
When a Little Nondeterminism Goes a Long Way:
an Introduction to History-Determinism

Udi Boker,
Reichman University, Herzliya, Israel

Karoliina Lehtinen,
CNRS, Aix-Marseille Université, LIS, Marseille, France

History-deterministic automata are an intermediate automata model, in between deterministic and nonde-
terministic ones. An automaton is history-deterministic if its nondeterminism can be resolved on-the-fly, by
only taking into account the prefix of the word read so far. This restricted form of nondeterminism yields
a class of automata that retains some of the algorithmic properties of deterministic automata, while also
enjoying some of the power of nondeterminism.

History-determinism has received a lot of attention in the past few years and this article surveys some
of the recent developments on the topic. It aims to showcase some of the key constructions and techniques
involved in this line of research, while remaining fairly informal.

We begin with a roughly chronological overview of research on history-determinism, intended as a quick
reference to some of the main results on the subject. We then move onto a more detailed discussion of what
are, in our view, the key aspects of history-determinism, highlighting throughout questions that remain
open. Like any survey written on a topic that is actively worked on, this article aspires to be out-of-date as
soon as it is published. We hope that it will remain useful as a gentle, if incomplete, introduction to the topic.

Additional Key Words and Phrases: history-determinism, good-for-games automata, nondeterminism

1. A BRIEF HISTORY OF HISTORY-DETERMINISM
Most nondeterministic automata models are more expressive or more succinct than
their deterministic counterparts; however, this comes at a cost, as deterministic au-

Research of Udi Boker supported by the Israel Science Foundation grant 2410/22.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© 2023 ACM 1539-9087/2023/01-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM SIGLOG News 24 January 2023, Vol. 10, No. 1

tomata tend to have better algorithmic properties. Intermediate models that allow
some restricted forms of nondeterminism aim to combine some of the algorithmic ben-
efits of determinism with the increased power of nondeterminism, thus enjoying (some
of) the best of both worlds. History-determinism is one such intermediate model.

History-determinism, as it is understood today, has its roots in several indepen-
dently invented notions. Kupferman, Safra and Vardi studied, already in 1996 [Kupfer-
man et al. 2006], languages of tree automata derived from word automata, leading to a
notion that has been later referred to as automata that are good-for-trees [Boker et al.
2013]. Independently, in 2006, Henzinger and Piterman observed that an automaton
need not be deterministic for it to be usable in the classical algorithm to solve games
with ω-regular winning conditions [Henzinger and Piterman 2006], which is a key part
of solving the reactive synthesis problem, known as Church synthesis. This algorithm
consists of taking the product of the game to be solved with a deterministic automaton
recognising its winning condition in order to reduce it to a game with a standard win-
ning condition, such as a parity game. Henzinger and Piterman’s insight was that some
nondeterministic automata, which they called good-for-games, have sufficient compo-
sitional properties for this reduction to work without the need to determinise them
first. Finally, Colcombet introduced the term history-determinism in his work on reg-
ular cost-automata [Colcombet 2009]. In this setting, nondeterministic automata are
strictly more expressive than deterministic ones, and history-deterministic automata
provide a useful intermediate model, as they express the same functions as nonde-
terministic ones, while allowing for better algorithmic manipulations, in particular
thanks to their compositional properties.

Since then, these classes of automata have received their fair share of attention, not
least because of their relevance to reactive synthesis. Initially, they were mainly stud-
ied in the ω-regular setting, where, despite differences in their definitions, the notions
of good-for-trees, good-for-games and history-determinism are equivalent [Boker and
Lehtinen 2019]. Although the latter two terms have been used largely interchange-
ably, the two definitions do not coincide in all settings, as we shall discuss further
down; therefore, in this survey, we adopt the term history-determinism, which best
captures the intuition of the definitions we use. Indeed, we say that an automaton is
history-deterministic if its nondeterminism can be resolved on-the-fly, based only on
the history of the input word, without knowledge of the suffix still to be read. This is
in contrast to general nondeterministic automata, in which nondeterminism is often
resolved by guessing something about the future of the word (See Fig. 1). We call the
function witnessing history-determinism a resolver.

q0 q1 q0 q1

A A′

a

a, b a
a

a, b a

b

Fig. 1. Nondeterministic coBüchi automata that recognise the language of ω-words with a finite number of
b’s. A run is accepting if it eventually remains in the accepting state q1. A is not history-deterministic as it
needs to move to q1 after the last b has been seen—information which depends on the future, rather than the
history, of the input. A′ on the other hand is history-deterministic: to build an accepting run on any word in
the language, it suffices to eventually choose, whenever the automaton is in state q0, the transition into q1.

Initially, it was not clear whether this form of nondeterminism brought much to the
table. Indeed, the observant reader might have noticed that the history-deterministic
automaton A′ in Fig. 1 is just a deterministic automaton with an additional transition
that does not affect the language of the automaton; it is determinisable by pruning

ACM SIGLOG News 25 January 2023, Vol. 10, No. 1

(DBP) [Aminof et al. 2010; Boker et al. 2013]. It took until 2013 for Boker, Kuperberg,
Kupferman and Skrzypczak to establish examples of history-deterministic automata
that are not DBP [Boker et al. 2013], one of which is reproduced in Fig. 2.

q0

q1

q2

q3

q4

q5

q6

a

a

b

a

a

b

a

a

a

b

b

a

Fig. 2. A history-deterministic coBüchi automaton from [Boker et al. 2013], where dotted transitions are
rejecting, that is not DBP. It recognises the language (aa+ ab)∗[aω + (ab)ω]. From q0, the automaton must
guess whether the next letter is an a or a b in order to access the second part of the automaton, which is
deterministic. It is not DBP, since pruning the transition from q0 to q1 does not allow to accept aω , and
pruning the transition from q0 to q2 does not allow to accept (ab)ω . At first glance, it also does not seem
to allow for a history-deterministic behaviour. However, any word that is in the language must eventually
settle on whether the letters at even positions are a’s or b’s. Using this fact, the resolver can, from the initial
state, alternate between guessing that the next letter is a (choosing q1) and b (choosing q2). Then, if the
resolver is always wrong in its guess, the word is not in the language, while on any word in the language,
the resolver succcessfully builds an accepting run. For a Büchi example, see [Boker et al. 2013, Fig. 2].

Despite not being DBP, the automaton in Fig. 2 is still equivalent to a determinis-
tic automaton of the same size. Colcombet conjectured in his habilitation that this is
always the case for history-deterministic ω-regular automata [Colcombet 2013, Con-
jecture 7.27]. In 2015, Kuperberg and Skrzypczak disprove this, showing that history-
deterministic (coBüchi) automata can be exponentially more succinct than their deter-
ministic counterparts [Kuperberg and Skrzypczak 2015] (see Section 5). With this key
insight, history-deterministic automata became very interesting indeed: they enable,
for some specifications at least, the synthesis problem to be solved with the complex-
ity of solving parity games—quasipolynomial at the moment [Calude et al. 2017]—
bypassing an expensive and difficult determinisation step that leads to an inevitable
exponential blow-up.

The notion of history-determinism generalises naturally to alternating au-
tomata [Colcombet 2013; Boker and Lehtinen 2019], by requiring that both the non-
deterministic choices of an automaton, and the dual, universal choices, are history-
deterministic. Similarly to the nondeterministic setting, history-deterministic alter-
nating parity automata enjoy all the same compositional properties as their nonde-
terministic counterparts and can also be used directly to solve games. They can be
exponentially more succinct than nondeterministic parity automata, but also enjoy
a single-exponential determinisation procedure [Boker et al. 2020b]. An alternating
automaton can also be half history-deterministic, if only its nondeterministic (but
not universal) choices are history-deterministic. Although this class of automata does
not enjoy all of the compositional properties of fully history-deterministic automata,
some problems, such as model-checking whether all executions of a system are in the
language of the automaton, are no harder for this class than for deterministic au-
tomata. Unfortunately, recognising half history-deterministic alternating automata is
PSPACE-hard [Boker et al. 2020b].

History-deterministic ω-regular automata share additional useful properties with
deterministic ones, some of which relate to typeness of automata, namely to the ex-
istence of automata of different types over the same structure recognising the same

ACM SIGLOG News 26 January 2023, Vol. 10, No. 1

language [Boker et al. 2017]. Recently, they have been further shown to have proper-
ties related to minimality that make them appealing as an alternative for determin-
istic ones. Radi and Kupferman showed that transition-based history-deterministic
coBüchi automata enjoy PTIME minimisation [Abu Radi and Kupferman 2022]; in con-
trast, the problem is NP-complete for deterministic automata and state-based history-
deterministic ones [Schewe 2020]. Furthermore, Casares, Colcombet and Lehtinen
showed that the size of a minimal transition based history-deterministic Rabin au-
tomaton recognising a Muller language L coincides with the size of the memory that
winning strategies need in games with winning condition L [Casares et al. 2022]; in
contrast, the size of a minimal deterministic automaton coincides with the size of the
chromatic memory needed in these games, that is, the size of a memory that only sees
the labels of the game, rather than the states visited [Casares 2022]. These results
highlight the fundamental nature of history-determinism, on par, in many ways, with
deterministic automata.

While the early work on history-determinism focused on ω-regular automata and
regular cost functions, the differences between determinism and nondeterminism are
even more significant with more general models. For pushdown automata, for example,
nondeterminism is more expressive than determinism, and for languages recognised
by deterministic pushdown automata, nondeterministic ones can be arbitrarily more
succinct [Hartmanis 1980; Valiant 1976]. On the algorithmic side, however, problems
such as universality and reactive synthesis are undecidable for nondetermistic push-
down automata, while they are EXPTIME-complete for deterministic ones [Hopcroft
et al. 2007]. Intermediate models, such as history-determinism, have the potential
to combine some of the best of both worlds. Lehtinen and Zimmermann first showed
that history-deterministic ω-pushdown automata are indeed more expressive than de-
terministic ones, while retaining the EXPTIME decidability of synthesis and univer-
sality [Lehtinen and Zimmermann 2022]. With Guha and Jecker, they then showed
that this is already true on finite words, and that futhermore, history-deterministic
pushdown automata are at least exponentially more succinct than their deterministic
counterparts [Guha et al. 2021]. While history-deterministic pushdown automata have
poor closure properties, history-deterministic visibly pushdown automata, which are
exponentially more succinct but not more expressive than deterministic ones, some-
what mitigate these issues: they are closed under intersection, union and complement,
and, unlike for general pushdown automata, the problem of deciding whether a visibly
pushdown automaton is history-deterministic is decidable, and even in EXPTIME.

Another setting in which nondeterminism is more expressive than determinism is
the quantitative one [Chatterjee et al. 2010]. There, automata no longer recognise
languages, but rather, they define functions from words to values, and enable the mod-
eling of various non-Boolean aspects of the world. Boker and Lehtinen generalised the
definitions of history-determinism and good-for-gameness to the quantitative setting,
and observed that unlike in the ω-regular setting, these two notions no longer coincide:
while history-determinism implies good-for-gameness, the converse is not true [Boker
and Lehtinen 2021]. In addition to these two distinct notions, in the quantitative
setting it also makes sense to consider notions of threshold history-determinism and
threshold determinisability by pruning, and even approximative history-determinism.
Whether some of these notions coincide depends largely on the type of quantitative
automata considered (see Figure 2 in [Boker and Lehtinen 2021]).

