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This paper  will s trengthen the resul t  of R. Berger ,  presented in his doctoral  d isser ta t ion  [t]. 

The domino concept was introduced by Hao Wang [2] and is related to the decision problem for the 
formulas  of the predicate  calculus with the pref ixAEA (i.e., an existential quantifier between two universal  
quantifiers).  (Also see [3] which, with adequate completeness,  presents  the resul ts  on dominos p r io r  to 
B e r g e r ' s  paper .  A popularized discuss ion of this question can be found in [4].) 

We consider  squares  (domino types) of a single size with colored sides.  We assume that the colors  
are  chosen f rom some fixed countable set ~.  A collection of dominos (over ~) is the name given to a finite 
set of types. We shall also assume that, for each type, there are  infinitely many copies of it, called pieces.  

We shall say that a collection is D-rea l izable  if the pieces (perhaps not all of them) of types of D can 
cover  an infinite plane in such fashion that the following conditions are  met; 

a) it is impossible either to rotate the pieces or to turn them over (to make mirror images of them); 

b) contiguous sides of neighboring pieces must be colored identically. 

A solution of a collection is any concrete covering of a plane by pieces of the types of this collection. 
(Initially, the problem was considered for a quadrant, and not for the plane. But this distinction is not es- 
sential, since it is easy to prove (el., for example, [I]) that the problems of covering the plane and of cover- 
ing a quadrant are equivalent.) 

We shall say that collection D covers a torus (has a periodic solution) if, frompieees of the types olD 
one can, while observing conditions a) and b), build a rectangular block whose opposite sides have identical 
sequences of symbols, so that this block can be considered as a unit (but rectilinear) piece, capable of cov- 
ering the plane. (One obtains an" actual" torus by splicing the opposite sides in the aforementioned block.} 

Let ~ be the class of all collections of dominos over a fixed countable set of symbols (pieces) ~[. 

The question was posed in [2] of the existence of an algorithm for recognizing realized collections in 
class  ~ .  It was proven in [1] that the problem of recognizing such collections (the domino problem) is not 
decidable. 

Let ~: ~ ~ N = {0, 1, 2, . . . } be an effective enumerat ion of the collect ions of c lass  ~ .; let 3 be the 
c lass  of collections of ~ having solutions, but only nonperlodic ones; let ~ be the c lass  of collections cover -  
ing tori; finally, let ~ be the c lass  of collections having no solution. The basic resul t  of this note is the 
following 

THEOREM 1. The sets  u(3), u(~), u(gt) are  pairwise  effectively indistinguishable. 

We now formulate  exact equivalents of the concepts introduced. 

A finite set D of ordered  quadruples of natural  numbers  is called a domino. The elements of D are 
called types of dominos. 

Let Q be the set of all integers;  ~i (i = 1, 2, 3, 4) are  the coordinate functions defined en Q4 We shall 
say that set D is real izable (covers the plane) if there exists  a mapping ,~: Q2 ~ D  satisfying the conditions 
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• y + t) = u ~ ( x ,  u), u ~ ( x  + 1, y) = z ~ ( x ,  y). (1) 

Each such q~ is called a solution of set D. 

We say that collection D covers  a torus if there exists a periodic solution to collection D, i.e., a map- 
ping ~ satisfying (1) for which one can find natural numbers  Pl, P2 > 0 such that 

Vxy [q9 (x -4- P~, y) = 'q) (x, y) = ,q: (x, y -~ p~) ]. (2) 

In this case, if Pt and P2 are  the smal les t  positive numbers  satisfying (2), the solution ~ is called (Pl, P2)- 
per iodic .  

To prove the undecidability of the domino problem, R. Be rge r  used Turing machines.  We adopt the 
following variant  of the Turing machine, more  appropriate  for our aim. 

These machines must  have two tape symbols  S O and St, and the set of internal states of each machine 
will be a finite subset of some fixed (effectively generated) countable set } (machines over ~) having three 
special  symbols:  ql (the initial state), q_~ and q0 (the halting states).  

We assume that the machines always begin operation in state ql while scanning a cell with the symbol 
So, while, when it is convenient, we can always "splice" to the tape (only) on the right a new cell containing 
S 0. We fur ther  assume that no machine, finding itself at the leftmost  cell, can receive a command to move 
left. The machines can halt only in states q-1 and q0, while there are  no p rog rams  which begin with these 

symbols .  

We consider  the c lass  of all machines over  ~ (class i~l). Let  ~: !~ - - N  be an effective enumerat ion 
of machines of c lass  ~ ;  let .if' be the c lass  of perpetually operating machines of !~; i~' the c lass  of ma-  
chines stopped in state q-t ;  9l' the c lass  of machines halted in state q0. The basis  for the proof of Theorem 

1 is the well-known (cf. [3]) 

LEMMA 1. Sets #(~'), #(i~'), # (~ ' )  a re  pairwise effectively indistinguishable. 

