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Abstract. The complexity of testing nonemptiness of finite state automata on infinite trees is
investigated. It is shown that for tree automata with the pairs (or complemented pairs) acceptance
condition having m states and n pairs, nonemptiness can be tested in deterministic time (mn)O(n);
however, it is shown that the problem is in general NP-complete (or co-NP-complete, respectively).
The new nonemptiness algorithm yields exponentially improved, essentially tight upper bounds for
numerous important modal logics of programs, interpreted with the usual semantics over structures
generated by binary relations. For example, it follows that satisfiability for the full branching time
logic CTL∗ can be tested in deterministic double exponential time. Another consequence is that
satisfiability for propositional dynamic logic (PDL) with a repetition construct (PDL-delta) and for
the propositional Mu-calculus (Lµ) can be tested in deterministic single exponential time.
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1. Introduction. There has been a resurgence of interest in automata on infinite
objects [1] due to their intimate relation with temporal and modal logics of programs.
They provide an important and uniform approach to the development of decision
procedures for testing satisfiability of the propositional versions of these logics [43,
33]. Such logics and their corresponding decision procedures are not only of inherent
mathematical interest, but are also potentially useful in the specification, verification,
and synthesis of concurrent programs (cf. [27, 8, 25, 21]).

In the case of branching time temporal logic, the standard paradigm nowadays for
testing satisfiability is the reduction to the nonemptiness problem for finite state au-
tomata on infinite trees; i.e., one builds a tree automaton which accepts essentially all
models of the candidate formula and then tests nonemptiness of the tree automaton.
Thus in order to improve the complexity there are two issues: (1) the size of the tree
automaton and (2) the complexity of testing nonemptiness of the tree automaton.

In this paper we obtain new, improved, and essentially tight bounds on testing
nonemptiness of tree automata that allow us to close an exponential gap which has
existed between the upper and lower bounds of the satisfiability problem of numerous
important modal logics of programs. These logics include CTL∗ (the full branch-
ing time logic [9]), PDL-delta (propositional dynamic logic with an infinite repetition
construct [33]), and the propositional Mu-calculus (Lµ) (a language for characterizing
temporal correctness properties in terms of extremal fixpoints of predicate transform-
ers [19] (cf. [7, 2])).
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To obtain these improvements, we focus on the complexity of testing nonemptiness
of tree automata. We first note, however, that the size of an automaton has two
parameters: the number of states in the automaton’s transition diagram and the
number of pairs in its acceptance condition. We next make the following important
observation: for most logics of programs, the number of pairs is logarithmic in the
number of states.

We go on to analyze the complexity of testing nonemptiness of pairs tree automata
[30] and show that it is NP-complete. However, a multiparameter analysis shows that
there is an algorithm that runs in time (mn)O(n) which is polynomial in the number
of states m and exponential in the number of pairs n in the acceptance condition
of the automaton. The algorithm is based on a type of “pseudomodel checking” for
certain restricted Mu-calculus formulae. Moreover, since the problem is NP-complete,
it is unlikely to have a better algorithm which is polynomial in both parameters. The
previous best known algorithm was in NP [6, 41].

The above nonemptiness algorithm now permits us to obtain a deterministic dou-
ble exponential time decision procedure for CTL∗, by using the reduction from CTL∗

to tree automata obtained in [13], in which the size of the automaton is double ex-
ponential in the length of the formula and the number of pairs is only exponential in
the length of the formula. The bound follows by simple arithmetic, since a double
exponential raised to a single exponential power is still a double exponential.

This amounts to an exponential improvement over the best previously known
algorithm which was in nondeterministic double exponential time [6, 41], i.e., three
exponentials when determinized. It is also essentially tight, since CTL∗ was shown to
be double exponential time hard [41]; thus CTL∗ is deterministic double exponential
time complete.

The above result has been obtained using only the classical pairs tree automata
of Rabin [30]. However, we also consider the complemented pairs tree automata of
Streett [33], which were specifically introduced to facilitate formulation of tempo-
ral decision procedures. We show that the nonemptiness problem of complemented
pairs automata is co-NP-complete by reducing the complement of the problem to
nonemptiness of the pairs automata and vice versa. The reduction employs the fact
that infinite Borel games are determinate (Martin’s theorem [22]). This reduction
also gives a deterministic algorithm which is polynomial in the number of states and
exponential in the number of pairs. We can thus reestablish the above upper bound
for CTL∗ using complemented pairs automata as well.