Unfortunately, recognising history-determinism is not always easy. Henzinger and
Piterman proposed an EXPTIME algorithm [Henzinger and Piterman 2006], based
on checking whether an automaton simulates an equivalent deterministic one. The
cost of determinisation dominates the complexity of this procedure. Kuperberg and

ACM SIGLOG News 27 January 2023, Vol. 10, No. 1

Skrzypczak proposed a notion of joker game, which they used to give a polynomial
decision procedure to check the history-determinism of coBüchi automata [Kuperberg
and Skrzypczak 2015]. Bagnol and Kuperberg later extended the one-token game of
[Löding and Repke 2013] into a two-token game, which, they showed, characterises
history-determinism for Büchi automata [Bagnol and Kuperberg 2018] and is solvable
in PTIME. Later, Boker, Kuperberg, Lehtinen and Skrzypczak showed that the same
algorithm also works for coBüchi automata [Boker et al. 2020a]. Bagnol and Kuperberg
conjectured that it is also correct for parity automata, and therefore for all ω-regular
automata, a conjecture that remains open to this day.

As in the Boolean setting, the problem of deciding whether a quantitative automaton
is history-deterministic is non-trivial. It is particularly relevant, as it is polynomially
equivalent to a variant of the quantitative synthesis problem called best-value synthe-
sis (see Section 7.3). Boker and Lehtinen extended token games to the quantitative set-
ting, and showed that the one-token game can be used to decide history-determinism
of all quantitative automata on finite words, Safety and Reachability automata on in-
finite words, as well as some quantitative automata on infinite words, specifically
discounted-sum and Inf automata [Boker and Lehtinen 2022]. They further showed
that the two-token game can also be used to decide the history-determinism of LimSup,
LimInf and Sup automata on infinite words.

The study of history-determinism continues, and extends to other models, such as
timed [Henzinger et al. 2022; Bose et al. 2022] and Parikh automata [Erlich et al.
2022], as well as one-counter nets [Prakash and Thejaswini 2022]. Exploring how it
can be exploited in specification logics, for instance in fragments of LTL [Iosti and
Kuperberg 2019], is another promising direction. Yet many fundamental questions
remain open, even in the Boolean setting. We will highlight some of these throughout
this survey. In the rest of this article, we aim to introduce some of the key notions
and techniques that appear in the body of work on history-determinism, as well as
our favourite examples of history-deterministic automata. We will keep our discussion
fairly informal, emphasising the core ideas while referring the reader to the original
material for more precise definitions and proofs. A more technical exploration of some
of the material can also be found in [Kupferman 2023].

We start, in Section 2, with the definition of history-determinism, as originally pro-
vided for ω-regular automata, and as extended to other automata models. We con-
tinue, in Section 3, with the similarity and differences between history-determinism
and other notions, such as good-for-gameness. In Sections 4 and 5 we consider the
expressiveness and succinctness, respectively, of history-deterministic automata com-
pared to deterministic and nondeterministic ones. In Section 6 we describe the cur-
rent techniques, which are mainly based on token games, used for deciding whether
a given automaton is history-deterministic. In Section 7 we describe some applica-
tions of history-determinism in model checking and synthesis. In Section 8 we discuss
the nature of resolvers, the strategies used for resolving nondeterminism in history-
deterministic automata, and wrap up in Section 9 with some concluding remarks.

2. DEFINING HISTORY-DETERMINISM
We start with the basic definition of history-determinism, as was originally pro-
vided for nondeterministic ω-regular automata, and continue with a discussion of how
history-determinism adapts, or not, to more involved automata models. In the quanti-
tative setting, we also mention threshold- and approximative-history-determinism. To
keep our discussion of this large variety of models manageable, we only give partially
formal definitions.

ACM SIGLOG News 28 January 2023, Vol. 10, No. 1

2.1. The basic definition of history-determinism for nondeterministic (ω-)regular automata
A nondeterministic (ω)-regular automaton is a structure A = (Σ, Q, I, δ, α), where Σ is
an alphabet; Q is a finite nonempty set of states; I ⊆ Q is a set of initial states; δ : Q×
Σ → 2Q is a transition function, and α is an acceptance condition. An automaton is
deterministic if I is a singleton, and for every state q and letter σ, we have |δ(q, σ)| ≤ 1.
A run of the automaton is a path over its states (or transitions), starting with an initial
state and continuing along the transition function. A run is accepting if it satisfies the
acceptance condition; a word is accepted by A if there is an accepting run on it; and
the language that A recognises, denoted by L(A), is the set of words that it accepts.
Two automata A and A′ are equivalent, denoted by A ≡ A′, if they recognise the same
language. In the case of regular automata, the acceptance condition α is a subset of
Q, and a run is accepting if it ends in a state in α. In the case of ω-regular automata,
there are various acceptance conditions for whether an infinite run is accepting, among
which are Büchi, coBüchi, parity, and many more. (More on acceptance conditions of
ω-regular automata can be found, for example, in [Boker 2018].)

We provide the following definition of history-determinism, based on a letter game,
which was introduced by Henzinger and Piterman [Henzinger and Piterman 2006],
but also coincides with Colcombet’s notion of translation strategies [Colcombet 2013].

Given an ω-regular automaton A, the letter game on A is a two-player win-lose game
between Adam and Eve in which Adam builds a word w, letter by letter, and Eve builds
a run of A over w, transition by transition. More precisely, at turn i:

— Adam chooses a letter ai in the alphabet Σ of A;
— Eve chooses a transition τi of A over ai.

In the limit, a play consists of the word w = a0a1 . . . and the sequence of transitions
ρ = τ0τ1 Eve wins the play if either w /∈ L(A) or ρ is an accepting run of A over w.
We say that A is history-deterministic (HD) if Eve has a winning strategy in the letter
game over A, which we denote by HD(A).

In the case that A is regular, namely runs on finite words, the winning condition is
a safety condition: at the end of each turn, if the word built so far is in L(A), the run
built so far must be an accepting run of A over it. Equivalently, Adam has the choice
to end a play at any turn to check the winning condition.

Since many different games and strategies will feature in this article, we differ-
entiate the strategy that witnesses history-determinism by calling it a resolver. For
a less anthropomorphic definition, a resolver can also be seen simply as a function
r : Σ∗ × Σ → ∆, where ∆ is the set of transitions, that induces a run over every word
w, such that the induced run is an accepting run of A over w whenever the word w
is in L(A). An automaton is then history-deterministic if it has a resolver. For more
involved automata models, discussed below, the history will need to contain more than
just the prefix of the word read so far, so in general we view the resolver as a function
r : ∆∗ × Σ → ∆. In the presence of ε-transitions, Eve must be allowed to play not just
one transition, but a sequence of transitions in the letter-game.

2.2. External memory and extended input, transitions and acceptance condition
As long as the input is ordered, in the sense of having the “history” of what has been
read and the “future” of what is to be read (as opposed to two-way automata for ex-
ample), and all of the run information is captured by the transitions, the definition of
history-determinism, based on the letter game, is generally the same as in Section 2.1.

For example, having an input over an infinite alphabet (like timed [Henzinger et al.
2022] or register automata) or having infinitely many states (like a labelled transi-
tion system [Henzinger et al. 2022]) makes no difference; in pushdown or counter au-

ACM SIGLOG News 29 January 2023, Vol. 10, No. 1

tomata, the transition history keeps track of changes in the counter or stack, providing
the resolver with this extra information [Guha et al. 2021, Section 3]; and in Parikh au-
tomata, the transition history contains the traversed number vectors, while the more
involved acceptance condition follows as is to the letter game [Erlich et al. 2022].

On more complex inputs, such as trees, graphs, and other structures, the definition
of “history” and “future” is not as straightforward. We are not aware of existing defi-
nitions of history-determinism in these cases. For tree automata, if the path from the
root to the current node is the history, and Adam is allowed to choose both the next
letter and the next child in the letter game, one gets a definition that relates to good-
for-trees automata (cf. [Kupferman et al. 2006; Boker et al. 2013]). Another approach
is the notion of guidable automata [Colcombet and Löding 2008], which are automata
that can simulate (with a positional strategy) any automaton for the same, or smaller,
language.

Regarding two-way automata, to our understanding history-determinism does not
fit such models, as there is no sense of “history” and “future” in the word (at least on
finite words), which can be read back and forth.

2.3. Alternation
As specification formalisms, alternating automata are closer to logics, as they allow
both nondeterministic choices (that correspond to logical disjunctions) and universal
choices (that correspond to logical conjunctions).

It turns out that history-determinism extends quite naturally to alternating au-
tomata [Colcombet 2013; Boker and Lehtinen 2019]. The definition of the letter game
can be adjusted so that Adam is in charge of resolving universal choices, allowing him
to try sabotaging Eve’s attempt to build an accepting run. Then, the existence of a
winning strategy for Eve determines whether the nondeterminism in an alternating
automaton is history-deterministic. However, this asymmetrical definition, which we
call half-history-determinism, only preserves the winner of one-player games. To re-
gain full compositionality, we must ask also for the dual: the universal choices must
also be history-deterministic. This can be defined by requiring Adam to have a win-
ning strategy in the dual letter game, in which Eve plays letters in order to build
a word that is not in the language of the automaton, and Adam attempts to resolve
universal choices to build a rejecting run transition by transition, while Eve gets to
resolve nondeterministic choices. Since alternating automata are easy to complement
syntactically, this is equivalent to the nondeterminism in the syntactic complement
automaton being history-deterministic. If both the nondeterminism and universality
are history-deterministic, we call the alternating automaton history-deterministic, and
this ensures its compositional properties with respect to both games and other alter-
nating automata [Colcombet 2013; Boker and Lehtinen 2019].

While defining history-determinism for alternating ω-regular automata is pleasingly
natural, it might get trickier for more complex alternating models. For example, ε-
transitions tend to make alternating automata asymmetric (is an infinite ε-sequence
accepting or rejecting?); this breaks the duality between nondeterminism and univer-
sality, and affects possible definitions of history-determinism.

2.4. Quantitative setting
A quantitative1 automaton A extends a Boolean one by having real weights on tran-
sitions and a value function Val : R∗ → R or Val : Rω → R, which assigns real values
to runs instead of acceptance/rejection [Chatterjee et al. 2010]. It is then called a Val-
automaton (e.g., a Sum-automaton). The value A(w) of A on a word w is the supremum

1We follow the distinction suggested in [Boker 2021] between “quantitative”and “weighted” automata.

ACM SIGLOG News 30 January 2023, Vol. 10, No. 1

(or infimum) of Val(π) over all runs π of A on w. Automata A and A′ are equivalent
if they realise the same function from words to real numbers. Various value functions
are used in the literature, among which are Sum, LimInf, LimSup, and many others.

