
Chr. Meinel, S. Tison, ed., STACS 99(Symposium on Theoretical Aspects ofComputer Science: Trier, Germany), Lect.Notes Comput. Sci., vol. 1563, Springer:Berlin, 1999, pp. 32�46.Classifying Discrete Temporal PropertiesThomas Wilke?Institut für Informatik und Praktische MathematikChristian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germanytw@informatik.uni-kiel.de, http://www.informatik.uni-kiel.de/�tw/Abstract. This paper surveys recent results on the classi�cation of dis-crete temporal properties, gives an introduction to the methods thathave been developed to obtain them, and explains the connections tothe theory of �nite automata, the theory of �nite semigroups, and to�rst-order logic.The salient features of temporal logic1 are its modalities, which allow it to expresstemporal relationships. So it is only natural to investigate how and how mucheach individual modality contributes to the expressive power of temporal logic.One would like to be able to answer questions like: Can a given property beexpressed without using the modality �next�? What properties can be expressedusing formulas where the nesting depth in the modality �until� is at most 2?This survey reports on recent progress on answering such questions, present-ing results from the papers [3], [2], [14], [11], and [16] and the thesis [17].The results fall into three categories: (A) characterizations of fragments offuture temporal logic, where a fragment is determined by which future modali-ties (modalities referring to the future and present only) are allowed in buildingformulas; (B) characterizations of symmetric fragments, where with each modal-ity its symmetric past/future counterpart is allowed; (C) characterization of thelevels of the until hierarchy, where the nesting depth in the �until� modalityrequired to express a property in future temporal logic determines its level.An almost complete account of the results from category (A) will be given inSections 2 through 4, including full proofs. These results can be obtained with areasonable e�ort in an automata-theoretic framework and the methods used toobtain them are fundamental to the whole subject, in particular, to the resultsfrom categories (B) and (C). The results from these two categories are presentedin Sections 5 and 6 without going into details of the proofs, which would requirea thorough background in �nite semigroup theory.In computer science applications, temporal formulas are interpreted in (�niteor in�nite) sequences (colored discrete linear orderings), which are nothing elsethan words (strings or !-words). Therefore, the set of models of a temporalformula�the property de�ned by it�can be viewed as a formal language, infact, a regular language. In other words, characterizing a fragment of temporallogic amounts to characterizing a certain class of regular languages.? Part of the research reported here was conducted while the author was postdoc atDIMACS as part of the Special Year on Logic and Algorithms.1 I use �temporal logic� as a synonym for �propositional linear-time temporal logic.�

33There is a long tradition of classifying regular languages, going back to asearly as 1965, when Schützenberger in the seminal paper of the �eld, [12], char-acterized the star-free languages as being exactly the ones whose minimal DFA'sare counter-free. Given that temporal logic and star-free expressions have thesame expressive power (which was only realized much later [5, 4, 10]), Schützen-berger's result also marked the �rst step in classifying discrete temporal prop-erties: it gave an e�ective characterization of the class of all regular languagesexpressible in temporal logic. After an introductory section with terminologyand notation, this survey starts o� in Section 2 with a new, brief proof that ev-ery language recognized by a counter-free DFA is expressible in future temporallogic.This paper only deals with strings, but most of the results have been extendedto !-words. The reader is referred to the respective original papers.1 Basic Terminology and NotationWe interpret temporal formulas in strings and use standard notation with regardto strings. The positions of a string of length n are indexed by 0; : : : ; n � 1.When u is a string of length n and 0 � i � j � n, then u(i; j) denotes the stringu(i)u(i+ 1) : : : u(j � 1). Further, u(i; �) denotes the su�x u(i; n).A temporal formula over some alphabet � is built from the logical constants> (true) and ? (false) and the elements of � using the boolean connectives :(negation), ^ (conjunction), and _ (disjunction) and the temporal modalities X(next), F (eventually), and U (until). All connectives and modalities are unaryexcept for ^, _, and U, which are binary and written in in�x notation. The setof all temporal formulas is denoted by TL.A fragment of temporal logic is a subset of TL obtained by allowing onlythe use of certain temporal modalities in the construction of formulas. When lis a list of temporal modalities, then TL[l] denotes the respective fragment. Forinstance, TL[F] stands for the class of all temporal formulas which can be builtfrom alphabet symbols and the logical constants using boolean connectives andF as the only temporal modality.Given a temporal formula ' and a string u, one de�nes what it means for 'to hold in u, denoted u j= '. This de�nition is inductive, where, in particular,� for every symbol a, u j= a if u(0) = a,� u j= X' if juj > 1 and u(1; �) j= ',� u j= F' if there exists i with 0 < i < juj such that u(i; �) j= ', and� u j= 'U if there exists i with 0 < i < juj such that u(j; �) j= ' for everyj 2 f1; : : : ; i� 1g and u(i; �) j= .Note that ? U ' has the same meaning as X' for any temporal formula ',and > U ' has the same meaning as F', which means X and F can be derivedfrom U. Sometimes, we will also use the temporal modality G (always), which isanother derived modality: it stands for :F:.The two modalities F and U have so-called stutter-invariant counterparts(for an explanation of the terminology, see Section 4), denoted Fsf and Usf ,