Using the recent single exponential general McNaughton [23] construction of Safra
[32] (i.e., construction for determinizing a Büchi finite automaton on infinite strings),
our new nonemptiness algorithm also gives us a deterministic single exponential time
decision procedure for both PDL-delta and the Mu-calculus, since the Safra construc-
tion allows us to reduce satisfiability of these logics to testing nonemptiness of a tree
automaton with exponentially many states and polynomially many pairs. This rep-
resents an exponential improvement over the best known deterministic algorithms for
these logics, which took deterministic double exponential time, corresponding to the
nondeterministic exponential time upper bounds of [41]. The bounds are essentially
tight also, since the exponential time lower bound follows from that established for
ordinary PDL by Fischer and Ladner [14].

It is interesting to note that for most logics (including PDL-delta and the Mu-
calculus but excluding CTL∗), our nonemptiness algorithm(s) and Safra’s construc-
tion both play a crucial role. Each is independent of the other. Moreover, each is
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needed and neither alone suffices. Our algorithm improves the complexity of testing
nonemptiness by an exponential factor, while Safra’s construction independently ap-
plies to reduce the size of the automaton by an exponential factor. For example, the
“traditional” result of Streett [33] gave a deterministic triple exponential algorithm
for PDL-delta. Our algorithm alone improves it to deterministic double exponential
time. Alternatively, Safra’s construction alone improves it to deterministic double
exponential time. As shown in this paper, the constructions can be applied together
to get a cumulative double exponential speedup for PDL-delta. In the case of CTL∗,
we already had the effect of Safra’s construction, because [13] gave a way to determine
with only a single exponential blowup the Büchi string automaton corresponding to a
linear temporal logic formula by using the special structure of such automata (unique
accepting run). Thus Safra’s construction provides no help for the complexity of the
CTL∗ logic.

The remainder of the paper is organized as follows. In section 2 we give prelimi-
nary definitions and terminology. In section 3 we establish a “small model theorem”
for (pairs) tree automata. In section 4 we give the main technical results on test-
ing nonemptiness of pairs tree automata. In section 5 we give the main results on
nonemptiness of complemented pairs tree automata. Applications of the algorithms
to testing satisfiability of modal logics of programs, including CTL∗, PDL-delta, and
the Mu-calculus, are described in section 6. Some concluding remarks are given in
section 7.

2. Preliminaries.

2.1. Logics of programs.

2.1.1. Full branching time logic. The full branching time logic CTL∗ [9] de-
rives its expressive power from the freedom of combining modalities which quantify
over paths and modalities which quantify states along a particular path. These modal-
ities are A,E, F,G,Xs, and Uw (“for all futures,” “for some future,” “sometime,”
“always,” “strong nexttime,” and “weak until,” respectively), and they are allowed
to appear in virtually arbitrary combinations. Formally, we inductively define a class
of state formulae (true or false of states) and a class of path formulae (true or false
of paths):

(S1) Any atomic proposition P is a state formula.
(S2) If p, q are state formulae, then so are p∧q, ¬p.
(S3) If p is a path formula, then Ep is a state formula.
(P1) Any state formula p is also a path formula.
(P2) If p, q are path formulae, then so are p∧q, ¬p.
(P3) If p, q are path formulae, then so are Xsp and pUwq.
The semantics of a formula are defined with respect to a structure M = (S,R,L),

where S is a nonempty set of states, R is a nonempty binary relation on S, and L is
a labeling which assigns to each state a set of atomic propositions true in the state.
A fullpath (s1, s2, . . .) is a maximal sequence of states such that (si, si+1) ∈ R for all
i. A fullpath is infinite unless for some sk there is no sk+1 such that (sk, sk+1) ∈ R.
We write M, s |= p (M,x |= p) to mean that state formula p (path formula p) is true
in structure M at state s (of fullpath x, respectively). When M is understood, we
write simply s |= p (x |= p). We define |= inductively using the convention that
x = (s1, s2, . . .) denotes a fullpath and xi denotes the suffix fullpath (si, si+1, . . .),
provided i ≤ |x|, where |x|, the length of x, is ω when x is infinite and k when x is
finite and of the form (s1, . . . , sk); otherwise xi is undefined.
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For a state s,
(S1) s |= P iff P ∈ L(s) for atomic proposition P ,
(S2) s |= p ∧ q iff s |= p and s |= q,

s |= ¬p iff not (s |= p),
(S3) s |= Ep iff for some fullpath x starting at s, x |= p.