History-determinism. To adapt the letter game to the quantitative setting [Boker
and Lehtinen 2021], it suffices to adjust its winning condition: instead of Eve having
to build an accepting run, she now has to build an optimal run that has the value of A
on the word built by Adam. One immediate consequence of this is that, since the value
of a word is the supremum among its runs, it might be the case that an automaton is
not history-deterministic simply because there is no run with the value of the word.
For alternating automata, a similar extension applies also to the dual letter game, in
which Adam now has to build a non-optimal run.

Threshold history-determinism. Another, related but different, generalisation of
history-determinism to the quantitative setting is the following. An automaton is
threshold history-deterministic [Boker and Lehtinen 2021] if for all threshold values t,
Eve has a strategy in the threshold letter game, in which she only needs to guarantee
that if the word built by Adam has value at least t, then the run built by Eve also
has value at least t. In other words, the automaton can have different resolvers for
each threshold value. The implication in the winning condition is reminiscent of the
Boolean case; indeed, this notion corresponds to all the Boolean automata derived by
adding a threshold acceptance condition to the quantitative automaton (i.e., a run is
accepting if it has value at least t) being history-deterministic, in the Boolean sense.

While every history-deterministic automaton is also threshold history-deterministic,
the converse is generally false, as demonstrated in Fig. 3. Observe that this counter-
example only requires three distinct values, and can easily be implemented with vir-
tually any value function.

Approximation. Moving from Boolean to quantitative automata allows for approxi-
mate solutions, which are important in areas such as verification, with inherently hard
problems. Intuitively, an automaton is approximatively history-deterministic if it has
a resolver that results in runs that are optimal up to the required approximation.

Various works on approximative history-determinism appear in the literature,
among which are Colcombet’s original definition of history-determinism [Colcombet
2009] with respect to cost-function automata (more on history-determinism in the set-
ting of cost-function automata can be found in [Colcombet and Löding 2010; Colcom-
bet and Fijalkow 2016]), results in [Hunter et al. 2016; 2017; Filiot et al. 2017], where
the approximative notion of history-determinism is called r-GFGness, and results in
[Aminof et al. 2010; Hunter et al. 2016], where the notion lies somewhere between
approximative determinisability by pruning and approximative history-determinism.

Weighted automata. As opposed to quantitative automata, discussed above, a
weighted automaton is defined with respect to a semiring (or more generally with
respect to an (ω-)valuation monoid), and multiple transitions over the same input let-
ter from the same state need not be interpreted as a nondeterministic choice; their
interpretation is given by the semiring-summation operation. It therefore seems that
history-determinism does not fit general weighted automata.

3. HISTORY-DETERMINISM VS. GOOD-FOR-GAMENESS AND OTHER NOTIONS
History-determinism is related to various other notions, the best-known of which is
good-for-gameness. Among the others are determinisabiltiy-by-pruning and good-for-
“something”, where this something can be automata, trees, MDPs, and other entities.

ACM SIGLOG News 31 January 2023, Vol. 10, No. 1

A

q0

q1

q2

q3
Σ:0

Σ:0

Σ:1

a :2, b
:0

Σ:0
B

s0

s1

s2

s3

s4

Σ:0

Σ:0

Σ:1

a :
2

b :0

Σ:2

Σ:0

Fig. 3. Automata that are threshold-history-deterministic and good-for-games, but not history-
deterministic [Boker and Lehtinen 2021]. The automaton A can be seen, for example, as a Sum/DSum/Sup-
automaton, and B as a Avg/LimSup/LimInf/LimSupAvg/LimInfAvg-automaton. Taking A as a Sum automa-
ton, for instance, it is not history-deterministic, since if the nondeterminism in q0 is resolved by going to q1,
the resulting automaton is not equivalent to A with respect to the word a∞, and if it is resolved by going
to q2, the resulting automaton fails on ab∞. On the other hand, A is threshold history-deterministic: For a
threshold up to 3, the nondeterminism is resolved by going to q1 and for a threshold above 3 by going to q2.

An automaton A is determinisable-by-pruning if we can obtain an equivalent deter-
ministic automaton by removing some of A’s transitions [Aminof et al. 2010; Boker
et al. 2013].

An automatonA is good for some entitiesE, e.g., games or Markov decision processes
(MDPs), if the composition of A with every entity E whose definition is based on the
language or function that A realises yields an entity E ×A that is equivalent to E.

For example, a Boolean automaton A over the alphabet Σ is good-for-games if for
every win-lose gameGwith Σ-labeled transitions and winning condition L(A), we have
that G and G × A have the same winner [Henzinger and Piterman 2006; Boker and
Lehtinen 2019]. When A is quantitative, we require that for every zero-sum game G
with Σ-labeled transitions, in which the payoff (value) of a play generating a word w is
A(w), we have that G and G×A have the same value [Boker and Lehtinen 2021].

Generally speaking, we have the following relations between the notions.

— Determinisability by pruning⇒1 history determinism⇒2 good-for-gameness ≡3

good-for-automataness.
(1) Determinisability by pruning is a special case of history-determinism, restricting

the resolver to be positional in the automaton states.
(2) A resolver for an automaton A can be combined with an optimal strategy in a

game G, giving an optimal strategy in the game G×A [Henzinger and Piterman
2006; Boker and Lehtinen 2021].

(3) A game is a special case of an alternating automaton B, giving the implication
from right to left, while for every specific word w, the value of B on w is viewed
as a game, giving the implication from left to right [Boker and Lehtinen 2019,
Theorem 16].

— History determinism ⇒ good-for-MDPness. A resolver for A can be combined with an
optimal strategy for an MDP M , ensuring an optimal strategy in M ×A.

— Threshold-history-determinism ≡ good-for-gameness for classes of automata for which the
threshold letter-game is determined [Boker and Lehtinen 2021].

— Good-for-gameness 6⇒ history determinism [Boker and Lehtinen 2021].

While history-determinism and good-for-gameness do coincide for (ω-)regular au-
tomata [Boker and Lehtinen 2019], this is not the case for quantitative automata.
The gist of this separation is that in the composition with a quantitative game, Eve
knows the value of the game, which gives her information on which value she needs
to aim for when resolving the nondeterminism of the automaton, as in the case of
threshold-history-determinism. Hence her strategy to resolve the nondeterminism of
the automaton might depend on the game it is composed with. In contrast, a resolver

ACM SIGLOG News 32 January 2023, Vol. 10, No. 1

for history-determinism is expected to build an optimal run on all words, without prior
knowledge about their value. (See Fig. 3.)

Finally, in the ω-regular setting, good-for-gameness with respect to finite, infinite
and infinitely branching games are all equivalent. However, this is not necessarily the
case in general. For example, a pushdown automaton for the language a∗b that first
pushes an arbitrary number n of a’s onto the stack with ε-transitions and then reads
a at most n times followed by a b is obviously not history-deterministic, yet it is good
for finitely branching games: indeed, in a finitely branching game with winning condi-
tion a∗b, a winning strategy imposes a bound on the number of a’s that any play that
agrees with it can see; this bound can be used to push a sufficiently large number of
a’s onto the automaton’s stack. Then, history-determinism for pushdown automata on
finite words coincides with good-for-infinitely-branching-gameness, rather than good-
for-finitely-branching-gameness [Guha et al. 2022, Section 8]. For pushdown automata
on infinite words, the equivalence of history-determinism and good-for-gameness is
open.

4. EXPRESSIVENESS
In the ω-regular setting, the appeal of nondeterministic automata lies mostly in their
relative succinctness, when compared to deterministic ones, since all nondeterministic
(and alternating) ω-regular automata are determinisable to, for example, parity au-
tomata. However, beyond the (ω-)regular setting, nondeterminism can also increase
the expressiveness of automata models. This is the case, for example, for pushdown
automata, Parikh automata, timed automata, register automata and various quantita-
tive automata. This raises the question of the expressive power of history-determinism
in these automata models.

In this section we present two ideas which can be used in various settings to show
that history-deterministic automata are more expressive than deterministic ones. The
first works already for finite words, but so far has only been applied to pushdown and
Parikh automata. The second is based on the coBüchi acceptance condition, and hence
only makes sense for automata on infinite words, but can be adapted to many different
automata models.

4.1. Automata on finite words
For regular automata on finite words, history-deterministic automata are not inter-
esting in terms of expressiveness or succinctness, since they are all determinisable
by pruning [Kupferman et al. 2006; Morgenstern 2003]. However, when we consider
automata with unbounded memory, such as pushdown automata, or with a more struc-
tured acceptance condition, such as Parikh automata, history-determinism can become
more expressive than determinism. Indeed, a deterministic pushdown or Parikh au-
tomaton can only take part of the configuration into account to enable transitions: for
pushdown automata only the state and top stack symbol can affect the available tran-
sitions, while for Parikh automata, only the current state matters. However, a resolver
can use the whole configuration, including the stack contents or counter values, to re-
solve nondeterminism. We now exemplify how history-determinism can exploit this to
be more expressive than determinism.

The language used to separate deterministic and history-deterministic pushdown
automata is {anambk$ | k ≤ n ∨ k ≤ m} [Guha et al. 2021], consisting of two con-
secutive blocks of a’s, of some lengths n and m, followed by a block of b’s shorter than
either m or n. Intuitively, this language is not recognised by a deterministic pushdown
automaton since the hypothetical automaton would need to choose which block of a’s
to compare to the block of b’s. However, the nondeterministic pushdown automaton in
Fig 4 recognises this language. It pushes both a-blocks onto the stack, then nondeter-

ACM SIGLOG News 33 January 2023, Vol. 10, No. 1

q1 q2 p1 p2 f

a | push a

$ | push $ $

a | push a

$

$

ε | pop a b | pop a

ε | pop $

Fig. 4. A history-deterministic pushdown automaton recognising {anambk$ | k ≤ n∨k ≤ m} from [Guha
et al. 2021]. The state f is final.

ministically chooses whether to compare the b-block to the last a-block (at the top of
the stack), or to the first a-block (at the bottom of the stack).

This automaton is history-deterministic. Indeed, the only nondeterministic choice,
which occurs before reading the first b, does not depend on the length of the b-block
(i.e., the future of the word) since the resolver can always compare the b-block to the
longer of the a-blocks.

This automaton uses the stack to postpone the nondeterministic choice to the point
at which the resolver has all the required information for it. In contrast, a nondeter-
ministic automaton for the same language that only stores one (nondeterministically
chosen) of the a-blocks would not be history-deterministic. This way of using history-
determinism is not easy to adapt to other models, even to one-counter automata, which
can be seen as pushdown automata with a single stack symbol.

Open: Are history-deterministic one-counter automata on finite words more
expressive than deterministic ones?

Parikh automata, instead of adding a stack or counter to the automaton memory,
add a set of counters to the acceptance condition. More precisely, the automaton can
update a fixed set of counters along its run, however, the counter configuration is not
used to enable or dissable transitions; at the end of the run, the automaton accepts
if the counter configuration is in the semilinear set defining the automaton’s accept-
ing configurations. These recognise mildly quantitative languages, such as “is there a
prefix with more a’s than b’s”. This same language separates the classes of languages
recognised by deterministic and history-deterministic Parikh automata [Erlich et al.
2022]. Indeed, as with pushdown automata, the resolver has access to the whole con-
figuration, which allows it to guess the right prefix, while a deterministic automaton
can only access the counters to check for acceptance.

