
Local Model Checking of Weighted CTL
with Upper-Bound Constraints

Jonas Finnemann Jensen, Kim Guldstrand Larsen,
Jǐŕı Srba, and Lars Kaerlund Oestergaard

Department of Computer Science, Aalborg University
Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark

jopsen@gmail.com, {kgl,srba}@cs.aau.dk, larsko@gmail.com

Abstract. We present a symbolic extension of dependency graphs by
Liu and Smolka in order to model-check weighted Kripke structures
against the logic CTL with upper-bound weight constraints. Our ex-
tension introduces a new type of edges into dependency graphs and lifts
the computation of fixed-points from boolean domain to nonnegative
integers in order to cope with the weights. We present both global and
local algorithms for the fixed-point computation on symbolic dependency
graphs and argue for the advantages of our approach compared to the
direct encoding of the model checking problem into dependency graphs.
We implement all algorithms in a publicly available tool prototype and
evaluate them on several experiments. The principal conclusion is that
our local algorithm is the most efficient one with an order of magni-
tude improvement for model checking problems with a high number of
“witnesses”.

1 Introduction

Model-driven development is finding its way into industrial practice within the
area of embedded systems. Here a key challenge is how to handle the growing
complexity of systems, while meeting requirements on correctness, predictabil-
ity, performance and not least time- and cost-to-market. In this respect model-
driven development is seen as a valuable and promising approach, as it allows
early design-space exploration and verification and may be used as the basis for
systematic and unambiguous testing of a final product. However, for embedded
systems, verification should not only address functional properties but also a
number of non-functional properties related to timing and resource constraints.

Within the area of model checking a number of state-machine based modeling
formalisms has emerged, allowing for such quantitative aspects to be expressed.
In particular, timed automata (TA) [1], and the extensions to weighted timed
automata (WTA) [6,2] are popular and tool-supported formalisms that allow for
such constraints to be modeled.

Interesting behavioural properties of TAs and WTAs may be expressed in
natural weight-extended versions of classical temporal logics such as CTL for

branching-time and LTL for linear-time. Just as TCTL and MTL provide ex-
tensions of CTL and LTL with time-constrained modalities, WCTL and WMTL
are extensions with weight-constrained modalities interpreted with respect to
WTAs. Unfortunately, the addition of weight now turns out to come with a
price: whereas the model-checking problems for TAs with respect to TCTL and
MTL are decidable, it has been shown that model-checking WTAs with respect
to WCTL is undecidable [9].

In this paper we reconsider this model checking problem in the setting of
untimed models, i.e. essentially weighted Kripke structures, and negation-free
WCTL formula with only upper bound constraints on weights. As main contri-
butions, we show that in this setting the model-checking problem is in PTIME,
and we provide an efficient symbolic, local (on-the-fly) model checking algorithm.

Our results are based on a novel symbolic extension of the dependency graph
framework of Liu and Smolka [16] where they encode boolean equation systems
and offer global and local algorithms for computing minimal and maximal fixed
points in linear time. Whereas a direct encoding of our model checking prob-
lem into dependency graphs leads to a pseudo-polynomial algorithm1, the novel
symbolic dependency graphs allow for a polynomial encoding and a polynomial
time fixed-point computation. Most importantly, the symbolic dependency graph
encoding enables us to perform a symbolic local fixed-point evaluation. Exper-
iments with the various approaches (direct versus symbolic encoding, global
versus local algorithm) have been conducted on a large number of cases, demon-
strating that the combined symbolic and local approach is the most efficient
one. For model-checking problems with affirmative outcome, this combination is
often one order or magnitude faster than the other approaches.

Related Work

Laroussinie, Markey and Oreiby [14] consider the problem of model checking
durational concurrent game structures with respect to timed ATL properties,
offering a PTIME result in the case of non-punctual constraints in the formula.
Restricting the game structures to a single player gives a setting similar to ours,
as timed ATL is essentially WCTL. However, in contrast to [14], we do allow
transitions with zero weight in the model, making a fixed-point computation
necessary. As a result, the corresponding CTL model checking (with no weight
constraints) is a special instance of our approach, which is not the case for [14].
Most importantly, the work in [14] does not provide any local algorithm, which
our experiments show is crucial for the performance. No implementation is pro-
vided in [14].

Buchholz and Kemper [10] propose a valued computation tree logic (CTL$)
interpreted over a general set of weighted automata that includes CTL in the
logic as a special case over the boolean semiring. For model checking CTL$
formulae they describe a matrix-based algorithm. Their logic is more expressive
than the one proposed here, since they support negation and all the comparison

1 Exponential in the encoding of the weights in the model and the formula.

2

operators. In addition, they permit nested CTL formulae and can operate on
max/plus semirings in O(min(log(t) ·mm, t · nz)) time, where t is the number
of vector matrix products, mm is the complexity of multiplying two matrices of
order n and nz is the number of non-zero elements in special matrix used for
checking “until” formulae up to some bound t. However, they do not provide
any on-the-fly technique for verification.

Another related work [8] shows that the model-checking problem with respect
to WCTL is PSPACE-complete for one-clock WTAs and for TCTL (the only cost
variable is the time elapsed).

