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Abstract. In the classic approach to logic model checking, software verifica-
tion requires a manually constructed artifact (the model) to be written in the lan-
guage that is accepted by the model checker. The construction of such a model
typically requires good knowledge of both the application being verified and of
the capabilities of the model checker that is used for the verification. Inade-
quate knowledge of the model checker can limit the scope of verification that
can be performed; inadequate knowledge of the application can undermine the
validity of the verification experiment itself.
In this paper we explore a different approach to software verification. With this
approach, a software application can be included, without substantial change,
into a verification test-harness and then verified directly, while preserving the
ability to apply data abstraction techniques. Only the test-harness is written in
the language of the model checker. The test-harness is used to drive the appli-
cation through all its relevant states, while logical properties on its execution are
checked by the model checker. To allow the model checker to track state, and
avoid duplicate work, the test-harness includes definitions of all data objects in
the application that contain state information.
The main objective of this paper is to introduce a powerful extension of the
SPIN model checker that allows the user to directly define data abstractions in
the logic verification of application level programs.

1. Introduction
In the classic approach to software verification based on logic model checking tech-
niques, the verification process begins with the manual construction of a high-level
model of a source program. The advantage of this approach is that the model can
exploit a broad range of abstraction techniques, which can significantly lower the ver-
ification complexity. The disadvantage is that the construction of the model requires
not only skill in model building, but also a fairly deep understanding of the function-
ing of the implementation level code that is the target of the verification. Any misun-
derstanding translates into a loss of accuracy of the model and thereby into a loss of
accuracy of the verification. If errors are found in the model checking process, these
misunderstandings can often be removed, but if no errors are found the user could
erroneously conclude that the application was error free.

In this paper we describe a new verification method that in many cases of practical
interest can avoid the need to manually construct a verification model, while still
retaining the capability to define powerful abstractions that can be used to reduce
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verification complexity. We call this method ‘‘model-driven software verification.’’

In Section 2 we discuss the basic method of using embedded C or C++ code within
SPIN verification models, and we discuss a relatively small extension that was intro-
duced in SPIN version 4.1 to support data abstraction on embedded C code. Section 3
contains a discussion of two example applications, Section 4 reviews related work,
and Section 5 presents our conclusions.

2. Model Checking with Embedded C Code
SPIN versions 4.0 and later support the inclusion of embedded C or C++ code within
verification models [8,9]. A total of fiv e different primitives can be used to connect a
verification model to implementation level C code. Some of these primitives serve to
define what the state of the model is, with optionally some of the state information
residing in the application. Other primitives serve to define either conditional or
unconditional state transitions.

One of the primitives that can be used to define state is c_decl, which is normally
used to introduce the types and names of externally declared C data objects that are
referred to in the model. Another primitive of this type is c_track, which is used to
define which of the data objects that appear in the embedded C code should be con-
sidered to hold state information that is relevant to the verification process.

Tw o other primitives define state transitions with the help of C code. The first of these
is c_code, which can be used to enclose an arbitrary fragment of C code that is used
to effect the desired state transition. The last primitive we discuss here is c_expr,
which can be used to evaluate an arbitrary side-effect free expression in C to compute
a Boolean truth value that is then used to determine the executability of the statement
itself.

Figure 1 illustrates the use of these four primitives with a small example.

c_decl {
extern float x;
extern void fiddle(void);

};

c_track "&x" "sizeof(float)";

init {
do
:: c_expr { x < 10.0 } -> c_code { fiddle(); }
:: else -> break
od

}

Fig. 1. Embedded C Code Primitives.

The first statement in this example introduces definitions of an externally declared
floating point variable named x and an externally declared function named fid-
dle(). Presumably, the variable holds state information we are interested in, and the
function defines a state transition. To record the fact that the external variable holds
state information that must be tracked by the model checker, the c_track primitive is
used to provide the model checker with two salient facts: the address of the variable
and its size in bytes. The model checker will now instrument the verification engine
to copy the current value of variable x into the state descriptor after any transition in
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which its value could have changed (i.e., after every execution of a c_code state-
ment). Similarly, whenever the verifier performs a backtracking step for any state-
ment that could have changed the value of the variable, the code of the verifier is
again instrumented to reset the value of x to the copy of its previous value that was
stored in the state descriptor for the earlier state.

