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Abstract: we preseqt an algori thm that recognizes the class of  
General  Series Parallel digraphs and runs  in t ime proportional to 
the size o f  its input. To perform this recognition task it is neces- 
sary to comp.ute the transitive reduction and transitive closure of  
any General  Series Parallel digraph. Our analysis is based on the 
relationship between General  Series Parallel digraphs and a class 
of  well known models  of  electrical networks.  

tation of  it that runs  in linear t ime discussed in detail. The third 
section presents  the forbidden subgraph characterization of GSP 
digraphs and the last section presents  some  of  the consequences  of 
our work.  

2. Basic definitions and relations 

I. Introduction 

The interest of  the  directed acyclic graphs that we s tudy in this 
paper is due to their application to the problem of  scheduling 
under  constraints.  A n u m b e r  of  problems of  this type known to 
be NP-complete  when the constraints  between the tasks to be 
scheduled are arbitrary, can be solved efficiently when the con- 
straints form a General  Series Parallel (GSP) digraph ([LAW],  
[MON], [SID]). These  efficient a lgori thms use the simple recur- 
sive s t ructure  of  the GSP constraints  in a "divide and conquer" 
approach. 

Our main result is a linear t ime algori thm that de te rmines  
whether  any given digraph is GSP, and if it is, describes its struc- 
ture in a concise form suitable to be used by the scheduling algo- 
r i thms ment ioned  above, This recognition procedure works by 
exploiting the relationship between GSP digraphs and the well stu- 
died class of  Two Terminal  Series Parallel (TTSP) mult idigraphs 
( [ADA],  [DUF],  [RIO], [WALl,  lWEI]). 

Additionally, our  analysis allows us to prove a simple forbid- 
den subgraph characterization of  GSP digraphs and design linear 
t ime algori thms for the transit ive closure and transitive reduction 
of  GSP digraphs as well as for the i somorphism of  GSP digraphs 
that are minimal.  

Our work also raises the possibility of  the existence of  a poly- 
nomial  t ime algorithm to solve the subgraph i somorphism problem 
for transit ive and minimal  GSP digraphs,  and relates this problem 
to a particular case of the subtree  h o m o m o r p h i s m  problem. 

The remainder  of  this paper is divided into four sections. The 
first one provides the definitions and e lementary  facts needed to 
unders tand the recognition procedure. In the second,  the pro- 
cedure itself is first outl ined and shown correct, and an implemen-  
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2.1. Graph theoretical definitions 

Most of  the graph theoretical te rms  used are s tandard (see 
[HAR] for instance).  We therefore  limit ourse lves  to defining the 
most  c o m m o n l y  used te rms  and those that may produce confu-  
sion. 

A graph G = <  V , E > ,  consists of  a finite set of  vertices V and a 
finite set of  edges E. Edges are pairs of  distict vertices: if the edges 
of  a graph are unordered  pairs the graph is undirected and if they 
are ordered the graph is directed. We will abreviate directed graph 
as digraph. 

A digraph G = < V , E >  is complete bipartite if V can be parti- 
t ioned into H and T so that E = H x T .  The set H is called the head 
and T is called the tail of G. 

If the set of  edges of  a graph may be a mult iset ,  that is, if we 
allow multiple edges between the same  two vertices, the graph is 
called a mult&raph. We will abreviate directed mult igraph as mu/- 
tMigraph. The te rms  that we define for graphs in the rest of  this 
section can be applied to mult igraphs as well. 

A vertex v of  a digraph G is a source if no edge of  G enters  v. 
Similarly a vertex v is a sink if no edge of G leaves v. 

A path in a graph (directed or undirected) is a sequence  of  
vertices vl ,v  2 ..... % such that for all l < i < n + l  the pair (vi+l,v i) is 
an edge of the graph. If v I = v  n, the path is called a ~ycle. A graph 
(directed or undirected) that does not contain cycles is called acy- 
elk'. We will abreviate directed acyclic graph as dag. 

A dag is transitive if it contains an edge (u,v) between any two 
vertices such that there is a path from u to v. The  transitive clostlre 
of  a dag G = < V , E > ,  is the dag G r = < V , E r >  for which E r is 
the minimal  subse t  of  VxV that includes E and makes  G r transi- 
tive. 

An edge (u,v) of  a dag is redt,tdant under transitive closure or 
simply i 'cdlltldaltl it" there is a path f rom u to v in the dag that does 
not include the edge. A dag that does not contain any redundant 
edge is called min imal  The lransilive redttclion of  a dag G is the 
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unique minimal  dag having the same transitive closure as G. 

The line digraph of  a digraph G is a digraph L(G) that has: 

- a vertex f(e) for each edge e of  G; and 

- an edge (f(el),f(e2)) for each pair of  edges of G of the form 
el = (u,v) ,  e2=  (v,w). 

A graph G i = < V i , E i >  is a subgraph of another G = < V , E >  
if V] is a subset  of  V and E I is a subset  of  E. For any s u b s e t S o f  
the vertices of  a graph G, the induced subgraph of  S is the maxi-  
mal subgraph of  G with vertex set S. We sat that G contains a 
subgraph homeomoq~hic to H if lq can be obtained from G by a 
sequence  of  the following operations: 

- removal  of  an edge; 

- replacement  of  two edges of  the form (u,v),  (v,w) by an 
edge (u,w) when v has degree 2. 

The assumpt ions  used to analyze our  a lgor i thms are s tandard 
and can be found in [AttU].  

2.2. Minimal Series Parallel digraphs 

We define the class of  GSP dags in relation to the subclass of  
its m e m b e r s  that are minimal.  The dags in this subclass are called 
Minimal Series Parallel (MSP), and are defined recursively as fol- 
lows: 

Defini t ion 1: [Minimal Series Parallel dags] 

(i) The dag having a single vertex and no edges is MSP. 

