tail.

Because of the uniqueness of the bipartite components, this
process will identify a new component every time an unassigned
edge is selected and processed as described above. Therefore, by
assigning all edges to components, this process proves that the
input dag was CBC by identifying its bipartite components.

Because the implementation of this procedure to run in a
number of steps proportional to the size of the input dag is a
trivial exercise in data structures, we find ourselves closer to our
immediate goal of implementing Step 2 of the GSP recognition
procedure in linear time. We therefore proceed to consider the
remaining problem: computing the inverse line digraph of a CBC
dag.

Consider the following transformation of a CBC dag:

Definition 5: [The inverse line digraph of a CBC dag]

Let G be a CBC dag with bipartite components B,,B,,....B,.
The vertex set of L™(G) is {B,,B,,B,,....B,.B,} and its edge
set has an edge for each vertex of G defined as foflows:

(a) for each source v of G, L™1(G) has an edge (B__h(v)):

(b) for each sink v of G, L™'(G) has an edge (t(v),B,);
(c) for each vertex v that is both a source and a sink of G,
L-Y(G) has an edge (B,.B,); and

(d) in all other cases, the edge of L~'(G) that corresponds to
vertex v of G is (t(v),h(v)). O

a

The name given to this transformation is justified by the fol-
lowing property:

Lemma 8: For any CBC dag, L(L"'(G))=G.

Proof: For each vertex of G, L™'(G) has an edge, and for
each edge of L™1(G) there is a vertex in L(L™1(G)) according
to the definition of the line digraph. This establishes a one to
one relationship between the vertex sets of G and L(L"(G)).
The inverse line digraph transformation was defined so that
there is an edge between any two vertices of G if and only if
there is an edge between the corresponding vertices of
LIL-HGH. O

The algorithm sketched earlier to test whether a dag is CBC
actually computed the bipartite components of the dag being
tested, and given these components it is trivial to compute the
inverse line digraph as given by the above definition. Since the
line digraph inverse has an edge for each vertex of the CBC dag
from which it originates, it should be clear that we have described
a procedure to compute the line digraph inverse of a CBC dag G
in time proportional to the size of G.

-Furthermore, the line digraph inverse of any CBC dag has a
single source and a single sink (B, and B, respectively) so it fol-
lows from lemmas | and 8 that the line digraph inverse of a CBC
dag G is a TTSP multidigraph if and only if G is a MSP dag.

We have thus achieved the goal of implementing Step 2 of our
recognition procedure so it runs in linear time.

3.3. The recognition of TTSP multidigraphs

The algorithm to be used in Step 3 has already been described
in section 1.2: apply series and parallel reductions to the multidi-
graph given until no more reductions are possible, and then test
whether the remaining digraph consists of a single edge. Thus our
only task here is to show that this method can be implemented to
run in time proportional to the size of the given multidigraph.

The same problem for undirected graphs is suggested as an
exercise in [AHU] (exercise 5.8), but unfortunately no solution is
presented for it. A detailed discussion of two solutions of this
exercise can be found in [VAL] together with their generalization
to directed multigraphs. Therefore the description that follows has
been reduced to a minimum.

The basic data structure is a list of vertices that we call the
unsatisfied list. Initially this list includes all vertices of the input
multidigraph except the source and the sink, and in general it will
contain all the vertices on which some work has to be performed
(except the source and sink, which are never added to it).

The algorithm proceeds by removing any vertex v from this
list and performing as many paralle! reductions on the edges
incident to it as it is possible before either leaving the vertex with
a single entering edge and a single exiting edge, or discovering that
the vertex still has at least two distinct predecessors or two distinct
succesors. In the first alternative, the vertex is removed by a
series reduction and the two vertices adjacent to it added to the
unsatisfied list if they are not there already. This process is
repeated until the unsatisfied list becomes empty, at which point
the same process is applied to the source and the sink (in order to
eliminate any multiple edges between them) before stopping.

We can prove that this method will correctly recognize the
class of TTSP multidigraphs using the characterization of lemma 2
as follows. The unsatisfied list becomes empty, either because all
vertices (except source and sink of course) have been deleted by
series reductions or because every remaining vertex has two dis-
tinct predecessors or two distinct successors. In the first case the
multidigraph has been reduced {(except for possible multiple edges
between the source and the sink which will be deleted in the last
step) and in the second no vertex can be eliminated by a series
reduction until some other vertex is eliminated, which clearly
implies that no more vertices can ever be deleted.