The init process in this example model will now repeatedly call the external func-
tion fiddle() until it sees that the value of floating point variable x is less than 10.0,
after which it will stop.

Effectively, these extensions allow us to introduce new datatypes in verification mod-
els, well beyond what PROMELA supports, and it allows us to define new types of
transitions, with SPIN performing the normal model checking process.

It is important to note here that the c_track primitive, as used here, supports two
separate goals: state tracking and state matching.

State tracking allows us to accurately restore the value of data objects to their
previous states when reversing the execution of statements during the depth-
first search process.

State matching allows us to recognize when a state is revisited during the
search. When a state is revisited, the model checker can immediately backtrack
to a previous state to avoid repeating part of the search that cannot yield new
results.

We will see shortly that if we modify the way in which state information can be
matched, while retaining accurate tracking, we can define powerful abstractions that
can significantly reduce the complexity of verifications.

2.1. Tracking without Matching
There are cases where the value of an external data object should be tracked, to allow
the model checker to restore the value of these data objects when backtracking, but
where the data object does not actually hold relevant state information. It could also
be that the data object does hold state information, but contains too much detail. In
these cases we would benefit from defining abstractions on the data that are used in
state matching operations, while retaining all details that are necessary to restore state
in the application in tracking operations.

A relatively small extension that makes it possible to do this was included in SPIN,
starting with version 4.1. The extension is to support an additional, and optional,
argument to the c_track primitive that specifies whether the data object that is
referred to should be matched in the statespace. There are two versions:

c_track "&x" "sizeof(float)" "Matched";

and

c_track "&x" "sizeof(float)" "UnMatched";

with the first of these two being the default if no third argument is provided (and
backward compatible with the original definition of the c_track primitive in [9]).

The value of unmatched data objects is saved on the search stack, but not in the state
descriptor.

The resulting SPIN nested-depth first search algorithm is identical to the one
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1 proc dfs1(s)
2 add s to Stack1
3 add {f(s),0} to States
4 for each transition (s,a,s’) do
5 if {f(s’),0} not in States then dfs1(s’) fi
6 od
7 if accepting(f(s)) then seed := {f(s),1}; dfs2(s,1) fi
8 delete s from Stack1
9 end

10 proc dfs2(s) /* nested search */
11 add s to Stack2
12 add {f(s),1} to States
13 for each transition (s,a,s’) do
14 if {f(s’),1} == seed then report cycle
15 else if {f(s’),1} not in States then dfs2(s’) fi
16 od
17 delete s from Stack2
18 end

Fig. 2. Nested Depth-First Search with Abstraction (cf. Fig. 8 in [1]).

discussed in [1] in the context of a discussion on symmetry reduction. For con-
venience, Figure 2 reproduces the algorithm as it was discussed in [1] (see [9] for a
more basic description of the standard nested depth-first search algorithm). The
abstract representation of a state is computed here by abstraction function f(s).

2.2. Validity of Abstractions
The extension of the c_track primitive allows us to include data in a model that has
relevance to the accurate execution of implementation level code, but no relevance to
the verification of that code.

The simplest use of this new option is to use it to track data without storing it in the
model checker’s state-vector, where before the only way to track it would have been
to do just that. When used in this way, the use of unmatched c_track primitives
equates to data hiding.

Another use is to use unmatched c_track statements to hide the values of selected
data objects from the state-vector, and then to add abstraction functions (implemented
in C) to compute abstract representations of the data that will now be matched in the
state-vector, using additional matched c_track primitives. We can now achieve true
abstractions, though of course only of the value of data objects.

As a simple example of the latter type of use, consider two implementation level inte-
ger variables x and y that appear in an application program. Suppose further that the
absolute value of these two variables can be shown to be irrelevant to the verification
attempt, but the fact that the sum of these two variables is odd or even is relevant. We
can now setup the required data abstraction for this application by defining the follow-
ing c_track primitives:

/* data hiding */
c_track "&x" "sizeof(int)" "UnMatched";
c_track "&y" "sizeof(int)" "UnMatched";

/* abstraction: */
c_track "&sumxy" "sizeof(unsigned char)" "Matched";
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and we add the abstraction function:

c_code {
void abstraction(void) { sumxy = (x+y)%2; }

}

which should now be called after each state transition that is made through calls on
the application level code.

