Classifying Discrete Temporal Properties

Thomas Wilke*

Institut fiir Informatik und Praktische Mathematik
Christian- Albrechts-Universitat zu Kiel, D-24098 Kiel, Germany
tw@informatik.uni-kiel.de, http://www.informatik.uni-kiel.de/“tw/

Abstract. This paper surveys recent results on the classification of dis-
crete temporal properties, gives an introduction to the methods that
have been developed to obtain them, and explains the connections to
the theory of finite automata, the theory of finite semigroups, and to
first-order logic.

The salient features of temporal logic! are its modalities, which allow it to express
temporal relationships. So it is only natural to investigate how and how much
each individual modality contributes to the expressive power of temporal logic.
One would like to be able to answer questions like: Can a given property be
expressed without using the modality “next”? What properties can be expressed
using formulas where the nesting depth in the modality “until” is at most 27

This survey reports on recent progress on answering such questions, present-
ing results from the papers [3], [2], [14], [11], and [16] and the thesis [17].

The results fall into three categories: (A) characterizations of fragments of
future temporal logic, where a fragment is determined by which future modali-
ties (modalities referring to the future and present only) are allowed in building
formulas; (B) characterizations of symmetric fragments, where with each modal-
ity its symmetric past/future counterpart is allowed; (C) characterization of the
levels of the until hierarchy, where the nesting depth in the “until” modality
required to express a property in future temporal logic determines its level.

An almost complete account of the results from category (A) will be given in
Sections 2 through 4, including full proofs. These results can be obtained with a
reasonable effort in an automata-theoretic framework and the methods used to
obtain them are fundamental to the whole subject, in particular, to the results
from categories (B) and (C). The results from these two categories are presented
in Sections 5 and 6 without going into details of the proofs, which would require
a thorough background in finite semigroup theory.

In computer science applications, temporal formulas are interpreted in (finite
or infinite) sequences (colored discrete linear orderings), which are nothing else
than words (strings or w-words). Therefore, the set of models of a temporal
formula—the property defined by it—can be viewed as a formal language, in
fact, a regular language. In other words, characterizing a fragment of temporal
logic amounts to characterizing a certain class of regular languages.

* Part of the research reported here was conducted while the author was postdoc at
DIMACS as part of the Special Year on Logic and Algorithms.
! T use “temporal logic” as a synonym for “propositional linear-time temporal logic.”

33

There is a long tradition of classifying regular languages, going back to as
early as 1965, when Schiitzenberger in the seminal paper of the field, [12], char-
acterized the star-free languages as being exactly the ones whose minimal DFA’s
are counter-free. Given that temporal logic and star-free expressions have the
same expressive power (which was only realized much later [5, 4, 10]), Schiitzen-
berger’s result also marked the first step in classifying discrete temporal prop-
erties: it gave an effective characterization of the class of all regular languages
expressible in temporal logic. After an introductory section with terminology
and notation, this survey starts off in Section 2 with a new, brief proof that ev-
ery language recognized by a counter-free DFA is expressible in future temporal
logic.

This paper only deals with strings, but most of the results have been extended
to w-words. The reader is referred to the respective original papers.

1 Basic Terminology and Notation

We interpret temporal formulas in strings and use standard notation with regard
to strings. The positions of a string of length n are indexed by 0,...,n — 1.
When u is a string of length n and 0 < ¢ < j < n, then u(,) denotes the string
w(i)u(i+1)...u(j — 1). Further, u(é, *) denotes the suffix u(i, n).

A temporal formula over some alphabet X is built from the logical constants
T (true) and — (false) and the elements of X using the boolean connectives —
(negation), A (conjunction), and V (disjunction) and the temporal modalities X
(next), F (eventually), and U (until). All connectives and modalities are unary
except for A, V, and U, which are binary and written in infix notation. The set
of all temporal formulas is denoted by TL.

A fragment of temporal logic is a subset of TL obtained by allowing only
the use of certain temporal modalities in the construction of formulas. When [
is a list of temporal modalities, then TL[l] denotes the respective fragment. For
instance, TL[F] stands for the class of all temporal formulas which can be built
from alphabet symbols and the logical constants using boolean connectives and
F as the only temporal modality.

Given a temporal formula ¢ and a string u, one defines what it means for ¢
to hold in u, denoted u |= . This definition is inductive, where, in particular,

— for every symbol a, u = a if u(0) = q,

—u = Xop if Ju| > 1 and u(1, %) | ¢,

— u = Fy if there exists ¢ with 0 < ¢ < |u| such that u(i, %) = ¢, and

— u = @ U4 if there exists i with 0 < i < |u| such that u(j, *) |= ¢ for every
je{l,...,i—1} and u(i, %) |= 9.

Note that — U ¢ has the same meaning as X¢ for any temporal formula ¢,
and T U ¢ has the same meaning as F¢, which means X and F can be derived
from U. Sometimes, we will also use the temporal modality G (always), which is
another derived modality: it stands for —=F-.