The running time of this procedure cannot be analyzed unless
we look more closely at the processing of each vertex deleted from
the unsatisfied list. Let us assume tnat each vertex has two lists of
pointers to edges associated with it. One list contains pointers to all
the edges entering the vertex, while the other contains pointers to
all the edges leaving the vertex. The processing of a vertex con-
sists of applying to these two lists the following algorithm:

while size of the list is greater than one do
if cither of the first two elements points to a deleted edge then
delete the poimer from the list
elseif the first two elements point 1 edges with the same endpoints then
carry out a parallel reduction and delete the poiniers
else exit
end;

Clearly the processing of a vertex terminates when each of its
two lists has either a single element or contains pointers to edges
with different endpoints. [If appropriate data structures are used,
this process can be implemented so it takes a constant number of
steps every time the process is initaited plus a (different) constant
number of steps for every pointer deleted.

We will therefore be able to guarantee a linear time upper
bound on the running of the total reduction process if we prove
that (a) a linear number of vertices are processed (i.e., deleted
from the unsatisfied list) and (b) the total number of pointers to
edges deleted is linear.

In a multidgraph with n vertices and m edges, we will have n-
2 elements in the unsatisfied list initially. New vertices are added
to this list only after a series reduction is performed, an operation
that decreases the total number of vertices of the multidigraph by
one. Thus at most n-2 series reductions can be performed and no
more than 2(n-2) additions to the unsatisfied list will occur, since
at most two vertices are added for each reduction.

Initially, we will have a total of 2m pointers to edges in all the
lists associated with the vertices since a pointer to (u,v) will appear
in the list of edges entering v and the in the list of edges leaving u.
New edges, and therefore new pointers, are added by parallel
reductions as the algorithm progresses, but since each of these
reductions decreases the total number of edges of the multidigraph
by one, no more than m-1 of them could possibly be performed
and no more than 2(m-1) new pointers introduced. Thus a total
of no more than 2m+2{(m-1) pointers to edges will be manipu-
lated.

One more problem has to be considered: we want to obtain
the decomposition tree of the multidigraph being reduced so we
have to compute the labels for the new edges using the rules of
fig.10. Clearly any reasonable implementation of this computation
will not construct the new label from scratch, but will instead com-
bine the labels of the edges being deleted. In this fashion each
new label can be computed in a constant amount of time.

This completes our argument, and we conclude that Step 3 of
the GSP recognition procedure can also be implemented to run in
time proportional to the number of vertices and edges of its input.

3.4. The two dimensionality of MSP dags

This section completes our description of the implementation
of the GSP recognition procedure by showing how Step 4 can be
implemented in linear time.

It is useful to remember the task to be performed: given a
binary decomposition tree of a MSP dag, we want to compute two
total orders on the set of its vertices whose intersection defines the
same partial order as the edge set of the dag, that is, two total ord-
ers such that for any two vertices of the dag u.v there is a path
from u to v if and only if u appears before v in both total orders.

Let us regard a total order on a set of n elements as a one-to-

one correspondence between the set and {1.2,...n}. Thus, given
two total orders on a set, we can consider them as assigning two

integers to each of the elements of the set, and regard this pair of
integers as cartesian coordinates of the element. In this fashion an
intuitive correspondence can be established between the two total
orders whose intersection defines a MSP dag and an embedding of
the MSP dag in the cartesian plane in which the coordinates of any
pair of its vertices u,v satisfy the relationship x,>x, and y >y, if
and only if there is a path from u to v in the dag. As an example
fig.14 shows the embedding of the MSP dag of fig.6 resulting from
interpreting in this fashion the two total-orders given in the same
figure. We will use this interpretation in the discussion that fol-
lows.

Fig.14
Embedding of the MSP dag of fig.6 in the planc using
the two total orders of the sume ligure as coordinates.