Several approaches to on-the-fly/local algorithms for model checking the
modal mu-calculus have been proposed. Andersen [3] describes a local algorithm
for model checking the modal mu-calculus for alternation depth one running in
O(n · log(n)) (where n is the product of the size of the assertion and the labeled
transition system). Liu and Smolka[16] improve on the complexity of this ap-
proach with a local algorithm running in O(n) (where n is the size of the input
graph) for evaluating alternation-free fixed points. This is also the algorithm
that we apply for WCTL model checking and the one we extend for symbolic
dependency graphs. Cassez et. al. [11] present another symbolic extension of the
algorithm by Liu and Smolka; a zone-based forward, local algorithm for solving
timed reachability games. Later Liu, Ramakrishnan and Smolka [15] also intro-
duce a local algorithm for the evaluation of alternating fixed points with the
complexity O(n+ (n+adad)ad), where ad is the alternation depth of the graph. We
do not consider the evaluation of alternating fixed points in the weighted setting
and this is left for the future work.

Outline. Weighted Kripke structures and weighted CTL (WCTL) are presented
in Section 2. Section 3 then introduces dependency graphs. Model checking
WCTL with this framework is discussed in Section 4. In Section 5 we propose
symbolic dependency graphs and demonstrate how they can be used for WCTL
model checking in Section 6. Experimental results are presented in Section 7 and
Section 8 concludes the paper.

2 Basic Definitions

Let N0 be the set of nonnegative integers. A Weighted Kripke Structure (WKS)
is a quadruple K = (S,AP, L,→), where S is a finite set of states, AP is a finite
set of atomic propositions, L : S → P(AP) is a mapping from states to sets of
atomic propositions, and →⊆ S × N0 × S is a transition relation.

Instead of (s, w, s′) ∈→, meaning that from the state s, under the weight w,

we can move to the state s′, we often write s
w→ s′. A WKS is nonblocking if for

every s ∈ S there is an s′ such that s
w→ s′ for some weight w. From now on we

consider only nonblocking WKS2.

2 A blocking WKS can be turned into a nonblocking one by introducing a new state
with no atomic propositions, zero-weight self-loop and with zero-weight transitions
from all blocking states into this newly introduced state.

3

A run in an WKS K = (S,AP, L,→) is an infinite computation

σ = s0
w0→ s1

w1→ s2
w2→ s3 . . .

where si ∈ S and (si, wi, si+1) ∈→ for all i ≥ 0. Given a position p ∈ N0 in the
run σ, let σ(p) = sp. The accumulated weight of σ at position p ∈ N0 is then

defined as Wσ(p) = Σp−1
i=0 wi.

We can now define negation-free Weighted Computation Tree Logic (WCTL)
with weight upper-bounds. The set of WCTL formulae over the set of atomic
propositions AP is given by the abstract syntax

ϕ ::= true | false | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
EX≤k ϕ | AX≤k ϕ | E ϕ1 U≤k ϕ2 | A ϕ1 U≤k ϕ2

where k ∈ N0 ∪ {∞} and a ∈ AP. We assume that the ∞ element added to N0

is larger than any other natural number and that ∞ + k = ∞− k = ∞ for all
k ∈ N0. We now inductively define the satisfaction triple s |= ϕ, meaning that a
state s in an implicitly given WKS satisfies a formula ϕ.

s |= true

s |= a if a ∈ L(s)

s |= ϕ1 ∧ ϕ2 if s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 if s |= ϕ1 or s |= ϕ2

s |= E ϕ1 U≤k ϕ2 if there exists a run σ starting from s and a position p ≥ 0

s.t. σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ < p

s |= A ϕ1 U≤k ϕ2 if for any run σ starting from s, there is a position p ≥ 0

s.t. σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ < p

s |= EX≤k ϕ if ∃s′ s.t. s
w→ s′, s′ |= ϕ and w ≤ k

s |= AX≤k ϕ if ∀s′ s.t. s
w→ s′ where w ≤ k it holds that s′ |= ϕ

3 Dependency Graph

In this section we present the dependency graph framework and a local algo-
rithm for minimal fixed-point computation as originally introduced by Liu and
Smolka [16]. This framework can be applied to model checking of the alternation-
free modal mu-calculus, including the CTL logic. Later, in Section 4, we demon-
strate how to extend the framework from CTL to WCTL.

Definition 1 (Dependency Graph). A dependency graph is a pair G =
(V,E) where V is a finite set of configurations, and E ⊆ V × P(V) is a fi-
nite set of hyper-edges.

Let G = (V,E) be a dependency graph. For a hyper-edge e = (v, T), we
call v the source configuration and T the target (configuration) set of e. For a
configuration v, the set of its successors is given by succ(v) = {(v, T) ∈ E}.

4

a

b c

d

∅

a = b ∧ c
c = b ∨ (a ∧ d)
b = true

a b c d

A0 0 0 0 0
F (A0) 0 1 0 0
F 2(A0) 0 1 1 0
F 3(A0) 1 1 1 0
F 4(A0) 1 1 1 0

Fig. 1. A dependency graph, function F , and four iterations of the global algorithm

An assignment A : V → {0, 1} is a function that assigns boolean values to
configurations of G. A pre fixed-point assignment of G is an assignment A where,
for every configuration v ∈ V , holds that if (v, T) ∈ E and A(u) = 1 for all u ∈ T
then also A(v) = 1.