For a fullpath x = (s1, s2, . . .),
(P1) x |= p iff s1 |= p for any state formula p,
(P2) x |= p ∧ q iff x |= p and x |= q,

x |= ¬p iff not (x |= p),
(P3) x |= Xsp iff x2 is defined and x2 |= p,

x |= (p Uw q) iff for all i ∈ [1 : |x|], if for all j ∈ [1 : i] xj |= ¬q, then xi |= p.
We say that state formula p is valid , and write |= p, if for every structure M

and every state s in M , M, s |= p. We say that state formula p is satisfiable iff for
some structure M and some state s in M , M, s |= p. In this case we also say that M
defines a model of p. We define validity and satisfiability for path formulae similarly.

We write f
.
= g to mean that formula f abbreviates formula g. Other connectives

can then be defined as abbreviations in the usual way: p∨q
.
= ¬(¬p∧¬q), p ⇒ q

.
=

¬p∨q, p⇔ q
.
= (p⇒ q)∧(q ⇒ p), Ap

.
= ¬E ¬ p, Gp

.
= p Uw false, and Fp

.
= ¬G¬ p.

Further operators may also be defined as follows:
Xwp

.
= ¬Xs¬p is the weak nexttime,

pUsq
.
= (pUwq)∧Fq is the strong until,

∞

Fp
.
= GFXsp means infinitely often p,

∞

Gp
.
= FGXsp means almost everywhere p,

inf
.
= GXstrue means the path is infinite, and

fin
.
= FXwfalse means the path is finite.

2.1.2. Propositional dynamic logic plus repeat. As opposed to CTL∗, in
which the models represent behaviors of the programs, in PDL-delta the programs are
explicit in the models. The modalities in PDL-delta quantify the states reachable by
programs explicitly stated in the modality. Thus, for a program B (which is obtained
from atomic programs and tests using regular expressions), 〈B〉p ([B]p) states that
there is an execution of B leading to p (after all executions of B, p holds). Also
included is the infinite repetition construct delta (△) which makes PDL-delta much
more expressive than PDL. △B states that it is possible to execute B repetitively
infinitely many times. PDL-delta formulae are interpreted over structures M =
(S,R,L), where S is a set of states, R : Prog → 2S×S is a transition relation, Prog

is the set of atomic programs, and L is a labeling of S with propositions in Prop. For
more details see [33].

2.1.3. Propositional Mu-calculus. A least fixpoint construct can be used to
increase the power of simple modal logics. Thus, by adding this construct to PDL,
we get Lµ, the propositional Mu-calculus [19], a logic which subsumes PDL-delta. A
variant formulation of the Mu-calculus, which we use here, adds the least fixpoint
construct to a simple subset of CTL∗, including just nexttime (AXs), the boolean
connectives, and propositions (cf. [7]). The least fixpoint construct has the syntax
µY.f(Y ), where f(Y ) is any formula syntactically monotone in the propositional vari-
able Y , i.e., all occurrences of Y in f(Y ) fall under an even number of negations. It
is interpreted as the smallest set S of states such that S = f(S). By the well-known
Tarski–Knaster theorem, µY. f(Y ) =

⋃
i f i(false), where i ranges over all ordinals

and f i (intuitively) denotes the i-fold composition of f with itself; when the domain
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is finite we may take i as ranging over just the natural numbers. Its dual, the greatest
fixpoint, is denoted νY.f(Y ) (≡ ¬µY.¬f(¬Y )). Thus, e.g., µY.[B]Y is equivalent to
¬ △ B of PDL-delta. Similarly, using temporal logic, µY.P ∨ AXsY is equivalent to
AFP (i.e., along all paths P eventually holds). Many correctness properties of con-
current programs can be characterized in terms of the Mu-calculus, including all those
expressible in CTL∗ and PDL-delta. For more details, see, for example, [7, 19, 35, 12].

