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Abstract. Infinite two-person games are a natural framework for the
study of reactive nonterminating programs. The effective construction
of winning strategies in such games is an approach to the synthesis of
reactive programs. We describe the automata theoretic setting of infinite
games (given by “game graphs”), outline a new construction of winning
strategies in finite-state games, and formulate some questions which arise
for games over effectively presented infinite graphs.

1 Introduction

One of the origins of automata theory over infinite strings was the interest in
verifying and synthesizing switching circuits. These circuits were considered as
transforming infinite input sequences into output sequences, and systems of re-
stricted arithmetic served as specification formalisms ([Ch63]). With Biichi’s
decision procedure for the monadic second-order theory S1S of one successor
([Bii62]), it turned out that the “solution problem” (in more recent terminology:
the verification problem or model checking problem) for circuits with respect to
specifications in S1S was settled. Biichi’s proof showed that S1S specifications
can be turned into w-automata, whence the verification problem amounts to an
inclusion test for w-languages defined by automata. In the context of nontermi-
nating reactive (finite-state) programs, this result was refined and extended in
many ways during the past decade, especially for several systems of temporal
logic (in place of S1S), and with the aim of obtaining more efficient decision
procedures for program verification. See [CGL94] for a survey of the state-of-
the-art.

However, this approach does not fully exploit the available automata theo-
retic results: Biichi and Landweber presented in their fundamental work [BL69]
an algorithm which decides the realizability of a given specification and in this
case synthesizes a circuit (or finite-state reactive program) from the specifica-
tion. This result is “better” than the decidability of S1S in the sense that it is
better to automatically construct a correct reactive program than to verify an
existing one.

* This work was supported by the ESPRIT Basic Research Action 6317 ASMICS
(“Algebraic and Syntactic Methods in Computer Science”)



One may consider a nonterminating reactive program as a player in a two-
person game against the “environment” (the second player). A play of the game
1s an infinite sequence of actions performed in alternation by the two players. The
decision who wins is provided by a set S of plays (given by the specification, and
containing plays with certain desirable properties). If for any choice of actions
by the environment the program builds up a play in S, it is “correct” with
respect to S. This approach was pursued in [ALW89], [PR89], among others
(for more background and references we recommend [NYY92a]). However, the
theory of infinite games still lacks a development regarding applications as this
has been achieved for finite-state program verification. Especially more efficient
algorithms for the construction of winning strategies would be useful, e.g. in
control theory and “discrete event systems” ([RW89]).

We shall start with an introduction to the automata theoretic framework for
studying infinite games. Here a game is specified by a “game graph” (a transition
system in which the two players perform their transition steps) together with a
“winning condition”. We present a new proof of the Biichi-Landweber Theorem
(as a construction of finite-state strategies in games over finite graphs with a
winning condition of Muller type) and discuss some problems which arise for
games over effectively presented infinite graphs.

I thank H. Lescow, S. Seibert and Th. Wilke, as well as the participants of
the ASMICS Workshop “Transition systems with infinite behavior” (Bordeaux,
November 1994), for many helpful discussions.

2 Definitions

2.1 State-based games

An abstract infinite game is given by an w-language I" C A% over an alphabet
A (which is assumed to be finite in this paper). A play of the game is an w-word
o = agaias . ..over A, built up by two players 0 and 1 as follows: Player 0 picks
ag, player 1 picks ay, player 0 picks a2, and so on in alternation. The play « is
won by 0 if o € I', otherwise the play is won by 1.

Often infinite games arise in a more concrete form than just by a set I" of
infinite words. A standard situation in computer science is the consideration of
a transition system over a set of states, where actions induce steps from states
to states, and plays are describable as state sequences. When w-languages are
specified by automata, this view is natural. It allows to model phenomena which
are hidden in the abstract setting (assumed usually in descriptive set theory).
For example, by means of states, periodicities in plays may be immediately
captured by state repetitions, and also different potentials of performing actions
(depending on the momentary state) are simply describable. In the following
we introduce state-based games, using terminology from [Bii77], [Bii83], [GH82],
[McN93], and [Ze94].