(ii) If G i ~ < V I , E L >  and G 2 = < V 2 , E 2 >  are two MSP dags, 
so is either of . the dags constructed by the following opera- 
tions: 

(a) Parallel composition: G p = < V L U V 2, EL U E2 > -  

(b) Series composition: G s = < V i U V 2 , E i U  E2U ( N i x R 2 ) > ,  
where N I is the set of  sinks of  G l and R 2 the set of  
sources of  G 2. e3 

We now define the class of  GSP dags as follows: 

Defini t ion 2: [General Series Parallel dags] 

A dag is GSP if and only if its transit ive reduction is a MSP 
dag. [] 

Figure 1 shows the construct ion of  a MSP dag by a sequence  
of series and parallel composit ions.  Figure 2 shows a GSP dag 
whose transitive reduction is the MSP dag of  fig. l. 

A MSP dag constructed by the operat ions of  def.1 can be 
represented in a natural way by a binary tree as shown in fig.3. 
This tree has  been constructed by (i) associating the trivial tree 
having one node with the MSP dag having one vertex and no 
edges,  and (ii) using the rules of  fig.4 to build larger trees f rom 

• smaller ones  as the  process of  building the MSP dag by series and 
parallel composi t ions  progresses.  

The  result is what we call a binary decomposition tree: a binary 
tree having a leaf for each vertex of  the MSP dag it represents ,  
and whose internal nodes  are labelled S or P to indicate respec- 
tively the series or parallel composi t ion of the MSP dags 
represented by the subtrees  rooted at the children of  the node.  
Binary decomposi t ion trees provide a concise description of the 
s t ructure  of  a MSP dag. 

It should be noticed that several  non isomorphic binary 
decomposi t ion trees may represent  the same MSP dag. This is due 
to the symmet ry  of the parallel composi t ion operation and to the 
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Fig.l 
Construction of a MSP dag by series and par:dlel compositions. 

b d. 

Fig.2 
A GSP dag. 

associativity of  consecut ive series or parallel composi t ions.  The  
s y m m e t r y  of  parallel composi t ions  makes  the left-right ordering of  
the children of  a P node irrelevant and the  associativity of  each of  
the two operations introduces the  ambiguity typical o f  
unparenthes ized  infix expressions.  These  characteristics are illus- 
trated in fig.5. 

A property of MSP and GSP dags that plays an important  role 
in our  recognition procedure,  involves the partial order induced by 
the edges of  a MSP dag on the  set o f  its vertices. 
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Fig.3 
Binary deconlposition tree representing 

the MSP dag of lig. I. 

The intersection of the total orders defines the same partial order 
as the relation "~"  described earlier: there is a path from vertex u 
to vertex v in the dag if and only if u appears before v in the two 
total orders. Thus the partial order induced by the dag of fig.6 is 
at most two-dimensional. 
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Fig.4 
Rules used to construct T s and Tp (the binary 
decomposition trees of G s and Gp of def. l) 

from T I and T 2 (the binary decomposition trees 
of Gi and G 2 in the same delinition). 

Fig.6 
A MSP dag, and two total orders Oll its vertices whose 
intersection gives the partial order induced by its edges. 

It should be noted that the partial order induced by any dag is 
the same as the one induced by its transitive closure or its transi- 
tive reduction, since the relation ,4 , ,  is defined in terms of paths 
between vertices. 

The partial order induced by the edges of any MSP dag is at 
most two-dimensional, that is, it can be obtained as the intersec- 
tion of at most two total orders. This fact will be proved by 
describing an algorithm that takes a binary decomposition tree as 
input and provides two partial orders whose intersection defines 
the MSP dag represented by the tree. We postpone this descrip- 
tion however until a global outline of the GSP recognition pro- 
cedure in which it is used has been presented. 
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Fig.5 
Sources of multiplicity of binary decomposition trees. 

(a) Symmetry of parallel compositions. 
(b), (c) Associativity of series and parallel compositions. 

In general, the binary relation among vertices of a dag G 
defined by :"u---* v if and only iJ'there is a path from u to v in G' is a 
partial order. Any partial order on a set can be defined as the 
intersection of several total orders on the same set, and the 
minimum number  of total orders needed to define the partial 
order in this fashion is called its dimension. As an example, fig.6 
shows a MSP dag and two total orders on the set of its vertices. 

2.3. Two Terminal  Series Parallel multidigraphs 

In our recognition algorithm for GSP dags a central role is 
played by the relationship between MSP dags and the class of Two 
Terminal Series Parallel (TTSP) nlultidigraphs. Consequently this 
section is devoted to the definition of this class and to a review of 
the relevant properties of its members.  

The class of TTSP multidigraphs (named in this fashion 
because all its members  have a single source and a single sink) is 
defined recursively as follows: 

Definition 3: [Two Terminal Series Parallel Multidigraphs] 

(i) A digraph consisting of two vertices joined by a single 
edge is TTSP. 

(ii) If G I and G2 are TTSP multidigraphs, so is the multidi- 
graph obtained by either of the following operations: 

(a) Two terminal parallel composition: identify the source of 
G I with the source of G 2 and the sink of G I with the 

sink of G 2. 

(b) Two terminal series compos#ion: identify the sink of G t 

with the source of G 2. [] 

The construction of a TTSP multidigraph using the operations 
of def.3 is shown in fig.7. TTSP multidigraphs are obviously acy- 
clic, since the trivial TTSP multidigraph has only one edge, and 
the operations of def.3 do not create cycles when applied to acyclic 
multidigraphs. 
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Fig.7 
('onstruction of a TTSP rnultidigraph by two terminal 

series and two terrnin:d parzdle[ compositions. 

The class of  mult igraphs containing precisely the undirected 
vers ions  of all TTSP mult idigraphs has been extensively studied 
( [ADA] ,  [DUF],  [RIO], [WAL],  [WEll)  because of its relation- 
ship with the networks  constructed by connection in series or in 
parallel of  electrical componen t s  (resistors, capacitors, etc.). The  
properties of  TTSP mult idigraphs described in this section are, for 
the most  part, simple ex tens ions  of  known properties of  their 
undirected versions,  and therefore  only s u m m a r y  proofs are pro- 
vided for them.  A precise description of  the relationship between 
TTSP mult idigraphs and their undirected versions,  as well as com-  
plete proofs of  the properties we describe,  can be found in [VAL]. 