The formulae of the (propositional) Mu-calculus are
(1) propositional constants P,Q, . . . ,

(2) propositional variables Y,Z, . . . ,

(3) ¬p, p ∨ q, and p ∧ q, where p and q are any formulae,
(4) EXsp and AXsp, where p is any formula,
(5) µY.f(Y ) and νY.f(Y ), where f(Y ) is any formula syntactically monotone in

the propositional variable Y , i.e., all occurrences of Y in f(Y ) fall under even number
of negations.

In what follows, we will use σ as a generic symbol for µ or ν. In a fixed point
expression σY.f(Y ), we say that each occurrence of Y is bound to σY . If an occurrence
of Y is not bound, then it is free. A sentence (or closed formula) is a formula containing
no free propositional variables, i.e., no variables unbound by a µ or a ν operator.

Sentences are interpreted over structures M = (S,R,L) as for CTL∗. As usual
we will write M, s |= p to mean that in structure M at state s sentence p holds true.
To give the technical definition of |= we need some preliminaries.

The power set of S, 2S , may be viewed as the complete lattice (2S , S, φ,⊆,∪,∩).
Intuitively, we identify a proposition with the set of states which make it true. Thus,
false, which corresponds to the empty set, is the bottom element, true, which cor-
responds to S, is the top element, ∪ is join, ∩ is meet, and implication (for all
s ∈ S(P (s)⇒Q(s))), which corresponds to simple set-theoretic containment (P ⊆ Q),
provides the partial ordering on the lattice.

Let τ : 2S→2S be given; then we say that τ is monotonic provided P ⊆ Q implies
τ(P ) ⊆ τ(Q). A monotonic functional τ always has both a least fixpoint µX.τ(X)
and a greatest fixpoint νX.τ(X).

For a formula or function p(Y ), we write p0(Y ) = false, p1(Y ) = p(Y ),
pi+1(Y ) = p(pi)(Y ) for successor ordinal i + 1, and pj(Y ) =

⋃
k<j p

k(Y ) for limit
ordinal j.

Theorem 2.1 (Tarski–Knaster). Let τ : 2S→2S be a given monotonic functional.
Then

(a) µY.τ(Y ) =
⋂
{Y : τ(Y ) = Y } =

⋂
{Y : τ(Y ) ⊆ Y },

(b) νY.τ(Y ) =
⋃
{Y : τ(Y ) = Y } =

⋃
{Y : τ(Y ) ⊇ Y },

(c) µY.τ(Y ) =
⋃

i≤|S| τ
i(false), and

(d) νY.τ(Y ) =
⋂

i≤|S| τ
i(true).

A formula p with free variables Y0, Y1, . . . , Yn is thus interpreted as a mapping
pM from (2S)n+1 to 2S , i.e., it is interpreted as a predicate transformer. We write
p(Y0, Y1, . . . , Yn) to denote that all free variables of p are among Y0, Y1, . . . , Yn. Let
V0, V1, . . . , Vn be subsets of S; then a valuation Υ = V0, V1, . . . , Vn is an assignment
of V0, V1, . . . , Vn to the free variables Y0, Y1, . . . , Yn, respectively. Υ[Yi ← V ′

i ] denotes
the valuation identical to Υ, except that Yi is assigned V ′

i . We use pM (Υ) to denote
the value of p in structure M on the arguments V0, V1, . . . , Vn. We drop M when it
is understood from context. We then let M, s |= p(Υ) iff s ∈ pM (Υ), and we define
|= inductively as follows:

(1) s |= P (Υ) iff P ∈ L(s),



COMPLEXITY OF TREE AUTOMATA 137

(2) s |= Y (Υ) iff s ∈ Υ(Y ),
(3) s |= (¬p)(Υ) iff s 6|= p(Υ),

s |= (p ∨ q)(Υ) iff s |= p(Υ) or s |= q(Υ),
s |= (p ∧ q)(Υ) iff s |= p(Υ) and s |= q(Υ),

(4) s |= (EXsp)(Υ) iff ∃t(s, t) ∈ R and t |= p(Υ),
s |= (AXsp)(Υ) iff (a) ∃u (s, u) ∈ R and u |= p and (b) for all t (s, t) ∈ R

implies t |= p(Υ),
(5) s |= (µY.f(Y ))(Υ) iff s ∈

⋂
{S′ ⊆ S|S′ = {t : t |= f(Y )(Υ[Y ← S′])}},

s |= (νY.f(Y ))(Υ) iff s ∈
⋃
{S′ ⊆ S|S′ = {t : t |= f(Y )(Υ[Y ← S′])}}.

