
Controller Synthesis for
Home Automation

Mathias Grund Sørensen

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

Abstract. A large challenge in home automation is the construction of
control programs to dictate behavior of the system. The design of such
a control program is a technically challenging task which is commonly
left for the (unaided) end-user. To address this, we present an approach
to construct control programs from a high-level specification of desired
system behavior using game theory. We provide a complete toolchain
based on the HomePort platform and using UPPAAL TiGa for control
strategy synthesis. The toolchain is implemented on a Raspberry Pi as
a completely automated process from behavior specification in a simple
web-app interface to control strategy synthesis and e↵ectuation. We con-
clude that the approach shows a promising application of game theory
in a real-life scenario and that su�cient performance and scaleability
for real-life application is achievable, although some work remains on
improving performance and extending expressiveness of the approach.

1 Introduction

Home automation is currently an area of great interest from industry as well as
academia (e.g. [10–12,14]). It has shown the potential to improve various aspects
of every-day life, including optimizing energy e�ciency, providing quality of life
improvements for the elderly and disabled and generally increase accessibility
and cooperation between devices in the home. However, with the emerge of af-
fordable network-enabled home appliance devices on the consumer market, many
technical challenges arise regarding the configuration of cooperations between
such devices. This task is currently either maintained by domain experts or re-
stricted to provide only few predefined functionalities with minimal inter-device
cooperation (and general no inter-manufacture compatibility), which results in
only limited practical value for the typical end-user.

Some attempts have been made at simplifying this process. HomePort [14] is
an example of an open-source software which facilitates inter-device communica-
tion through a common web-interface. However, the di�cult task of constructing
a controller to e↵ectuate behavior in the system is still left to the end-user. Some
attempts have been made to simplify this process by providing toolchains to
construct controllers in a higher-level modeling framework such as UPPAAL [6],
however, this still requires significant domain knowledge to use.

As an alternative approach, it has been suggested to use game theory to
synthesize a control strategy from a model of a home automation system and
a description of desired system behavior [6]. UPPAAL TiGa [2] is an extension
to UPPAAL facilitating synthesis of winning strategies in two-player Timed
Games, which can e↵ectively be used to synthesize a control strategy for a home
automation system. UPPAAL TiGa has successfully been used to synthesize
control strategies in other domains, e.g. to synthesize a control strategy for
climate control in a pig stable [13].

However, even when synthesizing control strategies, the task of modeling the
system, expressing desired behavior and e↵ectuation of a synthesized strategy is
still left as a task for the end-user. This cannot be expected from users that are
not domain experts.

1.1 Our Contributions

We address the problem by presenting a simple high-level specification logic for
behavior in home automation setups and we show how a controller can be au-
tomatically obtained using a game theoretic approach. We provide a complete
proof-of-concept toolchain for expressing behavior constraints for home automa-
tion systems connected through HomePort as well as synthesis and e↵ectuation
of control strategies obtained by translation to UPPAAL TiGa. The toolchain
is implemented for the Raspberry Pi platform which is generally available at
limited cost and could serve as a viable home automation control component.

1.2 Related Work

In [6] the authors present a toolchain for generating UPPAAL templates for a
HomePort system as well as an interpreter which facilitates control of the actual
HomePort system using the UPPAAL simulator. This approach eases the imple-
mentation of a controller in UPPAAL, however, the system model and controller
must still be implemented manually only using automatically generated commu-
nication channel templates, which is not feasible for users that are not domain
experts. Also, our experiments show that the approach of controlling the system
using a real-time UPPAAL simulation needs some performance improvements
to be applicable in larger real-time home automation scenarios.

For behavior specifications in home automation, multiple attempts at medi-
ating logics have been made with various trade-o↵s between expressiveness and
simplicity. In [10] an attempt is made to present a general specification language
for smart spaces based on a simple Event-Condition-Action (ECA) concept, orig-
inally introduced in [8] and which is commonly adopted for home automation
specification languages. However simple, this language provides no direct expres-
siveness for temporal properties. Instead, they propose a workaround by intro-
ducing new components called timers which can be set and which will trigger
an event when the timer expires. In [15], an attempt is made to include tem-
poral properties in a home automation specification language. This proposed
language has a high degree of expressiveness at the cost of simplicity. This is

2

also a drawback as a mediating logic, as specification and translation becomes
very complex. Common for these languages are that they still require significant
domain knowledge to use, which we hope to limit as much as possible in our
framework.

To synthesize a controller using game theory, UPPAAL TiGa [2] is one of
multiple tools available for solving timed safety games. Other such tools include
Acacia+ [4] and Unbeast [9]. UPPAAL TiGa is used due to collaboration with
developers and access to source-code to obtain ARMv6 Linux binaries, but could
be replaced by a similar tool or a dedicated engine.

1.3 Outline

The rest of the paper is organized as follows. Section 2 presents our prelim-
inaries. Section 3 describes a home automation system connected through the
HomePort platform. Section 4 presents our specification logic, Section 5 explores
the logic and provides examples of expressible behavior and Section 6 explores
a feature of the specification logic, namely underspecified system behavior. Sec-
tion 7 provides a translation to Time Game Automata for use with UPPAAL
TiGA. Section 8 presents and evaluates the implementation of the automatic
toolchain and Section 9 explores a notion of independent subsystems in order
to improve scaleability and performance of the approach. Finally, Section 10
provides a conclusion and further work.

Remark This paper is based on my pre-specialization project [16]. Section 2 is
preserved with only minor changes. Some paragraphs are preserved with no or
minor changes in other sections.

2 Preliminaries

We now present our preliminaries, in particular Timed Games, and give a formal
definition of the synthesis problem.

2.1 Timed Automata

Let X be a set of real-valued variables named clocks. A clock valuation over X
is a function v : X ! R�0 and RX

�0 is the set of all clock valuations over X.
We let v + ⌧ , ⌧ 2 R�0, be the valuation (v + ⌧)(x) = v(x) + ⌧ for every clock
x 2 X. We let v[Y] where Y ✓ X be the valuation v[Y](x) = 0 if x 2 Y and
v[Y](x) = v(x) otherwise.

Let N0 = N [{0}. A clock constraint is a finite conjunction of simple con-
straints of the form x ⇠ n where x 2 X,⇠2 {<,,=,�, >}, n 2 N0 and B(X)
denotes the set of all clock constraints.

Definition 1 (Timed Automaton). A Timed Automaton (TA) is a tuple
(L, l0,Act, X,E, Inv) where:

3

– L is a finite set of locations,
– l0 is the initial location,
– Act is a set of actions,
– X is a finite set of clocks,
– E ✓ L⇥ B(X)⇥ Act⇥ 2X ⇥ L is a finite set of edges,
– Inv : L ! B(X) is a function assigning an invariant to each location.

A state in the TA is a pair S = (l, v) 2 L ⇥ RX
�0 denoting the discrete and

continuous part of the state, respectively. The initial state is the pair s0 = (l0, 0)
where 0 is the clock valuation where all clocks have value 0. From a state (l, v),
the TA can either do

– a delay transition (l, v)
⌧�! (l, v0) where v

0 = v + ⌧ for some ⌧ 2 R�0 i↵
v, v

0 |= Inv(l), or
– a discrete transition (l, v)

a�! (l0, v0) where a 2 Act i↵ there exists an edge
(l, g, a, Y, l0) 2 E where v |= g, v

0 = v[Y] and v

0 |= Inv(l0).

The semantics of the TA is a Labeled Transitions System (LTS) (S, s0,!), where
S = L⇥ RX

�0, s0 = (l0, 0̄) and ! is the set of delay and discrete transitions.
A network of TAs is a sequence A = (A1, . . . , AN) of N TAs where if Ai =

(Li
, l

i
0,Acti, Xi

, E

i
, Inv i) then for all 1  i  N and 1  j  N where j 6= i,

L

i \L

j = ; and X

i \X

j = ;. Let v be a valuation of X1 [· · ·[X

N and l

i 2 L

i.
We introduce standard broadcast synchronization [3] to allow communication

between TAs s.t.
NS
i=1

Acti is partitioned into disjoined sets Actions and Channels

and we use a! and a? to denote broadcasting and synchronizing, respectively, over
a channel a 2 Channels. We also introduce urgent and committed locations s.t.
L

i is partitioned into disjoined sets Standard, Urgent and Committed. A network
of TAs can thus do1:

– A delay transition (l1, . . . , lN , v)
⌧�! (l1, . . . , lN , v

0) for some ⌧ 2 R�0 i↵ for

all 1  i  N , (li, v)
⌧�! (li, v00), li 2 Standard and v

0 = v + ⌧ .
– A discrete transition (l1, . . . , li, . . . , lN , v)

a�! (l1, . . . , li0, . . . , lN , v

0) i↵ for
some 1  i  N , a 2 Actions, (li, v)

a�! (li0, v00) and either l

i 2 Committed
or for all 1  j  N , lj 62 Committed . For all 1  j  N , if j = i then
v

0(x) = v

00(x) for all x 2 X

j else v

0(x) = v(x) for all x 2 X

j .