The two modalities F and U have so-called stutter-invariant counterparts
(for an explanation of the terminology, see Section 4), denoted Fg and Us,

34

respectively. Their meaning is defined just as above except that i is allowed to
be 0 and 0 must also be considered for j. In this regard, the modalities X, F, and
U will be referred to as strict modalities.

Given a temporal formula ¢ over some alphabet Y and an alphabet I', we
write L, (¢) for the set {u € I'" | u |= ¢} and say L, (p) is the language over I’
defined by ¢. (Observe that if I" is an arbitrary alphabet, ¢ an arbitrary formula,
and 1 the formula obtained from ¢ by replacing every alphabet symbol not from
I' by —, then £, (¢) = L, (¢). This means one can always assume that a defining
formula only uses symbols from the alphabet of the language in question.) A
language is said to be expressible in temporal logic (or TL-expressible) if there is
a temporal formula that defines it. Similarly, when F' is a fragment of temporal
logic, a language is expressible in F' if there exists a formula in F' that defines
it.

A deterministic finite automaton (DFA) is a tuple A = (X, @, q1, 6, F') where
X is a finite alphabet, @ a finite set of states, qr € Q the initial state, 6: Q@ x A —
Q@ the transition function, and F C @ the set of final states. The extended
transition function of A, denoted ¢*, is defined by 6*(g,€) = ¢q for ¢ € @ and
8*(q,ua) = §(6*(q,u),a) for ¢ € Q, u € X*, and a € X¥. The language recognized
by A, denoted L(A), is defined by L(A) = {u € XT | §*(qr,u) € F}. Given a
regular language L, the minimal DFA for L is denoted by Ap,.

When u denotes a string, then u” denotes the reverse of u, i.e., if u is of
length n, then u? = u(n — 1)u(n — 2)...u(0). Accordingly, when L denotes a
language, then L? denotes the reverse of L, i.e., the language {u” | u € L}.

2 Full Temporal Logic

It is easy to see that every language expressible in temporal logic is a regular
language, i.e., recognizable by a DFA. This raises the question what regular
languages are exactly the ones that are expressible in temporal logic. Recall
that the minimal DFA recognizing a given regular language is a canonical object
to consider when one is interested in classifying a regular language. So more
concretely, one can ask for a structural property of DFA’s that is enjoyed by the
minimal DFA of a given regular language if and only if the language is expressible
in temporal logic.

The adequate property is known as counter-freeness. Given a DFA A, a
sequence (g, - - - , ¢m_1 of distinct states is a counter for a string v if m > 1 and
0*(gi,u) = g1 for i < m where, by convention, ¢,, = qo. A DFA is counter-free
if it does not have a counter.

Theorem 1. [10,4] A regular language L is expressible in TL if and only if
A is counter-free.

This theorem is a simple consequence of two fundamental results: in 1971,
McNaughton and Papert [10] proved that counter-free DFA’s recognize exactly
the languages that are expressible in first-order logic; in 1980, Gabbay, Pnueli,
Shelah, and Stavi [4] showed that temporal logic is as expressive as first-order

35

logic.? The latter result is an improvement of a result of Kamp [5] from 1968 that
says that temporal logic with future as well as past operators is as expressive as
first-order logic in Dedekind-complete orderings.

The difficult implication in Theorem 1 is the one that asserts that a regular
language L is expressible in temporal logic if A is counter-free. For this part
of the theorem only a few direct proofs have been presented thus far. There
is a journal paper by Cohen, Perrin, and Pin [1], Maler’s thesis [8], and an
accompanying conference paper by Maler and Pnueli [9]. Cohen et al. as well as
Maler and Pnueli use some kind of decomposition theory (for finite semigroups or
for finite automata); the proof presented below, from [17], avoids such theories.

We need more terminology and notation. A pre-automaton is a triple (X, @,)
where X is a finite alphabet, @ a finite set of states, and §: Q@ x ¥ — @ a
transition function. In other words, a pre-automaton is a DFA without initial
and final states. The terminology and notation we have introduced for DFA’s
transfers to pre-automata in a straightforward way (if applicable). For instance,
the extended transition function of a pre-automaton and the property of being
counter-free are defined in exactly the same way as for DFA’s.

Given a set @, we view the set Q€ of all functions on @ as a finite semigroup
with composition as product operation. Given «,3: @ — @, we write a8 for
the composition of o and 3, i.e., for the function given by ¢ — B(a(q)). For
a: @ — Q and Q' C @, we write a[Q'] for the image of Q' under q, i.e., for
{a(q) g€ Q'}.