2.1.4. Conventions. To avoid a proliferation of unnecessary parentheses, we
order the connectives from greatest to lowest binding power as follows: ¬ binds tighter

than F,G,Xw, Xs,
∞

F ,
∞

G, which bind tighter than ∧, which binds tighter than ∨, which
binds tighter than⇒, which binds tighter than Uw, Us, which bind tighter than A,E,
which bind tighter than µ, ν, which bind tighter than ⇔.

If we write M, s |= p, it is implicit that s is a state of M . That is, s ∈ S where
M = (S,R,L). A convenient abuse of notation is to write s ∈M in some places.

If p is a formula, then pM denotes {s : M, s |= p}, the set of states s in M at
which p is true.

We can write M, s1, . . . , sk |= p to abbreviate M, s1 |= p and . . . and M, sk |= p.
We write p ≡ q for |= p⇔ q. In the context of a structure M , we can also write

p ≡M q for pM = qM . If M is understood, then we can drop the M and write just
p ≡ q. It should be clear from context whether equivalence over all structures or
over M is meant. We use p1 ≡ p2 ≡ · · · ≡ pk as shorthand for p1 ≡ p2 and . . . and
pk−1 ≡ pk.

Technically, we distinguish between an atomic proposition symbol P and the
associated set, viz., PM , of states which are labeled with it in structure M . It is often
convenient notation to use the uppercase sans serif symbol P corresponding to P to
denote the set of states that are labeled with P .

Remark: We note the following identities:
EXwfalse ≡ AXwfalse and asserts that a state has no successors.
EXstrue ≡ AXstrue and asserts that a state has one or more successors.

2.2. Automata on infinite trees. We consider finite automata on labeled,
infinite binary trees.1 The set {0, 1}∗ may be viewed as an infinite binary tree, where
the empty string λ is the root node and each node u has two successors: the 0-
successor u0 and the 1-successor u1. A finite (infinite) path through the tree is a
finite (respectively, infinite) sequence x = u0, u1, u2, . . . such that each node ui+1 is
a successor of node ui. If Σ is an alphabet of symbols, an infinite binary Σ-tree is a
labeling L which maps {0, 1}∗ −→ Σ.

A finite automaton A on infinite binary Σ-trees consists of a tuple (Σ, Q, δ, q0,Φ),
where

Σ is the finite, nonempty input alphabet labeling the nodes of the input tree,
Q is the finite, nonempty set of states of the automaton,
δ : Q× Σ → 2Q×Q is the nondeterministic transition function,

1We consider here only binary trees to simplify the exposition and for consistency with the
classical theory of tree automata. CTL∗ and the other logics we study have the property that their
models can be unwound into an infinite tree. In particular, in [13] it was shown that a CTL∗ formula
of length k is satisfiable iff it has an infinite tree model with finite branching bounded by k, i.e., iff it
is satisfiable over a k-ary tree. Our results on tree automata apply to such k-ary trees as explained
at the end of the proof of Theorem 4.1.
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q0 ∈ Q is the start state of the automaton, and
Φ is an acceptance condition described subsequently.

A run of A on the input Σ-tree L is a function ρ : {0, 1}∗ → Q such that for
all v ∈ {0, 1}∗, (ρ(v0), ρ(v1)) ∈ δ(ρ(v), L(v)) and ρ(λ) = q0. We say that A accepts
input tree L iff there exists a run ρ of A on L such that for all infinite paths x starting
at the root of L if r = ρ ◦ x is the sequence of states A goes through along path x,
then the acceptance condition Φ holds along r.

For a pairs automaton (cf. [23, 30]) acceptance is defined in terms of a finite list
((RED1,GREEN1), . . . , (REDk,GREENk)) of pairs of sets of automaton states (which
may be thought of as pairs of colored lights where A flashes the red light of the first
pair upon entering any state of the set RED1, etc.): r satisfies the pairs condition
iff there exists a pair i ∈ [1..k] such that REDi flashes finitely often and GREENi

flashes infinitely often. We assume the pairs acceptance condition is given formally
by a temporal logic formula Φ =

∨
i∈[1..k] (GF GREENi ∧ ¬GF REDi).