The abstractions have to be chosen carefully, to make sure that they preserve the logi-
cal soundness and completeness of the verification. This is clearly not true for all
possible abstractions one could define with the mechanism we have discussed. Con-
sider, for instance, the abstraction above in the context of the following model:

init {
c_code { x = y = 0; abstraction(); };
do
:: c_code { x = (x+1)%M ; y = (y+1)%N ; abstraction(); }
od

}

Suppose we are checking the invariant that x + y is even. This invariant holds for the
model above if both M and N are even, but not in general. For instance, it does not
hold for the case M = 3, N = 4. In this case, the model checker would stop the search
after exploring the first transition, and erroneously declare that the invariant holds. In
the next subsection, we describe a sufficient condition for ensuring that the verifica-
tion is sound with respect to the abstraction, for a given model.

2.3. Sufficient Conditions for Soundness
The model-checker checks properties by exploring the set of reachable states, starting
from a predetermined initial state. Exploring a state consists of enumerating its suc-
cessors, determining which of these states are potentially relevant, and recording the
newly encountered states in some data-structure. This data-structure is, for instance, a
stack in a depth-first search, and it is a queue in a breadth-first search.

Given a symmetric relation ∼ on concrete states, a state s is considered relevant if the
search has not seen any state t such that s∼t. In the following discussion, we will
refer to states that have been visited in the search at least once as encountered states,
and to those encountered states whose complete set of successors has been computed
as explored states. (Note that the use of no abstraction corresponds to the situation in
which ∼ is the identity relation. In this case a state is considered relevant if it has not
been encountered before.)

The search algorithm we have outlined explores states in the concrete model, and in
effect maintains a concrete path to each state on the depth-first search stack. Thus any
abstraction relation is necessarily logically complete. To ensure that the abstraction
relation ∼ is also logically sound, we need to ensure that its use does not cause the
search algorithm to miss any error states. Below, we present a condition for ensuring
this. We use the following notation: w, x, y, z denote states, and σ , τ denote paths.
We write σ i to denote the i-th state in σ . We use → to denote the transition relation,
so x → y denotes that there is a transition from state x to state y.

A symmetric relation on concrete states is a bisimulation [13] when it satisfies the fol-
lowing condition:

∀w, y, z: w∼y /\ y → z => (∃x: w → x /\ x∼z) (1)
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Thus states w and y are bisimilar if, whenever there is a transition from y to z, there is
a successor x of w such that x and y are also bisimilar. Giv en a bisimulation ∼, we
say paths σ and τ correspond when ∀i: σ i∼τ i .

The importance of bisimulation is given by the following theorem [1,2].

Theorem. Let ∼ be a bisimulation, and let AP be a set of atomic propositions such
that every proposition P in AP satisfies

∀x, y: P(x) /\ x∼y => P(y) (2)

Then, any two bisimilar states satisfy the same set of CTL* state formulas over propo-
sitions in AP. Furthermore, any two corresponding paths satisfy the same set of
CTL* path formulas over propositions in AP.

This means that when conditions (1) and (2) are both satisfied, the abstraction will
preserve logical soundness.

3. Tw o Sample Applications
3.1. Tic Tac Toe
We will illustrate the use of the new verification option, and the types of data abstrac-
tion it supports, with a small example. For this example we will use a model of the
game of tic tac toe. First, we will write the model in basic PROMELA, as a pure SPIN
model and show its complexity. Then we will rewrite the model to include some
operations in embedded C code, and we will show how abstractions can now be used
to lower the verification complexity well below what was possible with the pure SPIN
model, without sacrificing accuracy.

The pure PROMELA version of the model is shown in Figure 3.