Let A = (X,Q,0) be a pre-automaton. For every string u € X* we define its
transformation, denoted u?, as follows. For every ¢ € Q we set u(q) = 6*(q,u),
and we let Sy = {u? | u € X+}. Clearly, this set is closed under functional
composition, that is, it is a subsemigroup of Q<. It is called the transformation
semigroup of A. For every a: Q — Q, weset L2 = {u € Xt | u = a}. Further,
L2 denotes LA U{e} if a = idg and else L2.— Observe that if a pre-automaton
as above is counter-free and u is a string such that u4[Q] = Q, then u? = idg.

Proof of Theorem 1, from a counter-free DFA to a temporal formula,
[17]. We prove that for every pre-automaton A = (X, Q,d) and every o € Su
the language L7 is expressible in temporal logic, which is obviously enough. The
proof goes by induction on |@| in the first place and then on | X|: in the induction
step, we will consider pre-automata with the same state space but over a smaller
alphabet as well as pre-automata with a smaller state space but over a much
larger alphabet.

We distinguish two cases. First, assume there is no symbol a € X' such that
a?[Q] C Q. Then a = idg for every a € ¥, which means S4 = {idg}. This
implies L2 = X7 for every a € S4, and X7 is obviously expressible in temporal
logic.

Second, assume b € ¥ is such that b4[Q] C Q. Let Q' = b4[Q], I' = X'\
{b}, and let B be the pre-automaton which results from A by restricting it

% In [4], the authors interpreted temporal logic and first-order logic in w-words. Tt is,
however, obvious that their result is also valid for strings.

36

to the symbols from I'. Further, let Uy = I'*b, A = {u? | u € Uy}, and set
C = (A,Q',§") where §'(q,a) = a(q) for every ¢ € Q' and a € A. Finally,
let h: U — A% be the function defined by h(ug...u, 1) = uft...u2 ;| for
UQy - -+, Up—1 € Uo.

Let o € S4. We want to show that Lﬁ is TL-expressible. To this end, we
first partition Lé according to how many b’s occur in a string; we set

Lo=LAnrt, Li=LAnrser s, Ly=LAnIr<esre.

Then L(’;‘ = Lo U L1 U Ls. Next, we observe that

Lgg Lg,yp
— ——
Lo=LB Ly = LBvLE Ly = LEbn =" (LOYLE
0= Ha > 1= pYpr s 2 — B ('y) B
a=phAp a=BhAyp

where 3,8 € Sp U {idg}, and v € Sc. Further, we see that
Lgg = LEbE*NI"bLE, Lpyg = LEbE* nI*bh (L) N X*bLE, (1)

for 8,8 € SpU{idg}, and vy € Sc.

By induction hypothesis, we know that all Lg with 8 € Sp and all Lf
with v € S¢ are TL-expressible. It is now a manageable “programming task” to
show that under these assumptions all the sets that are intersected on the right-
hand sides of the equations in (1) are TL-expressible, which means L4 is TL-
expressible, as temporal logic is closed under disjunction (union) and conjunction
(union). Lemmas 1 and 2 below provide the details. O

Lemma 1. Let ¥ be an alphabet, b € X, and I' = X\ {b}. Assume L C X" and
L' C I'*t are TL-expressible. Then so are I'*bL, I'*b(L+¢), X*bL', X*b(L' +¢),
L'bX*, and (L' + €)bX*.

Proof. First, let ¢ and ¢ be formulas over X and I', respectively, such that
Lx(p) =L and L, (v) = L'. Then

I*bL = Lx(-bUg (bAXp)) , S*bL' = Lx(Fe(b A GbAXep)) .

The defining formulas for I'*b(L+¢) and X*b(L'+¢€) can be obtained in a similar
fashion.

Second, we show by induction that for every temporal formula ¢ over I" there
exists a temporal formula ¢t such that Lx(p1) = L, (¢)bX*. We can simply
set

a+:a/\Fb, (—|(‘0)+:—|(’0+/\—|b/\Fb’
(AP =9t AT, (pUP)" = (" A=b)U (F A=b) ,

where a stands for an arbitrary element of I.
Clearly, Lx (o™ V b) = (L, (¢) + €)bX*. O

37

Lemma 2. Let ¥, A be alphabets, b € X, I' = X'\ {b}, and Uy = I'*b. Fur-
ther, let ho: Uy — A be an arbitrary function and h: U;’ — A% be defined by
h(ug...un—1) = ho(uq) ... ho(tun—1) for ug,...,un_1 € Uy. For every d € A, let
Lg={u € I'" | ho(ub) = d}. Assume L C A% is expressible in temporal logic
and also Ly for every d € A. Then h~1(L)I™* is expressible in temporal logic.