– A broadcast transition (l1, . . . , lN , v)
a!�! (l10, . . . , lN 0

, v

0) i↵ a 2 Channels

and for some 1  i  N , (li, v)
a!�! (li0, v00) and v

0(x) = v

00(x) for all x 2 X

i.

For all 1  j  N where i 6= j, if (lj , v)
a?�! (lj 00, v000) then l

j 0 = l

j 00 and
v

0(x) = v

000(x) for all x 2 X

j or else l

j 0 = l

j and v

0(x) = v(x) for all x 2 X

j .
Also, either li 2 Committed or for all 1  j  N , lj 62 Committed .

As two-process synchronization will not be used, we only define broadcast syn-
chronization and whenever we refer so synchronizations, these are assumed to
be broadcast synchronizations.
1 This simplified semantics does not account for the case where a receiving transition
may block a broadcast transition with an invariant, however, this case will not be
encountered in this paper and is thus omitted for simplicity.

4

2.2 Timed Game Automata

We now continue to define Timed Game Automata.

Definition 2 (Timed Game Automaton). A Timed Game Automaton (TGA)
is a Timed Automaton (L, l0,Act, X,E, Inv) where the set of actions Act is par-
titioned into disjoined sets of controllable actions Actc and uncontrollable actions
Actu.

Given a TGA A = (L, l0,Actc,Actu, X,E, Inv), a run over A is an infi-
nite sequence of states r = (s0, v0), (s1, v1), . . . where for all i 2 N0, (si, vi) !
(si+1, vi+1). Throughout this paper we say that • is a special event which ini-
tializes the system to the initial state and only appears in the first term of a
timed word. A timed word over a TGA A = (L, l0,Actc,Actu, X,E, Inv) is a se-
quence � = (t0, e0, s0), (t1, e1, s1), . . . of elements from (R�0⇥(Actc[Actu)⇥L)
where t0 = 0, s0 = l0, e0 = •, for all i � 0 ti  ti+1 and there is a run
r = (s0, v0), (s1, v1), . . . over A s.t. if ti+1 > ti then vi+1 = v + (ti+1 � ti). We
use TW (A) to denote the set of all timed words over A.

We can now continue to define a control strategy for a TGA.

Definition 3 (Control Strategy). Given a TGA A = (L, l0,Actc,Actu, X,E,

Inv), a (memoryless) control strategy is a function f : L⇥RX
�0 ! Actc [{wait}

where wait means “do nothing”.

We define a TGA A = (L, l0,Actc,Actu, X,E, Inv) under a strategy f , de-
noted A � f , as a restriction to the set of available transitions in the LTS defined
by A s.t. for any state (l, v) where f(l, v) = a, if a 2 Actc then (l, v)

a�! (l0, v0)

and otherwise (l, v) 6 b�! for all b 2 Actc.
Given a set of winning states and a set of losing states defined by a reach-

ability or safety objective, a control strategy is said to be winning if the TGA
under this strategy will always reach a winning state and never reach a losing
state, no matter which uncontrollable actions are taken.

We can now define the synthesis problem.

Definition 4 (Synthesis Problem). Given a TGA A and a set of winning
and losing states, construct a winning control strategy or report it does not exist.

3 Home Automation Systems

Home automation systems consist of a large variety of devices, each providing
one or more services. Some of these services provide sensor inputs (e.g. switch
clicks, temperature readings, light level readings, movement detection, window
state) and are said to be uncontrollable, as they only output an observation
of the system. Other services also control the state of some physical device
(e.g. thermostats, lamps) and are said to be controllable as the state of these
can be observed, but also changed (programmatically). A device may provide
both controllable and uncontrollable services, e.g. a thermostat with a built-in

5

temperature sensor. Figure 1 shows an example of two uncontrollable services (a
switch, top left and a thermometer, bottom) and a controllable service (a lamp,
top right) and their state-space.

IDLE

click

OFF ON

on

o↵

0 1 . . . 40

1

0

2

1

40

39

Fig. 1: Example of two uncontrollable services (a switch, top left and a thermome-
ter, bottom) and a controllable service (a lamp, top right) and their state-space.

Home automation allows these services to interact with one another in order
to exchange information. This information can be used to make decisions on
behavior based on the global state of the system and is used for devices to operate
in an optimal manner (e.g. minimizing energy consumption). An example of this
is a system which turns o↵ the heat when a window is open. This requires an
exchange of information between the window sensor and the thermostat.

Fig. 2: Home automation scenario. Black boxes are switches, black circles are
lamps and the gray semi-circle is a motion sensor.

6

Figure 2 shows an example of a home automation setup in a hallway. In
this scenario, we have seven service; three lamps (controllable), three switches
(uncontrollable) and a motion sensor (uncontrollable).

3.1 System Behavior

The aim in home automation is for the system of various services to interact and
cooperate to meet some desired control objective. Figure 3 provides an overview
of the general setup in home automation. A controller has access to information
about controllable and uncontrollable services and may use this information to
dictate behavior of controllable services (in order to meet the control objective).
Dually, the environment is a↵ected by the state of controllable and uncontrollable
services and dictates behavior of uncontrollable services (this covers any change
to the system that is not controlled by the controller, e.g. user input or physical
e↵ects on service states). The behavior of the environment is in general assumed
to be unknown as only the e↵ect on uncontrollable services can be observed. In
Section 10.1 we consider an extension to the scenario where information about
the environment is known.

Controllable
services

Environment

Controller

Uncontrollable
services

Fig. 3: General setup in home automation.

3.2 HomePort

A practical issue in home automation systems is the large variety of incompatible
communication protocols used for communication between devices. To overcome
this, the open-source project HomePort [14] has been developed. HomePort is
a home automation middleware which aggregates home automation devices and
provides a common interface for interaction with device services via HTTP re-
quests. This allows for an abstract view of a home automation system as a
heterogenous network of services and eliminates the issue of incompatible com-
munication protocols. Besides from observing and changing states of services,
HomePort also facilitates monitoring of the system via an event subscription
service.

Figure 4 shows the general setup for a system based on the HomePort plat-
form with a centralized controller component. While system control could be

7

handled in a distributed manner, due to the necessity of middleware software for
service interaction, as well as limited computational power and high demands
for a minimal power consumption of devices, a centralized controller component
is commonly desirable.

Service

Service

Controller

HomePort

Service

Service

Event, Get

Event, Get

Set

Set
Event, Get

Even
t, Get

Event,
Get

Set,
Subscribe

Controllable Uncontrollable

Fig. 4: Specialization of the general home automation setup in Figure 3 based on
the HomePort platform. Interaction with the environment is abstracted away, as
only state of uncontrollable services is observable in the system.

State Valuation HomePort represents service states as an integer value from
a predefined interval, e.g. a lamp has the state interval [0, 1] where the state 0 is
interpreted as o↵ and the state 1 is interpreted as on and a switch has the state
interval [0, 0] where the state 0 is interpreted as idle. In other services, e.g. a
thermometer, the interpreted valuation is equivalent to the integer value and is
referred to as a reading. We denote the non-negative integer valuation of a state
s as ⌫(s). State valuations define a complete ordering of states by the relation
of integers, e.g. for a lamp where ⌫(o↵) = 0, ⌫(on) = 1, then o↵ < on. We will
later use this to express relational expression over states.

We notice that due to the discretization of readings, no real-valued data is
considered.

3.3 System Assumptions

We make some assumption about the behavior of home automation systems:

1. Instant communication. We assume communication in a home automa-
tion system to be instant, i.e. it takes no time to change or obtain the state
of a service. This assumptions is justified by network communication being
practically instant and thus that any delay will be negligible.

8

2. Non-zero delay between state changes. We assume that a non-zero de-
lay should always occur between changing the state of a controllable service.
This assumption reflects that no physical operation is in fact completely
instant in a continuous timed domain.

3. Non-Zeno behavior. For similar reasons as above, we assume that the sys-
tem will not by itself show Zeno behavior, i.e. will not change state infinitely
often in a finite amount of time.

These assumptions should be reflected also in a control strategy, that is,
should not be violated under any control strategy.

3.4 System Definition

We now continue to formally describe a home automation system.