Given the formal similarities between def.3 and def. I, it 
should come as no surprise that everything said about  decomposi-  
tion trees for MSP dags applies to TTSP mult idigraphs almost  ver- 
batim. As an example ,  fig.8 shows the binary decomposi t ion tree 
corresponding to the construct ion process of  fifig.7:, note  that the 
decomposi t ion  tree has now a leaf for each of the edges of  the 
TTSP multidigraph it represents.  

The formal similarity of  their definitions suggests  also a 
ver tex-edge duality between MSP dags and TTSP mult idigraphs,  
The following lemma shows that this is indeed the case, and 
relates the two classes through the line digraph t ransformat ion.  

L e m m a  1: An acyclic mult idigraph with a single source and a 
single sink is TTSP if and only if its line digraph is a MSP dag. 

b 6 d. • \ /  \ /  
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Fig.8 
A binary decomposition tree for the TTSP 

multidigraph of fig.7. 

Proof:  follows by induction on the  n u m b e r  of  edges of the  
multidigraph with the aid of  two facts: 

(i) the line digraph of  the trivial TTSP multidigraph (two ver- 
tices joined by a directed edge) is the trivial MSP dag (one 
vertex and no edges) ,  

(ii) the line digraph of  the  two terminal  series (parallel) com-  
position of  G I and G 2 is the series (parallel) composi t ion 
of the line digraph of  G I and the line digraph of  G 2. [] 

A fur ther  consequence  of  the relation given by (i) and (ii) in 
the above proof is that if T is a binary decomposi t ion  tree of  a 
TTSP mult idigraph G, and we regard it as the  binary decomposi -  
tion tree of  a MSP dag, then  T represents  the  line digraph of  G. 
As an example ,  it is trivial to test that the line digraph of the  
TTSP mult idigraph of  fig.7 is the MSP dag of  fig.1 and that both 
can be represented by the same binary decomposi t ion  tree (shown 
in fig.3 and fig.8). 

Ano the r  important  characterization of  TTSP mult idigraphs 
based on the reductions shown in fig.9 is given by the  following 
lemma:  
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Fig.9 
(a) Series reduction. (b) Parallel reduction. 

L e m m a  2: A multidigraph is TTSP if and only if it can be 
reduced to the trivial TTSP mult idigraph (two vertices joined 
by a single edge) by a sequence  of  series and parallel reduc- 
tions. 

Proof: This l emma  is a trivial generalizat ion of  the  results  of  
Duffin [DUF] for undirected TTSP mult igraphs ,  and can be 
establ ished by an easy induction (on the  n u m b e r  of  reduct ions 
applied for the "iP' part, and on the n u m b e r  of  edges for the  
"only ir'). The  details can be found in [VAL] or [DUF].  [] 

This characterization is the basis of  an efficient algori thm to 
recognize the class of  TTSP mult idigraphs that we will use  later on 
as part of  our  recognition procedure for GSP dags: to test whether  



a multidigraph is TTSP we repeatedly apply series and parallel 
reductions to it until no more  reductions are possible, and then 
test whether  the remaining digraph consists  of  a single edge. 

L e m m a  2 is not  sufficient however  to guarantee  that the 
recognition procedure just  outl ined will provide the correct answer.  
The l emma  does indeed say that we will succeed in reducing the 
multidigraph to a single edge only if it is TTSP. Never theless  the 
lemma does not  guarantee  that we will succeed in reducing a TTSP 
rnultidigraph by applying to it arbitrarily selected series and parallel 
-eductions and only states that there exists at least one sequence 
of such reductions that will reduce the multidigraph. 

Fortunately,  the reduction system that we are using has a 
property --  known as the Chwz'h-Rosser property-- that guarantees  
:hat the characteristic of  being reducible to a single edge is 
preserved by the application of  any series or parallel reduction. 
We can therefore carry out  any applicable reduction at any point 
without fear of  hurt ing our chances of  ult imately reducing the 
multidigraph to a single edge. 

Symbol manipulat ion sys tems  possessing the Church-Rosse r  
ICR) property are useful in many  areas of  Mathemat ics  and Conl-  
puter Science, and several sufficient condit ions for a sys tem to 
posses this property are known ([ROS], [SET]). Using these 
sufficient condit ions it is simple to prove that the reduction system 
consisting of  series and parallel reduct ions has the CR property. 
The  proof requires however  a good deal of  background irrelevant 
for our purposes and is omit ted (see [HKS] or [WAL] for a proof 
of  the CR property of  the undirected version of  our reduction sys- 
tem that can be easily generalized to the directed case.) 

Just as important  for our purposes as the simplicity of  the 
recognition algorithm for TTSP multidigraphs described,  is the fact 
that a binary decomposi t ion tree of  the multidigraph being reduced 
can be obtained as a byproduct of  the reduction process. 

In order to obtain the decomposi t ion tree, we associate a label 
~ith each edge of the multidigraph being reduced. Initially the 
label of  each edge is a trivial binary tree consist ing of a single 
node. As the reduction process introduces new edges we use the 
rules of  fig.10 to compute  the binary trees used to label them.  

v, 
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Fig.H) 
Con]puling the label of a new edge 

introduced by a series or parallel reduction. 

The binary decomposi t ion tree o f  the init ial n lu l t id igraph is 
obtained as the label o f  the only remain ing edge after the reduc- 
t ion, a fact that can be proved by an easy induct ion that we omi t  
(see [ V A L ] ) .  An example o f  this process is shown in fig. l l .  
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Fig.I I 
l~xample of how a binary dccoml~osifion lrec of a fTSP 

multidigrai~h can be obtained from the reduction process. 

3. The GSP recognition algorithm 

We have finally collected enough  facts to be able to outline 
our procedure to recognize the class of  GSP dags and provide a 
proof of  its correctness.  

Algorithm I:  [Recognition procedure for the class of  GSP 
dags] 

Input: a dag G. 
Ou tpu t :  YES if G is GSP, NO otherwise.  