By taking the standard component-wise ordering v on assignments, where
A v A′ if and only if A(v) ≤ A′(v) for all v ∈ V (assuming that 0 < 1), we get
by Knaster-Tarski fixed-point theorem that there exists a unique minimum pre
fixed-point assignment, denoted by Amin .

The minimum pre fixed-point assignment Amin of G can be computed by
repeated applications of the monotonic function F from assignments to assign-
ments, starting from A0 where A0(v) = 0 for all v ∈ V , and where

F (A)(v) =
∨

(v,T)∈E

(∧
u∈T

A(u)

)

for all v ∈ V . We are guaranteed to reach a fixed point after a finite number
of applications of F due to the finiteness of the complete lattice of assignments
ordered by v. Hence there exists an m ∈ N0 such that Fm(A0) = Fm+1(A0),
in which case we have Fm(A0) = Amin . We will refer to this algorithm as the
global one.

Example 1. Figure 1 shows a dependency graph, its corresponding function F
given as a boolean equation system, and four iterations of the global algorithm
(sufficient to compute the minimum pre fixed-point assignment). Configurations
in the dependency graph are illustrated as labeled squares and hyper-edges are
drawn as a span of lines to every configuration in the respective target set.

In model checking we are often only interested in the minimum pre-fixed point
assignment Amin(v) for a specific configuration v ∈ V . For this purpose, Liu
and Smolka [16] suggest a local algorithm presented with minor modifications3

in Algorithm 1. The algorithm maintains three data-structures throughout its
execution: an assignment A, a dependency set D for every configuration and a
set of hyper-edges W . The dependency set D(v) for a configuration v maintains

3 At line 12 we added the current hyper-edge e to the dependency set D(u) of the suc-
cessor configuration u, i.e. D(u) = {e}. The original algorithm sets the dependency
set to empty here, leading to an incorrect propagation.

5

Algorithm 1: Liu-Smolka Local Algorithm

Input: Dependency graph G = (V,E) and a configuration v0 ∈ V
Output: Minimum pre fixed-point assignment Amin(v0) for v0

1 Let A(v) = ⊥ for all v ∈ V
2 A(v0) = 0; D(v0) = ∅
3 W = succ(v0)
4 while W 6= ∅ do
5 let e = (v, T) ∈W
6 W = W \ {e}
7 if A(u) = 1 for all u ∈ T then
8 A(v) = 1; W = W ∪D(v)
9 else if there is u ∈ T such that A(u) = 0 then

10 D(u) = D(u) ∪ {e}
11 else if there is u ∈ T such that A(u) = ⊥ then
12 A(u) = 0; D(u) = {e}; W = W ∪ succ(u)

13 return A(v0)

a list of hyper-edges that were processed under the assumption that A(v) = 0.
Whenever the value of A(v) changes to 1, the hyper-edges from D(v) must be
reprocessed in order to propagate this change to the respective sources of the
hyper-edges.

Theorem 1 (Correctness of Local Algorithm [16]). Given a dependency
graph G = (V,E) and a configuration v0 ∈ V , Algorithm 1 computes the mini-
mum pre-fixed point assignment Amin(v0) for the configuration v0.

As argued in [16], both the local and global model checking algorithms run
in linear time.

4 Model Checking with Dependency Graphs

In this section we suggest a reduction from the model checking problem of WCTL
(on WKS) to the computation of minimum pre fixed-point assignment on a
dependency graph.

Given a WKS K, a state s of K, and a WCTL formula ϕ, we construct
a dependency graph where every configuration is a pair of a state and a for-
mula. Starting from the initial pair 〈s, ϕ〉, the dependency graph is constructed
according to the rules given in Figure 2.

Theorem 2 (Encoding Correctness). Let K = (S,AP, L,→) be a WKS,
s ∈ S a state, and ϕ a WCTL formula. Let G be the constructed dependency
graph rooted with 〈s, ϕ〉. Then s |= ϕ if and only if Amin(〈s, ϕ〉) = 1.

Proof. By structural induction on the formula ϕ. ut

6

〈s, true〉

∅
(a) True

〈s, a〉

∅

if a ∈ L(s)

(b) Proposition

〈s, ϕ1 ∧ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(c) Conjunction

〈s, ϕ1 ∨ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(d) Disjunction

〈s,E ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤k−w1 ϕ2〉 〈sn,E ϕ1 U≤k−wn ϕ2〉· · ·

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si and wi ≤ k}

(e) Existential Until

〈s,A ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤k−w1 ϕ2〉 〈sn,A ϕ1 U≤k−wn ϕ2〉· · ·

if wi ≤ k for all wi s.t s
wi→ si

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(f) Universal Until

〈s,EX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, s2, . . . , sn} = {si | s
wi→ si, wi ≤ k}

(g) Existential Next

〈s,AX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, . . . , sn} = {si | s
wi→ si, wi ≤ k}

(h) Universal Next

Fig. 2. Dependency graph encoding of state-formula pairs.