A game graph is of the form G = (Q,Qo, Q1, A, 6, 2) where @ is a finite
or countable set of “states”, Qu, @ define a partition of @ (Q; containing the



states where it is the turn of player ¢ to perform an action), A is a finite set (of
“actions”), and é : @ x A — @ is a partial transition function. We require that
the underlying graph is bipartite with respect to these transitions; formally, we
have §(@; x A) C @Q1—; for i = 0, 1. Also for any ¢ € Q) some a € A is required
where 6(q,a) is defined. Sometimes we designate a state ¢ as “start state” and
indicate the game graph by G,.

The item {2 1s an “acceptance component”. In the sequel, we shall consider
the cases where 2 is a state-set F' C @), a finite collection F = {Fy,..., Fp}
of state-sets, or a sequence (Fq, Fi,..., Em, Fin) of sets of states from Q. We
may view the states of the game graph “colored” correspondingly: a state ¢ is
colored by the 0-1-vector ¢(q) of length 1, resp. m, resp. 2m, where a 1 in the ¢-th
component indicates that ¢ belongs to the i-th set given in {2. For a sequence
v € Q¥ let ¢(7y) be the sequence ¢(y(0))e(y(1)) ... of associated colors.

For a game graph G over @, the decision who wins a play is fixed by a subset
C of @¥, which we call winning predicate. We write “C(y)” if v belongs to C. If
the acceptance component of G determines a coloring in {0, 1}™, we require that
membership of ¥ in C is already fixed by the color sequence e(y) € ({0, 1}™)¥.
The pair (G,C) (or (G4,C)) is a state-based game. A play in this game is a
sequence v € @* such that for any two succeeding states y(7), y(¢ + 1) there is
an action a with é(y(4),a) = v(i + 1) (and such that v(0) = ¢ if we deal with
Gy). Player 0 wins the play v if v € C, otherwise player 1 wins.

A game (G,,C) may be considered as a (possibly infinite) w-automaton,
defining the w-language which consists of all sequences @ € A¥ which induce a
play won by player 0.

A useful representation of a game (G, C) is the unravelling of G, in tree form,
as game tree t((G,), which is again a game graph: Its states are the sequences
qo . ..q¢r which are possible initial segments of plays in G, and its transition
function ¢’ is defined by 6'(¢o...¢r,a) = qo...¢+6(¢r,a). The winning set C is
adapted accordingly (referencing only ¢, from a state ¢q...¢,, but indicated
again by C). We call the game (¢(G,), C) the tree representation of (G4, C).

2.2 Winning conditions

A winning condition is a formula (involving atomic formulas e(y(¢)) = ¢ for
colors ¢;) which defines a winning predicate C. The most basic conditions refer
to acceptance components of the form £ = F (inducing a coloring in {0, 1}):

Ji v(i) € F (formally: 3i e(y(i)) = 1) (Z7-condition),
Vivy(i) € ' (II]-condition),

3jVi > j v(i) € F (short: ¥¥i (i) € F') (X9-condition),
Vj3i > j y(i) € F (short: 3¥i v(i) € F) (II3-condition).

For k = 1,2, a game specified with a X9-condition (/77-condition) is called a
X9-game (I[7-game). More general winning conditions are first-order formulas
with atomic formulas R(¢y,...,4,) for any numerical relations R besides the
atomic formulas ¢(y(7)) = ¢; they define the finite-Borel games (where the



winning predicate occurs on a finite level of the Borel hierarchy). The prefix
of unbounded quantifiers in the prenex normal form of such a formula gives a
bound for the level of the defined winning predicate in the Borel hierarchy.

An important class of games consists of the B(X9)-games, where the winning
sets are defined by Boolean combinations of X5-conditions. We use here two
forms, namely, for acceptance components F = {Fy,..., Fi,}

Cly) ={f|F¥i~()=f} € F (Muller condition),
and for acceptance components (E1, I, ..., Em, Fin)
C(y) = Ve (3<Y v(i) € By AT¥i (i) € Fr) (Rabin condition).

These B(LY)-conditions are of special interest because they allow the specifica-
tion of many properties which are relevant in concurrent systems (e.g. fairness
properties, cf. [MP92]). Moreover, if games are considered as w-automata, and
games defining the same w-language are regarded as equivalent, it is possible for
finite-state games to reduce arbitrary S1S definable winning conditions to the
Rabin condition and to the Muller condition (see, for example, [Th90]).