34respectively. Their meaning is de�ned just as above except that i is allowed tobe 0 and 0 must also be considered for j. In this regard, the modalities X, F, andU will be referred to as strict modalities.Given a temporal formula ' over some alphabet � and an alphabet � , wewrite L� (') for the set fu 2 �+ j u j= 'g and say L� (') is the language over �de�ned by '. (Observe that if � is an arbitrary alphabet, ' an arbitrary formula,and the formula obtained from ' by replacing every alphabet symbol not from� by ?, then L� (') = L� (). This means one can always assume that a de�ningformula only uses symbols from the alphabet of the language in question.) Alanguage is said to be expressible in temporal logic (or TL-expressible) if there isa temporal formula that de�nes it. Similarly, when F is a fragment of temporallogic, a language is expressible in F if there exists a formula in F that de�nesit. A deterministic �nite automaton (DFA) is a tuple A = (�;Q; qI ; �; F) where� is a �nite alphabet, Q a �nite set of states, qI 2 Q the initial state, � : Q�A!Q the transition function, and F � Q the set of �nal states. The extendedtransition function of A, denoted ��, is de�ned by ��(q; �) = q for q 2 Q and��(q; ua) = �(��(q; u); a) for q 2 Q, u 2 ��, and a 2 �. The language recognizedby A, denoted L(A), is de�ned by L(A) = fu 2 �+ j ��(qI ; u) 2 Fg. Given aregular language L, the minimal DFA for L is denoted by AL.When u denotes a string, then u� denotes the reverse of u, i. e., if u is oflength n, then u� = u(n � 1)u(n � 2) : : : u(0). Accordingly, when L denotes alanguage, then L� denotes the reverse of L, i. e., the language fu� j u 2 Lg.2 Full Temporal LogicIt is easy to see that every language expressible in temporal logic is a regularlanguage, i. e., recognizable by a DFA. This raises the question what regularlanguages are exactly the ones that are expressible in temporal logic. Recallthat the minimal DFA recognizing a given regular language is a canonical objectto consider when one is interested in classifying a regular language. So moreconcretely, one can ask for a structural property of DFA's that is enjoyed by theminimal DFA of a given regular language if and only if the language is expressiblein temporal logic.The adequate property is known as counter-freeness. Given a DFA A, asequence q0, : : : , qm�1 of distinct states is a counter for a string u if m > 1 and��(qi; u) = qi+1 for i < m where, by convention, qm = q0. A DFA is counter-freeif it does not have a counter.Theorem 1. [10, 4] A regular language L is expressible in TL if and only ifAL is counter-free.This theorem is a simple consequence of two fundamental results: in 1971,McNaughton and Papert [10] proved that counter-free DFA's recognize exactlythe languages that are expressible in �rst-order logic; in 1980, Gabbay, Pnueli,Shelah, and Stavi [4] showed that temporal logic is as expressive as �rst-order

35logic.2 The latter result is an improvement of a result of Kamp [5] from 1968 thatsays that temporal logic with future as well as past operators is as expressive as�rst-order logic in Dedekind-complete orderings.The di�cult implication in Theorem 1 is the one that asserts that a regularlanguage L is expressible in temporal logic if AL is counter-free. For this partof the theorem only a few direct proofs have been presented thus far. Thereis a journal paper by Cohen, Perrin, and Pin [1], Maler's thesis [8], and anaccompanying conference paper by Maler and Pnueli [9]. Cohen et al. as well asMaler and Pnueli use some kind of decomposition theory (for �nite semigroups orfor �nite automata); the proof presented below, from [17], avoids such theories.We need more terminology and notation. A pre-automaton is a triple (�;Q; �)where � is a �nite alphabet, Q a �nite set of states, and � : Q � � ! Q atransition function. In other words, a pre-automaton is a DFA without initialand �nal states. The terminology and notation we have introduced for DFA'stransfers to pre-automata in a straightforward way (if applicable). For instance,the extended transition function of a pre-automaton and the property of beingcounter-free are de�ned in exactly the same way as for DFA's.Given a set Q, we view the set QQ of all functions on Q as a �nite semigroupwith composition as product operation. Given �; � : Q ! Q, we write �� forthe composition of � and �, i. e., for the function given by q 7! �(�(q)). For� : Q ! Q and Q0 � Q, we write �[Q0] for the image of Q0 under �, i. e., forf�(q) j q 2 Q0g.Let A = (�;Q; �) be a pre-automaton. For every string u 2 �� we de�ne itstransformation, denoted uA, as follows. For every q 2 Q we set uA(q) = ��(q; u),and we let SA = fuA j u 2 �+g. Clearly, this set is closed under functionalcomposition, that is, it is a subsemigroup of QQ. It is called the transformationsemigroup of A. For every � : Q! Q, we set LA� = fu 2 �+ j uA = �g. Further,~LA� denotes LA� [f�g if � = idQ and else LA� .� Observe that if a pre-automatonas above is counter-free and u is a string such that uA[Q] = Q, then uA = idQ.Proof of Theorem 1, from a counter-free DFA to a temporal formula,[17]. We prove that for every pre-automaton A = (�;Q; �) and every � 2 SAthe language LA� is expressible in temporal logic, which is obviously enough. Theproof goes by induction on jQj in the �rst place and then on j�j: in the inductionstep, we will consider pre-automata with the same state space but over a smalleralphabet as well as pre-automata with a smaller state space but over a muchlarger alphabet.We distinguish two cases. First, assume there is no symbol a 2 � such thataA[Q] (Q. Then aA = idQ for every a 2 �, which means SA = fidQg. Thisimplies LA� = �+ for every � 2 SA, and �+ is obviously expressible in temporallogic.Second, assume b 2 � is such that bA[Q] (Q. Let Q0 = bA[Q], � = � nfbg, and let B be the pre-automaton which results from A by restricting it2 In [4], the authors interpreted temporal logic and �rst-order logic in !-words. It is,however, obvious that their result is also valid for strings.