7

s 1

{a}

〈s,E a U≤1000 b〉

〈s,E a U≤999 b〉 〈s, a〉〈s, b〉

∅

〈s,E a U≤998 b〉

〈s,E a U≤997 b〉
...

〈s,E a U≤0 b〉

Fig. 3. A WKS and its dependency graph for the formula E a U≤1000 b

Clearly, to profit from the local algorithm by Liu and Smolka [16] presented
in the previous section, we construct the dependency graph on-the-fly whenever
successor configurations are requested by the algorithm. Such an exploration
gives us often more efficient local model checking algorithm compared to the
global one (see Section 7).

However, the drawback of this approach is that we may need to construct
exponentially large dependency graphs. This is demonstrated in Figure 3 where
a single-state WKS on the left gives rise to a large dependency graph on the
right where its size depends on the bound in the formula. Hence this method
gives us only a pseudo-polynomial algorithm for model checking WCTL.

5 Symbolic Dependency Graph

We have seen in previous section that the use of dependency graphs for WCTL
model checking suffers from the exponential explosion as the graph grows in
proportion to the bounds in the given formula (due to the unfolding of the until
operators). We can, however, observe that the validity of s |= E a U≤k b implies
s |= E a U≤k+1 b. In what follows we suggest a novel extension of dependency
graphs, called symbolic dependency graphs, that use the implication above in
order to reduce the size of the constructed graphs. Then in Section 6 we shall
use symbolic dependency graphs for efficient (polynomial time) model checking
of WCTL.

Definition 2 (Symbolic Dependency Graph). A symbolic dependency graph
(SDG) is a triple G = (V,H,C), where V is a finite set of configurations,
H ⊆ V × P(N0 × V) is a finite set of hyper-edges, and C ⊆ V × N0 × V is
a finite set of cover-edges.

8

ab

c d ∅

5

3

(a) A symbolic dependency graph

i a b c d

A0 ∞ ∞ ∞ ∞
F (A0) ∞ ∞ ∞ 0
F 2(A0) ∞ ∞ 0 0
F 3(A0) ∞ 3 0 0
F 4(A0) 0 3 0 0
F 5(A0) 0 3 0 0

(b) Minimum pre fixed-point computation

Fig. 4. Computation of minimum pre fixed-point assignment of a SDG

The difference from dependency graphs explained earlier is that for each
hyper-edge of a SDG a weight is added to all of its target configurations and
a new type of edge called a cover-edge is introduced. Let G = (V,H,C) be a
symbolic dependency graph. The size of G is |G| = |V | + |H| + |C| where |V |,
|H| and |C| is the size the of these components in a binary representation (note
that the size of a hyper-edge depends on the number of nodes it connects to).
For a hyper-edge e = (v, T) ∈ H we call v the source configuration and T the
target set of e. We also say that (w, u) ∈ T is a hyper-edge branch with weight
w pointing to the target configuration u. The successor set succ(v) = {(v, T) ∈
H} ∪ {(v, k, u) ∈ C} is the set of hyper-edges and cover-edges with v as the
source configuration.

Figure 4(a) shows an example of a SDG. Hyper-edges are denoted by solid
lines and hyper-edge branches have weight 0 unless they are annotated with
another weight. Cover-edges are drawn as dashed lines annotated with a cover-
condition. We shall now describe a global algorithm for the computation of
the minimum pre fixed-point. The main difference is that symbolic dependency
graphs operate over the complete lattice N0 ∪{∞}, contrary to standard depen-
dency graphs that use only boolean values.

An assignment A : V → N0 ∪ {∞} in an SDG G = (V,H,C) is a mapping
from configurations to values. We denote the set of all assignments by Assign.
A pre fixed-point assignment is an assignment A ∈ Assign such that A = F (A)
where F : Assign → Assign is defined as

F (A)(v) =

0 if ∃(v, k, v′) ∈ C s.t. A(v′) ≤ k <∞, or A(v′) < k =∞
min

(v,T)∈H

(
max{w +A(v′) | (w, v′) ∈ T}

)
otherwise.

(1)

If we consider the partial order v over assignments of a symbolic dependency
graph G such that A v A′ if and only if A(v) ≥ A′(v) for all v ∈ V , then the
function F is clearly monotonic on the complete lattice of all assignments ordered
by v. It follows by Knaster-Tarski fixed-point theorem that there exists a unique
minimum pre fixed-point assignment of G, denoted Amin .

9

Notice that we write A v A′ if for all configurations v we have A(v) ≥ A′(v)
in the opposite order. Hence, A0(v) =∞ for all v ∈ V is the smallest element in
the lattice.

As the lattice is finite and there are no infinite decreasing sequences of weights
(nonnegative integers), the minimum pre fixed-point assignment Amin of G can
be computed by a finite number of applications of the function F on the smallest
assignment A0, where all configurations have the initial value∞. So there exists
an m ∈ N0 such that Fm(A0) = Fm+1(A0), implying that Fm(A0) = Amin is
the minimum pre fixed-point assignment of G. Figure 4(b) shows a computation
of the minimum pre fixed-point assignment on our example.

The next theorem demonstrates that fixed-point computation via the global
algorithm (repeated applications of the function F) on symbolic dependency
graphs still runs in polynomial time.