2.3 Strategies and Determinacy

A strategy for player 0, resp. 1, in the game (G, C) as given above is a function ¢
which associates with any node ¢q . ..¢, of the game tree ¢(Gy) (where ¢, € Qq,
resp. ¢r € (1) one of its successors in the game tree. A strategy o thus determines
a fragment of the game tree, obtained from the game tree by deleting all nodes
ending in )1, resp. (g, which are not values of o, together with their descendants.
Let us denote this strategy tree by t,(Gy). The function o is called winning
strategy for 0, resp. 1 in (G4, C) if for all paths y through ¢,(G,) we have v € C.
(In this paper we do not consider nondeterministic strategies, as done in [GH82],
[YY90], [Ze94].)

The existence of winning strategies is a central subject in descriptive set
theory (see e.g. [Mos80]). The predominant question there is that of determinacy:
For which games is it possible to guarantee that one of the two players has a
winning strategy? If this holds the game is called determined. Determinacy is
a powerful principle of complementation and hence important in mathematical
logic: Nonexistence of a winning strategy for one player implies existence of a
winning strategy for the other player. By a deep result of Martin [Ma75], a game
is determined if its winning predicate is Borel. The games considered in this
paper are all given with Borel winning predicates and hence determined.

In the questions of determinacy and complementation, the two players are
handled symmetrically. For most applications in distributed systems, however,
one identifies the players with two parties which are handled asymmetrically: one
of them represents the program (or “control”, here identified with player 0), the
other represents the environment (or “disturbance”, here identified with player
1). Then it is more interesting that player 0 has a winning strategy than just one
of the two players. For example, an operating system (player 0) should function



in an arbitrary or even hostile environment (player 1). Determinacy is helpful or
necessary, however, in proofs that a strategy construction is complete, or when
an induction refers to “smaller” games where a strategy can be guaranteed just
for one of the players (and not for a fixed one).

We are mainly interested in the effective presentation and the easy execu-
tion of strategies for a given player, assuming that the games are presented as
finite objects. For instance, we consider recursive games. (Such a game would be
specified by an algorithm which allows to compute predecessors and successors
of the nodes in the game tree, their colors, and their association with players 0
and 1.) For effectively presented games (of a given type), the following questions
arise:

1. Does player 0 have a winning strategy?

2. Ts there an effective (or efficient) construction of winning strategies for player
0 from game presentations?

3. How to construct winning strategies of low computational complexity?

The second question is concerned with the construction of winning strategies,
the third one with the ezecution of strategies. In the former case an effective
or efficient transformation from representations of games to representations of
strategies is required, while in the latter case efficient algorithms to compute
values of strategies (i.e., values of word functions ¢ over the state space) are
asked for.

In the simplest case, where a value o(qg ... ¢, ) of a strategy only depends on
the last state ¢,., we speak of a no-memory strategy. Such strategies are repre-
sentable as fragments of the game graphs: For example, a no-memory strategy
for player 0 is specified by keeping only a single edge from any state of (Jy in a
game graph over Q). If a strategy o is computable by a finite automaton (say by
a Moore automaton), it is called a finite-memory strategy or finite-state strategy.
Another important type of strategy is that of recursive (effectively executable)
strategies.

3 Finite-state games

In this section we outline an “incremental” proof of the Biichi-Landweber The-
orem of [BL69]: Given a finite-state game with Muller winning condition, the
partition of the state space into the sets of states from which player 0, resp.
player 1, wins is computable, and corresponding winning strategies are effec-
tively constructible as finite-state strategies. We proceed in four steps, covering
winning conditions of inceasing difficulty (X9- and II9-condition, a special type
of Rabin condition, and the Muller condition).

3.1 ¥9- and II9-games

The first step deals with X9-games. For a game graph G = (Q, Qo, @1, A, 6, F),
we have to determine the set of those states from which player 0 can force a



visit of some state in F'. This is done by computing, for ¢ > 0, the sets W, of
states from which a visit in F' can be forced in at most ¢ steps. Clearly we have

Wo = F and

Wip1 =W U{p€Qo|Fac Ab(p a)ec W}
U{p€Qi|Vae Aé(pa)e W if defined}.