We represented the 3x3 board in a two-dimensional array b, constructed with the help
of PROMELA typedef declarations. Because the players in this game strictly alter-
nate on moves, we can use a single process and record in a bit variable z which
player will make the next move. Player 0 will always make the first move here. A
square has value 0 when empty, and is set to either 1 or 2 when it is marked by one of
the two players. In the first if statement, a player picks any empty square to place a
mark. When no empty squares are left, a draw is reached and the game stops. When
a move could be made, the player checks for a win, and if one is found it prints the
board configuration for the winning position and forces a deadlock (to allow us to dis-
tinguish these states from normal termination where the process exits). We hav e
enclosed the computation in an atomic sequence, to achieve that no intermediary
states are stored during the model checking process, only the final board positions that
are computed.

The verification of this model explores 5,510 states. Clearly, we are not exploiting the
fact that the game board has many symmetries. There are, for instance, both rotational
symmetries and mirror symmetries (left/right and top/bottom) that could be taken into
account to reduce verification complexity. In principle, the SPIN model could be
rewritten to account for these symmetries, but this is surprisingly hard to do, and risks
the introduction of inaccuracy in the verification process.

With careful reasoning, we can see that there are only 765 unique board positions in
the game, and 135 of these positions are winning for one of the two players, e.g. [14].
The maximum number of moves that can be made is further trivially 9. In our first
verification attempt we therefore did considerably more work than is necessary.
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#define SQ(x,y) !b.r[x].s[y] -> b.r[x].s[y] = z+1
#define H(v,w) b.r[v].s[0]==w && b.r[v].s[1]==w && b.r[v].s[2]==w
#define V(v,w) b.r[0].s[v]==w && b.r[1].s[v]==w && b.r[2].s[v]==w
#define UD(w) b.r[0].s[0]==w && b.r[1].s[1]==w && b.r[2].s[2]==w
#define DD(w) b.r[2].s[0]==w && b.r[1].s[1]==w && b.r[0].s[2]==w

typedef Row { byte s[3]; };
typedef Board { Row r[3]; };

Board b;
bit z, won;

init {
do
:: atomic { /* do not store intermediate states */

!won ->
if /* all valid moves */
:: SQ(0,0) :: SQ(0,1) :: SQ(0,2)
:: SQ(1,0) :: SQ(1,1) :: SQ(1,2)
:: SQ(2,0) :: SQ(2,1) :: SQ(2,2)
:: else -> break /* a draw: game over */
fi;

if /* winning positions */
:: H(0,z+1) || H(1,z+1) || H(2,z+1)
|| V(0,z+1) || V(1,z+1) || V(2,z+1)
|| UD(z+1) || DD(z+1) ->

/* print winning position */
printf("%d %d %d\n%d %d %d\n%d %d %d\n",

b.r[0].s[0], b.r[0].s[1], b.r[0].s[2],
b.r[1].s[0], b.r[1].s[1], b.r[1].s[2],
b.r[2].s[0], b.r[2].s[1], b.r[2].s[2]);

won = true /* and force a stop */
:: else -> z = 1 - z /* continue */
fi;

} /* end of atomic */
od

}

Fig. 3. Tic Tac Toe, Pure PROMELA Model.

We will now revise the model to make use of a C function to store the board configu-
ration in a C data structure, and to perform the moves that are non-deterministically
selected with a SPIN model (which now starts to perform the function of a test-har-
ness around a C application).

We will retain the same basic structure of the algorithm. Again, a win will result in a
deadlock, and a draw will lead to normal process termination. In the first version of
the model with embedded C code, shown in Figure 4, we track and match all relevant
external data, which in this case includes just the the board configuration.

We hav e introduced variables x and y to record the square that is selected in the first
part of the algorithm. The location of the square is passed to the C function that will
now place the mark in that square and check for a win. The C function play()
returns either a 2 if the last move made produced a win, or a 1 if it did not and the turn
should go to the next player, as before.
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#define SQ(a,b) c_expr { (!board[a][b]) } -> x=a; y=b

c_decl {
extern short board[3][3];
extern short play(int, int, int);

};

c_track "&board[0][0]" "sizeof(board)"; /* matched */

byte x, y, z, won;

init {
do
:: atomic { !won ->

if /* all valid moves */
:: SQ(0,0) :: SQ(0,1) :: SQ(0,2)
:: SQ(1,0) :: SQ(1,1) :: SQ(1,2)
:: SQ(2,0) :: SQ(2,1) :: SQ(2,2)
:: else -> break /* a draw */
fi;
c_code {

switch (play(now.x, now.y, now.z+1)) {
default: printf("cannot happen\n"); break;
case 1: now.z = 1 - now.z; break;
case 2: now.won = 1; break; /* force a stop */
}
now.x = now.y = 0; /* reset */

}
}

od
}

Fig. 4. Tic Tac Toe, Version with Embedded C Code.