For other automata models, such as timed automata, no such argument can be made
as history-deterministic timed automata on finite words are determinisable [Hen-
zinger et al. 2022]. As we will see next, a different proof strategy can be used on infinite
words.

4.2. Automata on infinite words
On infinite words, the coBüchi acceptance condition seems particularly suitable for
exploiting history-determinism. The core idea here is that the automaton must guess
and check some infinitary behaviour. Using the coBüchi condition, the automaton can
improve the guess an unbounded but finite number of times. Then, if the infinitary
behaviour is such that there is a sequence of guesses that always converges to the
correct one, the guessing can be done in a history-deterministic manner. We illustrate
this somewhat abstract idea with a couple of concrete examples.

ACM SIGLOG News 34 January 2023, Vol. 10, No. 1

The following construction on one-counter coBüchi automata is inspired by Kuper-
berg and Skrzypczak’s argument on the succinctness of history-deterministic coBüchi
automata, described in Section 5.1. We consider an alphabet of pairs of increment (+),
decrement (−) and no-op (0) symbols:

{(
+
+

)
,
(
+
−
)
,
(−
+

)
,
(−
−
)
,
(
+
0

)
,
(
0
+

)
, . . .

}
. Words over this

alphabet consist of words of pairs that can be viewed as pairs of words over {+,−, 0}.
Every infix of each component word has an integer value, obtained by taking the dif-
ference between the number of +’s and the number of −’s. We say that a word over
{+,−, 0} is safe if it has no prefix with negative value. A word is eventually safe if it
has a safe suffix, or, equivalently, if there is a lower bound to the value of its prefixes.
Then, the language we are interested in, from [Lehtinen and Zimmermann 2022], is
the language of pairs of infinite words out of which at least one is eventually safe.

This language is not recognisable by a deterministic parity ω-one-counter (or push-
down) automaton as the hypothetical automaton would need to choose whether to
track the value of the first or the second component. (The proof of this statement is
somewhat trickier than the intuition would suggest, and we refer the reader to [Lehti-
nen and Zimmermann 2022] for details.)

(∗
∗
)

(∗
∗
)

(−
∗
)
,= 0

(
0
∗
)

(
+
∗
)
| inc

(−
∗
)
, 6= 0 | dec

(∗
0

)
(∗
+

)
| inc

(∗
−
)
, 6= 0 | dec

(∗
−
)
,= 0

Fig. 5. A history-deterministic coBüchi one-counter automaton. The left state updates the counter according
to the first component; the right according to the second. Dotted transitions are rejecting. A “∗” value stands
for all possible values.

It is recognised by the nondeterministic coBüchi one-counter automaton in Fig 5.
This automaton guesses nondeterministically (at any point) which component to
track, and, whenever the tracked value goes below 0, sees a rejecting transition. It
recognises the right language as whenever there is an eventually safe component, the
accepting run can start tracking the right component at the start of the safe suffix.
It is history-deterministic: the resolver can pick the component that has so far the
longest suffix that could be extended into an infinite safe suffix; then, if one of the
components is eventually safe, the resolver will eventually pick the right component
to track at a safe suffix, and thus construct an accepting run (see [Lehtinen and
Zimmermann 2022] for details).

A similar flavour of argument can be made for timed automata on infinite words, by
considering the language of timed ω-words in which an event eventually occurs at each
unit distance. The history-deterministic automaton for this language, in Fig. 6, must
guess which unit interval to track, and when it makes a mistake, it is punished by
a rejecting transition. The argument that it is indeed history-deterministic is similar
to the above: the resolver can choose the time stamp which has the longest streak of
unit-interval events so far, which guarantees that for any word in the language, the
resolver eventually chooses to track an infinite series of events at unit interval. Again,
the technically trickier part is to show that no deterministic timed automaton can
recognise this language; we refer the reader to [Bose et al. 2022].

ACM SIGLOG News 35 January 2023, Vol. 10, No. 1

a | reset c

a, c > 1

a
a, c < 1

a, c = 1 | reset c

Fig. 6. A history-deterministic timed coBüchi automaton that accepts words in which there is a time t such
that a occurs at t+ n for all integer n. The dotted transitions are rejecting.

Finally, a similar argument can be made in the context of register automata, for the
language of blocks of data such that some data-value eventually occurs in every block.

Despite the apparent flexibility of this argument, we note that it relies on the
coBüchi acceptance condition, and does not shed any light on, for example, the ex-
pressiveness gap between history-determinism and determinism in automata models
that are based on the Büchi acceptance condition.

While history-determinism can be more powerful than determinism, it is usually
not as powerful as full nondeterminism. Indeed, it is generally easy enough to imagine
languages that require the automaton to guess the future of the word, for instance by
implementing a dependence on the last, or last before something, letter. For example,
the language {aiajbkx | (x = 0 ∧ k ≤ i) ∨ (x = 1 ∧ k ≤ j)} is not recognisable by
a history-deterministic pushdown automaton as the nondeterminism depends on the
last letter, but must be resolved earlier.

4.3. Closure properties
Closure properties of history-deterministic automata, whether it is closure under
Boolean operations such as union, intersection and complementation in the Boolean
setting, or closure under algebraic operations such as minimum, addition and sub-
traction in the quantitative setting, largely depend on the model in question. Un-
like fully nondeterministic automata, for which union can easily be implemented by
adding a nondeterministic choice, history-deterministic automata are not necessar-
ily closed under union. However, for some automata models, such as Büchi automata
and timed automata, a product construction, similar to the one used for intersections,
can work. In contrast, this fails for pushdown automata, where the product of two
automata requires two stacks, and is therefore no longer a pushdown automaton.
History-deterministic visibly pushdown automata, on the other hand, are closed un-
der union and intersection without exponential blow-up because the stacks of the two
automata can be unified into one.

5. SUCCINCTNESS
One of the appeals of history-deterministic automata is that they can, for some lan-
guages, be remarkably more succinct than any equivalent deterministic automaton.
In this section we give an overview of known results on the succinctness of different
history-deterministic models, when compared to deterministic ones and when com-
pared to nondeterministic ones. We also discuss what happens when alternation is
added to the mix.

5.1. Between determinism and history-determinism
The coBüchi case. The first result exhibiting the succinctness of history-

deterministic automata, and, arguably, one of the seminal results demonstrating the
relevance of history-determinism, is due to Kuperberg and Skrzypczak [Kuperberg and
Skrzypczak 2015]. The language they propose operates over an alphabet of partial per-
mutations over [n] (encoded into one of constant size 3); a sequence of letters can be

ACM SIGLOG News 36 January 2023, Vol. 10, No. 1

seen as a braid of n parallel threads, some of which might occasionally be broken, as
illustrated in Fig. 7. Then, the languages Ln of interest consist of the braids of width
n that contain an infinite thread.

1

2

3

n

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 . . .

Fig. 7. A prefix of a word in Kuperberg’s and Skrzypczak’s language, represented as a braid of n threads.
Each letter is a partial permutation, corresponding to a segment of the braid. A word is in the language if
there is an infinite thread.

Kuperberg and Skrzypczak showed that any deterministic Rabin automaton recog-
nising this language must be of size exponential in n. However, a little bit of nondeter-
minism lets us avoid this blow-up. Indeed, this language is easy enough to recognise
with the nondeterministic coBüchi automaton C of size linear in n that nondetermin-
istically chooses a thread to follow, and then uses the coBüchi condition to check that
it is eventually infinite (see Fig. 8). This automaton, as the astute reader may sus-
pect, is history-deterministic. Indeed, a resolver must guess which thread to follow,
and eventually find an infinite thread, if it exists. One strategy to achieve this is to
always choose the longest uninterrupted thread so far; another one is to cycle through
the threads. In either case, whenever a word is in the language and there is an infinite
thread, the resolver will eventually choose it and thus build an accepting run of C.

1 2 3 n

σ | (i, j) ∈ σ

Σ

Fig. 8. A history-deterministic coBüchi automaton that is exponentially more succinct than any equivalent
deterministic one [Kuperberg and Skrzypczak 2015]. There is a non-rejecting transition between nodes i
and j for a letter σ if (i, j) is in the permutation represented by σ. These transitions allow the automaton to
track an uninterupted thread in a word. The dotted transitions (over all letters) are rejecting, and allow the
automaton to change which thread it is tracking.

Note that this argument crucially relies on the coBüchiness of the automaton. No
similar example is known to demonstrate the (at most quadratic [Kuperberg and
Skrzypczak 2015, Theorem 8]) succinctness of history-deterministic Büchi automata,
the existence of which remains an open problem.

ACM SIGLOG News 37 January 2023, Vol. 10, No. 1

Open: Is there a history-deterministic Büchi automaton that is (up to quadrat-
ically) smaller than any equivalent deterministic automaton?

For a while, this coBüchi argument seemed to be the only way in which history-
determinism could be used to achieve succinctness. However, moving away from the
regular setting to context-free languages opens up new ways to exploit the little non-
determinism allowed by history-determinism. Indeed, even on finite words, history-
deterministic pushdown automata can be at least exponentially more succinct than
any equivalent deterministic automaton [Guha et al. 2021].

The languages in question are the fairly typical languages of bad n-bit counters:
let cn be the good n-bit counter, for instance c3 = 000$001$010 . . . 111; the family of
languages Ln is then Ln = {w ∈ (Σn$)∗ | w 6= cn}.

Any deterministic automaton recognising Ln, whether pushdown or not, must be of
exponential size in n as it must, one way or another, remember n-bit counter values,
either in the state-space or in the stack alphabet, to then check that a counting error
occurs. However, a history-deterministic automaton can use the stack to store this
information instead: it can push the input onto the stack, until a counting-error occurs.
Then, the automaton nondeterministically identifies the counting-error and checks it
with a small finite-state automaton while popping the stack. The nondeterministic
choice consists of identifying when an error has occured and hence does not depend on
the future of the word. In this manner, the stack can be used to implement a limited
two-way type behaviour.

This example can be adapted to show that history-deterministic visibly pushdown
automata can also be exponentially more succinct than deterministic ones [Guha et al.
2021]. Since visibly pushdown automata allow an exponential determinisation proce-
dure, this result is tight.

5.2. Between history-determinism and nondeterminism
The other side of the equation is the succinctness gap between fully nondeterministic
automata and history-deterministic ones.

For ω-regular automata, it is clear that there is an exponential gap: The classic
language that shows the exponential gap between deterministic and nondeterministic
regular automata, which consists of finite words over {0, 1} in which the nth bit from
the end is a 1, can easily be adapted to infinite words, say by considering the nth bit
from the first # sign. As the language is recognised by a weak automaton, we get from
[Boker et al. 2017, Corollary 18] that every history-deterministic Rabin or Street au-
tomaton for the language is determinisable-by-pruning, and thus exponentially bigger
than the smallest nondeterministic automaton for the language.