Since the sequence (W;) is increasing and @ is finite, there is some k where this
sequence becomes constant and is the union of the W;. Let Reach(F") be W, for
the first such k. It is easy to see this set contains the states from which 0 wins
the game. The winning strategy is best described by the ranking of states as
determined by the sets W; (the rank of p € Reach(F') being the smallest ¢ such
that p € ;). Now the strategy just has to ensure that the rank decreases with
each step, which can be done by deleting all edges violating this condition. We
obtain a no-memory strategy. A no-memory strategy for the opposite player 1
applies to any state in @1 \ Reach(F), specifying a transition to a target state
again outside Reach(F') (which exists by definition of Reach(F)).

In the second step we treat I19-games, again given by game graphs of the
form G = (@, Qo, @1, A, 8, F). We determine the states from which infinitely
many visits of F' can be forced by player 0 (and skip here the proof that player
1 wins from the remaining states). For this, we first compute the states from F
(forming a set Recur(F")) which allow player 0 to force infinitely many revisits
of F'. In an auxiliary step we define, for any given state set V| the set of states
from which a single revisit in V' can be forced in > 1 steps. For this purpose,
one modifies the definition of the sets W; above. Let

Wi={p€Qo|Ja€Adpa)eV}
U{p€ Qi |Vaec Ab(p,a)eV if defined}

and obtain W, from W/ as Wiy from W; above. Let us denote by Reach+(V)
the first set W] such that W, = W,é_l_l; precisely from its states a visit of V can
be forced by player 0 in > 1 steps. Now let 1; be the set of states from which
player 0 can force at least ¢ visits to F'. We have

Vi=F, Vig1 =ViNReach®™(V;)

The sequence (V;) is decreasing. Let Recur(F') be their intersection, i.e., ¥ for
the smallest [ with V; = Vi41. In the considered IT9-game, player 0 has now
a winning strategy from those states which are in Reach(Recur(F')). Again it
is a no-memory strategy by the inductive definition of the sets W/ (where one
imposes to stay within V; when it is entered).

3.2 B(X))-games

We discuss B(X9)-games in two stages. The first refers to the so-called Rabin
chain condition ([Mst84]), the second to the Muller condition. A Rabin chain
condition over a state set @) is given by a sequence (Fy, Fi,..., Em, Fin) with
the extra property that £y C Fy C ... C En C Fiy (C Q). As in Section 2.2, the



winning condition requires for a play v € Q% that for some k, infinitely visits in
Fy, occur but only finitely many visits in E} (finally excluding Fy).

The construction of no-memory strategies for games with such winning condi-
tions works by induction on the size of the state space. We follow a construction
of McNaughton ([McN93, Thm. 6.2]), given there for winning conditions of a
related form (Muller conditions “without splits”). The claim is that any game
graph with Rabin chain winning condition allows a partition into two sets Wy, Wy
such that player ¢ has a no-memory winning strategy from the states in W;.

Consider the game graph G = (Q, Qo, @1, A, 6, £2) with acceptance compo-
nent 2 = (F1, F1,..., Em, Fi). If |Q] < 2 the claim is trivial. In the induction
step, assume that Fy; = 0, i.e.; Fy is the first nonempty entry in {2 (otherwise
switch players 0 and 1). Pick ¢ € Fy. Then infinitely many visits of ¢ suffice to
ensure a win of player 0. (Note that, by the chain condition and minimality of
Fy, there is no way to extend {¢} to a set of infinitely often visited states that
causes a win of player 1.) One verifies that @\ Reach({q}) is again a game graph
Gy; thus the induction hypothesis yields a partition of this game graph into sets
Vo, V1 such that player ¢ has a no-memory winning strategy in Gy playing from
states in V.

We now distinguish the following two (complementary!) cases: Either player
0 can force a direct transition from ¢ to @\ Vi, or player 1 can force a direct
transition to V7. We claim that in the first case, the states from which 0 wins
are those in @ \ V1 (which is the set Reach({¢})U V5): Player 0 works from any
state in Reach({q}) towards ¢ and (by case 1) repeats this or proceeds to V;
where the existing winning strategy is applied as long as player 1 allows to stay
in V. If 1 chooses to leave V;, then necessarily by a transition into Reach({q})
which means 0 can force a visit to ¢ again. (Transitions from Vj to V4 by player
1 are impossible by the induction hypothesis on Gy.) Thus, player 1 only has
the options to remain in V; from some moment onwards or to pass through ¢
again and again. In either option, player 0 wins (using an extension of the given
no-memory strategy on Vj to a no-memory strategy also on Reach({q})). The
required winning strategy for 1 is the one given by the induction hypothesis.