Definition 5 (Service and System). A service is a triple S = (S, s0, E)
where S is a set of service states, s0 2 S is the initial state and E is a set of
edges E ✓ (S⇥S). A system is a pair S = (Sc, Su) where Sc = {S1, . . . ,Sm} is a
set of m 2 N0 controllable services, Su = {Sm+1, . . . ,Sn} is a set of n�m 2 N0

uncontrollable services s.t. Sc \ Su = ; and for any S = (S, s0, E) 2 (Sc [Su),
S \ S

0 = ; for all (S0
, s

0
0, E

0) 2 (Sc [Su) \ S.

As we assume all edges that are followed will trigger a corresponding event, we
will use the phrase edge and event interchangeably. For a service S = (S, s0, E),
we refer to the initial state SI = s0, the set of states SS = S and the set of
edges SE = E.

Consider e.g. the switch and lamp examples from earlier. We can specify
these services as follows:

Lamp = ({on, o↵ }, o↵ , {(on, o↵), (o↵ , on)})
Switch = ({idle}, idle, {(idle, idle)})

A system consisting only of a switch and a lamp would thus be:

S = ({Lamp}, {Switch})

System Execution Given a system S = (Sc, Su) where Sc = {S1, . . . ,Sm}, Sc =

{Sm+1, . . . ,Sn} and let CONF (S) =
n

⇥
i=1

SS
i be the set of configurations. We say

that a state s 2 (s1, . . . sn) i↵ s = si for some 1  i  n. We now define the set of
infinite timed words TW (S) as the set of sequences � = (t0, e0, c0), (t1, e1, c1), . . .
of elements from (R�0 ⇥ E(S)⇥ CONF (S)) where

– t0 = 0,
– e0 = •,
– c0 = (SI

1 , . . . ,SI
n) is the initial configuration, and

9

– E(S) = {e 2 SE | S 2 (Sc [Su)} is the set of events. We also define the
set of controllable and uncontrollable events Ec(S) = {e 2 SE | S 2 Sc} and
Eu(S) = {e 2 SE | S 2 Su}, respectively.

We require that for all i 2 N0, ti  ti+1 and that if ei+1 = (s, s0), then
s 2 ci, s0 2 ci+1 and for all s00 2 ci, if s00 6= s then s

00 2 ci+1 (recall that a
configuration contains exactly one state for each service, hence the state of all
but s is preserved). We impose some assumptions to the timed words:

1. We maintain an ordering of events that happen at the exact same time s.t.
uncontrollable events always occur before controllable events in a timed word
if they both occur at the same time. That is, given a system S and a timed
word � = (t0, e0, c0), (t1, e1, c1), · · · 2 TW (S), if ei 2 Ec(S) then for all j > i,
if ti = tj then ej 2 Ec(S).

2. Based on the second assumption in Section 3.3 we observe that for any
i 2 N0, if ei 2 SE

j for some 1  j  n then for all k 2 N0 where ti = tk,

ek 62 SE
j .

Returning to our system with a switch and a lamp, one possible (and the
initial) configuration of the system is:

(Lamp.o↵ ,Switch.idle) 2 CONF (S)

where the dot-notation S.s in this context means the state s 2 SS for service
S 2 (Sc [Su). A possible timed word over the system is:

� = (0, •, (Lamp.o↵ ,Switch.idle)), (3.14,Switch.click , (Lamp.o↵ ,Switch.idle)),

(3.14,Lamp.on, (Lamp.on,Switch.idle)), · · · 2 TW (S)

Strategy We can now define a strategy for a system S = (Sc, Su) as a function
� : TW ⇥N ! (R1

�0 ⇥ Ec(S)) from a finite prefix of a timed word to a (possibly
infinite) delay and a controllable action. The formal semantics of a system under
a strategy S � � is a restriction to the timed words TW (S � �) ✓ TW (S) s.t.
for any finite prefix (�, i) = (t0, e0, c0), . . . , (ti�1, ei�1, ci�1) of length i 2 N of a
timed word � 2 TW (S), if �(�, i) = (t, e) then either ei = e and ti = ti�1 + t or
ei 2 Eu(S) and ti  ti�1 + t.

Service Expressions We facilitate relational expressions over services and
integers. Given a system S = (Sc, Su) where S 2 (Sc [Su), let Rel(S) denote the
set of relational expressions on the form S ./ n, where ./ 2 {, <,=, >,�} and
n 2 N0. The semantics is defined by the satisfaction relation s.t. c |= S ./ n i↵
the state s 2 SS in c satisfies ⌫(s) ./ n. In this context, the dot-notation S.s
represents that s 2 SS is the current state of S in c. The satisfaction relation is
extended in the natural way to boolean combinations of relational expressions.
We will use these expressions in behavior specifications.

10

Data Services We notice that so far, we have only considered services with a
one-to-one mapping to physical device services. However, this is not a require-
ment. We define data services as services that have no e↵ect on and is not a↵ected
by a physical device. Given a system S = (Sc, Su), a data service S 2 (Sc [Su)
is a special service where SS = N0, SE = N0 ⇥ N0 and SI = 0. In any system,
we assume access to an unbounded number of controllable data services. We can
e.g. use data services to serve as memory for use in behavior specification as we
will see in Section 5.

4 Specification Logic

We now continue to present a logic for specifying behavior for a Home Automa-
tion system. The logic is designed to be easy to use, compact and readable. It is
based on principles similar to the ECA pattern [8]. We recall that in the ECA
pattern, events are specified to trigger actions provided some condition is satis-
fied. We use a similar pattern, but focus on specifications over states rather than
actions. We argue that this pattern allows for a more simple and natural specifi-
cations in a home automation context, primarily because only the desired states
of the system must be specified, rather than (complex) actions and timings to
obtain the desired system state. Section 6 explores one benefit of specifications
over states rather than actions.

The syntax of the specification logic is designed to aim for human readability
by forming (almost) English sentences. It is also designed to be easy to specify
from a point-and-click user-interface as we will see in Section 8 (in contrary to
commonly used textual interfaces).

4.1 Specification Logic

The specification logic is defined by the following syntax:

' ::= true | µ | ¬' | ' ^ '

 ::= on E provided ' satisfy ' starting in [s, e] for d unless E

0 |
' | ^

where s, e 2 N0, s  e, d 2 N1, µ 2 Rel(S) and E,E

0 ✓ E(S) are sets of events.
For simplicity, we define '1 _ '2 as ¬(¬'1 ^ ¬'2) and by

on E provided '

satisfy '1 starting in [s1, e1] for d1 ^
satisfy '2 starting in [s2, e2] for d2

unless E

0

we understand

on E provided ' satisfy '1 starting in [s1, e1] for d1 unless E

0 ^
on E provided ' satisfy '2 starting in [s2, e2] for d2 unless E

0

11

The point-wise semantics for the logic is defined over a system S s.t. for any
run � = (t0, e0, c0), (t1, e1, c1), · · · 2 TW (S), the satisfaction relation �, i |= ,
meaning the su�x of � starting at term i satisfies , is defined inductively as
follows:

�, i |= true

�, i |= µ i↵ ci |= µ

�, i |= ¬' i↵ �, i 6|= '

�, i |= 1 ^ 2 i↵ �, i |= 1 and �, i |= 2

�, i |= on E provided ' satisfy '

0 starting in [s, e] for d unless E

0 i↵

• ei 62 E, or

• �, i� 1 6|= ', or

• ei 2 E and �, i� 1 |= ' and there exists a number k s.t. e � tk � ti � s

and for all j � k either

a) �, j |= '

0, or

b) tj � tk � d, or

c) there exists a number l where i < l  j s.t. el 2 E

0

We say that � |= i↵ � is infinite and �, i |= for any su�x i 2 N0. We
define that TW (S,) = {� 2 TW (S) | � |= }. We also introduce the following
notations for a specification = 1 ^ 2 . . . :

– We refer to i on the form on E provided ' satisfy '

0 starting in [s, e]
for d unless E

0 as a rule, Prop(i) = '

0 as the proposition and Prec(i) =
' as the precondition. We denote the set of all rules Rules(S).

– We refer to i on the form ' as an invariant and to Prop(i) = ' as the
proposition and define that Prec(i) = ;. We denote the set of all invariants
Invariants(S).

4.2 Control Strategy Synthesis Problem

Given a system S and a specification we can now define the control strategy
synthesis problem.

Definition 6 (Control Strategy Synthesis Problem). Given a system S
and a specification , the control strategy synthesis problem CSSP(S,) is to
find a control strategy � s.t. TW (S � �) ✓ TW (S,) or report it does not exist.

5 Specifications

We will now present some specifications for our example-system consisting of a
switch and a lamp and for the hallway scenario in Figure 2.

12

5.1 Examples

Simple A basic behavior for our example-system is for the lamp to toggle on
and o↵ when the switch is pressed. We can specify this property as follows.