In the case of pushdown automata this succinctness gap is particularly interest-
ing since nondeterministic pushdown automata can be arbitrarily more succinct than
deterministic ones [Valiant 1976; Hartmanis 1980]. This means that either nonde-
terministic pushdown automata can also be arbitrarily more succinct than history-
deterministic pushdown automata, or history-deterministic automata can be arbitrar-
ily more succinct than deterministic ones. However, so far, the only lower bound on
the succinctness gap between history-deterministic and nondeterministic pushdown
automata is double-exponential [Guha et al. 2021].

The language for this lower bound is again the above classic one, consisting of words
in which the nth bit from the end is a 1. Intuitively, a history-deterministic automaton
cannot predict when the word ends, so it must remember the n last letters. However,

ACM SIGLOG News 38 January 2023, Vol. 10, No. 1

a pushdown automaton can guess the nth bit from the end and count to n using the
stack and log n states (see [Guha et al. 2021, Theorem 5] for details).

Open: Can nondeterministic pushdown automata be arbitrarily more suc-
cinct than history-deterministic ones or can history-deterministic pushdown au-
tomata be arbitrarily more succinct than deterministic ones?

5.3. Alternating automata
Kuperberg and Skrzypczak’s proof of succinctness for coBüchi history-deterministic
automata (Section 5.1) can, without too much trouble, be extended to show that
history-deterministic alternating automata are exponentially more succinct than non-
deterministic and universal automata; For history-deterministic alternating par-
ity automata, which enjoy an exponential determinisation procedure, this bound is
tight [Boker et al. 2020b].

We have mentioned that an alternating automaton can also be half-history-
deterministic. It is open whether this intermediate class of automata can be double-
exponentially more succinct than deterministic automata, already in the parity case.

Open: Is there a history-deterministic alternating Rabin or Street automaton
or a half-history-deterministic alternating coBüchi, parity, Rabin, or Street au-
tomaton that is double-exponentially more succinct than any equivalent deter-
ministic automaton of the same type?

6. DECIDING HISTORY-DETERMINISM
In this section we turn to the issue of determining whether an automaton is history-
deterministic and discuss some of the tools and key arguments used in this line of
research. Recall that deciding history-determinism corresponds to deciding the winner
of the letter game that we used to define history-determinism: Adam builds, letter by
letter, a word w, and Eve must build, transition by transition, an accepting run over
w, in case that w is in the automaton’s language.

Hardness. As sketched in Fig. 9, deciding history-determinism of a T -automaton is
at least as hard as deciding the inclusion of a nondeterministic T automaton in a
deterministic one [Lehtinen and Zimmermann 2022, Theorem 6.1], or solving T -games
of the same type [Kuperberg and Skrzypczak 2015, Theorem 9]. In particular, deciding
history-determinism for pushdown automata is undecidable, and for parity automata
it is no easier than solving parity games with the same number of priorities.

The naive approach. If A is an ω-regular automaton, say a parity automaton, the
naive approach to solving the letter game, and therefore deciding history-determinism,
is to build an automaton that recognises its winning condition, which is ω-regular, and
solve it as an ω-regular game. However, the resulting decision procedure is in EX-
PTIME. Equivalently, Henzinger and Piterman decide the history-determinism of A
in EXPTIME by checking whether A simulates an equivalent deterministic automa-
ton [Henzinger and Piterman 2006]. This approach, in addition to being exponential,
only works if determinisation is possible, which is not always the case, for example for
timed automata, pushdown automata and various quantitative automata.

ACM SIGLOG News 39 January 2023, Vol. 10, No. 1

A

B

Σ

Σ

Σ \ {$}

Σ \ {$}

$

$

G′
Σ

Σ

a

b

b

a

Fig. 9. Constructions demonstrating the hardness of deciding history-determinism; grey states are accept-
ing sinks. Left: an automaton that is history-deterministic if and only if the language of the nondetermin-
istic automaton B is included in the language of the deterministic automaton A. Right: an automaton that
is history-deterministic if and only if Player I wins the game G, mimicked by the automaton G′, in which
moves of Player II are represented by letters and of Player I by choice of transitions.

6.1. Token games
The one-token-game was introduced by Löding in an algorithm for deciding
determinisability-by-pruning of a regular automaton, and was formally defined in
[Löding and Repke 2013, Definition 5] in the course of extending this algorithm into
a PTIME solution to the question of whether a regular automaton has an `-lookahead
delegator, for a given ` ∈ N. The game was later generalised by Bagnol and Kuper-
berg [Bagnol and Kuperberg 2018] to a k-token-game, for a given k ∈ N, in the course
of seeking an easier to decide characterisation of history-determinism.

The k-token-game resembles the letter game, except that instead of just building a
word, Adam also builds one or several (k to be precise) runs over the word, transition
by transition, by moving k tokens along transitions of the automaton. Crucially, in the
winning condition, the dependence on language membership is replaced by a condition
on the runs built by Adam.

More precisely the k-token game Gk over A proceeds as follow. At each turn i:

— Adam chooses a letter ai ∈ Σ;
— Eve responds with a transition τi over ai;
— Adam chooses k transitions τ1,i . . . τk,i over ai.

In the limit, a play consists of the word w = a0a1 . . . built by Adam, the run ρ =
τ0τ1 . . . built by Eve and the k runs ρj = τj,0τj,1 . . . , j ∈ [1, k] built by Adam. Eve wins
if either none of Adam’s runs are accepting runs over w or if her run is an accepting
run over w. In the quantitative setting, she wins if the value of her run is at least as
high as the maximal value among Adam’s runs. When clear from context, we overload
notation by writing Gk(A) both for the k-letter game over A and as a shorthand for
“Eve wins Gk(A)”.

Then, if one can show, for some class of automata, equivalence between the letter-
game and some k-token-game, as well as an efficient solution to the k-token-game, we
get an efficient procedure to decide history-determinism for this automata class. Due
to the following lemma by Bagnol and Kuperberg, we need not look beyond k = 2:

Key Lemma: For every automaton A, if Eve wins G2(A) then she wins Gk(A)
for all k.

Bagnol and Kuperberg originally showed that this holds for ω-regular au-
tomata [Bagnol and Kuperberg 2018, Theorem 14], but it is in fact much more gen-
eral, and holds for any common type of automata [Boker and Lehtinen 2022, Theorem

ACM SIGLOG News 40 January 2023, Vol. 10, No. 1

5.1]. The proof of this crucial lemma is rather clever. It proceeds by induction on the
number of tokens Adam has and argues that if Eve has a winning strategy σk against
Adam moving k tokens, and a winning strategy σ2 against Adam moving 2 tokens, she
can build a strategy to win against k + 1 tokens. To do so, she uses σk to play in Gk(A)
against Adam’s first k tokens, and records her own moves with an additional virtual
token. Then, to move in Gk+1(A), she uses σ2(A), imagining that Adam plays with the
virtual token and the last of Adam’s actual tokens. Then, σk guarantees that if one
of Adam’s first k runs is accepting, so is the run built by the virtual token. Finally,
σ2 guarantees that if either the last of Adam’s tokens or the virtual token traces an
accepting run, then Eve’s run is also accepting.

As a result we know that whenever some Gk characterises history-determinism, G2

will do the trick. However, for many automata types, even G1 suffices, as detailed in
Section 6.2 and summarised in [Boker and Lehtinen 2022, Table 1].

Interestingly, there is no automata model for which it is known that the 2-token
game does not characterise history-determinism2. In particular, Bagnol and Kuper-
berg conjectured that the 2-token game characterises history-determinism for parity
automata (and therefore for all ω-regular automata). Since the 2-token game on parity
automata with a fixed number of priorities is solvable in PTIME, if the conjecture holds,
it implies a PTIME algorithm for deciding history-determinism of parity automata, for
each number of priorities. This conjecture remains open to this day.

Open: Does G2 characterise history-determinism for parity automata?
For what automata models does G2 not characterise history-determinism?

6.2. When one token is enough
Bagnol and Kuperberg used G1 in [Bagnol and Kuperberg 2018] only to demonstrate
that it does not characterise history-determinism for Büchi or coBüchi automata with
the example depicted in Fig. 10. However, a couple of years after having been so speed-
ily dismissed, G1 proved its worth in characterising history-determinism in contexts
beyond ω-regular automata.

p qa

a, b a

Fig. 10. An automaton for “eventually only a’s”, where q is an accepting sink. The automaton is not history-
deterministic but Eve wins G1 by waiting until Adam’s token moves to q before moving her token to q.

First of all, G1 characterises history-determinism on regular automata [Löding and
Repke 2013], as well as on all quantitative automata on finite words and those on
infinite words having a safety acceptance condition [Boker and Lehtinen 2022]. To see
this, we argue as follows:

(1) A play for Eve in the letter game is losing if Eve chooses, after having built some
run ρ over a word v, a transition τ such that there is a continuation vu in the
language of the automaton without an accepting run with prefix ρτ . Indeed, when
she makes such a move, Adam can win by playing u. We call such a move non-
cautious, and a strategy cautious if it makes no non-cautious moves.

2We consider automata on ω-words; the story is different (and out of our scope) for more exotic models.

ACM SIGLOG News 41 January 2023, Vol. 10, No. 1

(2) A priori, unlike in the letter game, in G1, non-cautious moves are not always fa-
tal for Eve, as Adam’s token might not be able to display an accepting run over
the continuation u either. However, if Eve wins in G1, she must, in particular, win
against Adam’s copycat strategies, in which Adam’s token follows Eve’s token until
her first non-cautious move and then build an accepting run over the continuation
that witnesses Eve’s lack of caution. Such a play would be winning for Adam, so
a winning strategy for Eve must avoid non-cautious moves against copycat strate-
gies. Then, a winning strategy in G1 for Eve becomes a cautious strategy for Eve
in the letter game, as Eve simply imagines that Adam’s token is following hers.
Hence, if Eve wins G1, she has a cautious strategy in the letter game.

(3) A cautious strategy in the letter game over a safety or finite word automaton is
winning for Eve. Indeed, in both cases, a losing play for Eve must contain a non-
cautious move [Boker and Lehtinen 2021].

The same argument adapted to the quantitative setting shows that G1 also charac-
terises history-determinism for all quantitative automata on finite words.

Point (3) is straightforward for safety automata and automata on finite words, and
also holds for Inf and DSum automata on infinite words, for which G1 also characterises
history-determinism [Boker and Lehtinen 2022]. However, point (3) does not hold for
all automata: for example, in the letter game over Reachability automata (on infinite
words), a cautious play can be losing for Eve because she never reaches the target,
while remaining in a region from where the target is reachable. (It turns out that
G1 nevertheless characterises history-determinism for Reachability automata, yet by a
slightly more involved argument [Boker and Lehtinen 2022].)

Due to this example, whether cautious strategies are winning in the letter game is
not a necessary condition for G1 to characterise history-determinism.

Open: For which value functions Val, doesG1 characterise history-determinism
of Val-automata on infinite words?