The first observation we make, is that an MSP dag with n ver-
tices can be embedded in an nxn square of the cartesian plane,
since the integers assigned to its vertices are in {1,2,....n}. Know-
ing this fact, we can use the approach shown in fig.15 to reduce
the problem of embedding a MSP dag G to that of embedding two
smaller MSP dags, G, and G,, whose series or parallel composi-
tion produces G. A look at that figure should convince the reader
that for any pair of vertices, ueG, and veG,, there is a path from
u to v if and only if both coordinates of u are smaller than the
corresponding coordinates of v, i.e., only in the case of the series
composition.

Clearly this approach can be applied recursively 1o reduce the
problem of embedding an MSP dag with n vertices to the n trivial
problems of embedding the MSP dag with one vertex and no
edges at a specific location of the plane.

To complete the details of how this process may be per-
formed, let us assume that the position of the embedding of a
MSP dag with n vertices in the cartesian plane is given by the
coordinates of the lower left corner of the nxn square that con-
tains all its vertices. With this convention, if we let ny and n,
denote the number of vertices of G, and G in fig.15, the follow-
ing formulae will provide the positions of G, and G, given ny, n,
and the position (x,y) of G:

Series composition: X=X
Y=y
x;=x+n,
y2=y+n,

Parallel composition: X=X
y;=y+n,
Xy=x+n,
Yo=Yy

The correciness of these formulae can

inspection of fig.15.

be established by

v Seeies (enpesition
[ettt at bl ~om=
']
: ' :
‘ ; !
]]
[' G, !
'] [
1])
: ' !
‘.-----.:..-.-- ceemmeed
5y : ' :
l ¢ G H 'y '
] ¢]
bceacmdocmamnmcsans 2
L L by
} 4
Y N
TheavEL Comasirions
vTTTesRTTTTE T
: ' '
e ;
\:] 1
bemw- Necem=- —ewey
1 ' 4
] (])
]
: ? -
S
: ' ‘
H I !
'])
L------:Y--------J
L Y b5
} §
Fig.15
Methaod used to embed o MSP dag in the plane so the coordinates
of its vertices give two total orders whose intersection

defines the partial order induced by the cdges of the dag.

Given a binary decomposition tree T of a MSP dag G, the
embedding process just outlined, can be performed by two traver-
safs of T. First we traverse the tree in postorder and assign a size
to each of its nodes: we assign the value one 1o the leaves and the
sum of the values of its children to any internal node. Clearly, the
size assigned to any node equals the number of vertices of the
MSP dag represented by the subtree of T rooted at that node. We
then traverse T in preorder assigning a pair of coordinates to each
vertex as follows: the root of the tree gets the coordinates (1,1),
and the children of each node visited are assigned coordinates
using their previously computed sizes in the formulae give above,
with the label of their parent determining which set of formulae is
used.

As an example, fig.16 shows the tree of fig.3 with the integers
associated to its nodes by the two traversals just described. The
resulting embedding in the plane of the MSP dag of fig.1 is the
one shown in fig.14 since the two total orders produced by this
process are identical to the ones given in fig.6.

Clearly these two traversals can be performed in time propor-
tional to the number of nodes of the tree which is in turn propor-

10

P) 3 h

w s 4 N

4\5/1 a\s/i
o P S8
L\Sq/ 8
!'-‘b\ /s ﬁi\ Jo

2«5?\ /f? lzj\ /hﬁ.

(b) zé\s/&g SNIPARY

o &f\P/iS,z
M\S/ 32
Y

Fig.16
Vatlues produced by the embedding procedure on the
decomposition tree of 1ig.3. () Sizes. (b} Coordinates.

tional to the nuumber of vertices of the MSP dag it represents.

Furthermore, once the two total orders are computed, it
requires just two comparisons to determine whether a given pair
(u,v) of vertices represents an edge of the transitive closure of G:
there is a path from u to v in G (.e., (u,v) is an edge of the tran-
sitive closure of G) it and only if u appears before v in the two
partial orders.

Therefore Step 4 of the GSP recognition procedure can be
implemented to run in time proportional to the size of the decom-
position tree plus the number of edges to be tested, and we have
completed our description of a linear time implementation of
Algorithm 1.

