REMARKS ON BERGER'S PAPER ON THE
DOMINO PROBLEM
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This paper will strengthen the result of R. Berger, presented in his doctoral dissertation {1].

The domino concept was introduced by Hao Wang {2] and is related to the decision problem for the
formulas of the predicate calculus with the prefix AEA (i.e., an existential quantifier between two universal
guantifiers). (Also see [3] which, with adequate completeness, presents the results on domincs prior fo
Berger's paper. A popularized discussion of this guestion can be found in [4].)

We consider squares (domino types) of a single size with colored sides. We assume that the colors
are chosen from some fixed countable set %. A collection of dominos (over %) is the name given fo a finite
set of types, We ghall also assume that, for each type, there are infinitely many copies of ii, called pieces.

We shall say that a collection is D-realizable if the pieces (perhaps not all of thew) of types of D can
cover an infinite plane in such fashion that the following conditions are met:

a) it is impossible either fo rotate the pieces or to turn them over {to make mirror images of them);
b) contiguous sides of neighboring pieces must be colored identically.

A solution of a collection is any concrete covering of a plane by pieces of the types of this colleciion.
(Initially, the problem was considered for a quadrant, and not for the plane. But this distinction is not es-
sential, since it is easy to prove (cf., for example, [1]) that the problems of covering the plane and of cover-
ing a quadrant are equivalent.)

We shall say that collection D covers a torus (has a periodic solution) if, frompiecesofthetypesofD
one can, while observing conditions a) and b), build a rectangular block whose opposite sides have identical
sequences of symbols, so that this block can be considered as a unit (but rectilinear) piece, capable of cov-
ering the plane, (One obtains an"actual" torusby splicing the opposite sides in the aforementioned block.)

Let ® be the class of all collections of dominos over a fixed countable set of symbole (pieces) %.

The question was posed in [2] of the existence of an algorithm for recognizing realized collections in
class ®. It was proven in [1] that the problem of recognizing such collections (the domine problem) is not
decidable.

Letv: & — N = {0, 1, 2, ...} be an effective enumeration of the collections of class D ; let § be the
class of collections of © having solutions, but only nonperiodic ones; let § be the class of collections cover-
ing tori; finally, let ® be the class of collections having no solution. The basic result of this note is the
following

THEQREM 1. The sets v(3), v(%), v(R) are pairwise effectively indistinguishable,
We now formulate exact equivalents of the concepts introduced.

A finite set D of ordered quadruples of natural numbers is called a domino. The elements of D are
called types of dominos.

Let Q be the set of all integers; %; (i =1, 2, 3, 4) are the coordinate functions defined on @4, We shall
say that set D is realizable (covers the plane) if there exists a mapping ¢: Q% — D satisfying the conditions
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Each such ¢ is called a solution of set D,

We say that collection D covers a torus if there exists a periodic solution to collection D, i.e., a map-
ping ¢ satisfying (1) for which one can find natural numbers p;, p, > 0 such that

Vay[o(z 4 ps y) =0z, y) =g(=, y+ p)]. (2)

In this case, if p; and p, are the smallest positive numbers satisfying (2), the solution ¢ is called (p;, py)-
periodic.

To prove the undecidability of the domino problem, R. Berger used Turing machines. We adopt the
following variant of the Turing machine, more appropriate for our aim.

These machines must have two tape symbols S; and S;, and the set of internal states of each machine
will be a finite subset of some fixed (effectively generated) countable set £ (machines over ¢) having three
special symbols: q; (the initial state), g_; and g, (the halting states).

We assume that the machines always begin operation in state g, while scanning a cell with the symbol
Sy, while, when it is convenient, we can always "splice" to the tape (only) on the right a new cell containing
S,- We further assume that no machine, finding itself at the leftmost cell, can receive a command fo move

left. The machines can halt only in states q_; and g, while there are no programs which begin with these
symbols.

We consider the class of all machines over ¢ (class M). Let u: M — N be an effective enumeration
of machines of class M; let S' be the class of perpetually operating machines of M; &' the class of ma-

chines stopped in state q_;; %' the class of machines halted in state q;. The basis for the proof of Theorem
1 is the well-known (cf. [3])

LEMMA 1. Sets u(3), u(§), w( %) are pairwise effectively indistinguishable.

Adding to the construction of Berger, we specify an algorithm corresponding to each machine Z of
M a set Dy of D in the following way: if Z€ § then Dy € 3; if Z € §" then Dy € ¥; if Z € %', then Dy € R,
From the existence of this algorithm and from Lemma 1, Theorem 1 follows immediately.