Proof. We show by induction that for every temporal formula ¢ over A there
exists a temporal formula p# over X such that h™1(La(¢)) ™™ = Lx (o). For
d € A, we either have h™1(LA(d)) T = LgbX* or A1 (LA(d)) ™ = (Lq+€)bX™.
Thus, the induction basis follows from the previous lemma and the assumption
that the languages L, are TL-expressible. For the induction step, we can set

(—p)* = —p* AFgb | (p AN)# = o7 Ay |
(e U) = g% v (0% A (b= Xo¥) U (b A Xy#)) . u

The above proofs are constructive, i. e., following these proofs one can actu-
ally construct a temporal formula defining the language recognized by a given
counter-free automaton. A closer analysis of the constructions sketched in the
proofs yields the following quantitative statement. (Recall that for every pre-

automaton with n states, the cardinality of its transformation semigroup is
20(nlog n))

Corollary 1. For every counter-free DFA with at most n states and at most
m symbols in the alphabet, there exists a temporal formula of size m 2271
which defines the language recognized by the DFA.

3 Strict Fragments

The three basic temporal modalities are X, F, and U. So if we determine frag-
ments of TL by disallowing the use of some of these modalities we obtain eight
different fragments. Obviously, some of these have the same expressive power.
For instance, the modality X as well as the modality F can be expressed using U
only. Thus, all fragments that allow U have the expressive power of full temporal
logic:

TL[U] = TL[X, U] = TL[F, U] = TL]X,F,U] = TL . 2)

By abuse of notation we use an expression like TL[X, U] to refer to the specific
fragment of TL as well as to the class of languages expressible in this fragment.

The identities in (2) are the only ones that hold: TL[X] and TL[F] are in-
comparable in terms of expressive power and both are stronger than TL[] and
weaker than TL[X, F], which in turn is weaker than full temporal logic.

The aim of this section is to provide structural properties that exactly charac-
terize each of these fragments, just as counter-freeness characterizes expressibility
in full temporal logic.

38
3.1 Forbidden Patterns

We need a convenient way to describe structural properties of DFA’s and there-
fore borrow the notion of “forbidden pattern” from Cohen, Perrin, and Pin [1].3

For brevity in notation, given a transition function §: @ x X' — @, we define
a product @ x X* — @ by setting gu = 6*(¢g,u) for ¢ € @ and u € X¥*. Given
a set N, an N-labeled digraph is a tuple (V, E) where V is an arbitrary set and
E a subset of V x N x V. The transition graph of a DFA A = (X¥,Q,q1,06, F)
is the X *-labeled digraph (Q, E) where E = {(q,u,qu) | ¢ € Q and u € XT}.
So the transition graph of any DFA is an infinite graph. (It has infinitely many
edges, but only finitely many vertices.)

A pattern is a labeled digraph whose vertices are state variables, usually
denoted p, q, ..., and whose edges are labeled with variables for labels of two
different types: variables for nonempty strings, usually denoted u, v, ..., and
variables for symbols, usually denoted a, b, ... In addition, a pattern comes with
side conditions stating which state variables are to be interpreted by distinct
states. We will draw patterns just as we draw graphs. Consider, for instance,
Figure 1. In this figure, as well as in all subsequent figures depicting patterns,
we adopt the convention that all states drawn solid must be distinct.

We say a X T-labeled digraph matches a pattern if there is an assignment
to the variables obeying the type constraints and the side conditions so that
the digraph obtained by replacing each variable by the value assigned to it is a
subgraph of the given digraph.

3.2 Classification Theorem
Using the notion of a forbidden pattern, we can now characterize all fragments:

Theorem 2. [10,4,1,3,11] Let L be a regular language and F one of the
fragments TL[], TL[X], TL[F], TL[X,F], or TL. Then L is expressible in F if
and only if the transition graph of Ar. does not match the pattern(s) for F
depicted in Figures 1-6.

Observe that in Figures 1 and 6 the connected graphs are viewed as different
patterns (any of which must not occur), whereas Figure 2 shows only one pattern,
which happens to be not connected.

The characterizations given in Theorem 2 for TL[] and TL[X] are easy to
obtain; the characterization for TL is correct because of Theorem 1. The charac-
terization for TL[X, F] was first obtained by Cohen et al. [1]. An alternative proof
and a characterization for TL[F] were given in [3], using the same technique for
both fragments. In the following two subsections, this technique is demonstrated.

% To be precise, what is called a “forbidden pattern” here is referred to as a “forbidden
configuration” by Cohen et al.

39

a ,r"\‘ u a ','\‘
O=—0=—0-—0
- -
Qa a 'I-\‘
O=—0O=—0

Fig. 1. Patterns forbidden for TL[]

0oy |
O O O—e0——0

Fig. 2. Pattern forbidden for TL[X] Fig. 3. Pattern forbidden for stutter invariance

I-\‘

@ o\l ‘,-;“ :-;“

U‘ 7'[} v
A

< a ,’-I\| O‘_/O

@ L w
Fig. 4. Pattern forbidden for TL[F] Fig. 5. Pattern forbidden for TL[X, F]

u

L o~ wOw o™ Oy
0O 4 0Q O O
. O NoA O~

u

Fig. 6. Patterns forbidden for TL

3.3 Ehrenfeucht-Fraissé Games

Ehrenfeucht-Fraissé (EF) games are a standard tool in mathematical logic to
tackle questions about the expressive power of a logic. They allow one to reduce
such questions to questions about the existence of strategies in specific two-
player games, abstract away syntactical peculiarities, and thus represent the
combinatorial core of the problems. In our situation, we will use specifically
tailored EF games to prove correct the characterizations for TL[F] (and TL[X, F])
given in Theorem 2.