The external C function is shown in Figure 5. Perhaps not surprisingly, this model
explores the same number of states as the pure SPIN model, and declares the same
number of winning positions, though it does not have to search as deeply into the
depth-first search tree (31 steps instead of 40 for the earlier model).

We will now change the last model into one that uses data abstraction. The new
model is shown in Figure 6.

We hav e turned off state matching on the board configuration, while retaining the
tracking capability that allows us to perform an accurate depth-first search. We hav e
also introduced a new integer variable named abstract that we will use to record an
abstract value of the board configuration, taking into account all symmetries that exist
on the game board. This value is both tracked and matched. The rest of the test har-
ness specification is unchanged.

We must now extend the C function a little, to provide the computation of the abstract
board value. We do so by calling an extra function board_value() that is called in
function play() immediately after the new mark is placed.

The details of this computation, shown in the Appendix, are not too important. Suf-
fice it to say that each board configuration is assigned a unique value between 0 and
19682, by assigning a numeric place value to each square. The board value is com-
puted for each rotation and mirror reflection of the board, and the minimum of the 8
resulting numbers is selected as a canonical representation of the set. That number is
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#define H(a,b) (board[a][0]==b && board[a][1]==b && board[a][2]==b)
#define V(a,b) (board[0][a]==b && board[1][a]==b && board[2][a]==b)
#define UD(b) (board[0][0]==b && board[1][1]==b && board[2][2]==b)
#define DD(b) (board[2][0]==b && board[1][1]==b && board[0][2]==b)

short board[3][3];

short
play(int x, int y, int z)
{

board[x][y] = z; /*place mark */

/* check for win: */
if ((H(0,z) || H(1,z) || H(2,z)
|| V(0,z) || V(1,z) || V(2,z)
|| DD(z) || UD(z))
{ Printf("%d %d %d\n%d %d %d\n%d %d %d\n",

board[0][0], board[0][1], board[0][2],
board[1][0], board[1][1], board[1][2],
board[2][0], board[2][1], board[2][2]);
return 2; /* last move wins */

}
return 1; /* game continues */

}

Fig. 5. C Source Code for Play().

stored in the state descriptor, and used in state matching operations. A state will now
match if a board configuration is encountered that is equivalent to one previously
seen, taking all rotational and mirror symmetries into account. Yet the execution of
the actual code always works with the full detail on the actual board configuration.

Table 1. TicTacToe Verification.

Version States Depth Wins
Pure SPIN Model 5510 40 942
Model with Embedded C Code 5510 31 942
Model with Embedded C Code and Data Abstraction 771 31 135
Minimum Required for Solution 765 9 135

The number of reachable states is with this data abstraction reduced to 771 states,
with 135 of these state declared as winning positions, as shown in Table 1. Since the
actual number of uniquely different board configurations is 765, SPIN encounters just
six cases here where it revisits an old configuration with different values for the addi-
tional state variables x, y, or z.

It should be noted that we could also have used the c_track mechanism to introduce
a new state variable that captures the non-abstracted board value (i.e., without taking
into account the equivalence of rotations and mirror reflections of the game board).
By storing and tracking the board value as a single 4-byte integer, rather than as the
original 9-byte array of marks, we then define an application specific data compres-
sion on part of the state information, and similarly benefit by achieving a reduction of
the memory requirements. This means that our new c_track mechanism can not just
exploit user-defined abstractions, but also user-defined lossless or lossy data compres-
sion methods. Of course, for verification accuracy we will normally want to restrict
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c_decl {
extern short board[3][3];
extern short play(int, int, int);
extern short abstract; /* board value */