36to the symbols from � . Further, let U0 = � �b, � = fuA j u 2 U0g, and setC = (�;Q0; �0) where �0(q; �) = �(q) for every q 2 Q0 and � 2 �. Finally,let h : U+0 ! �+ be the function de�ned by h(u0 : : : un�1) = uA0 : : : uAn�1 foru0; : : : ; un�1 2 U0.Let � 2 SA. We want to show that LA� is TL-expressible. To this end, we�rst partition LA� according to how many b's occur in a string; we setL0 = LA� \ �+ ; L1 = LA� \ � �b� � ; L2 = LA� \ � �b��b� � :Then LA� = L0 [L1 [L2. Next, we observe thatL0 = LB� ; L1 = [�=�bA�0 L�;�0z }| {~LB� b~LB�0 ; L2 = [�=�bA�0 L�;;�0z }| {~LB� bh�1(LC)~LB�0 ;where �; �0 2 SB [fidQg, and 2 SC . Further, we see thatL�;�0 = ~LB� b�� \ � �b~LB�0 ; L�;;�0 = ~LB� b�� \ � �bh�1(LC)� � \��b~LB�0 ; (1)for �; �0 2 SB [fidQg, and 2 SC .By induction hypothesis, we know that all LB� with � 2 SB and all LCwith 2 SC are TL-expressible. It is now a manageable �programming task� toshow that under these assumptions all the sets that are intersected on the right-hand sides of the equations in (1) are TL-expressible, which means LA� is TL-expressible, as temporal logic is closed under disjunction (union) and conjunction(union). Lemmas 1 and 2 below provide the details. utLemma 1. Let � be an alphabet, b 2 �, and � = � nfbg. Assume L � �+ andL0 � �+ are TL-expressible. Then so are � �bL, � �b(L+ �), ��bL0, ��b(L0+ �),L0b��, and (L0 + �)b��.Proof. First, let ' and be formulas over � and � , respectively, such thatL�(') = L and L� () = L0. Then� �bL = L�(:b Usf (b ^ X')) ; ��bL0 = L�(Fsf(b ^ G:b ^ X)) :The de�ning formulas for � �b(L+�) and ��b(L0+�) can be obtained in a similarfashion.Second, we show by induction that for every temporal formula ' over � thereexists a temporal formula '+ such that L�('+) = L� (')b��. We can simplyset a+ = a ^ Fb ; (:')+ = :'+ ^ :b ^ Fb ;(' ^)+ = '+ ^ + ; (' U)+ = ('+ ^ :b) U (+ ^ :b) ;where a stands for an arbitrary element of � .Clearly, L�('+ _ b) = (L� (') + �)b��. ut