Proof of Theorem 1. To the set of skeletal prototypes ([1], Table 2), we add the prototypes 2Td, 2Tu,
8T, 9T, 10T, and to the collection of forms of machine prototypes ([1], Table 6), we add form 8Tm (cf.
Fig. 1), where the T signals are new, being common to these, and only these, prototypes. The T signals
oceur on different levels: in the skeletal prototypes, 2Tu and 10T are higher than 2Td, 8T, and 9T. The
corresponding channels, which are specially derived, are common with the analogous channels of the ma-
chine prototypes of form 8Tm.

To the definition of skeletal set K ({1], Table 4) at points {c¢) and (d}, it is necessary to add the follow-
ing constraints;

1) skeletal prototype 8T forms a product with selecting prototypes 10p-14p, and only with them;
2) skeletal prototype 9T forms a product with selecting prototype V13, and only with it;
3) skeletal prototype 10T forms a product with selecting prototype H12, and only with it.
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The corresponding constraints for prototypes 2Td and 2Tu are obtained automatically,

The definition of collection D7z ([1], Table 7)in paragraph (b) is augmented by the constraint: the ma-
chine prototypes of form 8Tm form products only with K~prototypes having skeletal prototype 2 and select-
ing prototypes 10p-14p.

LEMMA 2. 1) If machine 7 operates perpetually, collection Dy has a solution, but only a nonperiodic
one.

2) If Z arrives at state gq_y, Dy has a periodic solution,
3) If Z arrives at state q;, Dz has no solution.

Proof. 1) Let Z never halt. Then, for no n = 0 does its n-configuration contain symbol ¢,. Therefore,
as in [1], signals leaving from the lower part of any growing n~register enter into the upper part of its re-
ceiving (n + 1}-register, The machine configurations do not contain the symbol q_, either, from which it
follows (analogously to the proof of R, Berger in [1], section 4.2,3) that in the plane solution of collection
Dy there cannot appear a piece having machine prototype 8Tm. Since signals of this, and only this, proto-
type can connect T-gignals occurring on different levels in skeletal (registor) prototypes 8T, cn one hand,
and 2Tu (or 10T) on the other, in no register does a T-signal appear,

For a T-signal which occurs in skeletal prototypes necessarily in conjunction with R-signals, there
remains (by virtue of Lemmas 3-4 and addition 1 of [1]) a unique possibility of appearing in (some) solutions
of collection Dy, existing by virtue of Theorem 3-3 of {1]: in the form of an infinite signal in conjunction
with an infinite R-signal in the series comprised of the pieces having skeletal prototypes only 2Td or only
2Tu. But such a situation, admissible in 1], does not enter into the proofs of Theorems 3-6 of {1}, from
which follows the necessity of nonperiodic solutions for collection Dy.

2) At the moment n, let machine Z halt at state g_,. The q_isj—signal from the lower part of a grow-
ing (n + 1)-register either terminates at a piece with machine prototype 8 in a decaying (n + 2)-register,
having selection symbol 12, 21, or 22, or is changed to a horizontal T-signal in a piece with machine proto-
type of form 8Tm in an (n + 2)-register with selection symbol 11, This last register must be constructed
from skeletal prototypes with T-signals, i.e., must again be decaying. Figure 2 shows such a 4-register
appearing in any solution of collection Dy, where Z has the program (omitting *nonworking® commands}:
d;5)Rdy, 9;5¢Rq-;. (Under the register are the numbers of the corresponding skeletal prototypes; the select-
ing signals and basis numbers are omitted.)

Thus, there will be no successors for any of the (n + 2)-registers, It is not hard to see that if all,
besides the T, skeletal and selecting signals belong to some iterative construction ([1], section 3.2.5), then

this solution is (2%%5 2™ *4_periodic,
s P

3) Let Z halt at state q; at moment n. In the lower parts of the growing (n + 1)-registers there must
appear a ¢, Sj-signal which will add the leading prototypes to the upper parts of (n + 2)-registers. But,
among the machine prototypes, there is no prototype capable of forming a product with the K~prototypes of
a growing register and having the symbol qSj on the upper level. Lemma 2 is proven.

As already mentioned, Theorem 1 follows from Lemmas 1 and 2.

The authors wish to thank R. Berger for his generous provision of a copy of his dissertation,
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