};

c_track "&board[0][0]" "sizeof(board)" "UnMatched";
c_track "&abstract" "sizeof(short)"; /* matched */

byte x, y, z, won;

init {
do
:: atomic { !won ->

if /* all valid moves */
:: c_expr { (!board[0][0]) } -> x = 0; y = 0
:: c_expr { (!board[0][1]) } -> x = 0; y = 1
:: c_expr { (!board[0][2]) } -> x = 0; y = 2
:: c_expr { (!board[1][0]) } -> x = 1; y = 0
:: c_expr { (!board[1][1]) } -> x = 1; y = 1
:: c_expr { (!board[1][2]) } -> x = 1; y = 2
:: c_expr { (!board[2][0]) } -> x = 2; y = 0
:: c_expr { (!board[2][1]) } -> x = 2; y = 1
:: c_expr { (!board[2][2]) } -> x = 2; y = 2
:: else -> break /* a draw */
fi;
c_code {

switch (play(now.x, now.y, now.z+1)) {
default: printf("cannot happen0); break;
case 1: now.z = 1 - now.z; break;
case 2: now.won = 1; break; /* force a stop */
}
now.x = now.y = 0; /* reset */

}
}

od
}

Fig. 6. Tic Tac Toe, With Data Abstraction.

the use to sound abstractions and lossless data compression.

3.2. Soundness
To see that the abstractions we have used in this example are logically sound, we
show that they satisfies the conditions (1) and (2) from Section 2.3, as required by the
theorem.

For giv en board configurations b0 and b1, the relation b0∼b1 is defined to hold when
b0 and b1 evaluate to the same abstract board value (i.e., the configurations are equiv-
alent upto rotations and reflections). It is easy to check that the state predicate P,
where P(b) denotes that b is a winning configuration, satisfies condition (2), since a
win is invariant under rotations and reflections.

To see that the abstraction relation ∼ satisfies condition (1), note that each transition in
the model is either (i) a move by player 1, (ii) a move by player 2, or (iii) a win. We
must then show that, for any two equivalent board configurations b0 and c0, if there is
a transition from b0 to b1, then there is also a transition from c0 to c1 such that
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c1∼b1.

Consider first a transition of type (i), in which player 1 places a mark at position (i, j).
Suppose that c0 is a reflection of b0 across the vertical axis. Then, it is easy to see
that the transition that places the same mark at position (i, 2 − j) must be enabled in
c0, and results in a state c1 that is equivalent to b1. A similar argument holds for the
other ways in which c0 and b0 may be equivalent, and for transitions of type (ii).

For transitions of type (iii), it suffices to note that function play returns the same
value for all equivalent board configurations.

3.3. A Larger Application
For a larger application we will discuss the verification of one of the modules from
the flight software for JPL’s Mars Exploration Rovers (MER).

The MER software contains 11 threads of execution. Each thread serves one specific
application, such as imaging, controlling the robot arm, communicating with earth,
and driving. There are 15 shared resources on the rover, to which access must be con-
trolled by an arbiter, which is the target of our verification. The arbiter module pre-
vents potential conflicts between resource requests, and enforces priorities. For
instance, it would not make sense to start a communication session with earth while
the rover is driving. The policy in this case is that communication is more important
than driving, so when a request for communication is received while the rover is driv-
ing, the arbiter will make sure that the permission to use the drive motors is rescinded
in favor of a new permission to use the rover’s antennas.

U0 U1 ARB
Request

Grant
Request

Rescind
Cancel

Grant
Request

Deny
Cancel

Fig. 7. Sample Communication Scenario.

Figure 7 shows a generic scenario for communication between user threads and the
arbiter. In the scenario shown, user U0 requests access to a resource, which is granted
by the arbiter. Next, a different user U1 makes a resource request that conflicts with
the first one, but has precedence. The arbiter now sends a Rescind message to the
first user, and waits for the confirmation that the resource is no longer used. Then the
arbiter sends a Grant message to user U1. A new request from the first user while the
second user still retains possession of the resource is now summarily denied by the
arbiter. Eventually, the use of every resource must be completed by sending a Can-
cel message to the arbiter, which notifies the arbiter that the resource is now avail-
able for other users.
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The arbiter module consists of about 3,000 lines of source code, written in ANSI stan-
dard C. The arbiter also makes use of a lookup table that records which combinations
of resource requests conflict, and what the various priorities are.