40

An EF game for TL[F] is played by two players, Spoiler (male) and Duplicator
(female), on a pair of nonempty strings and proceeds in several rounds. The
number of rounds to be played is fixed in advance. In each round, a prefix of
each of the two strings is chopped off according to a rule explained below so that
the outcome of a round is a new pair of strings or an early win for one of the
players if the other cannot act according to the rule. Before each round and after
the last round, a referee checks if the two strings start with the same symbol.
If this is not the case, the referee calls Spoiler the winner of the game. If after
the last round Spoiler has not yet won the game, Duplicator is announced the
winner. The rule for carrying out a round is as follows. First, Spoiler replaces one
of the two strings by a proper, nonempty suffix of it. Then Duplicator replaces
the other string by a proper, nonempty suffix of it. If Spoiler cannot follow this
rule because both strings have no proper, nonempty suffix (i.e., if both strings
are of length 1), he looses, and if Duplicator cannot reply according to the rules
because the other string is of length 1, then Spoiler wins.

The idea behind the game is that Spoiler tries to exhibit a difference between
the two strings the game starts with whereas Duplicator tries to show they are
similar. This can also be phrased in a formal way: Spoiler has a winning strategy
in a k-round game if and only if there is a formula ¢ of “F depth” at most k that
holds for one of the two strings but not for the other. The theorem that we will
use is the following.

Theorem 3. [3] Let L be a language. Then L is expressible in TL[F] if and only
if there exists a number k such that for every pair (u,v) withu € L and v ¢ L,
Spoiler has a winning strategy in the k-round game on (u,v).

3.4 Characterization of TL[F]

The claim that a language L is expressible in TL[F] if and only if the transition
graph of A, does not match the pattern depicted in Figure 4 follows directly
from Lemmas 3 and 4 below.

Lemma 3. Let L be a regqular language such that the transition graph of Ar»
matches the pattern depicted in Figure 4. Then L is not expressible in TL[F].

Proof. Let A, = (X,Q,q1,9, F) and assume a, u, and v are chosen so that the
pattern in Figure 4 is matched. By minimality of Ajy,, there exist z,y € X*
such that z(uv)'uay € L? iff z(uv)lay ¢ L?, for every | > 0. We show that for
I >k > 0 and any choice of strings z,y € X*, u,v € X*, Duplicator wins the
k-round game on (z(uv)uay)” and (z(uv)'ay)”. Thus, by Theorem 3, L cannot
be expressible in TL[F].

First of all, observe that playing on the first |ay| positions of the two strings
does not help Spoiler to win the game: Duplicator will simply copy Spoiler’s
moves. It is therefore sufficient to show that Duplicator wins the k-round game
on (z(uv)*t'w')” and (z(uv)'u')” for I > k > 0 and any choice of strings z € %*,
u,u’,v € X* where u' is a prefix of u.

41

The proof of this claim is by induction on k. The induction base, £ = 0, is
trivial. For the inductive step, assume k > 0. Write s and ¢ for (z(uv)'*'u’)’
and (z(uv)'w')”. First, suppose Spoiler removes a prefix of length i from ¢. Then
Duplicator replies by removing a prefix of length i+ |uv| from s, and the remain-
ing strings will be identical. Second, assume Spoiler removes a prefix from s, say
of length 4. If ¢ > |uv|, then Duplicator removes the prefix of length i — |uv|
from ¢, and the remaining strings will be identical. If ¢ < |uv|, then Duplicator
removes the prefix of length i from ¢, and the induction hypothesis applies for
the following reason. The remaining strings are (z(uv)*'u")” and (z(uv)'u")”
with v € X7 a prefix of u, or (zu(vu)'v')” and (zu(vu)'"v')” with v’ a prefix
of v, or (z(uwv)'u")” and (z(uv)'~'u")” with " € £+ a prefix of u. O

For the other direction we need some more notation and terminology. First,
we write SCC(q) for the strongly connected component of a node g in a given
digraph. Second, given a DFA A = (X¥,Q,q;,0,F) and a string u € X*, the
rank of u (with respect to A), denoted rk(u), is the cardinality of the set
{SCC(qI U’(Oa 0))7 s SCC(qI U’(Oa |’u" - 2))}

Lemma 4. Let A be a DFA over some alphabet X whose transition graph does
not match the pattern depicted in Figure 4. Then L(A)? is expressible in TL[F].

Proof. We prove that if u and v are nonempty strings over X' such that g; u #
g1 v, then Spoiler wins the (rk(u)+rk(v))-round game on u” and v, by induction
on rk(u) + rk(v).