Overall, compared to its modest role in [Bagnol and Kuperberg 2018], the one-token
game has turned out to be a surprisingly powerful tool, especially in the quantitative
setting. However, it has its limit, and, as shown in the example of Fig. 11, it does not
characterise history-determinism for Sup automata on infinite words. This is perhaps
slightly surprising, given the duality between the Inf and Sup payoff functions.

A

s0 s1

a :0 b :3

a :0

b :3

a :1 b :2

Fig. 11. A Sup automaton A, demonstrating that G1 does not characterize history-determinism for Sup
automata on infinite words. A is not history-deterministic [Boker and Lehtinen 2022]: Adam can play a
when Eve’s run is in s0 and b when Eve’s run is in s1. If Eve stays in s0, then the word has value 1 and
Eve’s run has value 0; if Eve goes to s1, then the word has value 3 but Eve’s run has value 2. Eve wins G1

by moving to s1 once Adam’s token is in s1. If Adam stays in s0, they have the same run; if Adam moves and
plays b before Eve moves, she gets value 3 and wins; if he doesn’t, then Eve gets the same value as Adam.

6.3. Two tokens
We now move onto discussing when the 2-token game is known to characterise history-
determinism. To do so, we will use an additional game, which we denote by HDk(A),
that generalises the letter game, which corresponds to HD1(A). In HDk(A), as in the

ACM SIGLOG News 42 January 2023, Vol. 10, No. 1

letter game, Adam builds a word w letter by letter, but this time Eve constructs k runs,
rather than just one, transition by transition. She wins if w is not in A’s language or if
any of her runs are accepting. For a quantitative automaton, at least one of her runs
must match the value of the automaton on w.

More precisely, in the game HDk over an automaton A, at each turn i:

— Adam chooses a letter ai ∈ Σ;
— Eve responds with k transitions τ1,i . . . τk,i over ai.

In the limit, a play consists of the word w = a0a1 . . . built by Adam and the k runs
ρj = τj,0τj,1 . . . , j ∈ [1, k] built by Eve. It is winning for Eve if either w is not in the
language of A or if ρj is an accepting run over w for some j ∈ [1, k]. In the quantitative
setting, Eve wins if the value of some ρj matches the value of the automaton on w.

As before, we use HDk(A) both to mean the game HDk over A and, when it is clear
from context, as a shorthand for “Eve wins HDk(A)”.

By definition, Eve wins HD1(A) exactly when A is history-deterministic. Further-
more, each HDk characterises a class of automata between full nondeterminism and
history-determinism and can be thought of as a measure of nondeterminism, similar
to notions of bounded ambiguity (see [Boker 2022] for more on such measures). That
being said, while the hierarchy of nondeterminism induced by HDk is interesting in its
own right [Hazard and Kuperberg 2023], here we use HDk as a technical tool.

6.3.1. G2 for Büchi and coBüchi automata. We sketch the argument used to show that
G2 charcterises history-determinism for Büchi [Bagnol and Kuperberg 2018] and
coBüchi [Boker et al. 2020a] automata. In both cases, we assume, towards contra-
diction, that Eve wins G2(A) on an automaton A that is not history-deterministic. The
argument then proceeds as follows:

— The determinacy and regularity of the letter-game on Büchi and coBüchi automata
implies the existence of a finite memory winning strategy τ for Adam in HD1(A).
This strategy produces letters and builds words in L(A).

— We then build a strategy to move a large number k of tokens against τ in HDk(A).
More precisely, picking a large k that depends on the memory size of τ , we build
a strategy σ for Eve in HDk(A), which is not necessarily winning in general, but
guarantees that if Adam plays any word produced by τ , one of Eve’s k tokens traces
an accepting run.

— Then, we recall the key lemma, according to which, since Eve wins G2(A), she also
wins Gk(A) with some strategy σ′. To conclude the argument, we build a strategy
for Eve that is not winning in general, but wins against τ : Eve imagines k virtual
tokens, which she moves according to σ, and chooses her moves in HD1(A) as if she
was using σ′ in Gk(A) against the k virtual tokens. The result is a strategy that wins
against τ : indeed, σ guarantees that one of the virtual tokens traces an accepting
run and σ′ therefore guarantees that Eve’s run in HD1(A) is accepting.

The construction of the strategy σ, which moves a large number of tokens against τ ,
is rather different for Büchi and coBüchi automata, as it uses in each case the speci-
ficities of the acceptance condition. This makes it difficult to generalise it to the parity
condition, even with just 3 priorities. Further, note that this argument is not construc-
tive: while it argues that Eve wins HD(A) whenever she wins G2(A), it does not detail
how to build a winning strategy. A more direct proof that would turn a strategy in G2

into a strategy in HD(A) might bring some helpful insight that could potentially also
help understand the parity case.

ACM SIGLOG News 43 January 2023, Vol. 10, No. 1

Open: How can a winning strategy for Eve inG2 on a Büchi or coBüchi automa-
ton A be turned into a winning strategy for Eve in HD(A), i.e., into a resolver
for A?

Note that Boker et al. further showed that if G2 characterises history-determinism
for parity automata, then an alternating version of G2, also solvable in PTIME, char-
acterises history-determinism for alternating parity automata [Boker et al. 2020a,
Section 5]. In contrast, deciding half history-determinism, that is whether the nonde-
terminism of an alternating automaton is history-deterministic, is PSPACE-complete
already on finite words [Boker et al. 2020a, Section 3.2].

6.3.2. G2 for quantitative automata. Beyond ω-regular automata, the same tools can be
used to show that G2 characterises history-determinism for some quantitative au-
tomata, and in particular LimSup, LimInf and Sup [Boker and Lehtinen 2021].

In the LimSup and LimInf cases, we do not need to rely on a finite memory strategy
for Adam in the letter game (in fact, it isn’t obvious that such a strategy must exist),
nor even determinacy. Instead, we use the three following observations that we have
already made:

(1) HD(A) =⇒ Gk(A)
If Eve wins the letter-game on an automaton A, then she wins any k-token-game
on A, by ignoring Adam’s runs.

(2) G2(A) =⇒ ∀k.Gk(A)
If Eve wins G2(A), then she wins Gk(A) for all k (the key lemma).

(3) (∃k.Gk(A) ∧ HDk(A)) =⇒ HD(A)
If Eve wins bothGk(A) and HDk(A) for some k, then she also wins HD(A), that is,A
is history-deterministic. This is implicit in the Büchi and coBüchi arguments: Eve
can build a strategy in HD(A) by imagining k virtual tokens that move according to
her strategy in HDk(A), and choose her moves in HD(A) using a winning strategy
in Gk(A) against the virtual tokens.

While these alone do not suffice, if one can show that for A in a given class of au-
tomata, G2(A) =⇒ ∃k.HDk(A), (that is, whenever Eve wins G2 on A, there is some
k such that she can find an accepting run with k tokens), one can conclude that G2

characterises history-determinism. Indeed, if G2(A), then, by assumption HDk(A) for
some k and from (2), we also have Gk(A). Then, from (3), we conclude HD(A). The other
direction is given by (1).

This means that one strategy to show that history-determinism is decidable via G2

is to show that G2(A) =⇒ ∃k.HDk(A). This is the case for LimSup, LimInf and Sup
automata on infinite words [Boker and Lehtinen 2022].

6.4. Challenges in more complex models
When we move beyond ω-regular automata, neither the determinacy of the letter-
game, nor the existence of finite-memory strategies for either player, is a given, which
adds a layer of difficulty to reasoning about history-determinism. Indeed, it is not clear
for which acceptance conditions (beyond safety and reachability) the letter game for
timed automata or register automata is determined, due, at least in part, to it not be-
ing obvious whether nondeterministic timed or register automata recognise languages
that are Borel. Furthermore in these more complex models, strategies in the letter
game are no longer finitely branching, either because Adam picks a letter from an in-
finite or timed alphabet (in the register and timed cases, respectively), or because Eve
can choose to play arbitrarily many epsilon transitions (for example in the pushdown

ACM SIGLOG News 44 January 2023, Vol. 10, No. 1

case). These factors make reasoning about history-determinism somewhat trickier for
these models, and can cause proof strategies from the Boolean setting to fail.

7. APPLICATIONS
So far, we have discussed to what extent history-deterministic automata enjoy the
expressiveness and succinctness of nondeterministic automata. The other side of the
equation is that they enjoy some of the better algorithmic properties of determinism,
which makes them appealing for applications such as model-checking and synthesis.

7.1. Model-checking
Language inclusion is one of the core algorithmic problems of automata-theoretic
model-checking. Indeed, with both system and specification represented as automata,
language inclusion captures whether all behaviours of the system are permitted by the
specification.

For history-deterministic automata, language inclusion reduces to fair simulation,
which is typically algorithmically easier to decide than inclusion. Fair simulation [Hen-
zinger et al. 2002] is defined by the simulation game, where a Spoiler chooses a tran-
sition in the automaton to be simulated, and Duplicator chooses a transition over the
same letter in the simulating automaton. Duplicator wins if, in the limit, whenever
Spoiler has built an accepting run, so has Duplicator. If an automaton A simulates
an automaton B then the language of B is included in the language of A. In general,
there is no converse implication. However, it is easy to see that a history-deterministic
automaton A simulates any automaton of which the language is included in the lan-
guage of A by using the resolver strategy to choose transitions in the simulation game.
Hence, for history-deterministic automata, language inclusion is no harder than fair
simulation.

If we consider the more general setting of labelled transitions systems (LTSs), then
history-deterministic LTSs are exactly those for which inclusion and fair simulation
coincide [Henzinger et al. 2022, Theorem 4]3. However, it is not clear for which classes
of automata this also holds.

Open: For which classes C of automata are the following equivalent for A ∈ C:

(1) A is history-deterministic.
(2) For all B ∈ C, it is the case that L(B) ⊆ L(A) if and only if A simulates B.

Note that this is the case for automata that are determinisable: if language inclu-
sion is equivalent to simulation, then a determinisable automaton has a resolver by
simulating the equivalent deterministic automaton.

7.2. Church synthesis
One of the applications of history-deterministic automata, which has earned them the
title of good-for-games, is the synthesis problem, modelled as a game. In Church syn-
thesis [Church 1963], the interaction of a system with its environment is represented
by a system player set against an antagonistic environment. The players alternate
picking moves, represented either as outgoing edges in an arena or as letters of an
alphabet, thus building an infinite sequence of moves that represents the interaction
of the system and its environment. The goal of the system player is to ensure that this
sequence, seen as a word, is in a language called the winning condition, which rep-
resents the specification, while the goal of the adversarial environment is to prevent

3This is also related to guidability [Colcombet and Löding 2008].

ACM SIGLOG News 45 January 2023, Vol. 10, No. 1

this. Solving the synthesis problem corresponds to deciding whether there is a winning
strategy for the system player, and, when possible, finding it.

To solve a game in which the winning condition is given by a deterministic automa-
ton, it suffices to take the product of the arena and the automaton, and solve the
resulting game, of which the winning condition depends on the acceptance condition
of the deterministic automaton. For instance, to solve a game with a finite arena and
an ω-regular winning condition L, it suffices to take the product of the arena with
a deterministic parity automaton for L and solve the resulting parity game. For ω-
deterministic context-free winning conditions, we take the product with the determin-
istic parity pushdown automaton for the winning condition; the resulting game is a
parity game on a pushdown arena.