37Lemma 2. Let �, � be alphabets, b 2 �, � = � n fbg, and U0 = � �b. Fur-ther, let h0 : U0 ! � be an arbitrary function and h : U+0 ! �+ be de�ned byh(u0 : : : un�1) = h0(u0) : : : h0(un�1) for u0; : : : ; un�1 2 U0. For every d 2 �, letLd = fu 2 �+ j h0(ub) = dg. Assume L � �+ is expressible in temporal logicand also Ld for every d 2 �. Then h�1(L)� � is expressible in temporal logic.Proof. We show by induction that for every temporal formula ' over � thereexists a temporal formula '# over � such that h�1(L�('))� � = L�('#). Ford 2 �, we either have h�1(L�(d))� � = Ldb�� or h�1(L�(d))� � = (Ld+ �)b��.Thus, the induction basis follows from the previous lemma and the assumptionthat the languages Ld are TL-expressible. For the induction step, we can set(:')# = :'# ^ Fsfb ; (' ^)# = '# ^ # ;(' U)# = # _ ('# ^ (b! X'#) U (b ^ X #)) : utThe above proofs are constructive, i. e., following these proofs one can actu-ally construct a temporal formula de�ning the language recognized by a givencounter-free automaton. A closer analysis of the constructions sketched in theproofs yields the following quantitative statement. (Recall that for every pre-automaton with n states, the cardinality of its transformation semigroup is2O(n log n).)Corollary 1. For every counter-free DFA with at most n states and at mostm symbols in the alphabet, there exists a temporal formula of size m 22O(n log n)which de�nes the language recognized by the DFA.3 Strict FragmentsThe three basic temporal modalities are X, F, and U. So if we determine frag-ments of TL by disallowing the use of some of these modalities we obtain eightdi�erent fragments. Obviously, some of these have the same expressive power.For instance, the modality X as well as the modality F can be expressed using Uonly. Thus, all fragments that allow U have the expressive power of full temporallogic: TL[U] = TL[X;U] = TL[F;U] = TL[X;F;U] = TL : (2)By abuse of notation we use an expression like TL[X;U] to refer to the speci�cfragment of TL as well as to the class of languages expressible in this fragment.The identities in (2) are the only ones that hold: TL[X] and TL[F] are in-comparable in terms of expressive power and both are stronger than TL[] andweaker than TL[X;F], which in turn is weaker than full temporal logic.The aim of this section is to provide structural properties that exactly charac-terize each of these fragments, just as counter-freeness characterizes expressibilityin full temporal logic.

383.1 Forbidden PatternsWe need a convenient way to describe structural properties of DFA's and there-fore borrow the notion of �forbidden pattern� from Cohen, Perrin, and Pin [1].3For brevity in notation, given a transition function � : Q�� ! Q, we de�nea product Q � �� ! Q by setting q u = ��(q; u) for q 2 Q and u 2 ��. Givena set N , an N-labeled digraph is a tuple (V;E) where V is an arbitrary set andE a subset of V �N � V . The transition graph of a DFA A = (�;Q; qI ; �; F)is the �+-labeled digraph (Q;E) where E = f(q; u; q u) j q 2 Q and u 2 �+g.So the transition graph of any DFA is an in�nite graph. (It has in�nitely manyedges, but only �nitely many vertices.)A pattern is a labeled digraph whose vertices are state variables, usuallydenoted p, q, : : : , and whose edges are labeled with variables for labels of twodi�erent types: variables for nonempty strings, usually denoted u, v, : : : , andvariables for symbols, usually denoted a, b, : : : In addition, a pattern comes withside conditions stating which state variables are to be interpreted by distinctstates. We will draw patterns just as we draw graphs. Consider, for instance,Figure 1. In this �gure, as well as in all subsequent �gures depicting patterns,we adopt the convention that all states drawn solid must be distinct.We say a �+-labeled digraph matches a pattern if there is an assignmentto the variables obeying the type constraints and the side conditions so thatthe digraph obtained by replacing each variable by the value assigned to it is asubgraph of the given digraph.3.2 Classi�cation TheoremUsing the notion of a forbidden pattern, we can now characterize all fragments:Theorem 2. [10, 4, 1, 3, 11] Let L be a regular language and F one of thefragments TL[], TL[X], TL[F], TL[X;F], or TL. Then L is expressible in F ifand only if the transition graph of AL� does not match the pattern(s) for Fdepicted in Figures 1�6.Observe that in Figures 1 and 6 the connected graphs are viewed as di�erentpatterns (any of which must not occur), whereas Figure 2 shows only one pattern,which happens to be not connected.The characterizations given in Theorem 2 for TL[] and TL[X] are easy toobtain; the characterization for TL is correct because of Theorem 1. The charac-terization for TL[X;F] was �rst obtained by Cohen et al. [1]. An alternative proofand a characterization for TL[F] were given in [3], using the same technique forboth fragments. In the following two subsections, this technique is demonstrated.3 To be precise, what is called a �forbidden pattern� here is referred to as a �forbiddencon�guration� by Cohen et al.

39
aa aua

Fig. 1. Patterns forbidden for TL[]u u
Fig. 2. Pattern forbidden for TL[X] a bFig. 3. Pattern forbidden for stutter invariancepp0qq0 u vaaFig. 4. Pattern forbidden for TL[F]

u uvwFig. 5. Pattern forbidden for TL[X; F]uu uu u uuu u uuu u uFig. 6. Patterns forbidden for TL3.3 Ehrenfeucht-Fraïssé GamesEhrenfeucht-Fraïssé (EF) games are a standard tool in mathematical logic totackle questions about the expressive power of a logic. They allow one to reducesuch questions to questions about the existence of strategies in speci�c two-player games, abstract away syntactical peculiarities, and thus represent thecombinatorial core of the problems. In our situation, we will use speci�callytailored EF games to prove correct the characterizations for TL[F] (and TL[X;F])given in Theorem 2.