Write © = v'a and v = v'b for appropriate a,b € X. If a # b, then Spoiler
wins immediately. So in the rest, assume a = b. Write p and q for ¢q; ' and g; v'.
Clearly, SCC(p) # SCC(g) in the transition graph of A, because otherwise it
would match the pattern depicted in Figure 4. There are three situations that
we distinguish.

1. Neither SCC(p) is reachable from SCC(q) nor vice versa.
2. SCC(p) is reachable from SCC(q), but SCC(q) is not reachable from SCC(p).
3. The same as 2. with the roles of p and ¢ exchanged.

First, assume we are in situation 1. Then it is not possible that ¢; belongs to
both SCC(p) and SCC(q), say it does not belong to SCC(p). Let 7 be minimal
such that gy u(0,i) € SCC(p) and set p' = q;u(0,7). Spoiler replaces u” by
u(0,17)”. Duplicator either looses immediately (because v is of length 1) or she
replies by removing a prefix of v”, say she replaces v* by v(0,5)”. Set ¢' =
qrv(0, 7). If we had p' = ¢, then SCC(g) would be reachable from SCC(p) — a
contradiction. Hence, p' # ¢'. By the minimality of ¢, we also have SCC(qr u(0,7—
1)) # SCC(p), which means rk(u(0,7)) < rk(u) and, in particular, rk(u(0,7)) +
rk(v(0, 7)) < rk(u)+rk(v), so that the induction hypothesis applies. Spoiler wins
the remaining game with one round less.

Second, assume we are in situation 2. Choose ¢ as above. Spoiler does the
same as before. Duplicator either looses immediately or she removes a prefix
from v”, say she replaces v” by v(0,7)”. If we had q;u(0,i) = g7 v(0,), then
SCC(q) would be reachable from SCC(p) — a contradiction. Just as before, we
can apply the induction hypothesis. Situation 3 is symmetric to situation 2. O

42

Exactly the same technique works for proving the correctness of the charac-
terization of TL[X,F]. In EF games for this fragment, the additional temporal
modality is accounted for by an additional type of round, so-called X rounds. In
such a round, Spoiler first chops off the first symbol of one the two strings and
Duplicator then chops off the first symbol of the other string. For details, see [3].

4 Stutter-Invariant Fragments

In Section 1 we have defined the so-called stutter-invariant counterparts of F and
U, namely Fs and Ug. In this section, we will obtain effective characterizations
for the stutter-invariant fragments, TL[F«] and TL[Ug]. (Observe that TL[Ug] =
TL[Fs, Us] and TL[X, F¢] = TL[X, F].)

Strings u and v are stutter-equivalent if they both belong to a language of the
form aa“al+ . a,j for some k and appropriate symbols a;. We use =,; to denote
stutter equivalence, and it is easy to see that =; is in fact an equivalence relation.
A language is stutter-invariant if whenever u and v are stutter-equivalent strings,
then either u and v belong to this language or u and v do not belong to it, i.e.,
if this language is a union of stutter equivalence classes.

Lamport [7] observed that every language expressible in TL[F, Ug] is stutter-
invariant. This explains why F¢ and Ug are called stutter-invariant. Below, we
prove that the converse of Lamport’s observation holds true as well, in the fol-
lowing sense.

Theorem 4. [3,17] Let F be one of the stutter-invariant fragments TL[F] and
TL[Us] and let F' be its strict counterpart, TL[F] respectively TL[U]. Assume L
is an arbitrary language. Then L is expressible in F' if and only if L is expressible
in F' and stutter-invariant.

Observe that a regular language L is stutter-invariant if and only if the
transition graph of Ar. (or, equivalently, of A;) does not match the pattern
depicted in Figure 3. Thus, the above theorem (together with the classification
theorem from the previous section) immediately leads to characterizations of
TL[F] and TL[Ug] in terms of forbidden configurations.

Using the characterization results we have obtained so far, one can prove:

Corollary 2. For every fragment (strict or stutter-invariant) F of temporal
logic, the following problem is PSPACE-complete. Given a temporal formula o,
decide whether ¢ is equivalent to a formula in F'?

The upper bound follows from the fact that in polynomial time one can check
whether or not the transition graph of a DFA matches a fixed pattern. The lower
bound is obtained by a reduction to TL satisfiability.

The proof of Theorem 4 makes use of the notion of a stutter-free string, which
is defined as follows. A string u is stutter-free if u(i) # uw(i +1) for all i < |u| —1.
Clearly, every equivalence class of =;; contains exactly one stutter-free string.
As a consequence of Lamport’s observation, we note:

43

Lemma 5. Let L be a stutter-invariant language over some alphabet X and
¢ € TL[Fs, Us] a formula over X such that u = ¢ iff u € L, for u € XT stutter-
free. Then ¢ defines L. O

So Theorem 4 will follow once we have established the following lemma.