Step 1: I'seudo transitive reduction o/' G. Given G = <  V , E > ,  
partition E into E r and E M so that if G is GSP, then 
G , a = < V , E M >  is its transitive reduction (and therefore 
MSP). l f G i s n o t G S P ,  G,  4 may be MSP (we have to payfl l is  
price in order to be able to implement  this step in linear t ime 
since it is unlikely that a linear t ime transitive reduction algo- 
ri thm exists for arbitrary dags [AGU]L  

Step 2: Compute the line dig/vph inverse Q/'G-~i. Test whether  
G,  4 satisfies a sufficient condition (satisfied by all MSP dags) 
for having a line digraph inverse L- I (G,a) .  If G,~I does not 
satisfy this condition we answer  NO and stop, otherwise we 
compute  L- I (G,a )  so that G,a is MSP if and only if L-I(G,,1) 
is TTSP ( lemma 1). 



Step 3: Test whether L-I(GM ) is TTSP using the characteriza- 
tion of l emma 2. If L-I(G,~i) is TTSP compute  a binary 
decomposi t ion tree T for it, otherwise answer  NO and stop. 
According to what we said earlier, T is a decomposi t ion tree of  
L-I (GM) as a TTSP multidigraph and of G M (its line digraph) 
as a MSP dag. 

Step 4: Test whether G M is the transitive reduction of  G. That is, 
test that the edges in E T belong to the transit ive closure of  
G M. If they do, answer YES and output  T, otherwise answer 
NO and stop. This step will be performed by using T to com-  
pute two total orders  on V whose intersection defines the par- 
tial order ~ on G M, then using them to test,  for each edge 
(u,v) of  E T, whether  there is a path from u to v in G M by 
testing whether  u appears before v on both total orders. [] 

We can prove this procedure correct by the  following argu- 
ment .  

If G is GSP, then G M will be MSP and will satisfy the test of  
Step 2. If G M is MSP, according to l emma  I L-I (GM) will be 
TTSP and thus  will satisfy the test of  Step 3. Step 4 will simply 
certify that Step 1 performed the transitive reduction of  G and the 
algori thm will answer  YES. 

If, on the other  hand,  G is not  GSP we have  two possibilities: 
either G ~  is not  MSP or it is not  the transit ive reduction of G. In 
the first case the  algori thm will answer  NO in either Step 2 or Step 
3, since according to l emma 1 L-I (GM) cannot  be TTSP if G M is 
not MSP, and in the second case the algori thm will answer  NO in 
Step 4. 

In either case the algorithm produces the right answer,  and we 
conclude that it recognizes the class of  GSP dags as claimed. 

Unfor tunate ly ,  the above description of the algorithm is far 
f rom being precise enough  to establish the linear upper bound  on 
its runn ing  t ime that we want. We will therefore  devote  the rest 
of  this section to providing enough  details about  its implementa-  
tion so this linear bound  can be established. 

3.1. The transitive reduction of GSP dags 

We will now describe how to implement  Step 1 of  the GSP 
recognition algori thm so it runs  in a n u m b e r  of  steps that grows 
linearly with the size of  the input dag. R e m e m b e r  that we want a 
procedure  that computes  the transit ive reduction of GSP dags and 
may do anyth ing  on a dag that is not  GSP. 

Consider  the following funct ions defined on a dag G with n 
vertices: 

The  layer function: Lci: V~{0 ,1 ,2  ..... n-l}.  
L G ( v ) = 0  if v is a source,  otherwise the length of  the longest 
path f rom a source of  G to v. [] 

The  jump function: Jo: E~{  1,2 ..... n-l}.  

Jo ( ( u , v ) ) =  Lo (v)-Lo (u). [] 

The  minimttmjump funct ion Mo: V~{0 ,1 ,2  ..... n-l}. 

M c ; ( v ) = 0  if v is a sink of  G, otherwise the  m i n i m u m  value of  
JG over  all edges that leave v. [] 

Figure 12 shows the values of  these  three funct ions  for the 
MSP dag of  fig.1. 

L 

41. t. 

Fig.12 
Values of L G, JG and M G for the MSP dag of fig. I. 

Our interest  in these fuctions is due to the following facts: 

L e m m a  3: Let G be a dag. For any edge (u,v) of  G that is 
r edundan t  under  transit ive closure MG(u) < JG((u,v)) .  

Proof: Because G has  no multiple edges,  the  path f rom u to v 
not  including (u,v) has to have  at least two edges.  Let (u,x) 
be the  first edge on that path; by definition, the values of  L G 
mus t  increase along any path in G,  and there is a path f rom x 
to v therefore  LG(v) > LG(x). By definition JG((U,V)) > 
Jo ( (u ,x ) )  and the  prosition mus t  be true since M~(u)  cannot  
be greater than J~( (u ,x ) ) .  [] 

L e m m a  4: If G is MSP then M G ( u ) = J G ( ( u , v ) )  for any edge 
(u,v) of  G. 

Proof: We prove the proposition by induction on the  n u m b e r  
of  vertices of  G. 

If G has one vertex,  the proposition is trivially true; oth- 
erwise let the proposition hold for all MSP dags with fewer 
than  k vertices, and let G be the  series or parallel composi t ion  
of G L and G 2, each having at mos t  k-1 vertices. 

We discuss in detail only. the case when  G is the  series 
composi t ion of  G I and G2 since the analysis of  the other  case 
is quite similar. 

When  G is the series composi t ion of  Gi  and G 2 there  are 
three possibilities: (i) (u,v) is an edge of  G I, (ii) (u,v) is an 
edge of G2, and (iii) (u,v) joins a sink of  G 1 to a source of  

G2. 

When  (u,v) is an edge of  G I the  proposition follows 
immediate ly  f rom the induction hypothesis  and the  fact that  
JG((U,V))=]Gi((U,V)) for all edges of  G 1 (this is a trivial 

consequence  of the fact that LG(V)=LGi(V) for all vertices of  

G I which in turn follows directly f rom the definit ions of  the  
layer funct ion and series composi t ion) .  

6 



Let now (u,v) be an edge of  G 2 and q be the length of  the 
longest path in G I. This path has to end in a sink o f G  t and 
therefore,  by definition of  the layer function,  
L G ( X ) = L G 2 ( X ) + q + I  for any vertex x of G 2. Because Jc; is 

defined by the difference of  two layer values, this implies 
JG(e)=JG2(e)  for any edge e of  G2; from this fact and the 

induction hypothesis  the proposition follows trivially. 