With 11 users competing for 15 resources, the complexity of a full-scale exhaustive
verification quickly becomes intractable. With the bitstate (supertrace) search mode,
SPIN can randomly prune these large search spaces, within limits set by the size of
available physical memory on the machine that is used. For exhaustive coverage a
different strategy must be followed. One such strategy is divide and conquer. By
breaking the problem down into smaller subproblems that can be checked exhaus-
tively we can build confidence that the larger problem has the desired properties
(although in this case we cannot conclusively prove it).

As an example, we will look at a subproblem with 3 user processes, competing for
access to just 3 of the available resources, cyclically, and in random order. Without
the use of abstraction, a problem of this size is at the edge of what can be verified
exhaustively with roughly 1 Gbyte of available memory. An experiment like this can
be repeated for different subproblems by making different selections of the 3
resources competed for, slowly increasing the confidence in the correctness of the
complete solution.

Table 2. MER Arbiter Verification.

Version States Time(s) Mem(Mb)
Pure SPIN Model 272,068 2.2 41.8
Model with Embedded Code 11,453,800 1458.0 701.7
Model with Embedded Code and Abstraction 261,543 5.1 55.2

Table 2 records the number of reachable states for three different versions of a verifi-
cation model for the arbiter. The first version is a hand-built pure SPIN model of the
arbiter algorithm, including only the lookup table from the original code as embedded
C code. This model counts 245 lines of PROMELA code, plus 77 lines for the arbiter
lookup table.

The second version uses the original arbiter C code, stubbed to isolate it from the rest
of the flight code, with all relevant data objects that contain state information tracked
and matched, using c_track statements, without abstraction. There is approximately
4,400 bytes of state information that is tracked in this way. This information includes,
for instance, a linked list of current and pending reservations, and a freelist of reserva-
tion slots. A hand-built test-harness of just 110 lines of PROMELA surrounds the
arbiter code (as it did for the much simpler tictactoe example we discussed before),
simulating the actions of the 3 selected user processes. The verification for this ver-
sion of the model could only be completed with the hashcompact state compression
option enabled, which effectively reduced memory use to about 127 bytes per state.
More effective than this compression option, though, is to use the data abstraction
method we discussed. In the third version of the verification model we added these
abstractions, restricting the state information that is recorded to its bare essence. In
this version we exclude, for instance, the values of pointers that are used to build the
linked lists.

Each of the three versions can find counter-examples to logic properties that have
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known violations (including both safety and liveness properties). The first model,
though efficient, can leave doubt about the accuracy of the modeling effort. The sec-
ond model incurs the penalty of an implementation level verification, carrying along
much more data than is necessary to prove the required properties. The third version
of the model restores the relatively low complexity of a hand-built model, but has the
benefit of precision and strict adherence to the implementation level code.

4. Related Work
There have been several different approaches to the direct verification of implementa-
tion level C code, following the early work on automated extraction of verification
models from implementation level code as detailed in for instance [3,7,8].

Perhaps best known is the work on Verisoft [6], which is based on the use of partial
order reduction theory in what is otherwise a state-less search. In this approach,
application level code is instrumented in such a way that its execution can be con-
trolled at specific points in the code, e.g., at points where message passing operations
occur or where scheduling decisions are made. The search along a given path of
execution is stopped when a user-defined depth is reached, and then restarted from the
predefined initial system state to explore alternative paths. The advantage of this
approach is that can consume considerably less memory than the traditional state
space exploration methods used in logic model checking. It can therefore handle
large applications. A relatively small disadvantage is that the method requires code
instrumentation. A more significant disadvantage, compared to the method we have
introduced in this paper, is that since no state space is maintained, none of the advan-
tages from state space storage are available, such as systematic depth-first search, the
verification of not only safety but also liveness properties, and the opportunity to
define systematic abstractions. Abstraction in particular can provide significant per-
formance gains. We believe that the methodology introduced in this paper is the first
to successfully combine data abstraction techniques and unrestricted logic model
checking capabilities with the verification of implementation level code.