40 An EF game for TL[F] is played by two players, Spoiler (male) and Duplicator(female), on a pair of nonempty strings and proceeds in several rounds. Thenumber of rounds to be played is �xed in advance. In each round, a pre�x ofeach of the two strings is chopped o� according to a rule explained below so thatthe outcome of a round is a new pair of strings or an early win for one of theplayers if the other cannot act according to the rule. Before each round and afterthe last round, a referee checks if the two strings start with the same symbol.If this is not the case, the referee calls Spoiler the winner of the game. If afterthe last round Spoiler has not yet won the game, Duplicator is announced thewinner. The rule for carrying out a round is as follows. First, Spoiler replaces oneof the two strings by a proper, nonempty su�x of it. Then Duplicator replacesthe other string by a proper, nonempty su�x of it. If Spoiler cannot follow thisrule because both strings have no proper, nonempty su�x (i. e., if both stringsare of length 1), he looses, and if Duplicator cannot reply according to the rulesbecause the other string is of length 1, then Spoiler wins.The idea behind the game is that Spoiler tries to exhibit a di�erence betweenthe two strings the game starts with whereas Duplicator tries to show they aresimilar. This can also be phrased in a formal way: Spoiler has a winning strategyin a k-round game if and only if there is a formula ' of �F depth� at most k thatholds for one of the two strings but not for the other. The theorem that we willuse is the following.Theorem 3. [3] Let L be a language. Then L is expressible in TL[F] if and onlyif there exists a number k such that for every pair (u; v) with u 2 L and v =2 L,Spoiler has a winning strategy in the k-round game on (u; v).3.4 Characterization of TL[F]The claim that a language L is expressible in TL[F] if and only if the transitiongraph of AL� does not match the pattern depicted in Figure 4 follows directlyfrom Lemmas 3 and 4 below.Lemma 3. Let L be a regular language such that the transition graph of AL�matches the pattern depicted in Figure 4. Then L is not expressible in TL[F].Proof. Let AL� = (�;Q; qI ; �; F) and assume a, u, and v are chosen so that thepattern in Figure 4 is matched. By minimality of AL� , there exist x; y 2 ��such that x(uv)luay 2 L� i� x(uv)lay =2 L�, for every l � 0. We show that forl � k � 0 and any choice of strings x; y 2 ��, u; v 2 �+, Duplicator wins thek-round game on (x(uv)luay)� and (x(uv)lay)�. Thus, by Theorem 3, L cannotbe expressible in TL[F].First of all, observe that playing on the �rst jayj positions of the two stringsdoes not help Spoiler to win the game: Duplicator will simply copy Spoiler'smoves. It is therefore su�cient to show that Duplicator wins the k-round gameon (x(uv)l+1u0)� and (x(uv)lu0)� for l � k � 0 and any choice of strings x 2 ��,u; u0; v 2 �+ where u0 is a pre�x of u.

41The proof of this claim is by induction on k. The induction base, k = 0, istrivial. For the inductive step, assume k > 0. Write s and t for (x(uv)l+1u0)�and (x(uv)lu0)�. First, suppose Spoiler removes a pre�x of length i from t. ThenDuplicator replies by removing a pre�x of length i+ juvj from s, and the remain-ing strings will be identical. Second, assume Spoiler removes a pre�x from s, sayof length i. If i > juvj, then Duplicator removes the pre�x of length i � juvjfrom t, and the remaining strings will be identical. If i � juvj, then Duplicatorremoves the pre�x of length i from t, and the induction hypothesis applies forthe following reason. The remaining strings are (x(uv)l+1u00)� and (x(uv)lu00)�with u00 2 �+ a pre�x of u, or (xu(vu)lv0)� and (xu(vu)l�1v0)� with v0 a pre�xof v, or (x(uv)lu00)� and (x(uv)l�1u00)� with u00 2 �+ a pre�x of u. utFor the other direction we need some more notation and terminology. First,we write SCC(q) for the strongly connected component of a node q in a givendigraph. Second, given a DFA A = (�;Q; qI ; �; F) and a string u 2 ��, therank of u (with respect to A), denoted rk(u), is the cardinality of the setfSCC(qI u(0; 0)); : : : ; SCC(qI u(0; juj � 2))g.Lemma 4. Let A be a DFA over some alphabet � whose transition graph doesnot match the pattern depicted in Figure 4. Then L(A)� is expressible in TL[F].Proof. We prove that if u and v are nonempty strings over � such that qI u 6=qI v, then Spoiler wins the (rk(u)+rk(v))-round game on u� and v�, by inductionon rk(u) + rk(v).Write u = u0a and v = v0b for appropriate a; b 2 �. If a 6= b, then Spoilerwins immediately. So in the rest, assume a = b. Write p and q for qI u0 and qI v0.Clearly, SCC(p) 6= SCC(q) in the transition graph of A, because otherwise itwould match the pattern depicted in Figure 4. There are three situations thatwe distinguish.1. Neither SCC(p) is reachable from SCC(q) nor vice versa.2. SCC(p) is reachable from SCC(q), but SCC(q) is not reachable from SCC(p).3. The same as 2. with the roles of p and q exchanged.First, assume we are in situation 1. Then it is not possible that qI belongs toboth SCC(p) and SCC(q), say it does not belong to SCC(p). Let i be minimalsuch that qI u(0; i) 2 SCC(p) and set p0 = qI u(0; i). Spoiler replaces u� byu(0; i)�. Duplicator either looses immediately (because v is of length 1) or shereplies by removing a pre�x of v�, say she replaces v� by v(0; j)�. Set q0 =qI v(0; j). If we had p0 = q0, then SCC(q) would be reachable from SCC(p) � acontradiction. Hence, p0 6= q0. By the minimality of i, we also have SCC(qI u(0; i�1)) 6= SCC(p), which means rk(u(0; i)) < rk(u) and, in particular, rk(u(0; i)) +rk(v(0; j)) < rk(u)+rk(v), so that the induction hypothesis applies. Spoiler winsthe remaining game with one round less.Second, assume we are in situation 2. Choose i as above. Spoiler does thesame as before. Duplicator either looses immediately or she removes a pre�xfrom v�, say she replaces v� by v(0; j)�. If we had qI u(0; i) = qI v(0; j), thenSCC(q) would be reachable from SCC(p) � a contradiction. Just as before, wecan apply the induction hypothesis. Situation 3 is symmetric to situation 2. ut