Theorem 3. The computation of the minimum post fixed-point assignment for
an SDG G = (V,H,C) by repeated application of the function F takes time
O(|V | · |C| · (|H|+ |C|)).

We now propose a local algorithm for minimum pre fixed-point computation
on symbolic dependency graphs, motivated by the fact that in model checking
we are often interested in the value for a single given configuration only, hence
we might be able (depending on the formula we want to verify) to explore only
a part of the reachable state space.

Given a symbolic dependency graph G = (V,H,C), Algorithm 2 computes
the minimum pre fixed-point assignment Amin(v0) of a configuration v0 ∈ V . The
algorithm is an adaptation of Algorithm 1. We use the same data-structures as in
Algorithm 1. However, the assignment A(v) for each configuration v now ranges
over N0∪{⊥,∞} where ⊥ once again indicates that the value is unknown at the
moment.

Table 1 lists the values of the assignment A, the set W (implemented as
queue) and the dependency set D during the execution of Algorithm 2 on the
SDG Figure 4(a). Each row displays the values before the i’th iteration of the
while-loop. The value of the dependency set D(a) for a is not shown in the table
because it remains empty.

In order to prove the correctness of Algorithm 2, we extend the loop invariant
for the local algorithm on dependency graphs [16] with weights.

Lemma 1. The while-loop in Algorithm 2 satisfies the following loop-invariants
(for all configurations v ∈ V):

1) If A(v) 6= ⊥ then A(v) ≥ Amin(v).
2) If A(v) 6= ⊥ and e = (v, T) ∈ H, then either

a) e ∈W ,
b) e ∈ D(u) and A(v) ≤ x for some (w, u) ∈ T s.t. x = A(u) + w, where

x ≥ A(u′) + w′ for all (w′, u′) ∈ T , or
c) A(v) = 0.

3) If A(v) 6= ⊥ and e = (v, k, u) ∈ C, then either

10

Algorithm 2: Symbolic Local Algorithm

Input: A SDG G = (V,H,C) and a configuration v0 ∈ V
Output: Minimum pre fixed-point assignment Amin(v0) for v0

1 Let A(v) = ⊥ for all v ∈ V
2 A(v0) =∞; W = succ(v0)
3 while W 6= ∅ do
4 Pick e ∈W
5 W = W \ {e}
6 if e = (v, T) is a hyper-edge then
7 if ∃(w, u) ∈ T where A(u) =∞ then
8 D(u) = D(u) ∪ {e}
9 else if ∃(w, u) ∈ T where A(u) = ⊥ then

10 A(u) =∞; D(u) = {e}; W = W ∪ succ(u)
11 else
12 a = max{A(u) + w | (w, u) ∈ T}
13 if a < A(v) then
14 A(v) = a; W = W ∪D(v)

15 let (w, u) = arg max
(w,u)∈T

A(u) + w

16 if A(u) > 0 then
17 D(u) = D(u) ∪ {e}

18 else if e = (v, k, u) is a cover-edge then
19 if A(u) = ⊥ then
20 A(u) =∞; D(u) = {e}; W = W ∪ succ(u)
21 else if A(u) ≤ k <∞ or A(u) < k ==∞ then
22 A(v) = 0
23 if A(v) was changed then
24 W = W ∪D(v)

25 else
26 D(u) = D(u) ∪ {e}

27 return A(v0)

a) e ∈W ,
b) e ∈ D(u) and A(u) > k, or
c) A(v) = 0.

These loop-invariants allow us to conclude the correctness of the local algo-
rithm.

Theorem 4. Algorithm 2 terminates and computes an assignment A such that
A(v) 6= ⊥ implies A(v) = Amin(v) for all v ∈ V . In particular, the returned
value A(v0) is the minimum pre fixed-point assignment of v0.

We note that the termination argument is not completely straightforward
as there is not a guarantee that it terminates within a polynomial number of

11

i A(a) A(b) A(c) A(d) W D(b) D(c) D(d)

1 ∞ ⊥ ⊥ ⊥ (a, 5, b)
2 ∞ ∞ ⊥ ⊥ (b, {(0, c), (3, d)}) (a, 5, b)
3 ∞ ∞ ∞ ⊥ (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)})
4 ∞ ∞ ∞ ∞ (d, ∅) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
5 ∞ ∞ ∞ 0 (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
6 ∞ ∞ 0 0 (b, {(0, c), (3, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
7 ∞ 3 0 0 (a, 5, b) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
8 0 3 0 0 (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})

Table 1. Execution of Algorithm 2 on SDG from Figure 4(a)

s0 s1 s2 s3 sn ∅. . .

0

b1

0

b2

0

b3

0

b4

0

bn

20

a1

21

a2

22

a3

23

a4

2n−1

an
z

Fig. 5. A SDG where the local algorithm can take exponential running time

steps as depicted on the SDG in Figure 5 where for technical convenience, we
named the hyper-edges a1, . . . , an, b1, . . . , bn and z. Consider now an execution
of Algorithm 2 starting from the configuration s0. Let us pick the edges from W
at line 4 according to the strategy:

– if z ∈W then pick z, else

– if ai ∈W for some i then pick ai (there will be at most one such ai), else

– pick bi ∈W with the smallest index i.