Turn on l i g h t s
on Switch.click provided Lamp.o↵ satisfy Lamp.on
starting in [0, 0] for 1 unless Switch.click

Turn o f f l i g h t s
on Switch.click provided Lamp.on satisfy Lamp.o↵
starting in [0, 0] for 1 unless Switch.click

Timer One could also image that it would be of interest to turn on the lamp
when the switch is clicked and then to automatically turn it o↵ again after a
period of time. We can specify this property as follows.

Turn on l i g h t s f o r 20 s
on Switch.click provided true satisfy Lamp.on
starting in [0, 0] for 20 unless ;

Turn o f f l i g h t s
on Switch.click provided true satisfy Lamp.o↵
starting in [20, 20] for 1 unless Switch.click

What should be noticed from this example is that the rule for turning o↵
the lamp is not similar to the rule for turning it on, an issues which makes it
nontrivial to provide a complete specification for how the system should behave.
The problem becomes even more urgent in the following example.

“Follow Me” Consider now the hallway scenario, which consists of three
switches, three lamps and a motion sensor like we saw in Figure 2. Alterna-
tively to the previous examples of behavior, which could easily be extended to
the larger system, one might rather want for the lamp closest to the clicked
switch to be turned on first and then wait before turning on the lamps further
away. The idea is that the light then “follows” the user as she walks through the
hallway, rather than keeping all the lights on at all times (and thereby saving
energy). We can specify this property as follows.

Turn on l i g h t s
on Switch1 .click provided true

satisfy Lamp1 .on starting in [0, 0] for 10 ^
satisfy Lamp2 .on && Lamp3 .on starting in [8, 8] for 12

unless ;

13

on Switch2 .click provided true
satisfy Lamp2 .on starting in [0, 0] for 10 ^
satisfy Lamp3 .on && Lamp1 .on starting in [8, 8] for 12

unless ;

on Switch3 .click provided true
satisfy Lamp3 .on starting in [0, 0] for 10 ^
satisfy Lamp1 .on && Lamp2 .on starting in [8, 8] for 12

unless ;

Turn o f f l i g h t s � compl icated !

While the rules for turning on the lamps are relatively simple to specify, the
corresponding specification for when to turn o↵ the lights again is not trivial and
consists of a number of cases that must be considered correctly and completely.
A di↵erent approach is to use game theory to synthesize the dual behavior of
returning the system to a default state (here assumed to be when the lamps are
o↵). This approach will be explored in Section 6 and thus we will not concern
ourself with turning o↵ the lamps in the remaining examples.

Motion Sensor Alternatively to using the switches, one might want to use
the motion sensor output to turn on lamps (in this case for 10 seconds) when
movement is detected. The motion sensor service can be described similarly to
a switch:

MotionSensor = {{idle}, idle, {(idle, idle)}}

where the edge is followed every time motion is detected, triggering the event
motion. We can now specify this property as follows.

on MotionSensor .motion provided true satisfy Lamp1 .on ^
Lamp2 .on ^ Lamp3 .on starting in [0, 0] for 10 unless ;

Motion Sensor with Override Finally, one might wish to be able to change
the behavior of the system e.g. at day and night, so that in the day, the more
energy e�cient “Follow Me” lights are used, but in the night, the motion sensor
output should activate the lights. We can implement this changing of operation
mode using data services. We assume that we want to double-click to change the
behavior of the system. We use two data services; CC (Click Count) which we
will use to detect double-clicks and SD (Sensor Disabled) to store if the motion
sensor is disabled (SD = 1) or enabled (SD = 0). We can specify the enabling
and disabling of the motion sensor as follows.

Count number o f c l i c k s
on Switch.click provided true
satisfy CC � 1 starting in [0, 0] for 1 unless ;

14

on Switch.click provided CC .1
satisfy CC = 2 starting in [0, 0] for 1 unless ;

Toggle s enso r
on CC .2 provided SD .0
satisfy SD .1 starting in [0, 0] for 1 unless CC .2

Motion senso r
on MotionSensor .motion provided SD .0 satisfy Lamp1 .on ^
Lamp2 .on ^ Lamp3 .on starting in [0, 0] for 10 unless ;

The specification can be combined with one of the other specifications (with
added precondition SD .1) to specify behavior when the motion sensor is disabled.
These examples show how behavior generally can be expressed using only few,
simple rules, and that more complex rules can be implemented with the aid of
data services.

5.2 Patterns

We notice that when specifying behavior for a larger system, some specifications
will likely have recurring patterns. In particular we notice two kinds of patterns:

Service Groups Specifications commonly impose an identical behavior for mul-
tiple services, e.g. if we apply the simple light behavior example to the hallway,
triggers will be click events from all switches and the proposition will be to keep
all lamps turned on. We can in this case introduce an abstraction to specify
behavior about a group of services based on e.g. service types rather than by
listing explicit service names.

Equivalent Rules Commonly similar specifications are desirable in multiple rooms.
For instance, the simple light behavior might be desirable in most rooms in a
house. For easy specifications, a rule should be applicable to multiple rooms us-
ing general service groups.

We propose using specification patterns to provide more general and reusable
specifications. The game theoretic approach ensures adaption of general spec-
ifications to a given system. Generality of rules using patterns also facilitates
redistribution and migration of specifications between systems, allowing end-
users to obtain more complex behavior specifications with a minimum of e↵ort
from a repository of specification patterns.

6 Underspecified Behavior

In the previous examples of specifications, we exploit the fact that the system
will return to a default state (where the light are o↵). We notice that this

15

allows us to specify only a subset of the actual behavior and avoid complex case
handling for correctly returning the system to a default state. We refer to this
as underspecification of the desired system behavior.

We argue that traditionally, unintentionally underspecified behavior spec-
ifications are an obvious source of bugs in controller behavior. For instance,
consider the “Follow Me” lights example in Section 5. While it is easy to specify
that lamps should turn on, making sure lamps are turned o↵ under the right
conditions is less trivial and could easily lead to missed cases and thus incorrect
behavior.

The proposed specification logic in combination with game theory has the
great benefit of eliminating this issue, as only the desired state (the lights should
be on) is specified and additional practical issues (the lights should be turned
o↵) is automatically computed in the control strategy synthesis process. Not
only does this approach allow for smaller and less complex specifications, it
also ensures that all cases are handled correctly, eliminating a great source of
controller behavior bugs.

To support underspecified behavior for a system S and a specification , it is
however not su�cient to solve the control strategy synthesis problem CSSP(S,);
while this will find some strategy satisfying the specification, there is by default
no preference to one state of a service (lamp turned o↵) to another state (lamp
turned on). Consequently, there is no incentive for the system to return to a
particular state once a rule is no longer active. As an example, we see in the
presented examples (without explicit rules to turn o↵ the lamps) that a con-
trol strategy satisfying all specifications is to turn on the lamps and never turn
them o↵ again! This is clearly not desirable, so to circumvent this we introduce
a notion of service state costs.

6.1 Service State Cost

Given a system S = (Sc, Su) where States = {SS | S 2 (Sc[Su)}, we introduce a
cost-function C : States ! N0 assigning a cost to each service state. The cost of

a configuration c = (s1, . . . , sn) is thus C(c) =
nP

i=1
C(si). If the cost is not explicit

specified for a state s, we assume C(s) = ⌫(s).

Recall from Section 3.2 that for lamps, ⌫(o↵) = 0, ⌫(on) = 1 and for switches
as well as the motion sensor, ⌫(idle) = 0. We then assume the cost-function is

C(s) = ⌫(s).

We can now see e.g. that for the hallway scenario:

16

C((Lamp1 .on,Lamp2 .on,Lamp3 .on,Switch1 .idle,

Switch2 .idle,Switch3 .idle,MotionSensor .idle)) = 3

C((Lamp1 .on,Lamp2 .on,Lamp3 .o↵ ,Switch1 .idle,

Switch2 .idle,Switch3 .idle,MotionSensor .idle)) = 2

C((Lamp1 .o↵ ,Lamp2 .o↵ ,Lamp3 .o↵ ,Switch1 .idle,

Switch2 .idle,Switch3 .idle,MotionSensor .idle)) = 0

6.2 Cost-Based Local Optimality

We can now express local optimality as a task of finding a winning strategy which
always selects the configuration that satisfies the propositions of all invariants
and of all active rules with minimal cost. That is, a winning strategy � has
minimal cost if for any other winning strategy �

0 and for any timed word � =
(t0, e0, c0), . . . , (ti, ei, ci), · · · 2 TW (S � �), it holds for any i 2 N0 that if

– �(�, i) = (ti+1, ei+1) where ti+1 6= 1, and
– �

0(�, i) = (t0i+1, e
0
i+1) where t

0
i+1 6= 1,

then C(ci+1)  C(c0i+1).
The cost of states thus defines a default system configuration, which the

system will go to when no rules are active, namely the configuration with the
lowest cost. Returning to the example-system, the default configuration must
then be the configuration where the lamp is in the o↵ -states. If we consider
again the specifications in Section 5, we see that a strategy � with minimal
cost will always turn o↵ the lamps automatically. Relying on this makes explicit
specifications for when to turn o↵ lamps unnecessary.