2 Similarly, a

complemented pairs (cf. [33]) automaton has the negation of the pairs condition as its
acceptance condition; i.e., for all pairs i ∈ [1..k], GREENi flashes infinitely often implies
that REDi flashes infinitely often, too. The complemented pairs acceptance condition
is given formally by a temporal logic formula Φ =

∧
i∈[1:k] GF GREENi ⇒ GF REDi.

3. Small model theorems.

3.1. Tree automata running on graphs. Note that an infinite binary tree L′

may be viewed as a “binary” structure M = (S,R,L), where S = {0, 1}∗, R = R0∪R1

with R0 = {(s, s0) : s ∈ S} and R1 = {(s, s1) : s ∈ S}, and L = L′. We could
alternatively write M = (S,R0, R1, L).

We can also define a notion of a tree automaton running on certain appropriately
labeled binary, directed graphs that are not binary trees. Such graphs, if accepted, are
witnesses to the nonemptiness of tree automata. We make the following definitions.

A binary structure M = (S,R0, R1, L) consists of a state set S and labeling L as
before, plus a transition relation R0 ∪R1 decomposed into two partial functions: R0 :
S −→ S, where R0(s), when defined, specifies the 0-successor of s, and R1 : S −→ S,
where R1(s), when defined, specifies the 1-successor of s. We say that M is a full
binary structure iff R0 and R1 are total.

A run of automaton A on binary structure M = (S,R0, R1, L), if it exists, is a
mapping ρ : S → Q such that for all s ∈ S, (ρ(R0(s)), ρ(R1(s))) ∈ δ(ρ(s), L(s)),
and ρ(s0) = q0. Intuitively, a run is a labeling of M with states of A consistent with
the local structure of A’s transition diagram. It will turn out that if an automaton
accepts some binary tree, there does exist some finite binary graph on which there is
a run that is accepting: all of the paths through the graph define state sequences of
the automaton meeting its acceptance condition.

3.2. The transition diagram of a tree automaton. The transition diagram
of A can be viewed as an AND/OR-graph, where the set Q of states of A comprises the
set of OR-nodes, while the AND-nodes define the allowable moves of the automaton.
Intuitively, OR-nodes indicate that a nondeterministic choice has to be made (depend-
ing on the input label), while the AND-nodes force the automaton along all directions.
For example, suppose that for automaton A, δ(s, a) = {(t1, u1), . . . , (tm, um)} and
δ(s, b) = {(v1, w1), . . . , (vn, wn)}; then the transition diagram contains the portion
shown in Figure 3.1.

2We are assuming that each proposition symbol, such as GREENi, of formula Φ is associated
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Fig. 3.1.

Formally, given a tree automaton A = (Σ, Q, δ, q0,Φ) with transition function
δ : Q × Σ −→ 2Q×Q : (q, a) 7−→ {(r1, s1), . . . , (rk, sk)}, we may view it as defining
a transition diagram T , which is an AND/OR-graph (D,C,RDC , RCD0, RCD1, L),
where

D = Q is the set of OR-nodes;
C =

⋃
q∈D

⋃
a∈Σ{((q, a), (r, s)) : (r, s) ∈ δ(q, a)} is the set of AND-nodes. Each

AND-node corresponds to a transition. If δ(q, a) = {(r1, s1), . . . , (rk, sk)}, then
the corresponding AND-nodes are essentially the pairs (r1, s1), . . . , (rk, sk). How-
ever, since each transition is associated with a unique current state/input symbol
pair (q, a), we formally define the corresponding AND-nodes to be pairs of pairs:
((q, a), (r1, s1)), . . . , ((q, a), (rk, sk)).