Then the initial assignment of A(s0) =∞ is gradually improved to 2n−1, 2n−2,
2n − 3, . . . 1, 0. Hence, in the worst case, the local algorithm can perform
exponentially many steps before it terminates, whereas the global algorithm
always terminates in polynomial time. However, as we will see in Section 7,
the local algorithm is in practice performing significantly better despite its high
(theoretical) complexity.

6 Model Checking with Symbolic Dependency Graphs

We are now ready to present an encoding of a WKS and a WCTL formula as
a symbolic dependency graph and hence decide the model checking problem via
the computation of the minimum pre fixed-point assignment.

Given a WKS K, a state s of K and a WCTL formula ϕ, we construct the
corresponding symbolic dependency graph as before with the exception that the
existential and universal “until” operators are encoded by the rules given in
Figure 6.

12

〈s,E ϕ1 U≤k ϕ2〉

〈s,E ϕ1 U≤? ϕ2〉

k

(a) Existential Until

〈s,A ϕ1 U≤k ϕ2〉

〈s,A ϕ1 U≤? ϕ2〉

k

(b) Universal Until

〈s,E ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤? ϕ2〉 〈sn,E ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(c) Existential Until

〈s,A ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤? ϕ2〉 〈sn,A ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(d) Universal Until

Fig. 6. SDG encoding of existential and universal ‘until’ formulas

Theorem 5 (Encoding Correctness). Let K = (S,AP, L,→) be a WKS,
s ∈ S a state, and ϕ a WCTL formula. Let G be the constructed symbolic
dependency graph rooted with 〈s, ϕ〉. Then s |= ϕ if and only if Amin(〈s, ϕ〉) = 0.

Proof. By structural induction on ϕ. ut

In Figure 7 we depict the symbolic dependency graph encoding of E a U≤1000 b
for the configuration s in the single-state WKS from Figure 3. This clearly illus-
trates the succinctness of SDG compared to standard dependency graphs. The
minimum pre fixed-point assignment of this symbolic dependency graph is now
reached in two iterations of the function F defined in Equation (1).

We note that for a given WKS K = (S,AP, L,→) and a formula ϕ, the size
of the constructed symbolic dependency graph G = (V,H,C) can be bounded as
follows: |V | = O(|S| · |ϕ|), |H| = O(|→| · |ϕ|) and |C| = O(|ϕ|). In combination
with Theorem 3 and the fact that |C| ≤ |H| (due to the rules for construction
of G), we conclude with a theorem stating a polynomial time complexity of the
global model checking algorithm for WCTL.

Theorem 6. Given a WKS K = (S,AP, L,→), a state s ∈ S and a WCTL
formula ϕ, the model checking problem s |= ϕ is decidable in time O(|S|·|→|·|ϕ|3).

13

〈s,E a U≤1000 b〉 〈s,E a U≤? b〉

〈s, b〉 〈s, a〉 ∅

1000

1

Fig. 7. SDG for the formula s |= E a U≤1000 b and the WKS from Figure 3

As we already explained, the local model checking approach in Algorithm 2
may exhibit exponential running time. Nevertheless, the experiments in the sec-
tion to follow show that this unlikely to happen in practice.

7 Experiments

In order to compare the performance of the algorithms for model checking
WCTL, we developed a prototype tool implementation. There is a web-based
front-end written in CoffeeScript available at

http://wktool-spin2013.jonasfj.dk

and the tool is entirely browser-based, requiring no installation. The model
checking algorithms run with limited memory resources but the tool allows a
fair comparison of the performance for the different algorithms. All experiments
were conducted on a standard laptop (Intel Core i7) running Ubuntu Linux.

In order to experiment with larger, scalable models consisting of parallel
components, we extend the process algebra CCS [17] with weight prefixing as
well as proposition annotations and carry out experiments with weighted models
of Leader Election [12], Alternating Bit Protocol [5], and Task Graph Scheduling
problems for two processors [13]. The weight (communication cost) is associated
with sending messages in the first two models while in the task graph scheduling
the weight represents clock ticks of the processors.

7.1 Dependency Graphs vs. Symbolic Dependency Graphs

In Table 2 we compare the direct (standard dependency graph) algorithms with
the symbolic ones. The execution times are in seconds and OOM indicates that
verification runs out of memory. For a fixed size of the problems, we scale the
bound k in the WCTL formulae. In the leader election protocol with eight pro-
cesses, we verified a satisfiable formula E true U≤k leader, asking if a leader
can be determined within k message exchanges, and an unsatisfiable formula
E true U≤k leader > 1, asking if there can be more than one leader selected
within k message exchanges. For the alternating bit protocol with a communica-
tion buffer of size four, we verified a satisfied formula E true U≤k delivered = 1,
asking if a message can be delivered within k communication steps, and an un-
satisfied formula E true U≤k (s0 ∧ d1) ∨ (s1 ∧ d0), asking whether the sender
and receiver can get out of synchrony withing the first k communication steps.