Adding to the construct ion of Berger ,  we specify an algori thm corresponding to each machine Z of 
!~ a s e t D  Z of ~) in the following way: i f Z E  3 '  thenD Z E 3 ; i f Z E  ~" thenD Z ~ f ~ ; i f Z E ' ~ l ' ,  thenD Z E ~. 
F r o m  the existence of this a lgori thm and f rom Lemma 1, Theorem 1 follows immediately.  

P roof  of Theorem 1. To the set of skeletal  prototypes ([1], Table 2), we add the prototypes 2Td, 2Tu, 
ST, 9T, 10T, and to the collection of forms of machine prototypes ([1], Table 6), we add form 8Tin (cf. 
Fig.  1), where the T signals are  new, being common to these, and only these, prototypes.  The T signals 
occur  on different levels:  in the skeletal  prototypes,  2Tu and 10T are  higher ~han 2Td, 8T, and 9T. The 
corresponding channels, which are  specially derived, are  common with the analogous channels of the ma-  
chine prototypes  of form 8Tin. 

To the definition of skeletal  set K ([1], Table 4) at points (c) and (d), it is neces sa ry  to add the follow- 

ing constra ints ;  

1) skeletal  prototype 8T forms a product  with selecting prototypes 10p-14p, and only with them; 

2) skeletal  prototype 9T forms a product  with selecting prototype V13, and only with it; 

3) skeletal  prototype 10T forms  a product with selecting prototype H12, and only with it; 

320 



The corresponding constraints for prototypes 2Td and 2Tu are obtained automatically. 

The definition of collection DZ ([I], Table 7)in paragraph (b) is augmented by the constraint: the ma- 
chine prototypes of form 8Tin form products only with K-prototypes having skeletal prototype 2 and select- 
ing prototypes 10p-!4p. 

LEMMA 2. i) If machine Z operates perpetually, collection D z has a solution, but only a nonperiodic 
one. 

2) If Z arrives at state q-l, DZ has a periodic solution~ 

3) If Z arrives at state q0, DZ has no solution. 

Proof. I) Let Z never halt. Then, for no n _> 0 does its n-configuration contain symbol q0. Therefore, 
as in [1], signals leaving from the lower part of any growing n-register enter into the upper part of its re- 
ceiving (n + l)-register. The machine configurations do not contain the symbol q-i either, from which it 
follows (analogously to the proof of R. Berger in [1], section 4.2.3) that in the plane solution of collection 
D Z there cannot appear a piece having machine prototype 8Tin. Since signals of this, and only this, proto- 
type can connect T-signals occurring on different levels in skeletal (registor) prototypes 8T, on one hand, 
and 2Tu (or 10T) on the other, in no register does a T-signal appear. 

For a T-signal which occurs in skeletal prototypes necessarily in conjunction with R-signals, there 
remains (by virtue of Lemmas 3-4 and addition 1 of [1]) a unique possibility of appearing in (some) solutions 
of collection DZ, existing by virtue of Theorem 3-3 of [1]: in the form of an infinite signal in eonjtmction 
with an infinite R-signal in the series comprised of the pieces having skeletal prototypes only 2Td or only 
2Tu. But such a situation, admissible in [I], does not enter into the proofs of Theorems 3-6 of [I]~ from 
which follows the necessity of nonperiodic solutions for collection DZ. 

2) At the moment n, let machine Z halt at state q-1. The q_iSj-signal from the lower part of a grow~ 
ing (n + 1)-register either terminates at a piece with machine prototype 8 in a decaying (n + 2)-register, 
having select:ion symbol 12, 21, or 22, or is changed to a horizontal T-signal in a piece with machine proto- 
type of form 8Tin in an (n + 2)-register with selection symbol 11. This last register must be constructed 
from skeletal prototypes with T-signals, i.e., must again be decaying. Figure 2 shows such a 4-register 
appearing in any solution of collection DZ, where Z has the program (omitting ~,nonworking ~ commands): 
qlSoRq2, q2SoRq-i . (Under the register are the numbers of the corresponding skeletal prototypes; the select- 
ing signals and basis numbers are omitted.) 

Thus, there will be no successors for any of the (n + 2)-registers. It is not hard to see that if all, 
besides the T, skeletal and selecting signals belong to some iterative construction ([1], section 3.2.5), then 
this solution is (2 n +5 2 n +4)_periodic" 

3) Let Z halt at state q0 at moment n. In the lower parts of the growing (n + 1)-registers there must 
appear a q0 Sj-signal which will add the leading prototypes to the upper parts of (n + 2)-registers. But, 
among the machine prototypes, there is no prototype capable of forming a product with the K-prototypes of 
a growing register and having the symbol q0Sj on the upper level. Lemma 2 is proven. 

As already mentioned, Theorem 1 follows from Lemmas 1 and 2. 

The authors wish to thank R. Berger for his generous provision of a copy of his dissertation~ 
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