RDC ⊆ D × C specifies the AND-node successors of each OR-node. For each
q ∈ D as above, RDC(q) =

⋃
a∈Σ{((q, a), (r, s)) : (r, s) ∈ δ(q, a)};3

RCD0, RCD1 : C −→ D are partial4 functions giving the 0-successor and 1-
successor states, respectively:

RCD0(((q, a), (r, s))) = r and RCD1(((q, a), (r, s))) = s;

L is a labeling of nodes. For an AND-node L(((q, a), (r, s))) = {a}, where a ∈ Σ.
For an OR-node, the labeling assigns propositions associated with the acceptance
condition Φ so that all OR-nodes in the set GREENi (respectively, REDi) are labeled
with the corresponding proposition GREENi (respectively, REDi).

with exactly the set of states of the corresponding name, in this case GREENi.
3We identify a relation such as RDC ⊆ D×C with the corresponding function R′

DC
: D −→ 2C

defined by R′
DC

(d) = {c ∈ C : (d, c) ∈ RDC} for each d ∈ D.
4For classically defined tree automata, the functions RCD0, RCD1 are total so that there is

always a 0-successor and 1-successor automaton state. For technical reasons it is convenient to allow
RCD0, RCD1 to be partial.
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Thus, we may write a tree automaton A in the form (T, d0,Φ), where T is the
diagram, d0 is the start state, and Φ is an acceptance condition.

3.3. One symbol alphabets. For purposes of testing nonemptiness, without
loss of generality, we can restrict our attention to tree automata over a single letter al-
phabet and, thereby, subsequently ignore the input alphabet. Let A = (Q,Σ, δ, q0,Φ)
be a tree automaton over input alphabet Σ. Let A′ = (Q,Σ′, δ′, q0,Φ) be the tree
automaton over one letter input alphabet Σ′ = {c} obtained from A by, intuitively,
taking the same transition diagram but now making all transitions on symbol c. For-
mally, A′ is identical to A except that the input alphabet is Σ′ and the transition
function δ′ is defined by δ′(q, c) =

⋃
a∈Σ δ(q, a).

Observation 3.1. The set accepted by A is nonempty iff the set accepted by A′

is nonempty.

Henceforth, we shall therefore assume that we are dealing with tree automata
over a one symbol alphabet.

3.4. Generation and containment. It is helpful to reformulate the notion of
run to take advantage of the AND/OR-graph organization of the transition diagram
of an automaton. Intuitively, there is a run of diagram T on structure M provided
M is “generated” from T by unwinding T so that each state of M is a copy of an
OR-node of T .

Formally, we say that a binary structure M = (S,R0, R1, L) is generated by a
transition diagram T = (D,C,RDC , RCD0, RCD1, LT ) (starting at s0 ∈ S and d0 ∈ D)
iff ∃ is a total function h : S −→ D such that for all s ∈ S

if s has any successors in M , then
∃c ∈ RDC(h(s))

for all i ∈ {0, 1} RCDi(c) is defined iff Ri(s) is defined and
RCDi(c) = h(Ri(s)) when both are defined

and L(s) = LT (h(s))
(such that h(s0) = d0).

We say that a binary structure M = (S,R0, R1, L) is contained in transition
diagram T (starting at s0 ∈ M and q0 ∈ T ) provided M is generated by T (starting
at s0 ∈ M and q0 ∈ T ), where the generation function h is the natural injection
h : S −→ D : s ∈ S 7−→ s ∈ D, so that all states of M are OR-nodes of T .

Note that if M is a structure generated by (respectively, contained in) T , there
is an associated AND/OR-graph H generated by (respectively, contained in) T ob-
tained from M by inserting between each state and its successors in M a copy of the
AND-node that determines the successors of state via the generation function for M .
We write H = ao(M). Conversely, if H is an AND/OR-graph generated by (respec-
tively, contained in) T , there is an associated structure M generated by (respectively,
contained in) T obtained from H by eliding AND-nodes. Here we write M = o(H).

3.5. Linear size model theorems. The following theorem (cf. [6]) is the basis
of our method of testing nonemptiness of pairs automata. It shows that there is
a small binary structure contained in the transition diagram and accepted by the
automaton.

Theorem 3.2 (linear size model theorem). Let A be a tree automaton over a

one symbol alphabet with pairs acceptance condition Φ =
∨

i∈[1:k](
∞

FQi ∧
∞

GPi). Then
automaton A accepts some tree T iff A accepts some binary model M of size linear
in the size of A, which is a structure contained in the transition diagram of A.
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Proof. (⇒) For Φ a pairs condition, by the Hossley–Rackoff [18] finite model
theorem, if A accepts some tree M0, then it accepts some finite binary model M1

starting at some state s0 ∈M1. Thus, M1, s0 |= AΦ and M1 is a structure generated
by A.