Lemma 6. Let F and F' be as in Theorem 4, and assume @ € F'. Then there
exists ' € F such that u |= ¢ iff u = @', for u € X1 stutter-free.

Proof. The proof is an inductive definition of ¢', which works in both situations.
The base case is trivial. In the induction step, negation and disjunction can be
dealt with easily. What remains are formulas whose outermost connective is F
or U. We set

\/ (@AFs(bAFgy) | for ¢ = Fy,
a,beX: a#b
¢ =
\V/ (@A(aUs(bA @ Usx)) , foro=1Ux.
a,beX: a#b

We prove only that the second choice is correct; the proof that the first choice
is correct is even simpler. First, assume u |= ¢. Then there exists ¢ > 0 such
that w(i, %) = x and u(j,*) = ¢ for j € {1,...,7 — 1}. By induction hypothesis,
this means u(i, *) |= x' and u(j,*) = ¢’ for j € {1,...,i — 1}. Clearly, we have
u = u(0) Au(0) Ugs (u(1) A’ Ugs X'), which is a disjunct of ¢'.

Second, assume u |= ¢’ and let a and b be symbols for which the correspond-
ing disjunct holds. If u = a A a Ug (b A ¢’ Ug X'), then u(0) = a and u(1) = b,
since u is assumed to be stutter-free. But then u(1, %) = 9’ Ug x', which implies,
by induction hypothesis, u(1, *) |= ¥ Us x, which, in turn, implies u 9 Ux. O

This completes the first part of this survey. We have seen how every frag-
ment (determined by which modalities are allowed in forming formulas) of future
temporal logic can be characterized in an effective, concise way by describing
structural properties of DFA’s.

5 Past Modalities and Symmetric Fragments

Thus far, we have only dealt with temporal modalities that refer to the future
(and possibly the present) only. But, of course, each of the modalities considered
has a symmetric past counterpart: S (since) goes with U, P (eventually in the
past) goes with F, Y (previously) goes with X.

Adding past modalities does not increase the expressive power of temporal
logic, i.e., TL = TL[U, S]. This is easy to see because for every temporal formula
(with future and past modalities) one can still find a counter-free DFA rec-
ognizing the language defined by the formula. Similarly, TL[U] = TL[Us, Ssf],
because even with past stutter-invariant modalities one can only express stutter-
invariant languages. Clearly, TL[X] = TL[X, Y]. But the expressive power of any
other fragment is increased by adding the corresponding past modalities. Nev-
ertheless, we have:

44

Theorem 5 (Decidability of Symmetric Fragments [16]). For each of the
fragments TL[Fg, Ps], TL[F, P], and TL[X,Y,F,P] it is decidable whether or not

a given temporal property can be expressed in it.

This theorem is based on similar structural characterizations as the ones
given in Theorem 2 for the future fragments of temporal logic. There is, how-
ever, a fundamental difference. Instead of looking at the minimal DFA for a
given language, one considers its syntactic semigroup, which, by definition, is
symmetric in the sense that the syntactic semigroup of the reverse of a lan-
guage is the reverse of the syntactic semigroup of the language, and thus better
suited for investigating symmetric fragments. The proofs get more involved and
require non-trivial finite semigroup theory. On the other hand, they also reveal
interesting connections to first-order logic.

Remember that Kamp’s theorem says that temporal logic (with future modal-
ities only or with both) is as expressive as first-order logic. In this statement, a
string u € X7 of length n is viewed as a structure in the signature with a binary
predicate <, for the order relation on the positions, and unary predicates P,, for
each alphabet symbol a a separate predicate.

A simple induction shows that every temporal formula is equivalent to a first-
order formula, even to a first-order formula that uses at most three variables.
In view of Kamp’s theorem, this means that temporal logic and first-order logic
with three variables have the same expressive power. Reducing the number of
variables to two leads to TL[F, P] and TL[X, Y, F, P], respectively:

Theorem 6 (Kamp’s Theorem for Smaller Fragments [16]).

1. A language is expressible in TL[F,P] if and only if it is expressible in first-
order logic with two variables.

2. A language is expressible in TL[X,Y,F,P] if and only if it is expressible in
first-order logic with two variables when the signature is extended by the built-in
predicate suc for successor.

There are more connections to first-order logic and to formal language the-
ory. First, the languages expressible in TL[F, P] are exactly the unambiguous
languages in the sense of Schiitzenberger [13]. Second, the languages expressible
in TL[F, P] and TLI[X, Y, F, P] are exactly the languages expressible by a X5 and,
at same time, a IT, formula (over the respective signature). For details, see [16].