4. Forbidden subgraph characterization

The characterization of a class of graphs by exhibiting a sub-
graph that no member of the class may contain has been a com-
mon goal of the classical theory of graphs. Perhaps the most
famous of such jorbidden subgraph characterizations is due to
Kuratowskii's for the class of planar graphs ([HAR]). In this sec-
tion we present a characterization of this type for the class of GSP
dags based on the dag of fig.17 which, for obvious reasons, will be
called N.

It can be shown that a dag G is GSP if and only if its transitive
closure does not contain N as an induced subgraph. The proof of
this fact is rather long and will be omitted. The details can be
found in [VAL] where our recognition algorithm is modified so as
to exhibit the torbidden N subgraph of its input whenever it gives
a negative answer still maintaining its linear running time.

Here we will limit ourselves to a description of the relationship
of this forbidden subgraph characterization with a previously

Fig.17
The forbidden subgraph of the class ol GSP dags.

known characterization of TTSP multigraphs.

Fig.18
The forbidden subgraph of the class of TTSP multidigraphs.

Duffin [DUF] showed that a multigraph is TTSP if and only if
it does not contain a subgraph homeomorphic to Ky (the complete
graph on four vertices). This characterization can be generalized
trivially, to show that a multidigraph with a single source and a
single sink is TTSP if and only if it does not contain a subgraph
homeomorphic to the dag of fig.18, that we will call W,

135

;

3

L{w):

I o___,o4

Fig.19
The line digraph of the dag of fig.18.

From this characterization of TTSP multidigraphs and the rela-
tionship given by lemma 1, it is not too difficult to show that the
transitive closure of a CBC dag contains an embedded N if and
only if its line digraph inverse does not have a subgraph
homeomorphic to W. That is to say, that a CBC dag is MSP if and
only if its transitive closure does not contain N as an induced sub-
graph. This relationship can be made plausible very quickly if one
realizes that the line digraph of W is the dag shown in fig.19,
whose transitive closure obviously contains an induced N sub-
graph.

The relationship that we have just exhibited is the basis of the
proof given in [VAL].

5. Concluding remarks

This section presents some of the consequences of the
existence of the linear time recognition procedure just described.

First, it should be noticed that Step | of the recognition pro-
cedure is a linear time transitive reduction algorithm for GSP
dags, and that Step 4 computes the transitive closure of an MSP
dag (in implicit form) again in linear time. This results compare
favorably with the best known algorithms to perform the same
tasks in arbitrary dags (see [AGUI for instance).

b ;, d e
\ A\ W4 .
» P ¢ 3 h o
~N VL NS4
S ~ . _— s
o P
Fig.20
Two binary decomposition trees for the MSP dag of
fig. 1 and the unique tree obtained by shrinking their
edges that join nodes with the same labels.

Second, even though we said that several nonisomorphic
binary decomposition trees may represent the same MSP dag,
there is a way of modifying these trees to make them represent
MSP dags in a quasi-unique way. If one shrinks the edges of a
binary decomposition tree that join internal nodes with the same
label, the result is a tree that is unique up to reordering of the
children of P nodes, as illustrated in fig.20. A formal proof of this
fact can be found in [VAL], where the unigueness of this tree is
related to the uniqueness of the triconnected components of a
biconnected multigraph ([HT]).

This unique representation of a MSP dag by a tree, allows the
use of the linear time tree isomorphism algorith ({AHU]) to deter-
mine whether two MSP dags are isomorphic in linear time. This
fact is interesting because there is no known polynomial time
graph isomorphism algorithm.

It should be noted however that the isomorphism of GSP dags
is as hard as the isomorphism of arbitrary graphs since the decom-
position tree does not give any information about redundant edges
being or not being present, and one can encode an arbitrary graph

11

into the redundant edges of a GSP dag ([VAL]).

Finally, the existence of a polynomial algorithm for the sub-
tree isomorphism problem ([MAT]), suggests the possibility of a
polynomial algorithm for the subgraph isomorphism problem for
MSP dags by testing subtree isomorphism of their unique decom-
position trees. (The subgraph isomorphism problem for arbitrary
graphs is known to be NP-compiete [AHUI).