This reduction fails for general nondeterministic automata. Intuitively, this is be-
cause the product construction yields a game in which nondeterministic choices have
to be resolved before the full path in the arena is determined, and might therefore
influence the strategy of the opponent. Yet, full determinism is not required for the re-
duction to work: history-determinism—or, more precisely, good-for-gameness—suffices.
Hence solving games with winning conditions captured by history-deterministic au-
tomata is no harder than for deterministic automata of the same type.

7.3. Good-enough or best-value synthesis
In the Church synthesis problem, the system must guarantee that the specification
is fulfilled whatever the environment does. This is often a stronger requirement than
reasonable. For example, in the canonical example of the coffee machine, if the users
(i.e., the environment) do not fill the water tank when it is empty, then the machine
won’t produce coffee, hence failing to satisfy its specification. Then, according to the
Church synthesis problem, the specification is not realisable and we must give up
coffee. This is due to the assumption that the environment is entirely antagonistic,
and will always enact the worst-case scenario.

Instead, intent on getting our caffeine hit, we can argue that rather than requir-
ing the system to satisfy the specification come what may, we could be content with
a system that satisfies the specifications whenever possible, given the environment
behaviour. This is the idea of good-enough synthesis, as described by Almagor and
Kupferman [Almagor and Kupferman 2020].

In the quantitative setting, the simple synthesis problem, described by Bloem, Chat-
terjee, Henzinger and Jobstmann [Bloem et al. 2009], has a similar issue: since we
assume that the environment will always behave antagonistically and only take into
account the worst-case outcome of the system’s strategy, the system has no incentive to
do better in other scenarios. In practice, this might mean that if the shortest route to
the destination uses a bridge that is closed on days with high wind, a navigator system
might always suggest a longer route that avoids the bridge, regardless of whether the
shorter route is available, since it will only care about the performance in the worst-
case scenario. Instead, we would of course like the navigator to suggest the shorter
route whenever the environment allows it. The corresponding version of the synthesis
problem is best-value synthesis (as in [Filiot et al. 2020]), which, instead of asking the
system to guarantee the optimal value among all behaviours, asks the system to guar-
antee the optimal value, given the environment behaviour. The following two problems
are polynomially equivalent:

(1) Deciding good-enough synthesis (or best-value synthesis in the quantitative case)
of a specification given by a deterministic automaton, and

(2) Deciding whether a nondeterministic automaton of the same type is history-
deterministic.

ACM SIGLOG News 46 January 2023, Vol. 10, No. 1

We sketch the proof of this equivalence. In the synthesis problem, the system and
environment players construct a pair of words, one over an input alphabet ΣI (con-
trolled by the environment), and one over an output alphabet ΣO (controlled by the
system). Given a deterministic automaton A over ΣI × ΣO that describes a specifica-
tion language for which we would like to decide the synthesis problem, we construct a
nondeterministic automaton A′ over ΣI that recognises the projection of L(A) on the
first component. A′ is similar to A except that it only operates on the input alphabet
ΣI and hence for each transition of A over a pair of letters

(
a
b

)
∈ ΣI × ΣO, A′ has a

transition only over the letter a ∈ ΣI . A′ is nondeterministic as it might have several
transitions over the same input letter from each state, up to one for each letter of ΣO.

It is easy to see that A′ constructed this way recognises the projection of L(A) on the
first component. Furthermore, it is history-deterministic if and only if L(A) is good-
enough realisable: a resolver for A′ corresponds exactly to a solution system for the
good-enough synthesis problem as constructing an accepting run inA′ induces a choice
of output letters in A.

For the other direction, to decide whether a nondeterministic automaton A is
history-deterministic, it suffices to decide good-enough synthesis for the following de-
terministic automaton A′ recognising pairs

(
w
ρ

)
, where ρ is an accepting run of A over

w. It is constructed by turning a transition t over a letter a in A into a transition over(
a
t

)
in A′. Then, a solution to the good-enough synthesis problem for A′ corresponds

exactly to a resolver for A as it constructs an accepting run for each word w ∈ L(A) on
the fly, transition by transition.

In the quantitative setting, by a similar argument, deciding history-determinism is
polynomially equivalent to the best-value synthesis problem.

8. SIZE AND MODELS OF RESOLVERS
The definition of history-determinism stipulates the existence of a resolver, i.e., a win-
ning strategy in the letter game, without restrictions on its size, i.e., the size of the
memory used by the strategy, or, if infinite, on its structure (e.g., counter or stack(s)).
In some situations, the size of the resolver doesn’t matter, for instance, when solving
games: the complexity of solving a game with a winning condition given by a history-
deterministic automaton, and the size of a winning strategy in such a game, does not
depend on the size of the resolver. The size of the resolver can be seen, in some sense,
as the gain in efficiency between a deterministic and history-deterministic automaton.

However, at times the size and structure of the resolver does matter. For instance,
in the reduction between solving good-enough (or best-value) synthesis and deciding
history-determinism, the resolver corresponds to the solution system. In this case, the
implementability of the resolver is of great importance.

In this section we discuss when simple resolvers suffice, when they do not, and some
of the open questions that remain. The simplest resolvers are positional, depending
only on the positions of the letter game on the automaton A. If A has no external
memory, meaning that a position of the letter game is just a pair of A’s state and an
input letter, then A admits a positional resolver if and only if it is determinisable-by-
pruning. In general, we represent resolvers as transducers. Finite memory strategies
correspond to finite-state transducers, but we also consider unbounded state transduc-
ers, such as pushdown transducers.

Computing resolvers. Computing the resolver corresponds to computing a winning
strategy in the letter-game. In several cases the problem of computing the resolver is
more complex than just deciding the winner: for example, deciding whether a coBüchi
automaton is history-deterministic is in PTIME, even though history-deterministic
coBüchi automata can require exponential-sized resolvers [Boker et al. 2020a; Kuper-

ACM SIGLOG News 47 January 2023, Vol. 10, No. 1

berg and Skrzypczak 2015].

8.1. Resolvers for (ω-)regular automata
History-deterministic regular automata are always determinisable-by-pruning
[Kupferman et al. 2006], thus admiting positional resolvers. In the ω-regular case,
it depends on the acceptance condition. Safety, reachability, and weak automata are
also history-deterministic if and only if they are determinisable-by-pruning [Boker
et al. 2017, Theorem 17], so they have positional resolvers. History-deterministic Büchi
automata can be determinised with up to a quadratic size blow-up [Kuperberg and
Skrzypczak 2015], implying polynomial resolvers.

For the other classical acceptance conditions, and in particular for coBüchi, parity,
Street, Rabin, and Muller, the letter-game on an automaton A can be seen as a game
with an ω-regular winning condition, captured by a deterministic parity automaton
of size exponential in the size of A. It can therefore be encoded into a parity game of
exponential size in A, which has a positional winning strategy. It follows that when A
is history-deterministic it has a resolver of size exponential in the size of A. This upper
bound is matched by Kuperberg and Skrzypczak’s lower bound on coBüchi automata:
the resolver of the automaton in Section 5.1 must be of exponential size, as else it could
be used to determinise the automaton without exponential blow-up.

Moving to ω-regular automata with stronger acceptance conditions, such as
Emerson-Lei automata, their determinisation might involve a doubly-exponential size
blow-up [Safra and Vardi 1989, Proposition 4.5 and Conclusions], implying a double-
exponential upper bound on the size of a resolver.

8.2. Resolvers for pushdown automata
The history-deterministic pushdown automaton in Section 4 recognising the language
{anambk$ | k ≤ n∨k ≤ m} admits a pushdown resolver that uses the stack to compare
the length of the first and second a-blocks. However, it is easy to extend this example
to a history-deterministic pushdown automaton without a pushdown resolver. Indeed,
consider the similar language {anama`bk | k ≤ n∨ k ≤ m∨ k ≤ `}, in which instead
of just two a-blocks, there are three a-blocks. The b-block must still be shorter than one
of the a-blocks. Then, the resolver must compare the length of three a-blocks, which is
not something a pushdown machine can achieve [Guha et al. 2021].

This shows that not all history-deterministic pushdown automata enjoy pushdown
resolvers. In fact, it is open whether all history-deterministic pushdown automata even
have a Turing-computable resolver.

Open: Do history-deterministic pushdown automata always admit Turing-
computable resolvers?

On the other hand, history-deterministic visibly pushdown automata, which, as we
have discussed, are better behaved than general pushdown automata, admit visibly
pushdown resolvers. This is due to the letter-game reducing, in this setting, to a game
on a visibly pushdown arena, which admits a visibly pushdown winning strategy.

8.3. Resolvers for quantitative automata
Quantitative automata may have many different value functions, and the size of re-
solvers varies accordingly. We list below some of the value functions for which the
resolver size, or an upper bound for it, is known.

ACM SIGLOG News 48 January 2023, Vol. 10, No. 1

History-deterministic Sum and Avg automata on finite words and DSum on finite and
infinite words are determinisable-by-pruning [Boker and Lehtinen 2021, Theorems 21
and 23] and [Hunter et al. 2016, Section 5], thus have positional resolvers.
Sup automata on finite words and Inf automata on both finite and infinite words

admit polynomial resolvers, obtained by solving the corresponding one-token games,
whose winning strategy in these cases can be adapted to a resolver of the same memory
size [Boker and Lehtinen 2022].
Sup, LimInf and LimSup automata on infinite words admit resolvers of up to a sin-

gle exponential size [Boker and Lehtinen 2022], where for LimInf automata it is also
optimal, as they generalise coBüchi automata.

9. CONCLUSIONS
History-determinism has the potential to combine some of the best aspects of both de-
terministic and nondeterministic automata, having some algorithmic properties of the
first and some of the expressiveness and succinctness of the second. Its dual allure
comes both from its theoretical appeal as a natural restriction of nondeterminism (as
witnessed by its many interesting properties and related definitions) and from its po-
tential impact on practical applications such as synthesis. Beyond the material covered
by this survey, it remains the subject of intense research efforts, both with respect to
fundamental questions, such as whether history-determinism is always characterised
by two-token games, known as the G2 conjecture, and with respect to its peripheral
extent, that is, its role in different automata models. Translating the theoretical po-
tential of history-determinism into practical verification and synthesis tools remains
largely uncharted territory.

ACKNOWLEDGMENTS

We thank the many colleagues who gave us feedback on a draft of this article. Research of Udi Boker sup-
ported by the Israel Science Foundation grant 2410/22.