It remains to treat the case that player 1 can force a direct transition from g¢
into ;. Consider all states (including ¢, of course) from which player 1 can force
a visit in Vi over the game graph (. Call this set V; on V there is a no-memory
winning strategy for 1. The complement of V' in G turns out to be a game graph
to which (by absence of ¢) again the induction hypothesis can be applied. Tts
decomposition into two sets Up, U7 yields the desired partition of G, namely Uy
as the set of states from which 0 wins, and V' U U; as the set of states from which
1 wins, both by a no-memory strategy.

Finally, we consider B(XY)-games presented with the Muller winning condi-
tion. Here a collection F = {Fy, ..., F,,} of state sets is given, and the winning
condition for player 0 requires that the states visited infinitely often in a play
form one of the sets Fy. (Thus, only loops, i.e. strongly connected state sets,
are reasonable candidates of such sets Fj.) Let us verify that winning strategies
without memory do not suffice; by considering the example game graph dis-



played in the figure. The even-numbered circles represent the states in (g, the
odd-numbered boxes those of Q1. We suppress the labels on edges (actions).

4
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Since all possible loops are uniquely determined by their odd-numbered
states, we name the final state sets just by their odd-numbered elements. Sup-
pose the loops {1,3} and {1,3,5,7} are those in which player 0 wins (defining
the set F). Then a no-memory strategy would have to select one edge at state 4,
but any of the two possible choices would enable player 1 to win (obviously for
the choice of 5, and for the choice of state 1 by passing from 3 to 6 when state
3 is reached).

A little contemplation will show that at state 4 it should be known how it
was reached: If 4 was reached directly from 3, then a good choice is to go to state
1 and from 2 always to 3, which means that upon repetition of this process the
loop {1, 3} is assumed forever and player 0 wins. If, however, state 4 is reached
from 3 via 6 and 7, then it is advisable to force a visit of all odd-numbered
states: first 5 and again 7, then 1 and 3. This can be executed, for example,
by a memory which always records the last two visits to odd-numbered states.
(Assuming that player 0 moves from 2 always to 3, there are three possibilities
of last visits at state 4: (1,3), (5,7), and (3,7). The first two cases require a
transition to state 1, the last case a transition to 5.) Altogether the strategy is
implementable by a Moore automaton and hence finite-state.

The record on last visits of states is a basic tool for building strategies: it is
found under the name later appearance record LAR in [GH82], order-veclor in
[Bii83], and latest visitation record in [McN93]. For a general construction, we
shall use the LAR here in an extended form following [Bii83]: Over the state-
set @ = {1,...,n}, an LAR with kit position is a permutation (iy,...,4,) of
(1,...,n) together with a number A from {1,...,n} (the “hit”). We write this
as an n-tuple where position A is underlined and identify the set of all these
extended vectors with Perm(Q) x Q. Formally, we introduce the extended LAR of
a finite state-sequence inductively: For the empty sequence € over @ = {1,...,n},
LAR(e) is (1,...,n). For a state sequence s.q, LAR(s.q) is obtained by taking
q from its position j in LAR(s) towards the end, and setting the hit to be
j. So the hit records from which place onwards in an LAR a change has just
occurred. In our example above (disregarding again all even-numbered states),
a repeated tour through the loop {1,3} will lead to LAR-values (5,7,1,3) and
(5,7,3,1), whereas the repeated tour through all states will set the hit to the
first position again and again. Using the hit position, a set F' can be fixed
as containing precisely the states visited infinitely often, in the following way



(assuming |F'| = k): From some moment onwards, the hit stays > (n — k) + 1,
and infinitely often the hit is (n — k) 4+ 1 with the elements of F' (in some order)
on the LAR positions (n—k)+1, ..., n. Thus, the hit induces a scale for the final
sets by size (which supplies the connection with the Rabin chain condition).