42 Exactly the same technique works for proving the correctness of the charac-terization of TL[X;F]. In EF games for this fragment, the additional temporalmodality is accounted for by an additional type of round, so-called X rounds. Insuch a round, Spoiler �rst chops o� the �rst symbol of one the two strings andDuplicator then chops o� the �rst symbol of the other string. For details, see [3].4 Stutter-Invariant FragmentsIn Section 1 we have de�ned the so-called stutter-invariant counterparts of F andU, namely Fsf and Usf . In this section, we will obtain e�ective characterizationsfor the stutter-invariant fragments, TL[Fsf] and TL[Usf]. (Observe that TL[Usf] =TL[Fsf ;Usf] and TL[X;Fsf] = TL[X;F].)Strings u and v are stutter-equivalent if they both belong to a language of theform a+0 a+1 : : : a+k for some k and appropriate symbols ai. We use �st to denotestutter equivalence, and it is easy to see that�st is in fact an equivalence relation.A language is stutter-invariant if whenever u and v are stutter-equivalent strings,then either u and v belong to this language or u and v do not belong to it, i. e.,if this language is a union of stutter equivalence classes.Lamport [7] observed that every language expressible in TL[Fsf ;Usf] is stutter-invariant. This explains why Fsf and Usf are called stutter-invariant. Below, weprove that the converse of Lamport's observation holds true as well, in the fol-lowing sense.Theorem 4. [3, 17] Let F be one of the stutter-invariant fragments TL[Fsf] andTL[Usf] and let F 0 be its strict counterpart, TL[F] respectively TL[U]. Assume Lis an arbitrary language. Then L is expressible in F if and only if L is expressiblein F 0 and stutter-invariant.Observe that a regular language L is stutter-invariant if and only if thetransition graph of AL� (or, equivalently, of AL) does not match the patterndepicted in Figure 3. Thus, the above theorem (together with the classi�cationtheorem from the previous section) immediately leads to characterizations ofTL[Fsf] and TL[Usf] in terms of forbidden con�gurations.Using the characterization results we have obtained so far, one can prove:Corollary 2. For every fragment (strict or stutter-invariant) F of temporallogic, the following problem is PSPACE-complete. Given a temporal formula ',decide whether ' is equivalent to a formula in F ?The upper bound follows from the fact that in polynomial time one can checkwhether or not the transition graph of a DFA matches a �xed pattern. The lowerbound is obtained by a reduction to TL satis�ability.The proof of Theorem 4 makes use of the notion of a stutter-free string, whichis de�ned as follows. A string u is stutter-free if u(i) 6= u(i+1) for all i < juj�1.Clearly, every equivalence class of �st contains exactly one stutter-free string.As a consequence of Lamport's observation, we note:

43Lemma 5. Let L be a stutter-invariant language over some alphabet � and' 2 TL[Fsf ;Usf] a formula over � such that u j= ' i� u 2 L, for u 2 �+ stutter-free. Then ' de�nes L. utSo Theorem 4 will follow once we have established the following lemma.Lemma 6. Let F and F 0 be as in Theorem 4, and assume ' 2 F 0. Then thereexists '0 2 F such that u j= ' i� u j= '0, for u 2 �+ stutter-free.Proof. The proof is an inductive de�nition of '0, which works in both situations.The base case is trivial. In the induction step, negation and disjunction can bedealt with easily. What remains are formulas whose outermost connective is For U. We set'0 = 8>>><>>>: _a;b2� : a6=b(a ^ Fsf(b ^ Fsf 0)) ; for ' = F ,_a;b2� : a6=b(a ^ (a Usf (b ^ (0 Usf �0)))) ; for ' = U �:We prove only that the second choice is correct; the proof that the �rst choiceis correct is even simpler. First, assume u j= '. Then there exists i > 0 suchthat u(i; �) j= � and u(j; �) j= for j 2 f1; : : : ; i� 1g. By induction hypothesis,this means u(i; �) j= �0 and u(j; �) j= 0 for j 2 f1; : : : ; i� 1g. Clearly, we haveu j= u(0) ^ u(0) Usf (u(1) ^ 0 Usf �0), which is a disjunct of '0.Second, assume u j= '0 and let a and b be symbols for which the correspond-ing disjunct holds. If u j= a ^ a Usf (b ^ 0 Usf �0), then u(0) = a and u(1) = b,since u is assumed to be stutter-free. But then u(1; �) j= 0Usf �0, which implies,by induction hypothesis, u(1; �) j= Usf �, which, in turn, implies u j= U�. utThis completes the �rst part of this survey. We have seen how every frag-ment (determined by which modalities are allowed in forming formulas) of futuretemporal logic can be characterized in an e�ective, concise way by describingstructural properties of DFA's.5 Past Modalities and Symmetric FragmentsThus far, we have only dealt with temporal modalities that refer to the future(and possibly the present) only. But, of course, each of the modalities consideredhas a symmetric past counterpart: S (since) goes with U, P (eventually in thepast) goes with F, Y (previously) goes with X.Adding past modalities does not increase the expressive power of temporallogic, i. e., TL = TL[U; S]. This is easy to see because for every temporal formula(with future and past modalities) one can still �nd a counter-free DFA rec-ognizing the language de�ned by the formula. Similarly, TL[Usf] = TL[Usf ; Ssf],because even with past stutter-invariant modalities one can only express stutter-invariant languages. Clearly, TL[X] = TL[X;Y]. But the expressive power of anyother fragment is increased by adding the corresponding past modalities. Nev-ertheless, we have:

44Theorem 5 (Decidability of Symmetric Fragments [16]). For each of thefragments TL[Fsf ;Psf], TL[F;P], and TL[X;Y;F;P] it is decidable whether or nota given temporal property can be expressed in it.This theorem is based on similar structural characterizations as the onesgiven in Theorem 2 for the future fragments of temporal logic. There is, how-ever, a fundamental di�erence. Instead of looking at the minimal DFA for agiven language, one considers its syntactic semigroup, which, by de�nition, issymmetric in the sense that the syntactic semigroup of the reverse of a lan-guage is the reverse of the syntactic semigroup of the language, and thus bettersuited for investigating symmetric fragments. The proofs get more involved andrequire non-trivial �nite semigroup theory. On the other hand, they also revealinteresting connections to �rst-order logic.Remember that Kamp's theorem says that temporal logic (with future modal-ities only or with both) is as expressive as �rst-order logic. In this statement, astring u 2 �+ of length n is viewed as a structure in the signature with a binarypredicate <, for the order relation on the positions, and unary predicates Pa, foreach alphabet symbol a a separate predicate.A simple induction shows that every temporal formula is equivalent to a �rst-order formula, even to a �rst-order formula that uses at most three variables.In view of Kamp's theorem, this means that temporal logic and �rst-order logicwith three variables have the same expressive power. Reducing the number ofvariables to two leads to TL[F;P] and TL[X;Y;F;P], respectively:Theorem 6 (Kamp's Theorem for Smaller Fragments [16]).1. A language is expressible in TL[F;P] if and only if it is expressible in �rst-order logic with two variables.2. A language is expressible in TL[X;Y;F;P] if and only if it is expressible in�rst-order logic with two variables when the signature is extended by the built-inpredicate suc for successor.There are more connections to �rst-order logic and to formal language the-ory. First, the languages expressible in TL[F;P] are exactly the unambiguouslanguages in the sense of Schützenberger [13]. Second, the languages expressiblein TL[F;P] and TL[X;Y;F;P] are exactly the languages expressible by a �2 and,at same time, a �2 formula (over the respective signature). For details, see [16].6 Until HierarchyWhich temporal modalities are needed to express a given temporal property isthe �rst question to ask when one is interested in studying the expressive powerof the temporal modalities themselves, but there are other, equally importantones, and some prominent ones are concerned with the �until hierarchy� of futuretemporal logic. The �until� modality is special in several respects. First, it iscomplete in the sense that no other modality is needed to express all temporalproperties. Second, it is the only binary modality. The last fact is crucial; it