7 Control Strategy Synthesis

We now present a translation from the control strategy synthesis problem to the
synthesis problem for TGA in form of a UPPAAL TiGa model. UPPAAL TiGa
uses solid lines to represent edges with controllable actions and dashed line to
represent edges with uncontrollable actions. Initial locations are indicated with
a circle and urgent locations are indicated with a rounded U. A full introduction
to UPPAAL TiGa can be found in [2].

7.1 Translation

The translation consists of three main templates; one to represent services, one to
represent rules and one to enforce correct behavior of the system and synthesized
controller. Table 1 shows global variables used in the templates, their type and
a description of their semantics. We will use TGA(S,) to refer to the TGA
defined by the translation presented below for a system S and a specification .

17

Name Type Description

Variables
x clock Clock for the control component.
cost integer The sum of service state costs for

the current configuration of the
system.

activeRules array of integers Given a rule id, returns integer
representing the number of active
rule templates.

controllable events selection Set of controllable events.
Channels
event array of broadcast channels Broadcasts event, either from

state change or by command of
the control component.

Functions
ruleSatisfied bool Evaluates to true if the configura-

tion of the system satisfies a given
' expression.

calcCost integer Returns sum of service state costs
for the provided configuration of
the system. If no argument is pro-
vided, the current configuration of
the system is assumed.

validState bool Returns true i↵ a given configura-
tion satisfies Prop() for all rules
where activeRules > 0 and for all
invariants. If no argument is pro-
vided, the current configuration of
the system is assumed.

currentReplica integer Given a rule id, returns the num-
ber of the next available replica of
the rule template to use.

updateCurrentReplica void Given a rule id, updates the cur-
rent replica to the next available
replica.

Table 1: Global variables and functions used in translation.

18

Service Templates Service templates encode the states and edges of services.
Figure 5 shows the general template structure for a controllable service (left)
and uncontrollable service (right).

Controllable service templates have a location for each state and edges con-
necting locations corresponding to edges connecting states in the service. Edges
are equipped with broadcast synchronizations on corresponding events and when
followed, cost is updated to match the cost of the new configuration. Broadcasts
for controllable services are performed by the control component.

Uncontrollable service templates are similar to controllable services with a
few exceptions: The edge is uncontrollable and broadcasts a corresponding event,
leaving firing of uncontrollable events to the environment. The edge is also
equipped with the guard x > 0 which, in combination with the control com-
ponent, assert the first assumption to timed words in Section 3.4, that there is
an ordering of events in timed words so that uncontrollable events always occur
before controllable events in a timed word if they both occur at the same time.

event[e]?S1 cost = calcCost() S2 event[e]!
cost = calcCost() S2

x > 0

S1

Fig. 5: Service templates.

Control Component Template Figure 6 shows the control component tem-
plate. The template can broadcast controllable events to change the state of con-
trollable services. The template consists of a location ENVIRONMENT where
the environment may fire uncontrollable events and a location for each control-
lable services. Once the edge going out from the ENVIRONMENT location is
followed, clock x is reset, e↵ectively preventing any more uncontrollable events
to occur at this time (due to the guard on all edges of uncontrollable services),
enforcing the first assumption to timed words in Section 3.4.

In the following locations, one controllable events may be broadcast for the
corresponding controllable service or choose not to change anything (the tau
action). This enforces the second assumption to timed words in Section 3.4 of
only changing the state of a controllable service once at any time. As the inter-
mediate locations are urgent, the template must return to the ENVIRONMENT
location before time can progress. Uncontrollable events are reenabled as time
progresses.

Rule Template Because UPPAAL TiGa synthesizes only memoryless strate-
gies (action depends only on the state in contrary to actions depending on a
prefix of a timed word), it is necessary to encode the state of active rules in the

19

Fig. 6: Control component template.

TGA state. Figure 7 shows a UPPAAL TiGa template R(id) for representing a
rule:

on E provided ' satisfy '

0 starting in [s, e] for d unless E

0

with id id. We assume initially an unbounded number of replicas of R(id) s.t. a
new replica is used for each occurrence of a triggering event, implemented using a
unique replica value for each replica and the currentReplica function. In Section
7.2 we explore a finite bound for the required number of replicas.

Each replica has a private clock y. The template is initially in the location
IDLE. When e 2 E occurs while ' is satisfied, y is reset and the next available
replica of this rule goes to the location ENABLED. After s time units, the tran-
sition to ACTIVE is enabled, at it must be followed at latest after e time units
due to the invariant. When followed, y is reset and activeRules is incremented for
the rule (e↵ectively enforcing the proposition '0 to be satisfied, as showed later
in Fact 1). The template remains in the ACTIVE location for d time units, after
which it must follow the lower edge back to IDLE, resetting y and decrementing
activeRules for the rule.

From the ENABLED and ACTIVE location, the rule may also be cancelled
by some e 2 E

0. From the ENABLED location, the clock is simply reset and
the template returns to the IDLE location. From the ACTIVE location, the
template goes to the CANCELLED location, resets y and decrements activeRules
for the rule. As CANCELLED is urgent, the template must return to the IDLE
location before time can progress.

Synthesis Problem Given a translation using the templates above, a control
strategy can be found by solving the corresponding safety game (expressed in
UPPAAL TiGa syntax) for a system with one controllable and one uncontrollable
service, where c service states are the set of states for the controllable service
and u service state is the current state of the uncontrollable service.

c on t r o l : A [] ((x>0) imply (va l i dS t a t e () &&
f o r a l l (s : c s e r v i c e s t a t e s)

v a l i dS t a t e (s , u s e r v i c e s t a t e) imply
co s t <= calcCost (s , u s e r v i c e s t a t e)))

In general, a nested forall-loop is added for each controllable service. The prop-
erty asserts that 1) whenever x > 1, validState must return true and 2) for all

20

y = 0,
activeRules[id]--

y = 0

event[_e]?

y = 0, updateCurrentReplica(id)

activeRules[id]--,
y = 0

activeRules[id]++,
y = 0

event[_e]?

event[_e]?

ENABLEDIDLE
y <= d
ACTIVE

CANCELLED

currentReplica(id) == replica &&
ruleSatisfied(phi)

y >= s

_e : E'

y == d

y <= e

_e : E'

_e : E

Fig. 7: Rule template R(id) for rule with id id.

possible configurations of controllable services, no configuration with lower cost
results in validState returning true. The latter enforces local optimality.

The validState function is implemented so that it returns true i↵ the propo-
sition of all invariants and all rules where activeRules > 0 are satisfied. Let us
e.g. consider a modified subset of the “Follow Me” hallway scenario specification
with an added invariant:

¬(Lamp2 .on ^ Lamp3 .o↵)

on Switch1 .click provided true
satisfy Lamp1 .on starting in [0, 0] for 10 ^
satisfy Lamp2 .on starting in [8, 8] for 12

unless ;

We recall that the internal conjunction in the rule actually represents two rules.
Let the id of the first of these rules be 0, the id of the second be 1 and assume
a function state which returns the valuation of the current state of a given
service (according to the valuation function). Then this specification results in
the following validState function logic.

i f (! (! (s t a t e (Lamp2) == 1 && s t a t e (Lamp3) == 0))){
r e turn f a l s e ;

}
i f (a c t i v eRu l e s [0] > 0 && ! (s t a t e (Lamp1) == 1)){

r e turn f a l s e ;
}

21

i f (a c t i v eRu l e s [1] > 0 && ! (s t a t e (Lamp2) == 1)){
r e turn f a l s e ;

}
r e turn true ;

No further elaboration is provided for the construction of the validState function,
as it trivially follows from structure of propositions and we simply postulate the
following fact.

Fact 1 (Correctness of validState). Let S be a system, let = 1 ^ . . . ^ n be
a specification and let �0 = (t0, e0, c0), . . . , (ti, ei, ci) be a finite prefix of a timed
word � = (t0, e0, c0), . . . , (ti, ei, ci), · · · 2 TW (S,). Then validState returns true
for a configuration ci 2 CONF (S) i↵ ci |= Prop(j) for all 1  j  n where j

is active in ci for �0.