14

Leader Election

Direct Symbolic

k Global Local Global Local

200 3.88 0.23 0.26 0.02 S
a
tisfi

ed

400 8.33 0.25 0.26 0.02
600 OOM 0.24 0.26 0.02
800 OOM 0.25 0.26 0.02

1000 OOM 0.26 0.27 0.02

200 7.76 8.58 0.26 0.26 U
n
sa

tisfi
ed

400 17.05 20.23 0.26 0.26
600 OOM OOM 0.26 0.26
800 OOM OOM 0.26 0.26

1000 OOM OOM 0.26 0.26

Alternating Bit Protocol

Direct Symbolic

k Global Local Global Local

100 3.87 0.05 0.23 0.03 S
a
tisfi

ed

200 8.32 0.06 0.23 0.03
300 OOM 0.10 0.28 0.04
400 OOM 0.11 0.23 0.03
500 OOM 0.13 0.23 0.03

100 3.39 3.75 0.27 0.23 U
n
sa

tisfi
ed

200 6.98 8.62 0.30 0.25
300 OOM 15.37 0.28 0.24
400 OOM OOM 0.27 0.24
500 OOM OOM 0.27 0.22

Table 2. Scaling of bounds in WCTL formula (time in seconds)

For the satisfied formula, the direct global algorithm (global fixed-point com-
putation on dependency graphs) runs out of memory as the bound k in the for-
mulae is scaled. The advantage of Liu and Smolka [16] local algorithm is obvious
as on positive instances it performs (using DFS search strategy) about as well
as the global symbolic algorithm. The local symbolic algorithm clearly performs
best. We observed a similar behaviour also for other examples we tested and the
symbolic algorithms were regularly performing better than the ones using the di-
rect translation of WCTL formulae into dependency graphs. Hence we shall now
focus on a more detailed comparison of the local vs. global symbolic algorithms.

7.2 Local vs. Global Model Checking on SDG

We shall now take a closer look at comparing the local and global symbolic
algorithms. In Table 3 we return to the leader election and alternating bit pro-
tocol but we scale the sizes (number of processes and buffer capacity, resp.) of
these models rather than the bounds in formulae. The satisfiable and unsatisfi-
able formulae are as before. In the leader election the verification of a satisfiable
formula using the local symbolic algorithm is consistently faster as the instance
size is incremented, while for unsatisfiable formulae the verification times are
essentially the same. For the alternating bit protocol we present the results for
the bound k equal to 10, 20 and ∞. While the results for unsatisfiable formulae
do not change significantly, for the positive formula the bound 10 is very tight in
the sense that there are only a few executions or “witnesses” that satisfy the for-
mula. As the bound is relaxed, more solutions can be found which is reflected by
the improved performance of the local algorithm, in particular in the situation
where the upper-bound is ∞.

We also tested the algorithms on a larger benchmark of task graph scheduling
problems [4]. The task graph scheduling problem asks about schedulability of
a number of parallel tasks with given precedence constraints and processing

15

Leader Election

k = 200

n Global Local

7 0.08 0.01 S
a
tisfi

ed

8 0.26 0.02
9 1.06 0.03

10 5.18 0.03
11 23.60 0.03
12 Timeout 0.04

7 0.08 0.08 U
n
sa

tisfi
ed

8 0.26 0.26
9 1.05 1.06

10 4.97 4.96
11 23.57 24.07
12 Timeout Timeout

Alternating Bit Protocol

k = 10 k = 20 k =∞
n Global Local Global Local Global Local

5 0.33 0.10 0.33 0.07 0.33 0.04 S
a
tisfi

ed

6 0.78 0.18 0.77 0.17 0.80 0.06
7 1.88 0.34 1.92 0.14 1.96 0.05
8 4.82 0.82 4.71 0.72 4.78 0.09
9 13.91 10.60 12.41 1.67 12.92 0.20

10 OOM OOM OOM 6.29 OOM 0.23

4 0.27 0.24 0.27 0.23 0.29 0.24 U
n
sa

tisfi
ed

5 0.54 0.43 0.51 0.37 0.57 0.40
6 1.42 0.98 1.21 0.93 1.31 1.02
7 2.70 2.05 2.93 2.06 3.14 2.21
8 6.15 4.98 7.08 5.57 6.86 5.34
9 OOM OOM OOM OOM OOM OOM

Table 3. Scaling the model size for the symbolic algorithms (time in seconds)

times that are executed on a fixed number of homogeneous processors [13]. We
automatically generate models for two processors from the benchmark containing
in total 180 models and scaled them by the number of initial tasks that we include
from each case into schedulability analysis.

The first three task graphs (T0, T1 and T2) are presented in Table 4. We

model check nested formulae and the satisfiable one is E true U≤90 (treadyn−2 ∧
A true U≤80 done) asking whether there is within 500 clock ticks a configuration
where the task tn−2 can be scheduled such that then we have a guarantee that
the whole schedule terminates within 500 ticks. When the upper-bounds are
decreased to 5 and 10 the formula becomes unsatisfiable for all task graphs in
the benchmark.