Finally, if (u,v) joins a sink of  G I to a source of  G 2 we 
know that L G ( y ) = q + l  for any source y of  G 2. Since any edge 
e leaving a sink u of  Gj mus t  enter  a source of  G 2 it mus t  be 
that J G ( e ) = q + l - L G ( u )  and therefore  M G ( u ) = J o ( e )  for all 
edges leaving u. From this fact the proposition follows trivi- 
ally once again. [] 

The j u m p  and m i n i m u m  j u m p  funct ions were defined in t e rms  
of the layer function,  which in turn was defined in te rms  of long- 
est paths in a dag. Because a path of this type cannot contain 
edges that a r e r e d u n d a n t ,  the values of  these three functions on a 
dag are insensit ive to the addition or removal  of  redundant  edges. 
As an example ,  it is trivial to test that the values given in fig. 12 
for the MSP dag of  fig. 1 are identical to the values that one would 
obtain for the GSP dag of  fifig.2. 

This fact together  with l emmas  3 and 4 directly implies the fol- 
lowing: 

Corollary 1: Let G be a GSP dag and (u,v) one of  its edges. 
The edge (u,v) is redundant  under  transitive closure in G if 
and only if MG(U) < JG((U,V)). [] 

AS a consequence,  we know that it is enough  to compute  the 
' ,alues of  the j u m p  and m i n i m u m  j u m p  funct ions to perform the 
transitive reduction of  a GSP dag. Because these  two funct ions 
can be trivially computed  from the values of  the layer function,  
and the layer values can be computed  by a trivial modification of 
the topological sort algorithm ( [KNU]) ,  we can implement  Step I 
of  the GSP recognition procedure to run in O ( n + m )  steps for a 
dag with n vertices and m edges. 

3..2. The inverse line digraph of a dag 

We now consider the problem of  implement ing  Step 2 of the 
recognition procedure.  

The  problem of characterizing the dags that have  line digraph 
inverses has  been studied from a non-algori thmic point of view by 
several au thors  ([HN], [KLE]),  and the problem of  comput ing  the 
inverse line graph for an arbitrary graph has been solved by Lehot 
[I_EH]. 

Unfortunately Lehot ' s  approach does not work for dags mostly 
because several nonisomorphic  mult idigraphs may  have the same 
line digraph, as shown in fig. 13. 

We will solve the problem in two steps: first we use a charac- 
terization due to Harary and N o r m a n  [HN] to de te rmine  whether  
the dag has  a line digraph inverse,  and,  once we know that it does,  
we then compute  a specific line digraph inverse  out  o f  the several  
possible ones.  

Definition 4: [Complete Bipartite Composi te  dags] 

A dag G is Complete  Bipartite Composi te  (CBC) if there 
exists a set of  complete  bipartite subgraphs  of  G: Bt,B2,...,B k, 
called the bipartite components of  G, such that: 

LC .) : 
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Fig.13 
Two nonisomorphic multidigrtIphs 

that have the same line digraph. 

(a) each edge of  G belongs to exactly one bipartite com- 
ponent;  

(b) every vertex v of  G, except the sinks,  belongs to the head 
of  exactly one bipartite componen t  denoted h(v);  

(c) every vertex v of  G, except the sources,  belongs to the 
tail of  exactly one bipartite componen t  denoted t(v).  [] 

It is a trivial exercise to prove that the  bipartite componen t s  of  
a CBC dag are unique (see [VAL]). 

The first part of  the characterization we seek is given by the 
following lemma:  

L e m m a  5: A dag has a line digraph inverse if and only if it is 
CBC. 

Proof: See [HN]. [] 

This l emma solves the question of  whether  a dag has a line 
digraph inverse,  but says nothing about  the multiplicity of  inverses 
ment ioned  earlier. Fortunately t tarary and Norman  provide the 
answer  to this problem as well: 

L e m m a  6: Let G l and G 2 be two mult idigraphs such that 
L(G]) = L(G2). The mul t id ig raphsob ta ined  from G] and G 2 
by merging the sources  into a single source and the sinks into 
a single sink are isomorphic. 

Proof: Harary and Norman  [HN] prove that the inverse line 
digraph is unique if the sources  and sinks are deleted instead 
of  merged.  The  modification of  their a rgumen t  to prove our 
l emma  is trivial and is omitted.  [] 

From now on any ment ion  of the line digraph inverse L - I ( G )  
of a CBC dag G, will refer to the unique multidigraph having a 
single source and a single sink whose line digraph is G. 

These  results would be irrelevant for our  purposes but  for the 
following fact: 

L e m m a  7: Every MSP dag is CBC. 

Proof: In the construct ion of  a MSP dag by series and parallel 
composi t ions  new edges are introduced exclusively by series 
composi t ions,  and each series composi t ion introduces edges 
that form a complete  bipartite subgraph of  the complete  MSP 
dag. It is trivial to check that the subgraphs  defined by the 
series composi t ions  satisfy the condit ions of def.4 and are 
therefore  the unique bipartite componen t s  of  the MSP dag. [] 

We have therefore  solved the first part of  our  task: we have 
found a property (being CBC) satisfied by all MSP dags that is a 



sufficient condition for a dag to posses an inverse line digraph. 
We will now complete  our  task by showing (i) how to test a given 
dag for this property and (ii) how to compute  its line digraph 
inverse in a n u m b e r  of  steps proportional to the size of  the dag. 

We can test whether  a dag is CBC as follows. We select an 
edge (u,v) of  the dag that has not  been assigned to a bipartite 
componen t  yet and assign it to a new bipartite componen t  B i. We 
now mark all the predecessors  of  v as belonging to the  head,  and 
all the succesors  of  u as belonging to the tail of  B i. We then test 
whether  there is a complete  bipartite subgraph of  the dag with the 
head and tail jus t  identified; if no such subgraph is found ,  the dag 
is not  CBC. We cont inue the process by selecting a new edge and 
repeating the operation until no edge remains  unassigned.  While 
performing this process,  we decide that the  dag is not  CBC if we 
ever  a t tempt  to assign an edge to more  than one bipartite com- 
ponent ,  or mark  a vertex as belonging to more  than one  head or 
one tail. 