7.2 Correctness

We now turn our attention to correctness of the presented translation. We first
notice that the translation relies on an unbounded number of rule template
replicas of a given rule template R(id). However, we need a finite bound for the
number of required replicas to solve the synthesis problem for TGA. Lemma 1
provides such finite bound.

Lemma 1 (Finite Number of Rule Template Replicas). Let S be a system,
let = 1 ^ . . . ^ n be a specification and let TGAF (S,) denote the trans-
lation above, but with only e+d replicas of R(i) for rule i = on E provided '

satisfy '

0
starting in [s, e] for d unless E 0. Then there is a winning control

strategy for the synthesis problem of TGA(S,) i↵ there is a winning control
strategy for the synthesis problem of TGAF (S,).

Proof. We show this by showing that it holds in both directions.

”)”: It follows from Fact 1 that validState returns true i↵ the propositions of
all invariants are satisfied and the propositions of all rules where activeRules > 0
are satisfied. We notice that activeRules for a rule id is incremented exactly once
when following the edge to the ACTIVE location and is subsequently decre-
mented exactly once when leaving the ACTIVE location. As activeRules for id
is not changed anywhere else, more replicas can only increase the frequency of
activeRules > 0. As TGAF (S,) is equivalent to TGA(S,), only with less
replicas of R(id), it follows that TGAF (S,) cannot increment activeRules for
rule id more commonly than TGA(S,) and thus cannot impose more restric-
tions in validState than those imposed in TGA(S,).

”(”: To show this direction we will first make two observations:

22

Observation 1 Consider the problem of finding a winning control strategy f

for TGA(S,). If no such strategy exists, it means that the environment has
a winning strategy f

0 s.t. eventually validState returns false for a non-singular
period of time for any � 2 TW (S � f

0) as a result of a specific sequence of
uncontrollable events. We notice also that only rules with non-singular, non-
negative integer duration can be specified, i.e. a rule is always active for at least
1 time unit. We can now observe that it must be possible to rearrange every
choice by the environment such that uncontrollable events occur only at integer
points and preserve a non-singular period of time where validState returns false.

Observation 2 We first notice that in a rule template R(id), activeRules for id
is incremented on the edge going to the ACTIVE location, is decremented on all
edges going out of the ACTIVE location and is not changed anywhere else. We
now make the observation that the actual number of replicas in the ACTIVE
location is irrelevant with respect to the validState function, as the function
only considers if activeRules > 0 or not i.e. if there is at least one replica in the
ACTIVE location.

Conclusion It follows from the first observation that for a given rule i = on E
provided '

0 satisfy ' starting in [s, e] for d unless E 0,R(i) can be triggered
at most e + d times before the replica used for the first invocation must have
returned to the IDLE location and can be reused. It follows from the second
observation that at most one replica should be used at any time t. This leads
to the trivial bound that e+ d replicas are su�cient for R(id) to find a winning
strategy for the environment if one exists with unboundedly many replicas.

As it is of crucial importance to performance to minimize the bound for the
required number of replicas, we continue to postulate the following improved
replicas bound.

Claim 1 (Bound for Number of Replicas). Lemma 1 holds with only d e
de + 1

replicas of R(i) for rule i = on E provided '

0 satisfy ' starting in [s, e]
for d unless E 0.

We can now continue to show soundness of the translation.

Theorem 1 (Soundness of Translation). Let S be a system and be a spec-
ification, then TW (TGA(S,) � f) ✓ TW (S,) for any winning strategy f in
TGA(S,).

Proof. We show this by structural induction on .

 = true, = µ, = ¬', or = '1 ^ '2: It follows from Fact 1 that
validState returns true for a configuration c 2 CONF (S) i↵ c |= Prop(). We
require in the safety property that in any state where x > 0, validState must
return true, thus this case must be satisfied.

23

 = on E provided ' satisfy '

0
starting in [s, e] for d unless E

0: Let id
be the id of . We assume the abstraction of unbounded many replicas R(id)
and show this using a case analysis. Soundness for the bounded case follows from
Lemma 1.

Assume some e 2 E occurs at time t in a configuration c |= '. Consider first
the flow where the rule is not cancelled. This means, due to the select statement,
that one replica of R(id) goes from the IDLE location to the ENABLED loca-
tion and resets the local clock y. After s time units, the edge to the ACTIVE
location becomes enabled. Due to the invariant, the edge must be followed at
latest after e time units. When the edge is followed, the local clock y is reset
again and activeRules[id] is incremented. The replica stays in the ACTIVE lo-
cation for exactly d time units, after which it must return to the IDLE location,
resetting y and decrementing activeRules[id]. This means that the rule must be
in the ACTIVE location for d time units, starting in the interval [t + s, t + e],
coinciding with the semantics of . Assuming activeRules[id] is initially 0, we
see that activeRules [id] > 0 whenever some replica is in the ACTIVE location,
as activeRules[id] is always incremented once when entering the location and al-
ways decremented once after leaving the location before returning to the IDLE
location. We know from Fact 1 that '0 is enforced by the validState function
when activeRules [id] > 0, i.e. when some replica is in the ACTIVE location.
Thus, we can conclude that '0 must be enforced whenever a replica is in the
ACTIVE location, as the objective ensures that validState returns true when-
ever x > 0, and that a replica is in the ACTIVE location exactly when '0 should
be satisfied according to the semantics (disregarding canceling).

Consider now the case where the rule is cancelled by some event e0 2 E

0. As
events are broadcast, all replicas are canceled. If in the ENABLED location, the
replica returns to the IDLE location, resetting y. If in the ACTIVE location, the
replica goes to the CANCELLED location. This location is urgent and allows
for the control component to change the configuration of the system before ac-
tiveRules[id] is decremented and the replica returns to the IDLE location. This
location is necessary, as x > 0 if e0 belongs to an uncontrollable service, thus
directly decrementing activeRules[id] and returning to the IDLE location would
result in a violation of cost optimality in the objective. Introducing the interme-
diate location allows for the control component to change the configuration of
the system before activeRules[id] is decremented and thus to react to the uncon-
trollable event. Before time can progress, all replicas must return to the IDLE
location and consequently activeRules [id] = 0 and '

0 is no longer enforced by
the validState function

We now continue to examine completeness of the translation. To do so, we
will start by considering an issue regarding completeness with services where the
state-space is not completely connected. Consider a new service, which is a lamp
with three states:

AdvLamp = ({o↵ , low , high}, o↵ , {(o↵ , low), (low , high), (high, low), (low , o↵)})

24

and the system:
S = ({AdvLamp}, {Switch})

We see that the state-space of the lamp is not completely connected, as it cannot
go directly from the o↵ state to the high state. If we recall the second assumption
to timed word in Section 3.4, we restrict that only one edge can be followed
in any service at any time. This means that it is not possible to go from the
o↵ state to the high state instantly. Consequently, if we assume cost function
⌫(o↵) = 0, ⌫(low) = 1, ⌫(high) = 2, the following specification is not satisfiable
with the current definition of local cost optimality:

on Switch.click provided true satisfy AdvLamp.high
starting in [1, 1] for 10 unless ;

This is a consequence of local cost optimality dictating that the system should
stay in the o↵ state whenever AdvLamp.high is not enforced, thus the assumption
of only one state change at any time prevents the service from going instantly
to the high state and the local cost optimality prevents the service from going
to the low state in advance. We notice that without local cost optimality, it is
possible for the service to remain in the low state and thus be able to go directly
to the high state.

Strictly speaking, the conclusion that no winning control strategy exists for
the specification is correct with respect to our assumptions and local cost opti-
mality. However, the specification could also reasonably be expected to have a
winning control strategy. Therefore, we will leave ourself to a claim of correctness
for systems with only completely connected services and leave the proof as well
as adaptation to the unconnected case for further work. We notice that because
HomePort only supports completely connected services, this is of no practical
concern for our implementation.

Claim 2 (Completeness of Translation with Completely Connected Services). Let
S be a system where all services are completely connected and let be a spec-
ification. If there exists a control strategy � s.t. TW (S � �) ✓ TW (S,) then
there exists a strategy f s.t. TW (TGA(S,) � f) ✓ TW (S,).

8 Implementation

We provide a proof-of-concept implementation of a completely automated con-
troller synthesis toolchain, available2 at http://homeio.net/concept. Figure 8
shows the toolchain of the implementation. The entire toolchain — including
strategy synthesis by UPPAAL TiGa — is executed on a Raspberry Pi (Model
B), a cheap (35e), low-powered credit-card sized computer featuring a 700 MHz
ARMv6 processor and 512 MB of RAM equipped with a WiFi dongle for wireless

2 Only source code for individual components. UPPAAL TiGa for ARM not available
for licensing reasons.

25

http://homeio.net/concept

interaction with the system. Figure 9 shows a picture of the setup. To the left
in the picture, the Raspberry Pi is seen. The Raspberry Pi is here connected to
a demo unit (box below) via the GPIO pins (grey cable). The following sections
elaborate on individual steps in the toolchain.