Finally, we verify the formula E true U≤k done asking whether the task graph
can be scheduled within k clock ticks. We run the whole benchmark through the
test (180 cases) for values of k equal to 30, 60 and 90, measuring the number
of finished verification tasks (without running out of resources) and the total
accumulated time it took to verify the whole benchmark for those cases where
both the global and local algorithms provided an answer. The results are listed
in Table 5. This provides again an evidence for the claim that the local algorithm
profits from the situation where there are more possible schedules as the bound
k is being relaxed.

8 Conclusion

We suggested a symbolic extension of dependency graphs in order to verify
negation-free weighted CTL properties where temporal operators are annotated
with upper-bound constraints on the accumulated weight. Then we introduced
global and local algorithms for the computation of fixed-points in order to answer

16

T0 T1 T2

n Global Local Global Local Global Local

2 0.24 0.04 0.06 0.01 0.07 0.01

S
a
tisfi

ed
3 3.11 0.01 0.15 0.08 0.19 0.01
4 4.57 1.13 0.18 0.08 0.88 0.19
5 6.09 0.03 2.73 0.01 7.05 0.02
6 OOM OOM 5.27 1.08 OOM 1.44
7 OOM 0.02 OOM 0.02 OOM 0.01
8 OOM 0.03 OOM OOM OOM 2.75
9 OOM OOM OOM OOM OOM 1.86

10 OOM 0.03 OOM OOM OOM OOM

2 0.22 0.20 0.05 0.05 0.08 0.01 U
n
sa

tisfi
ed

3 2.91 2.55 0.14 0.13 0.20 0.01
4 6.35 4.45 0.16 0.14 0.91 0.20
5 7.45 5.00 2.31 1.69 7.48 0.03
6 OOM OOM 4.67 4.40 OOM 1.40
7 OOM OOM OOM OOM OOM OOM

Table 4. Scaling task graphs by the number of initial tasks (time is seconds)

180 task graphs for k = 30 k = 60 k = 90

Algorithm global local global local global local

Number of finished tasks 32 85 32 158 32 178
Accumulated time (seconds) 50.4 12.9 47.6 2.30 47.32 0.44

Table 5. Summary of task graphs verification (180 cases in total)

the model checking problems for the logic. The algorithms were implemented and
experimented with, coming to the conclusion that the local symbol algorithm is
the preferred one, providing order of magnitude speedup in the cases where the
bounds in the logical formula allow for a larger number of possible witnesses of
satisfiability of the formula.

In the future work we will study a weighted CTL logic with negation that
combines lower- and upper-bounds. (The model checking problem for a logic
containing weight intervals as the constraints is already NP-hard; showing this
is easy.) From the practical point of view it would be worth designing good
heuristics that can guide the search in the local algorithm in order to find faster
the witnesses of satisfiability of a formula. Another challenging problem is to
adapt our technique to support alternating fixed points.

References

1. Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In
Mike Paterson, editor, ICALP, volume 443 of Lecture Notes in Computer
Science, pages 322–335. Springer, 1990.

17

2. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in
weighted timed automata. In Benedetto and Sangiovanni-Vincentelli [7], pages
49–62.

3. Henrik Reif Andersen. Model checking and boolean graphs. Theoretical
Computer Science, 126(1):3 – 30, 1994.

4. Kasahara Laboratory at Waseda University. Standard task graph set.
http://www.kasahara.elec.waseda.ac.jp/schedule/.

5. K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable
full-duplex transmission over half-duplex links. Communications of the ACM,
12(5):260–261, 1969.

6. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen, Paul
Pettersson, Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachability
for priced timed automata. In Benedetto and Sangiovanni-Vincentelli [7], pages
147–161.

7. Maria Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli, editors.
Hybrid Systems: Computation and Control, 4th International Workshop, HSCC
2001, Rome, Italy, March 28-30, 2001, Proceedings, volume 2034 of Lecture Notes
in Computer Science. Springer, 2001.

8. Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. Model checking
one-clock priced timed automata. Logical Methods in Computer Science, 4(2),
2008.

9. Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. Model-checking
for weighted timed automata. In Yassine Lakhnech and Sergio Yovine, editors,
FORMATS/FTRTFT, volume 3253 of Lecture Notes in Computer Science, pages
277–292. Springer, 2004.

10. Peter Buchholz and Peter Kemper. Model checking for a class of weighted
automata. Discrete Event Dynamic Systems, 20:103–137, 2010.

11. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In IN
CONCUR 05, LNCS 3653, pages 66–80. Springer, 2005.

12. E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun. of ACM,
22(5):281–283, 1979.

13. Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph
scheduling algorithms. Journal of Parallel and Distributed Computing, 59(3):381
– 422, 1999.

14. François Laroussinie, Nicolas Markey, and Ghassan Oreiby. Model-checking
timed atl for durational concurrent game structures. In Eugene Asarin and
Patricia Bouyer, editors, FORMATS, volume 4202 of Lecture Notes in Computer
Science, pages 245–259. Springer, 2006.

15. Xinxin Liu, C.R. Ramakrishnan, and ScottA. Smolka. Fully local and efficient
evaluation of alternating fixed points. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 1384 of LNCS, pages 5–19.
Springer Berlin Heidelberg, 1998.

16. Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed
points (extended abstract). In ICALP, pages 53–66, 1998.

17. R. Milner. A calculus of communicating systems. LNCS, 92, 1980.

18