Given a game graph G = (Q, Qo, @1, A, 6, F), we shall extract the desired
finite-state winning strategies for players 0 and 1 from a new game graph G/ =
(@, Qp, Ry, A8, 82), which is equipped with a winning condition in Rabin chain
form. We set @' = @ x Perm(Q) x @, and let a state of Q' be in @ (resp. Q)
iff its first component is in @y (resp. in @1). The transition function § copies
6 regarding the first component, while for the remaining components &' realizes
the update of the LAR as explained above. A play v over GG thus corresponds
to a play 4’ over (', using the initial LAR for the first state 7/(0). We shall
define the acceptance component {2 in Rabin chain form such that the following
equivalence holds:

A play v over (G is won by player 0 (resp. player 1) iff the corresponding
play 4" over G’ is won by player 0 (resp. player 1).

Using this, we can apply the previous strategy construction to G' (since over G’
the winning condition is in Rabin chain form) and obtain a no-memory strategy
for any ¢' € Q' where there is a winning strategy for player 0 (resp. player 1) in
Gf], at all. The strategy is obtained by deleting certain transitions in G, which
in turn defines the desired finite-state strategy over GG (since the storage and
updates of the extended LAR can be realized by a finite automaton).

It remains to establish the above equivalence. For this, we assume |@Q| = n
and define a chain 2 = (E4, Fy,..., E,, F,) of subsets of Q. Let E; contain all
states from @' where the LAR part has a hit value smaller than j, and let F; be
the union of E; with the set of states from @’ where this hit value is precisely j
and the LAR-entries from the hit position onwards form a set in F. (We obtain
a proper inclusion chain by merging E; and Ej4q if F; \ E; = 0, resp. Fj and
Fijpq if Ej4q \ F; = 0.) It is now easy to verify the claimed equivalence, which
completes the strategy construction for finite-state B(X5)-games.

In our example above, we could work just with the set of odd-numbered states
in place of @. In [McN93], such a set W of “relevant states” is introduced in
general: It contains just enough states for the distinction between final and non-
final loops. We see from the proof above that in a game over ) with a Muller
condition over a set W of relevant states, the winner has a winning strategy
requiring a memory of size |W|! - |W]. A recent (and quite different) proof of S.
Seibert ([Se94]) gives a proper exponential upper bound of 4" for the memory.
Examples of H. Lescow and S. Seibert show that for some constant ¢, /"l is a
lower bound for the memory size of the winner. It would be interesting to know
classes of games (or winning conditions) where the winner has a polynomial size
(however non-zero memory) winning strategy.

The proof above shows that the Rabin chain condition is a useful intermediate
step in handling games (or automata) with the Muller condition. We see how the
game presentations are related to the memory-size in winning strategies: When
game graphs are considered as w-automata, the transformation of automata with



Muller acceptance to those with Rabin chain acceptance involves a blow-up in
the state space which supplies exactly the memory suitable to win games with
Muller winning condition as compared to the (zero) memory for games with
Rabin chain condition.

The Rabin chain condition was introduced by Mostowski in [Mst84] but re-
mained rather unnoticed. It was applied independently for obtaining no-memory
strategies in [Mst91la] and [EJ91] (where it is called “parity condition”). The
simulation of Muller acceptance using Buchi’s version of the LAR, as presented
here, yields smaller transition graphs with Rabin chain condition than previous
constructions in [Mst91b] and [Ca94].

Gurevich and Harrington showed the much more general result that strategies
with an LAR memory suffice for B(LY )-games even over infinite graphs ( “Forget-
ful Determinacy Theorem” [GH82], [YY90], [Ze94]). By lack of space we cannot
enter this interesting subject here. For example, fixed point constructions (as
above in Section 3.1 for the finite-state case) require now ordinal-indexed sets.
Games of this form can be applied to obtain the complementation of Rabin tree
automata (as proposed by Biichi [Bii77], [Bii83]). Several approaches have been
developed to obtain transparent proofs; as recent references, besides the papers

listed above, we mention [EJ91], [Mu92], [K194], [MS94].

4 Games over pushdown transition graphs and recursive
graphs

The subject of this section is still in its beginnings: effective winning strategies
(and their construction) for games on effectively presented infinite graphs.