REFERENCES
Bader Abu Radi and Orna Kupferman. 2022. Minimization and Canonization of GFG Transition-Based

Automata. Log. Methods Comput. Sci. 18, 3 (2022). DOI:https://doi.org/10.46298/lmcs-18(3:16)2022
Shaull Almagor and Orna Kupferman. 2020. Good-Enough Synthesis. In Proceedings of CAV (Lecture Notes

in Computer Science), Vol. 12225. Springer, 541–563. DOI:https://doi.org/10.1007/978-3-030-53291-8 28
Benjamin Aminof, Orna Kupferman, and Robby Lampert. 2010. Reasoning about online al-

gorithms with weighted automata. ACM Trans. Algorithms 6, 2 (2010), 28:1–28:36.
DOI:https://doi.org/10.1145/1721837.1721844

Marc Bagnol and Denis Kuperberg. 2018. Büchi good-for-games automata are efficiently recognizable. In
Proceedings of FSTTCS. 16. DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16

Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. 2009. Bet-
ter Quality in Synthesis through Quantitative Objectives. In Proceedings of CAV (Lecture Notes
in Computer Science), Ahmed Bouajjani and Oded Maler (Eds.), Vol. 5643. Springer, 140–156.
DOI:https://doi.org/10.1007/978-3-642-02658-4\ 14

Udi Boker. 2018. Why These Automata Types?. In Proceedings of LPAR. 143–163.
DOI:https://doi.org/10.29007/c3bj

Udi Boker. 2021. Quantitative vs. Weighted Automata. In Proc. of Reachbility Problems. 1–16.
DOI:https://doi.org/10.1007/978-3-030-89716-1 1

Udi Boker. 2022. Between Deterministic and Nondeterministic Quantitative Automata. In Proc. of CSL.
1:1–1:15. DOI:https://doi.org/10.4230/LIPIcs.CSL.2022.1

Udi Boker, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. 2013. Nondetermin-
ism in the Presence of a Diverse or Unknown Future. In Proceedings of ICALP. 89–100.
DOI:https://doi.org/10.1007/978-3-642-39212-2 11

ACM SIGLOG News 49 January 2023, Vol. 10, No. 1

Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. 2020a. On Succinct-
ness and Recognisability of Alternating Good-for-Games Automata. arXiv preprint (2020).
DOI:https://doi.org/10.48550/arXiv.2002.07278

Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. 2020b. On the Succinctness of
Alternating Parity Good-For-Games Automata. In Proceedings of FSTTCS. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2020.41

Udi Boker, Orna Kupferman, and Michał Skrzypczak. 2017. How Deterministic are Good-For-Games Au-
tomata?. In Proceedings of FSTTCS. 18:1–18:14. DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18

Udi Boker and Karoliina Lehtinen. 2019. Good for Games Automata: From Nondeter-
minism to Alternation. In Proceedings of CONCUR (LIPIcs), Vol. 140. 19:1–19:16.
DOI:https://doi.org/10.4230/LIPIcs.CONCUR.2019.19

Udi Boker and Karoliina Lehtinen. 2021. History Determinism vs. Good for Gameness in Quantitative Au-
tomata. In Proc. of FSTTCS. 35:1–35:20. DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38

Udi Boker and Karoliina Lehtinen. 2022. Token Games and History-Deterministic Quantitative Automata.
In FOSSACS. 120–139. A submitted journal version is available at https://arxiv.org/abs/2110.14308.

Sougata Bose, Thomas A. Henzinger, Karoliina Lehtinen, Sven Schewe, and Patrick Totzke. 2022. History-
Deterministic Timed Automata Are Not Determinizable. In Proceedings of RP (Lecture Notes in Com-
puter Science), Anthony W. Lin, Georg Zetzsche, and Igor Potapov (Eds.), Vol. 13608. Springer, 67–76.
DOI:https://doi.org/10.1007/978-3-031-19135-0\ 5

Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. 2017.
Deciding parity games in quasipolynomial time. In Proceedings of STOC. 252–263.
DOI:https://doi.org/10.1137/17M1145288

Antonio Casares. 2022. On the Minimisation of Transition-Based Rabin Automata and the Chro-
matic Memory Requirements of Muller Conditions. In Proceedings of CSL (Leibniz In-
ternational Proceedings in Informatics (LIPIcs)), Florin Manea and Alex Simpson (Eds.),
Vol. 216. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 12:1–12:17.
DOI:https://doi.org/10.4230/LIPIcs.CSL.2022.12

Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. 2022. On the Size of Good-For-Games Rabin
Automata and Its Link with the Memory in Muller Games. In Proceedings of ICALP (LIPIcs), Miko-
laj Bojanczyk, Emanuela Merelli, and David P. Woodruff (Eds.), Vol. 229. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 117:1–117:20. DOI:https://doi.org/10.4230/LIPIcs.ICALP.2022.117

Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. 2010. Quantitative languages. ACM
Trans. Comput. Log. 11, 4 (2010), 23:1–23:38. DOI:https://doi.org/10.1145/1805950.1805953

Alonzo Church. 1963. Application of recursive arithmetic to the problem of circuit synthesis. J. of Symbolic
Logic 28, 4 (1963). DOI:https://doi.org/10.2307/2271310

Thomas Colcombet. 2009. The theory of stabilisation monoids and regular cost functions. In Proceedings of
ICALP. 139–150. DOI:https://doi.org/10.1007/978-3-642-02930-1 12

Thomas Colcombet. 2013. Fonctions régulières de coût. Habilitation à diriger les recherches, École Doctor-
ale de Sciences Mathématiques de Paris Centre (2013). \url{https://www.irif.fr/∼colcombe/Publications/
habilitation-colcombet v1.1.pdf}

Thomas Colcombet and Nathanaël Fijalkow. 2016. The Bridge Between Regular Cost
Functions and Omega-Regular Languages. In Proceedings of ICALP. 126:1–126:13.
DOI:https://doi.org/10.4230/LIPIcs.ICALP.2016.126

Thomas Colcombet and Christof Löding. 2008. The Non-deterministic Mostowski Hier-
archy and Distance-Parity Automata. In Proceedings of ICALP, Vol. 5126. 398–409.
DOI:https://doi.org/10.1007/978-3-540-70583-3\ 33

Thomas Colcombet and Cristof Löding. 2010. Regular Cost Functions over Finite Trees. In Proceedings of
LICS. 70–79. DOI:https://doi.org/10.1109/LICS.2010.36

Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmer-
mann. 2022. History-deterministic Parikh Automata. CoRR abs/2209.07745 (2022).
DOI:https://doi.org/10.48550/arXiv.2209.07745 arXiv:2209.07745

Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-François
Raskin. 2017. On delay and regret determinization of max-plus automata. In LICS. 1–12.
DOI:https://doi.org/10.1109/LICS.2017.8005096

Emmanuel Filiot, Christof Löding, and Sarah Winter. 2020. Synthesis from Weighted Specifications
with Partial Domains over Finite Words. In Proceedings of FSTTCS (LIPIcs), Nitin Saxena and
Sunil Simon (Eds.), Vol. 182. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 46:1–46:16.
DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46

ACM SIGLOG News 50 January 2023, Vol. 10, No. 1

Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. 2021. A Bit of Non-
determinism Makes Pushdown Automata Expressive and Succinct. In Proc. of MFCS. 53:1–53:20.
DOI:https://doi.org/10.4230/LIPIcs.MFCS.2021.53

Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. 2022.
A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct.
DOI:https://doi.org/10.48550/ARXIV.2105.02611

Juris Hartmanis. 1980. On the Succinctness of Different Representations of Languages. SIAM J. Comput.
9, 1 (1980), 114–120. DOI:https://doi.org/10.1137/0209010

Émile Hazard and Denis Kuperberg. 2023. Explorable automata. In Proc. of CSL.
Thomas Henzinger and Nir Piterman. 2006. Solving games without determinization. In Proceedings of CSL.

395–410. DOI:https://doi.org/10.1007/11874683 26
Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani. 2002. Fair Simulation. Inf. Comput. 173,

1 (2002), 64–81. DOI:https://doi.org/10.1006/inco.2001.3085
Thomas A. Henzinger, Karoliina Lehtinen, and Patrick Totzke. 2022. History-Deterministic

Timed Automata. In 33rd International Conference on Concurrency Theory, CONCUR 2022,
September 12-16, 2022, Warsaw, Poland (LIPIcs), Bartek Klin, Slawomir Lasota, and Anca
Muscholl (Eds.), Vol. 243. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:21.
DOI:https://doi.org/10.4230/LIPIcs.CONCUR.2022.14

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to automata theory, languages,
and computation, 3rd Edition. Addison-Wesley.

Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. 2016. Minimizing Regret in Discounted-Sum
Games. In Proceedings of CSL (LIPIcs), Jean-Marc Talbot and Laurent Regnier (Eds.), Vol. 62. 30:1–
30:17. DOI:https://doi.org/10.4230/LIPIcs.CSL.2016.30

Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. 2017. Reactive synthesis without regret. Acta
Informatica 54, 1 (2017), 3–39.

Simon Iosti and Denis Kuperberg. 2019. Eventually Safe Languages. In Proceedings of DLT (Lecture Notes
in Computer Science), Piotrek Hofman and MichałSkrzypczak (Eds.), Vol. 11647. Springer, 192–205.
DOI:https://doi.org/10.1007/978-3-030-24886-4\ 14

Denis Kuperberg and Michał Skrzypczak. 2015. On Determinisation of Good-For-Games Automata. In Pro-
ceedings of ICALP. 299–310. DOI:https://doi.org/10.1007/978-3-662-47666-6 24

Orna Kupferman. 2023. Using the Past for Resolving the Future. (2023). To appear.
Orna Kupferman, Shmuel Safra, and Moshe Y Vardi. 2006. Relating word and tree automata. Ann. Pure

Appl. Logic 138, 1-3 (2006), 126–146. DOI:https://doi.org/10.1016/j.apal.2005.06.009 Conference version
in 1996.

Karoliina Lehtinen and Martin Zimmermann. 2022. Good-for-games ω-Pushdown Automata. Log. Methods
Comput. Sci. 18, 1 (2022). DOI:https://doi.org/10.46298/lmcs-18(1:3)2022 Conference version at LICS
2020.

Christof Löding and Stefan Repke. 2013. Decidability Results on the Existence of Lookahead Delegators for
NFA. In Proc. of FSTTCS 2013. 327–338. DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2013.327

Gila Morgenstern. 2003. Expressiveness results at the bottom of the ω-regular hierarchy. (2003). M.Sc.
Thesis, The Hebrew University.

Aditya Prakash and K. S. Thejaswini. 2022. On History-Deterministic One-Counter Nets.
DOI:https://doi.org/10.48550/ARXIV.2210.10084

Shmuel Safra and Moshe Y. Vardi. 1989. On ω-Automata and Temporal Logic. In Proc. of STOC. 127–137.
DOI:https://doi.org/10.1145/73007.73019

Sven Schewe. 2020. Minimising Good-For-Games Automata Is NP-Complete. In Proceedings of FSTTCS
(Leibniz International Proceedings in Informatics (LIPIcs)), Nitin Saxena and Sunil Simon (Eds.),
Vol. 182. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 56:1–56:13.
DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56

Leslie G. Valiant. 1976. A Note on the Succinctness of Descriptions of Deterministic Languages. Inf. Control.
32, 2 (1976), 139–145. DOI:https://doi.org/10.1016/S0019-9958(76)90173-X

ACM SIGLOG News 51 January 2023, Vol. 10, No. 1