¢ D
'3 \ W4
w SR
— 8 s
b : o2 \p/
L i X e 2 4
E B 6
b c de
\/ \/ .
b 4 P P ¢ Shi
/><> N\
G—;"""J’e ¥ *¢ a S\P/S
Breand @ nad &
3 h &

Fig.21
Two MSP dags G and H and their quasi unigue decomposition
trees. Even though H s isomorphic to a subgraph of G.
the same refationship does not hold for the decomposition trees.

Unfortunately matters are not quite that simple, as fig.21
shows: an MSP dag H may be isomorphic to a subgraph of another
MSP dag G, and yet the unique decomposition tree of H is not
isomorphic to any subtree of the unique decomposition tree of G.
Furthermore, the problem seems to lead rather quickly into non-
trivial questions related to tree homomorphism that we are
currently investigating.

6. References.

[fADA] A. Adam. On graphs in which two vertices are distinguished,
Acta Math. Acad. Sci. Hungary 12, 1961, 377-397.

[AGUl A. V. Aho, M. R. Garey, and J. D. Ullman, The transitive
reduction of a directed graph, SIAM J. Comput. 1, 2, 1972,
131-137.

[AHOI A. V. Aho, 1. E. Hopcroft, and J. D. Ullman, The Design
and Analvsis of Computer Algorithms, Addison-Wesley,
Reading, Mass., 1976.

{DUF] R. J. Duffin, Topology of Series-Parallel Nerworks, Journal
of Math Analysis and Applications 10, 1965, 303-318.

[HAR] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass.,
1971.

[HKS) F. Harary, J. Krarup, and A Schwenk, Graphs suppressible
to an edge, Canadian Math. Bull. 15, 2 1972, 201-204.

{HN] F. Harary and R. Norman, Some properties of line digraphs,
Rendiconti del Circolo Matematico Palermo 9, 1960, 149-
163.

[HT} J. E. Hopcroft and R. E. Tarjan, Dividing a graph into tricon-
nected components, STAM J. Comput. 2, 3, 1973, 135-158.

[KLE] J. B. Klerlein, Characterizing line dipseudographs, Proceed-
ings of the Sixth Conference on Combinatorics, Graph
Theory, and Computing, 1975, 429-442.

[KNUI] D. E. Knuth, The Art of Computer Programming, vol. 1,
Fundamental Algorithms, Addison-Wesley, Reading, Mass.,
1969.

[LAW] E. L. Lawler, Sequencing Jobs to minimize total weighted com-
pletion time subject to precedence constraints, Annals of
Discrete Math. 2, 1978, 75-90.

[LEH] P. G. H. Lehot, An optimal algorithm to detect a line graph
and output its root graph, Journal ACM 21, 4, 1974, 569-
575.

[MATID. W. Matula, Subtree Isomorphism in O0¥2), Annals of
Discrete Math. 2, 1978.

{MON]C. L. Monma and J. B. Sidney, A4 general algorithm for
optimal job sequencing with Series-Parallel costraints, Tech.
Report No. 347, School of Operations Research and Indus-
trial Engineering, Cornell University, Ithaca, N.Y., July
1977.

[R1IO] J. Riordan and C. E. Shannon, The number of two terminal
series parallel networks, Journal of Math. Physics 21, 1942,
83-93.

[ROS] B. K. Rosen, Tree manipulating systems and Church-Rosser
theorems, Journal ACM 20, 1, 1973, 160-187.

[SET] R. Sethi, Testing for the Church-Rosser property, Journal
ACM 21, 4, 1974, 671-679.

[SID] J. B. Sidney, The two machine flow line problem with Series-
Parallel precedence relations, Working paper 76-19, Faculty
of Management Sciences, University of Ottauwa, November
1976.

[VAL}). Valdes, Parsing Flowcharts and Series-Parallel Graphs,
Technicai Report STAN-CS-78-682, Computer Science
Department, Stanford University, Stanford, Ca..; 1978.

[(WALIT. R. S. Walsh, Counting labelled three-connected and
homeomorphically irreducible two-connected graphs,
(Manuscript), 1978.

[WEIl L. Weinberg, Linear Graphs: theorems, algorithms, and appli-
cations, in Aspects of Network and System Theory, R. E. Kal-
man and N. DeClaris (eds.), Holt, Rinehart, and Winston,
N.Y., 1971.

12