6 Until Hierarchy

Which temporal modalities are needed to express a given temporal property is
the first question to ask when one is interested in studying the expressive power
of the temporal modalities themselves, but there are other, equally important
ones, and some prominent ones are concerned with the “until hierarchy” of future
temporal logic. The “until” modality is special in several respects. First, it is
complete in the sense that no other modality is needed to express all temporal
properties. Second, it is the only binary modality. The last fact is crucial; it

45

makes formulas hard to read, especially, when nesting occurs. So the question is
whether or not nesting of “until” is necessary, even when the other modalities can
be used for free.* Using an appropriate Ehrenfeucht-Fraissé game with additional
types of rounds corresponding to X and U, one can actually show that the more
nesting is allowed, the more one can express:

Theorem 7 (Strictness of Until Hierarchy [3]). Let ¥ = {a, b, c} be a three-
element alphabet and define p,, n > 0, by po = a and Yrr1 = a A X(bU @,).
Then Fp,, is of until nesting depth n, but Lx(pn) is not definable by a formula
of until nesting depth < n.

We even have:

Theorem 8 (Computability of Until Depth [14]). Given a temporal for-
mula ¢, one can compute the minimal until nesting depth required to express the
language defined by .

The proof of this theorem, just as the proof of Theorem 5, makes heavy
use of finite semigroup theory. A key ingredient of the proof is the so-called
semidirect product /substitution principle, which, in rough outline, states that if
two fragments of temporal logic, say F and G, are characterized by classes V'
and W of finite semigroups, then the fragment which is obtained by substituting
formulas of G into formulas of F' is characterized by the semidirect product of
V and W. Applied to the until hierarchy, this principle says that the k-th level
of the hierarchy is characterized by a k-th power of the class of semigroups that
characterizes level 1. (Observe that a formula of until depth at most k& can be
written as a k-fold substitution of formulas of depth at most 1, and vice versa.)
For details, see [14] or [15].

7 Conclusion

The results presented in this survey show that there are intimate connections
between temporal logic, the theory of finite automata, the theory of finite semi-
groups, and first-order logic. The classification of discrete temporal properties
has been accomplished to a great extent. A problem that is still open is the
decidability of the combined until /since hierarchy, where a property is classified
according to the nesting depth in U and S required to express it using future as
well as past modalities. Note that this hierarchy is known to be strict, see [3].

References

1. Joélle Cohen, Dominique Perrin, and Jean-Eric Pin. On the expressive power of
temporal logic. J. Comput. System Sci., 46(3):271-294, 1993.

* In the literature, other binary modalities (such as “at next” [6] or “as long as” [7])
have been occasionally used, and these operators are as powerful as “until.” In fact,
nesting depth with regard to any of these two operators is exactly the same as nesting
depth with respect to “until.”

46

10.

11.

12.

13.

14.

15.

16.

17.

Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two
variables and unary temporal logic. In Proceedings 12th Annual IEEE Symposium
on Logic in Computer Science, pages 228-235, Warsaw, Poland, 1997.

Kousha Etessami and Thomas Wilke. An until hierarchy for temporal logic. In
Proceedings 11th Annual IEEE Symposium on Logic in Computer Science, pages
108-117, New Brunswick, N. J., 1996.

. Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the tem-

poral analysis of fairness. In Conference Record of the 12th ACM Symposium on
Principles of Programming Languages, pages 163-173, Las Vegas, Nev., 1980.
Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, University of California, Los Angeles, Calif., 1968.

Fred Kroger. Temporal Logic of Programs. Springer, Berlin, 1987.

Leslie Lamport. Specifying concurrent program modules. ACM Trans. Program-
ming Lang. Sys., 5(2):190-222, 1983.

Oded Maler. Finite Automata: Infinite Behavior, Learnability and Decomposition.
PhD thesis, The Weizmann Institute of Science, Rehovot, Israel, 1990.

Oded Maler and Amir Pnueli. Tight bounds on the complexity of cascaded decom-
position of automata. In Proceedings of the 31st Annual Symposium on Foundations
of Computer Science, vol. 11, pages 672—682, St. Louis, Miss., 1990.

Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press,
Cambridge, Mass., 1971.

Doron Peled and Thomas Wilke. Stutter-invariant temporal properties are ex-
pressible without the next-time operator. Inform. Process. Lett., 63(5):243-246,
1997.

Marcel P. Schiitzenberger. On finite monoids having only trivial subgroups. Inform.
and Computation, 8:190-194, 1965.

Marcel P. Schiitzenberger. Sur le produit de concatenation non ambigu. Semigroup
Forum, 13:47-75, 1976.

Denis Thérien and Thomas Wilke. Temporal logic and semidirect products: An
effective characterization of the until hierarchy. In Proceedings of the 37th An-
nual Symposium on Foundations of Computer Science, pages 256-263, Burlington,
Vermont, 1996.

Denis Thérien and Thomas Wilke. Temporal logic and semidirect products: An
effective characterization of the until hierarchy. Technical report 96-28, DIMACS,
Piscataway, N.J., 1996.

Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as
one quantifier alternation: FO? = ¥, NIl,. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, pages 41-47, Dallas, Texas, 1998.
Thomas Wilke. Classifying discrete temporal properties. Habilitationsschrift (post-
doctoral thesis), Kiel, Germany, 1998.