Because of the un iqueness  of  the bipartite componen t s ,  this 
process will identify a new componen t  every t ime an unass igned 
edge is selected and processed as described above. Therefore ,  by 
assigning all edges to componen t s ,  this process proves that the 
input dag was CBC by identifying its bipartite components .  

Because the implementa t ion  of  this procedure to run in a 
n u m b e r  of  steps proportional to the size of  the input dag is a 
trivial exercise in data s t ructures ,  we find ourse lves  closer to our  
immedia te  goal of  implement ing  Step 2 of  the GSP recognition 
procedure in linear t ime. We Lherefore proceed to consider the 
remaining problem: comput ing  Lhe inverse line digraph of  a CBC 
dag. 

Consider  the following t ransformat ion  of  a CBC dag: 

Defini t ion 5: [The inverse line digraph of  a CBC dag] 

Let G be a CBC dag with bipartite componen t s  BI,B 2 ..... B k. 
The  vertex set of  L - I (G)  is {B,,BI,B 2 ..... Bk,B,,} and its edge 
set has an edge for each vertex o f  G defined as follows: 

(a) for each source v of G, L - I ( G )  has an edge (B,, ,h(v));  

(b) for each sink v of  G, L - I (G)  has an edge (t(v),Boo); 

(c) for each vertex v that is both a source and a sink of G, 
L - t ( G )  has an edge (B ,Boo); and 

(d) in all o ther  cases, the edge of L - J i G)  that corresponds  to 
vertex v of  G is ( t (v) ,h(v) ) .  [] 

The  n a m e  given to this t ransformat ion  is justified by the fol- 
lowing property: 

L e m m a  8: For any CBC da,g, L ( L - I ( G ) ) = G .  

Proof: For each vertex of G, L ](G) has an edge, and for 
each edge of  L-L(G) there is a vertex in L ( L - I ( G ) )  according 
to the definition of the line digraph. This  establishes a one to 
one relationship between the vertex sets of  G and L(L-~(G)) .  
The inverse line digraph t ransformat ion  was defined so that 
there is an edge between any two vertices of  G if and only if 
there  is an edge between the corresponding vertices of  
L (L-~ (GD.  !j 

The  algorithm sketched earlier to test whether  a dag is CBC 
actually computed  the bipartite componen t s  of  the dag being 
tested,  and given these componen t s  it is trivial to compute  the 
inverse line digraph as given by the above definition. Since the 
line digraph inverse has an edge for each vertex of the CBC dag 
from which it originates,  it should be clear that we have described 
a procedure to compute  the line digraph inverse of  a CBC dag G 
in t ime proportional to the size of  G. 

• Fu r the rmore ,  the line digraph inverse  of  any CBC dag has a 
single source and a single sink (B,~ and Boo respectively) so it fol- 
lows from l e m m a s  1 and 8 that the line digraph inverse of  a CBC 
dag G is a TTSP multidigraph if and only if G is a M s p  dag. 

We have thus  achieved the goal of  implement ing  Step 2 of  our  
recognition procedure so it runs  in linear t ime.  

3.3. The recognition of TTSP multidigraphs 

The algori thm to be used in Step 3 has already been described 
in section 1.2: apply series and parallel reduct ions to the  multidi- 
graph given until no more  reduct ions are possible, and then test 
whe ther  the remaining digraph consists  of  a single edge. Th u s  our  
only task here  is to show that this me thod  can be implemented  to 
run in t ime proportional to the size of  the given mult idigraph.  

The  same  problem for undirected graphs is suggested as an 
exercise in [AHU] (exercise 5.8), but  unfor tunate ly  no solution is 
presented for it. A detailed discussion of  two solut ions of  this 
exercise can be found in [VAL] together  with their generalization 
to directed mult igraphs,  Therefore  the  description that follows has  
been reduced to a m i n i m u m .  

The  basic data s t ructure  is a list of  vertices that we call the 
tmsatislied list. Initially this list includes all vertices of  the  input 
mult idigraph except the source and the sink, and in general  it will 
contain all the vertices on which s o m e  work has to be per formed 
(except the  source and sink, which are never  added to it). 

The  algori thm proceeds by r emoving  any vertex v f rom this 
list and performing as many  parallel reduct ions  on the edges 
incident to it as it is possible before either Leaving the vertex with 
a single etatering edge and a single exiting edge, or discovering that 
the vertex still has at least two distinct predecessors  or two distinct 
succesors.  In the first al ternative,  the vertex is r emo v ed  by a 
series reduction and the two vertices adjacent to it added to the  
unsatisfied list if they are not  there  already. This  process is 
repeated until the unsatisfied list becomes  empty ,  at which point 
the same  process is applied to the  source and the sink (in order to 
el iminate any multiple edges between them)  before stopping. 

We can prove that this me thod  will correctly recognize the  
class of  T T S P  mult idigraphs using the characterization of  l em m a  2 
as follows. The  unsatisfied list becomes  empty,  either because all 
vertices (except source and sink of  course)  have  been deleted by 
series reduct ions or because every remain ing  vertex has two dis- 
tinct predecessors  or two distinct successors .  In the first case the  
mult idigraph has been reduced (except for possible multiple edges 
between the source and the sink which will be deleted in the last 
step) and in the second no vertex can be el iminated by a series 
reduction until s ome  other  vertex is e l iminated,  which clearly 
implies that no more  vertices can ever  be deleted. 

The  running  t ime of this procedure cannot  be analyzed unless  
we look more  closely at the  processing of  each vertex deleted f rom 
the unsatisfied list. Let us a s s u m e  that each vertex has  two lists of  
pointers to edges associated with it. One  list conta ins  pointers  to all 
the edges enter ing the vertex,  while the other  contains  pointers to 
all the edges leaving the vertex.  The  processing of  a vertex con- 
sists of  applying to these two lists the following algori thm: 



while site o f  the list is greater than one do 
if either ol'the./irs/ two elements points, to a deleted edge then 

delete the pointer.l?om the list 
elseif the ]irst two elements point to edt,,es with the same endpoints then 

calv:v olll (1 parallel #'echtction (1ml delete the pointetw 

else exit 
end~ 

Clearly the processing of a vertex terminates when each of its 
two lists has either a single element or contains pointers to edges 
with different endpoints. If appropriate data structures are used, 
this process can be implemented so it takes a constant number  of 
steps every time the process is initaited plus a (different,) constant 
number  of steps for every pointer deleted. 