Web/App
Interface

HomePort

Translation UPPAAL TiGa

Controller

Physical System

Specification

System

TGA

Strategy

Events

I/O

Fig. 8: Toolchain for automated controller synthesis.

Interface Interaction with the system happens through a simple web-interface
in form of a web app. Screenshots from the interface are available in Figure
10. The app automatically detects changes to the underlying home automation
system and allows easy configuration and management of devices. A rule editor
facilitates easy point-and-click management of behavior specifications. Given a
specification, a control strategy is automatically synthesized and a corresponding
controller is constructed and invoked.

Fig. 10: Interface of the toolchain. The interface is optimized for point-and-click
interaction and can be used directly on a smartphone.

26

Fig. 9: Top: Toolchain executed on Raspberry Pi connected to a demo unit (box
below) via the GPIO pins (grey cable). Bottom: Internal wiring of demo unit.

27

Translation & Strategy Synthesis Based on the system description and
specification provided from the interface, translation to UPPAAL TiGa models
is performed in PHP. The model is automatically provided to UPPAAL TiGa,
which has been compiled for the ARMv6 processor and is executed directly on
the Raspberry Pi. The synthesized strategy is used to dictate behavior using the
controller.

Controller The controller is a small control program, written in C++ for porta-
bility. Provided with a system description, a specification and a strategy, the
controller monitors the underlying HomePort system and e↵ectuates behavior
according to the strategy, e↵ectively providing an implemented control program.

8.1 Performance

We provide a performance evaluation of the proof-of-concept toolchain imple-
mentation. Table 2 shows synthesis time for some of the example specifications
from Section 5. As we see, simple specifications (the simple and timer examples)
can be synthesized in reasonable time directly on the Raspberry Pi. However,
we also see that larger specifications (“Follow Me” example) are unfeasible to
synthesize, even on laptop-grade hardware (MacBook Pro equipped with a 2,3
GHz Intel Core i5 processor and 8GB of RAM). Due to the complexity of the
synthesis problem, a di↵erent approach is required to achieve scaleability of the
method. We explore in the next section an approach of decomposing the synthe-
sis problem into smaller subproblems, in order to obtain greater scaleability.

Model Raspberry Pi Laptop

Simple 5.56s 0.15s
Timer 5.16s 0.16s

Follow Me OOM

Table 2: Synthesis time on a Raspberry Pi and on a laptop for the control
strategy synthesis problem for some of the example specifications from Section
5 expressed for the hallway scenario. means more than 15 minutes, OOM
means out of memory (4GB limit).

9 Compositional Control Strategy Synthesis

Due to the complexity of the synthesis problem for TGAs, achieving su�cient
scalability for real-world application is non-trivial. To address this, we present
here a method to exploit independence in the system and specifications. This
allows for decomposition of the control strategy synthesis problem into multiple

28

subproblems. To do so, we need to know how to find such semantically correct
decompositions. We here provide an overview of how such decompositions can
be found.

9.1 Syntactic Decomposition

On the syntactical level, we notice that rules and invariants with propositions
containing conjunctions can be decomposed into multiple separate rules or in-
variants. Consider the following specification for a system with one switch and
two lamps:

on Switch.click provided true satisfy Lamp1 .on ^ Lamp2 .on
starting in [s, e] for d unless ;

Clearly, we can construct an equivalent specification 0:

on Switch.click provided true satisfy Lamp1 .on
starting in [s, e] for d unless ;

on Switch.click provided true satisfy Lamp2 .on
starting in [s, e] for d unless ;

Invariants are decomposed in a similar manner. We refer to this step as
syntactic decomposition. We see that syntactical decomposition can sometimes
be used to construct more, but smaller, rules and invariants. We will explore
how this is beneficial in the following section and we assume from now on that
all rules and invariants are syntactically decomposed.

9.2 Independent Subsystems

We now want to clarify the relationship between services. Consider e.g. a home
automation setup with multiple rooms. If specifications do not utilize informa-
tions between the rooms, surely it should be possible to consider each room
independently. That is, we can say that services in the rooms are independent of
one another and that the rooms are two independent subsystems. We will now
generalize this approach to identify independent subsystems of services. To do
so, we consider first intuitively dependencies for uncontrollable and controllable
service.

Uncontrollable Services We notice that the behavior of uncontrollable services by
definition cannot be restricted by rules or invariants, so clearly an uncontrollable
service is always independent of all other services.

Controllable Services We notice that the behavior of controllable services is re-
stricted by rules and invariants, so controllable services must be dependent if
they are referred to in the same rules.

29

We can now continue to formalize this intuition. Let = on E provided '

satisfy '

0 starting in [s, e] for d unless E

0 be a rule. We define Serv() be
the set of services s.t. S 2 Serv() i↵

– e 2 SE for some e 2 (E [E

0), or
– S is referred to in ', or
– S is referred to in '0.

The definition is extended to invariants in the intuitive way. We can now continue
to define an independent subsystem.

Definition 7 (Independent Subsystems). Let S = (Sc, Su) be a system and
let = 1 ^ . . . ^ n be a specification. A subset S ⇢ S with a corresponding
set of rules is an independent subsystem of S, i↵

– For all i 2 , if S 2 Serv(i) then S 2 S.
– For all S 2 (Sc \ S), if S 2 Serv(i) then i 2 .

We can use this notion of independent subsystems to split CSSP(S,) into
multiple subproblems CSSP(S,). Consider again the example with two lamps
and a switch. We see that this example can be split into two independent sub-
systems:

S1 = ({Lamp1}, {Switch}), 1 = { 1}
S2 = ({Lamp2}, {Switch}), 2 = { 2}

Thus we can obtain a control strategy for the control strategy synthesis problem
CSSP(S,) by solving CSSP(S1, 1) and CSSP(S2, 2) independently.

9.3 Performance

If we return to the performance analysis in Section 8.1, we can apply decom-
position to the evaluated cases. Table 3 shows synthesis time for the evaluated
cases in Section 8.1 extended with decomposition, synthesized sequentially or all
in parallel (assuming su�cient processing cores). We see that decomposition in-
troduces a small overhead due to extra parsing of files etc., resulting in slightly
worse sequential performance on the small timer example. When considering
the larger “Follow Me” example, however, we see that decomposition greatly
improves scaleability and performance of the approach and concretely allows us
to synthesize a control strategy for the “Follow Me” example in very reasonable
time on laptop-grade hardware.

We conclude that using decomposition allows us to synthesize control strate-
gies for more interesting specification, although even subsystems quickly become
to large to be synthesized directly on the Raspberry Pi. We also see that decom-
position greatly improves scaleability of the approach and is crucial to extend
the scenario to a full home automation specification. Finally, we see that synthe-
sizing strategies for independent subsystems in parallel is a great way to achieve

30

Model Ra. Pi Laptop Dec., Ra. Pi Dec., laptop Dec., laptop, parallel

Simple (1 subs.) 5.56s 0.15s 5.56s 0.15s 0.15s
Timer (3 subs.) 5.16s 0.16s 6.30 0.39s 0.13s

Follow Me (3 subs.) OOM 11.25s 3.75s

Table 3: Synthesis time on a Raspberry Pi and on a laptop for the control
strategy synthesis problem for some of the example specifications from Section 5
expressed for the hallway scenario. Subs. = number of independent subsystems,

means more than 15 minutes, OOM means out of memory (4GB limit).

practical applicability of the method and that using a cloud-based service for
synthesis would be an obvious way to facilitate this. We also emphasize that
decomposition can be supplemented with additional means to reduce the size of
the synthesis problem, thereby improving performance even more.

10 Conclusion & Further Work

We have presented a complete framework for using game theory to synthesize an
executable controller for a home automation setup. We have presented a simple
specification logic and shown how patterns can be used to express general and
portable specifications, potentially limiting end-user interaction to simply select-
ing desired system behavior from a repository of patterns. We have presented an
e�cient translation to Timed Game Automata in form of UPPAAL TiGa models
and have explored approaches to improve synthesis performance and scaleabil-
ity by exploiting decomposability of systems and specifications into indepen-
dent subsystems. We have provided a completely automated proof-of-concept
toolchain implementation, which automates the entire process from specifica-
tion of behavior in a simple web-app interface to executable controller. The
entire toolchain — including synthesis by UPPAAL TiGa — is executed on a
Raspberry Pi, a low-cost, low-performance open source hardware device, directly
applicable in a home automation setup.