A natural first step after finite-state games is to consider games over tran-
sition graphs of deterministic pushdown automata. Here each node corresponds
to a global state of a pushdown automaton, given by the content of the push-
down store and the state of the finite control. These are context-free graphs in
the sense of Muller and Schupp ([MS85]), also called “context-free processes” in
semantics of concurrency, and their unravellings in tree form are the algebraic
trees in the sense of [Co83]. As Courcelle has shown in [Co94], the monadic
second-order theory of an algebraic tree is decidable. This result can be applied
to games over algebraic trees where the winning conditions are expressible in
monadic second-order logic. In this case, the existence of a winning strategy
is expressed by a monadic second-order sentence about the game tree, saying
“there is a fragment of the game tree defining a strategy, such that for each
path through the fragment, the winning condition is satisfied”. (Analogously,
the Buchi-Landweber-Theorem can be shown using finite tree automata over
infinite trees and the effective solution of their emptiness problem, cf. [Ra72].)
One should expect that from the decidability proof of [Co94] also an effective
construction of a winning strategy can be extracted (if such a strategy exists);
however, this sharpened claim and a complexity analysis are presently open.

In contrast to the finite-state case, there are now natural winning conditions
which are no more monadic second-order definable and occur at higher Borel



levels than B(LY). An example is the winning condition on paths through a
pushdown transition graph which requires that some pushdown content (possibly
with an extra property) occurs infinitely often. The condition is in L3-form, and
it seems interesting to decide the existence of winning strategies for a given
player, to analyze if and when these strategies are recursive, and to construct
the strategies effectively. So far, only Biichi’s work [Bii83] on (X5 N I1)-games
seems to be available on this subject. (In such games, it can also be appropriate
to admit infinitely many colors, e.g. representing the infinitely many pushdown
contents, in order to reformulate the winning condition.)

In recursive games, the construction of effective strategies may fail even for
IT9-winning conditions. To verify this, consider the following game tree ¢:

The tree is defined using the halting problem for Turing machines in the following
way: Below the node named ¢ in the figure, we have a switch of colors (as
indicated) on the k-th level of the two branches iff the é-th Turing machine M;
halts on the empty tape after k& steps. Clearly the tree ¢ is recursive. Consider
the game (¢,C) with winning condition “C(y) := 3*n y(n) is colored black”. Tt
is obvious that a winning strategy for 0 in this game is recursive iff the halting
problem for Turing machines is recursive (because at node 7 a strategy has to
fix a decision which is equivalent to the decision whether M; eventually halts).

A more drastic statement can be obtained from the following recursion theo-
retic result: There is a nonempty I19-w-language L C {0, 1}* such that no w-word
v € L is hyperarithmetical, i.e., for any y € L the numbers ¢ with y(¢) = 1 form
a set of natural numbers outside Af. (See e.g. [Mos80, 4.D.10], using that in the
Cantor space {0,1}*, Yl-sets are projections of I19-sets.) Such an w-language
L contains the w-words o € {0,1}* such that 3“¢ «(0)...a(i) € R for a cer-
tain recursive set R; L induces a full binary recursive game tree ¢{; where the
root is associated with player 0 and a node ajas . ..asas.41 € {0,1}7 is colored
“black” iff a1as...a241 € R. A strategy for 0 defines a path v through ¢z and
is of the same recursion theoretic degree as 7. Using again the winning condition
“C(y) := 3*n v(n) is black” there is a winning strategy for 0 (because L # 0),
but none which is hyperarithmetical.

As above for context-free games, special but natural classes of recursive games
should be found such that there are recursive winning strategies, which moreover
should be obtained effectively from the game presentations.



5 Conclusion

We conclude with a remark on two general research directions which were not
touched in this paper.

For applications in control systems, it is important to connect the discrete
model considered above with the possibility of continuous changes of parameters
in time. References on games over such “hybrid systems” are [NYY92b] and
[MPS94].

Finally, we mention a somewhat vague problem: Is there a logical framework
for the specification of games such that winning strategies can be built up in
a “compositional” manner? The present automata theoretic methodology uses
two nontrivial and often impractical transformations when starting from logical
specifications: First the conversion of logical formulas to automata (and game
graphs), which is costly when the specifications involve many quantifier alterna-
tions, secondly the conversion of game graphs to strategies, which can be costly
for games with B(X9)-winning conditions. A logic of system specification which
would allow to construct strategies more directly (at least in some interesting
cases) would be both of theoretical and practical value.
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