We will therefore be able to guarantee a linear time upper 
bound on the running of the total reduction process if we prove 
that (a) a linear number  of vertices are processed (i.e., deleted 
from the unsatisfied list) and (b) the total number  of pointers to 
edges deleted is linear. 

In a multidgraph with n vertices and m edges, we will have n- 
2 elements in the unsatisfied list initially. New vertices are added 
to this list only after a series reduction is performed, an operation 
that decreases the total number  of vertices of the multidigraph by 
one. Thus at most n-2 series reductions can be performed and no 
more than 2(n-2) additions to the unsatisfied list will occur, since 
at most two vertices are added for each reduction. 

Initially, we will have a total of 2m pointers to edges in all the 
lists associated with the vertices since a pointer to (u,v) will appear 
in the list of edges entering v and the in the list of edges leaving u. 
New edges, and therefore new pointers, are added by parallel 
reductions as the algorithm progresses, but since each of these 
reductions decreases the total number  of edges of the muhidigraph 
by one, no more than m-I of them could possibly be performed 
and no more than 2(m-l)  new pointers introduced. Thus a total 
of no more than 2 m + 2 ( m - I )  pointers to edges will be manipu- 
lated. 

One more problem has to be considered: we want to obtain 
the decomposition tree of the multidigraph being reduced so we 
have to compute the labels for the new edges using the rules of 
fig. 10. Clearly any reasonable implementation of this computation 
will not construct the new label from scratch, but will instead com- 
bine the labels of the edges being deleted. In this fashion each 
new label can be computed in a constant amount  of time. 

This completes our argument,  and we conclude that Step 3 of 
the GSP recognition procedure can also be implemented to run in 
time proportional to the number  of  vertices and edges of its input. 

3.4. The two d imens iona l i ty  of M S P  dags 

This section completes our description of the implementation 
of the GSP recognition procedure by showing how Step 4 can be 
implemented in linear time. 

It is useful to remember  the task to be performed: given a 
binary decomposition tree of a MSP dag, we want to compute two 
total orders on the set of its vertices whose intersection defines the 
same partial order as the edge set of the dag, that is, two total ord- 
ers such that for any two vertices of the dag u,v there is a path 
from u to v if and only if u appears before v in both total orders. 

Let us regard a total order on a set of n elements as a one-to- 
o n e  c o r r e s p o n d e n c e  between the set and {1,2 ..... n}. Thus, given 
two total orders on a set, we can consider them :is assigning two 

integers to each of the elements of  the set, and regard this pair of 
integers as cartesian coordinates of the element. In this fashion an 
intuitive correspondence can be established between the two total 
orders whose intersection defines a MSP dag and an embedding of 
the MSP dag in the cartesian plane in which the coordinates of any 
pair of  its vertices u,v satisfy the relationship x, ,>x u and yv>Yu if 
and only if there is a path from u to v in the dag. As an example 
fig. 14 shows the embedding of the MSP dag of fig.6 resulting from 
interpreting in this fashion the two total.orders given in the same 
figure. We will use this interpretation in the discussion that fol- 

lows. 
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Fig.14 
[']11bedcling of lhe MSP dag of fig.6 in the plane using 
lhd two total orders of  the Stlllle [Jgtllo :is co(irdJllatos. 

The first observation we make, is that an MSP dag with n ver- 
tices can be embedded in an nxn square of the cartesian plane, 
since the integers assigned to its vertices are in {1,2 ..... n}. Know- 
ing this fact, we can use the approach shown in fig. 15 to reduce 
the problem of embedding a MSP dag G to that of embedding two 
smaller MSP dags, G I and G 2, whose series or parallel composi- 
tion produces G. A look at that figure should convince the reader 
that for any pair of vertices, u~G I and vEG 2, there is a path from 
u to v if and only if both coordinates of u are smaller than the 
corresponding coordinates of v, i.e., only in the case of the series 
composition. 

Clearly this approach can be applied recursively to reduce the 
problem of embedding an MSP dag with n vertices to the n trivial 
problems of embedding the MSP dag with one vertex and no 
edges at a specific location of the plane. 

To complete the details of how this process may be per- 
formed, let us assume that the position of the embedding of a 
MSP dag with n vertices in the cartesian l~lane is given by the 
coordinates of the lower left corner of the nxn square that con- 
rains all its vertices• With this convention, if we let n I and n 2 
denote the number  of vertices of G I and G~ in fig. 15, the l'ollow- 
ing formulae will provide the positions of G I and G 2 given n I, n 2 

and the positio~a (x,y) of G: 

Series composition: x I = x 

Yl =Y 
~ 2= x-.l-hi 

y 2 = y + n 2  



Parallel composition: x I = x 

Yl =Y+n2  

x 2 = x + n l  

Y2=y 

The correctness of these formulae can be established by 
inspection of fig. 1 5. 
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Fig. 15 
Method ub;cd to embed a MSP dag in the plane so the cc, ordil~ater; 

of its vortices give t~t) lotal oid~21"5 whose intersoctit)n 
defines the partial t)rder induced by the. edges of the dag. 
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Fig.16 
Values produced by lhe enlbcdding procedure on the 

dccomposili~m tree of lig.3. %1 Sizes. (bl Coordinates. 

tional to the nuumber  of vertices of the MSP dag it represents. 

Fur thermore,  once the two total orders are computed, it 
requires just two comparisons to determine whether a given pair 
(u,v) of vertices represents tin edge of the transitive closure of G: 
there is a path from u to v in G (i.e., (u,v) is an edge of the tran- 
sitive closure of G) if and only if u appears before v in the two 
partial orders. 

Therefore Step 4 of the GSP recognition procedure can be 
implemented to run in time proportional to the size of the decom- 
position tree plus the number  of edges to be tested, and we have 
completed our description of a linear time implementation of 
Algorithm 1. 