45makes formulas hard to read, especially, when nesting occurs. So the question iswhether or not nesting of �until� is necessary, even when the other modalities canbe used for free.4 Using an appropriate Ehrenfeucht-Fraïssé game with additionaltypes of rounds corresponding to X and U, one can actually show that the morenesting is allowed, the more one can express:Theorem 7 (Strictness of Until Hierarchy [3]). Let � = fa; b; cg be a three-element alphabet and de�ne 'n, n � 0, by '0 = a and 'n+1 = a ^ X(b U 'n).Then F'n is of until nesting depth n, but L�('n) is not de�nable by a formulaof until nesting depth < n.We even have:Theorem 8 (Computability of Until Depth [14]). Given a temporal for-mula ', one can compute the minimal until nesting depth required to express thelanguage de�ned by '.The proof of this theorem, just as the proof of Theorem 5, makes heavyuse of �nite semigroup theory. A key ingredient of the proof is the so-calledsemidirect product/substitution principle, which, in rough outline, states that iftwo fragments of temporal logic, say F and G, are characterized by classes VandW of �nite semigroups, then the fragment which is obtained by substitutingformulas of G into formulas of F is characterized by the semidirect product ofV andW . Applied to the until hierarchy, this principle says that the k-th levelof the hierarchy is characterized by a k-th power of the class of semigroups thatcharacterizes level 1. (Observe that a formula of until depth at most k can bewritten as a k-fold substitution of formulas of depth at most 1, and vice versa.)For details, see [14] or [15].7 ConclusionThe results presented in this survey show that there are intimate connectionsbetween temporal logic, the theory of �nite automata, the theory of �nite semi-groups, and �rst-order logic. The classi�cation of discrete temporal propertieshas been accomplished to a great extent. A problem that is still open is thedecidability of the combined until/since hierarchy, where a property is classi�edaccording to the nesting depth in U and S required to express it using future aswell as past modalities. Note that this hierarchy is known to be strict, see [3].References1. Joëlle Cohen, Dominique Perrin, and Jean-Eric Pin. On the expressive power oftemporal logic. J. Comput. System Sci., 46(3):271�294, 1993.4 In the literature, other binary modalities (such as �at next� [6] or �as long as� [7])have been occasionally used, and these operators are as powerful as �until.� In fact,nesting depth with regard to any of these two operators is exactly the same as nestingdepth with respect to �until.�

462. Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with twovariables and unary temporal logic. In Proceedings 12th Annual IEEE Symposiumon Logic in Computer Science, pages 228�235, Warsaw, Poland, 1997.3. Kousha Etessami and Thomas Wilke. An until hierarchy for temporal logic. InProceedings 11th Annual IEEE Symposium on Logic in Computer Science, pages108�117, New Brunswick, N. J., 1996.4. Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the tem-poral analysis of fairness. In Conference Record of the 12th ACM Symposium onPrinciples of Programming Languages, pages 163�173, Las Vegas, Nev., 1980.5. Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. PhDthesis, University of California, Los Angeles, Calif., 1968.6. Fred Kröger. Temporal Logic of Programs. Springer, Berlin, 1987.7. Leslie Lamport. Specifying concurrent program modules. ACM Trans. Program-ming Lang. Sys., 5(2):190�222, 1983.8. Oded Maler. Finite Automata: In�nite Behavior, Learnability and Decomposition.PhD thesis, The Weizmann Institute of Science, Rehovot, Israel, 1990.9. Oded Maler and Amir Pnueli. Tight bounds on the complexity of cascaded decom-position of automata. In Proceedings of the 31st Annual Symposium on Foundationsof Computer Science, vol. II, pages 672�682, St. Louis, Miss., 1990.10. Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press,Cambridge, Mass., 1971.11. Doron Peled and Thomas Wilke. Stutter-invariant temporal properties are ex-pressible without the next-time operator. Inform. Process. Lett., 63(5):243�246,1997.12. Marcel P. Schützenberger. On �nite monoids having only trivial subgroups. Inform.and Computation, 8:190�194, 1965.13. Marcel P. Schützenberger. Sur le produit de concatenation non ambigu. SemigroupForum, 13:47�75, 1976.14. Denis Thérien and Thomas Wilke. Temporal logic and semidirect products: Ane�ective characterization of the until hierarchy. In Proceedings of the 37th An-nual Symposium on Foundations of Computer Science, pages 256�263, Burlington,Vermont, 1996.15. Denis Thérien and Thomas Wilke. Temporal logic and semidirect products: Ane�ective characterization of the until hierarchy. Technical report 96-28, DIMACS,Piscataway, N. J., 1996.16. Denis Thérien and Thomas Wilke. Over words, two variables are as powerful asone quanti�er alternation: FO2 = �2 \�2. In Proceedings of the Thirtieth AnnualACM Symposium on Theory of Computing, pages 41�47, Dallas, Texas, 1998.17. Thomas Wilke. Classifying discrete temporal properties. Habilitationsschrift (post-doctoral thesis), Kiel, Germany, 1998.