A second approach that is comparable to our own is the work on the CMC tool [12].
In this tool, an attempt is made to capture as much state information as possible and to
store it in a state space using agressive compression techniques, similar to the hash-
compact and bistate hashing methods used in Spin [9]. Detailed state information is
kept on the depth-first search stack, but no methodology available to distinguish
between state information that should be matched, and state information that is only
required to maintain data integrity. Potentially this method, though, could be
extended with the type of data abstraction techniques we have described in this paper.
We believe that effective use of data abstraction techniques will prove to be the key to
the successful application of logic model checking techniques in practice.

5. Conclusions
The method we have described for verifying reactive software applications combines
data abstraction with implementation level verification. The user provides a test-har-
ness, written in the language of the model checker, that non-deterministically selects
inputs for the application that can drive it through all its relevant states. Correctness
properties can be verified in the usual way: by making logical statements about reach-
able and unreachable states, or about feasible or infeasible executions. The state
tracking capability allows us to perform full temporal logic verification on
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implementation level code.

The basic method of maintaining both concrete and abstract representations of states
in the search procedure is very similar to algorithms that have been proposed earlier
for using (predefined) symmetry reductions in model checkers, e.g. in [1,4].

The method is the easiest to apply in the verification of single-threaded code, with
well-defined input and output streams. The two examples we discussed in this paper
are both of that type. The method is not restricted to such applications though. Multi-
threaded code can be handled, but requires more care. Each thread in the application
will need to be prepared to run as standalone threads, with clearly defined inputs and
outputs. The user must now identify the portions of program code that can be run as
atomic blocks, setting the appropriate level of interleaving for the model checking
runs. The test-harness that the user prepares now drives the thread executions directly,
selecting the proper level of granularity of execution. The application we studied in
[5] is of this type, and could be adapted to use the new method of data abstraction we
have discussed here.

The capability to redefine how state information is to be represented, or abstracted, is
also similar to the view function in TLC [11]. In our case, the abstraction can be
defined in any way that C or C++ allows, but it is restricted to the representation of
external data objects. Most of the data in a SPIN model could be treated as such (e.g.,
by declaring them to be hidden within the SPIN model itself), with the exception
only of the program counters of active processes.

In the setup we have described, each call on the application level code is assumed to
execute to completion without interleaving of other actions (i.e., atomically). This is
the most convenient way to proceed, but we are not restricted to it. By using a model
extractor, such as FeaVer or MODEX [10,15], we can convert selected functions in the
application into PROMELA models with embedded C code, optionally using addi-
tional source level abstraction functions, and generate a finer-grained model of execu-
tion. The instrumentation required for model extraction can, however, complicate the
verification process, and require deeper knowledge of the application.
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APPENDIX

#define MAXVAL 19682 /* 3 x 3ˆ8 - 1 */
#define B(a,b,c,d) board[a][b]*r[c][d]

int abstract;

int r0[3][3] = {
{ 1, 3, 9, },
{ 27, 81, 243, },
{ 729, 2187, 6561, },

};

int r1[3][3] = {
{ 729, 27, 1, },
{ 2187, 81, 3, },
{ 6561, 243, 9, },

};

int r2[3][3] = {
{ 6561, 2187, 729, },
{ 243, 81, 27, },
{ 9, 3, 1, },

};

int r3[3][3] = {
{ 9, 243, 6561, },
{ 3, 81, 2187, },
{ 1, 27, 729, },

};

int
comp_row(int r[3][3], int L, int R, int T, int B)
{

return B(T,L,0,0) + B(T,1,0,1) + B(T,R,0,2) +
B(1,L,1,0) + B(1,1,1,1) + B(1,R,1,2) +
B(B,L,2,0) + B(B,1,2,1) + B(B,R,2,2);

}

void
min_row(int r[3][3])
{ int v;

v = comp_row(r,0,2,0,2); if (v < abstract) abstract = v;
v = comp_row(r,2,0,0,2); if (v < abstract) abstract = v;
v = comp_row(r,0,2,2,0); if (v < abstract) abstract = v;
v = comp_row(r,2,0,2,0); if (v < abstract) abstract = v;

}

void
board_value(void)
{

abstract = 2*MAXVAL;
min_row(r0);
min_row(r1);
min_row(r2);
min_row(r3);

}
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