Given a binary decomposition tree T of a MSP dag G, the 
embedding process just outlined, can be performed by two traver- 
sals of T. First we traverse the tree in postorder and assign a size 
to each of its nodes: we assign the wdue one to the leaves and the 
sum of the values of its children to any internal node. Clearly, the 
size assigned to any node equals the number  of vertices of the 
MSP dag represented by the subtree of T rooted at that node. We 
then traverse T in preorder assigning a pair of coordinates to each 
vertex as follows: the root of the tree gets the coordinates (1,11, 
and the children of each node visited are assigned coordinates 
using their previously computed sizes in the formulae give above, 
with the label of their parent determining which set of formulae is 
used. 

As an example, fig. 16 shows the tree of fig.3 with the integers 
associated to its nodes by the two traversals just described. The 
resulting embedding in the plane of the MSP dag of fig.1 is the 
one shown in fig. 14 since the two total orders produced by this 
process are identical to the ones given in fig.6. 

Clearly these two traversals can be performed in time propor- 
tional to the number  of nodes of the tree which is in turn proper- 

4. F orb i d d en  s u b g r a p h  c h a r a c t e r i z a t i o n  

The characterization of a class of graphs by exhibiting a sub- 
graph that no member  of the class may contain has been a com- 
mon goal of the classical theory of graphs, Perhaps the most  
famous of such ./brbi~Men subgraph characwrizations is due to 
Kuratowskii 's for the class of planar graphs ([ l iAR]).  In this sec- 
tion we present a characterization of this type for the class of GSP 
dags based on the dag of fig. 17 which, for obvious reasons, will be 
called N. 

It can be shown that a dag G is GSP if and only if its transitive 
closure does not contain N as an induced subgraph. The proof of 
this fact is rather long and will be omitted. The details can be 
found in [VAL] where our recognition algorithm is modified so as 
to exhibit the forbidden N subgraph of its input whenever it gives 
a negative answer still maintaining its linear running time. 

ttere we will limit ourselves to a description of the relationship 
of this forbidden subgraph characterization with a previously 

l 0  
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Fig.t7 
The Forbidden subgrtiph of the class of (iSI' dags. 

known characterization of  TTSP mult igraphs.  
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Fig.18 
The forbidden subgraph of the class of T'FSP multidigraphs. 

Duffin [DUF] showed that a mult igraph is TTSP if and only if 
it does  not  contain a subgraph homeomorph i c  to K 4 (the complete 
graph on four vertices). This characterization can be generalized 
trivially, to show that a multidigraph with a single source and a 
single sink is TTSP if and only if it does  not contain a subgraph 
homeomorph i c  to the dag of fig. 18, that we will call W. 

Fig.19 
The line digraph of the dag of fig. 18. 

From this characterization of  TTSP mult idigraphs and the rela- 
t ionship given by l emma 1, it is not too difficult to show that the 
transitive closure of a CBC dag contains an embedded  N if and 
only if its line digraph inverse does not have a subgraph 
homeomorph i c  to W. That  is to say, that a CBC dag is MSP if and 
only if its transit ive closure does not contain N as an induced sub- 
graph. This relationship can be made  plausible very quickly if one 
realizes that the line digraph of  W is the dag shown in fig. 19, 
whose transitive closure obviously contains an induced N sub-  
graph. 

The relationship that we have just  exhibited is the basis of  the 
proof  given in [VAL]. 

5. C o n c l u d i n g  r e m a r k s  

This section presents  some  of the consequences  of the 
existence of  the linear t ime recognition procedure just  described. 

First, it should be noticed that Step 1 of  the recognition pro- 
cedure is a linear t ime transitive reduction algorithm for GSP 
dags, and that Step 4 computes  the transitive closure of  an MSP 
dag (in implicit form) again in linear time. This results compare 
favorably with the best known algor i thms to perform the same 
tasks in arbitrary dags (see [AGU] for instance).  
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Fig .20  
Two binary deconlpl~Mtion l rccs  f'c~l Ihc MSP dag of  
fig. 1 and the LIIliqLIC Iree ob ta ined  by ',dlrillking t h e h  

edges that johl Ilodcs with tile same labels. 

Second, even though we said thai several nonisomorphic 
binary decomposition trees may represent the same MSP dag, 
there is a way of  modifying these trees to make them represent 
MSP dags in a quasi-unique way. I f  one shrinks the edges o f  a 
binary decomposition tree that join internal nodes with the same 
label, the result is a tree that is unique up to reordering of  the 
children o f  P nodes, as illustrated in fig.20. A formal proof  o f  this 
fact can be Found in [VAL] ,  where the uniqueness of  this tree is 
related to the uniqueness of  the triconn~cted components o f  a 
biconnected multigraph (FliT] L 

This unique representation o f  a MSP dag by a tree, allows the 
use o f  the linear time tree isomorphism algorith ( [A I tU ] )  to deter- 
mine whether two MSP dags are isomorphic in linear time. This 
Fact is interesting because there is no known polynomial time 
graph isomorphism algorithm. 

It should be noted however that the isomorphism o f  GSP dags 
is as hard as the isomorphism o f  arbitrary graphs since the decom- 
position tree does not give any information about redundant edges 
being or not being present, and one can encode an arbitrary graph 

11 



into the redundant edges of a GSP dag ([VAL]). 

Finally, the existence of a polynomial algorithm for the sub- 
tree isomorphism problem ([MAT]), suggests the possibility of a 
polynomial algorithm for the subgraph isomorphism problem for 
MSP dags by testing subtree isomorphism of their unique decom- 
position trees. (The subgraph isomorphism problem for arbitrary 
graphs is known to be NP-complete [AHU]). 

\ i /  ~ i i  

F C, 

b ¢ d .¢  

\ \ l /  

" "t ' ~  p / ' ¢  
&: eL , 5 1 " -  

I 

Fh.b21 
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Unfortunately matters are not quite that simple, as fig.21 
shows: an MSP dag tt may be isomorphic to a subgraph of another 
MSP dag G, and yet the unique decomposition tree of tt is not 
isomorphic to any subtree of the unique decomposition tree of G. 
Furthermore, the problem seems to lead rather quickly into non- 
trivial questions related to tree homomorphism that we are 
currently investigating. 
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