We conclude that using game theory as a backend technology in home au-
tomation provides some great benefits, in particular by facilitating underspeci-
fied behavior specifications. We also conclude that acceptable performance for
real-life applications is achievable through decompositionality, although using a
remote device or cloud service for UPPAAL TiGa execution will be desirable
in large-scale setups in order to fully exploit parallel synthesis for independent
subsystems.

10.1 Further Work

We have already mentioned several topics of further work throughout the pa-
per. We explore here five additional areas of further work in form of possible
extensions to the work presented in this paper.

31

Service Models In Section 5 we saw a specification for how to detect double-
clicks using data services. While this solution is possible, one should be careful
with how the click event a↵ects di↵erent rules. Consider in conjunction with the
double-click specification the following rule.

on Switch.click provided SD .1 satisfy Lamp1 .on ^
Lamp2 .on ^ Lamp3 .on starting in [0, 0] for 1 unless Switch.click

This specification says that when the motion sensor is disabled, the switch toggles
the lamp states. When double-clicking to toggle the motion sensor with this
specification, we trigger the Switch.click event twice and thus also toggle the
light twice. This is not desirable, as we would probably want the lamps not to
react until it has been determined if the click is a single- or double-click. While
this behavior is obtainable by replacing the trigger event Switch.click with the
event CC .0, we argue that this approach will make specifications less intuitive.
An alternative approach is to implement the double-click on the service level.
Thus, for the switch, we can add an intermediate service model in conjunction
with the regular switch model. A such intermediate model is shown in Figure
11. The intermediate model synchronizes with click broadcast events by the
switch and broadcasts itself single- or double-click events. This approach thus
moves the concern of detecting double-clicks from the specification level to the
service level, as specifications can now be expressed using the new single- and
double-click events.

event[click]?
event[click]?

event[single-click]!

y <= 1

y <= 1

event[double-click]!

y == 1

y = 0

y == 1

Fig. 11: Intermediate service model which synchronizes on click events and broad-
casts single-click or double-click events.

Known Environment So far we have assumed no information about the en-
vironment. This means that we can express only properties for controllable ser-
vices, as uncontrollable services are assumed to behave randomly. This is however
not always the case. Consider a home automation scenario for a floor heating
system. The system consists of two controllable valves which regulate the water
flow and a thermometer which provides readings of the room temperature, i.e.

32

Valve1 ,Valve2 = ({on, o↵ }, o↵ , {(on, o↵), (o↵ , on)})
Thermometer = ({i | 0  i  40}, 20, {(i, i+ 1), (i+ 1, i) | 0  i < 40})

S = ({Valve1 ,Valve2}, {Thermometer})

where Valve1 and Valve2 control the valves for a floor heating system and Ther-
mometer measures the temperature in the room. Without knowledge of the en-
vironment, we can only specify rules for the state of the valves based on the
thermometer reading, e.g. the following specification:

on Thermometer .0, . . . ,Thermometer .18 provided true
satisfy Valve1 .on && Valve2 .on starting in [0, 0] for 1
unless Thermometer .19

on Thermometer .0, . . . ,Thermometer .21 provided true
satisfy Valve1 .on starting in [0, 0] for 1
unless Thermometer .22

However, a more intuitive specification would be to specify an invariant directly
on the (uncontrollable) thermometer, e.g.

Thermometer � 19 && Thermometer  22

If we assume knowledge of the environment, we can support this kind of expres-
sions over uncontrollable services by deducing relations between controllable and
uncontrollable services. We do however need to relax the satisfaction relation as
well as the local optimality criteria in order to introduce this extension.

Relation to Absolute Time In the presented logic, rules specify a time in-
terval for rule activation relative to the time of the triggering event. In some
cases, however, it might be desirable to specify absolute time intervals. Consider
the situation where an electric car is plugged in and should charge during the
night (rather than at a specific time interval after the car is plugged in). This
would allow us to express specifications such as (assuming uncontrollable service
Charger and controllable service Battery):

on Charger .connect provided true
satisfy Battery .charge starting in [6pm, 4am] for 3hours
unless Charger .disconnect

Expected Cost Optimal Strategies With the presented approach, time in-
tervals provide some slack for when to activate a rule. In a real-world scenario,
utility costs fluctuate over time, thus this slack could be exploited to select the
best timing for activating the rule, based on the expected utility costs. While

33

this could be directly achieved by introducing utility costs in the model (result-
ing in Priced Timed Games), the problem unfortunately becomes undecidable
with only three clocks [5].

Alternatively, statistical model checking (SMC) combined with reinforced
learning can be used to approximate expected cost optimal strategies from the
most permissive strategy, which is obtainable in UPPAAL TiGa. This approach
is successfully applied to the Priced Timed Markov Decision Process formalism
in [7]. This allows us to reduce utility costs while still behaving within the con-
straints of the specification, e.g. in the car charging example, this would allow
the car to start charging whenever electricity is expected to be cheapest between
6pm and 4am (so that the car is always fully charged by 7am).

Discrete Time Synthesis Finally, we notice that it has previously been shown
that for some problems, explicit methods outperform the symbolic methods uti-
lized by UPPAAL (see e.g. [1]). It is an interesting area of further work to
evaluate whether explicit methods are able to improve scaleability and perfor-
mance in this scenario, as well as to explore semantical equivalence between the
continuous time semantics of UPPAAL TiGa and the discrete time semantics of
explicit methods for this problem.

References

1. Mathias Andersen, Heine Gatten Larsen, Jǐŕı Srba, Mathias Grund Sørensen, and
Jakob Haahr Taankvist. Verification of liveness properties on closed timed-arc petri
nets. In Antońın Kučera, ThomasA. Henzinger, Jaroslav Nešetřil, Tomáš Vojnar,
and David Antoš, editors, Mathematical and Engineering Methods in Computer
Science, volume 7721 of Lecture Notes in Computer Science, pages 69–81. Springer
Berlin Heidelberg, 2013.

2. Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury, KimG.
Larsen, and Didier Lime. Uppaal-tiga: Time for playing games! 4590:121–125,
2007.

3. Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal 4.0, 2006.
4. Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-François

Raskin. Acacia+, a tool for ltl synthesis. In P. Madhusudan and SanjitA. Seshia,
editors, Computer Aided Verification, volume 7358 of Lecture Notes in Computer
Science, pages 652–657. Springer Berlin Heidelberg, 2012.

5. Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability
results on weighted timed automata. Inf. Process. Lett., 98(5):188–194, June 2006.

6. Peter H. Dalsgaard, Thibaut Le Guilly, Daniel Middelhede, Petur Olsen, Thomas
Pedersen, Anders P. Ravn, and Arne Skou. A toolchain for home automation
controller development. Accepted to SEAA 2013.

7. Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Alex Leagy, Didier
Lime, Mathias Grund Sørensen, and Jakob Haahr Taankvist. On time with minimal
expected cost!, 2014. Manuscript.

8. U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D. Mc-
Carthy, A. Rosenthal, S. Sarin, M. J. Carey, M. Livny, and R. Jauhari. The
hipac project: combining active databases and timing constraints. SIGMOD Rec.,
17(1):51–70, March 1988.

34

9. Rüdiger Ehlers. Unbeast: Symbolic bounded synthesis. In ParoshAziz Abdulla
and K.RustanM. Leino, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 6605 of Lecture Notes in Computer Science, pages
272–275. Springer Berlin Heidelberg, 2011.

10. Manuel Garćıa-Herranz, Pablo Haya, and Xavier Alamán. Towards a ubiquitous
end-user programming system for smart spaces. 16(12):1633–1649, jun 2010.

11. Apple Inc. Homekit, June 2014. https://developer.apple.com/homekit/.
12. Nest Labs/Google Inc. Nest, June 2014. https://nest.com/.
13. Jan Jakob Jessen, Jacob Illum Rasmussen, Kim G. Larsen, and Alexandre David.

Guided controller synthesis for climate controller using uppaal tiga. In Proceed-
ings of the 5th international conference on Formal modeling and analysis of timed
systems, FORMATS’07, pages 227–240, Berlin, Heidelberg, 2007. Springer-Verlag.

14. T. Le Guilly, P. Olsen, A.P. Ravn, J.B. Rosenkilde, and A. Skou. Homeport:
Middleware for heterogeneous home automation networks. In Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops), 2013 IEEE Inter-
national Conference on, pages 627–633, 2013.

15. Geetika Singla, Diane J. Cook, and Maureen Schmitter-edgecombe. Incorporating
temporal reasoning into activity recognition for smart home residents. In Proceed-
ings of the AAAI Workshop on Spatial and Temporal Reasoning, 2008.

16. Mathias Grund Sørensen. Towards automated controller synthesis in home au-
tomation. 2013. DAT9 Semester Project.

35

	Controller Synthesis forHome Automation