Given any such finite structure M1 of AΦ generated by A, we can obtain a finite
structure M contained in A as follows. Let h be the generation function. If two
distinct nodes s and t of M1 have the same labeling with states of A, i.e., h(s) = h(t),
then we can eliminate one of them as follows. Attempt to delete s by redirecting all
its predecessors u to have t as a successor instead. More precisely, delete all edges of
the form (u, s) and replace them by edges of the form (u, t). If the resulting structure,
call it M t, is a model of AΦ, we have reduced the number of “duplicates,” such as s

and t, by one. If not, try replacing t by s instead. If Ms, the resulting structure is a
model of AΦ and we are done.

However, if both of these replacements fail to yield a model of AΦ, each must
introduce a (not necessarily simple) bad cycle where the acceptance condition Φ fails.
In M t the bad cycle is of the form (where u is a predecessor of s in M1) u→t→· · ·→u,
where except for the first transition (u, t) the suffix path from t to u is in the orig-
inal M1. In Ms the bad cycle is of the form (where v is a predecessor of t in M1)
v→s→· · ·→v, where except for the first transition (v, s) the suffix path from s to v

is in the original M1.
However, these two suffix paths in M1 together with the edges (u, s) and (v, t)

in M1 form a bad cycle in M1: u→s→· · ·→v→t→· · ·→u. This contradicts that M1

was a model of AΦ.
By repeatedly eliminating duplicates in this way we eventually get the desired

model M contained in A.
(⇐) Any model M contained in A such that M, s0 |= AΦ can plainly be unwound

into a tree that is accepted by A.
A helpful generalization follows.
Theorem 3.3 (generalized linear sized model theorem). Let s0, s1, . . . , sk (k ≥ 0)

be distinct elements of T and formula g = P ∧A(Φ ∨ FR), where Φ =
∨

i∈[1:k](
∞

FQi∧
∞

GPi) is a pairs acceptance condition and P,R are atomic propositions. Then,
∃M ′ generated by T such that M ′, s0, s1, . . . , sk |= g

iff
∃M contained in T such that M, s0, s1, . . . , sk |= g.
Proof. (⇒) Assume the existence of M ′. We first show that this implies the

existence of M ′′ generated by T such that

M ′′, s0, s1, . . . , sk |= P ∧ A(Φ ∨ FR)and for all s ∈M ′′, M ′′, s |= A(Φ ∨ FR)

.
Intuitively, M ′′ is obtained by deleting spurious nodes from M ′, retaining just

those nodes which are in the “cone” from some si until some R-node, if any, is
encountered. Technically, let S = {t ∈ M ′: there exists a path from some si to t in
M ′, all of whose nodes except (possibly) t itself satisfy ¬R}. Let S′ = M ′ \ S.

Thus, S′ consists of all nodes that can be reached only from any si by going
through some R-node. Now, delete all successor arcs of R-nodes, and then delete all
nodes no longer reachable from some si. Note that the deleted nodes are exactly S′.
Call the resulting substructure of M ′ so obtained M ′′. Note that the nodes retained
in M ′′ are exactly S and that M ′′ is still generated by T .
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Now observe that A(Φ ∨ FR) ≡ A(A(Φ ∨ FR) Uw R). Therefore, for all t ∈ S,
M ′, t |= A(Φ ∨ FR). Hence, for all t ∈ S, M ′′, t |= A(Φ ∨ FR), as the only nodes
deleted in M ′′ are the ones which are reached from any si by going through some
R-node. Thus, M ′′, s0, s1, . . . , sk |= A(Φ ∨ FR) ∧ P , and for all s ∈ M ′′, M ′′, s |=
A(Φ ∨ FR).

Any fullpath starting at any node in M ′′ either
(i) is infinite and satisfies Φ, or
(ii) is finite, terminating in an R-node.
We can now argue, just as in the linear size model theorem, that duplicates can

be eliminated. If u and v are duplicates, we can attempt to replace u by v. The
only problem is that it may introduce a “bad” cycle satisfying ¬Φ. In that case, it
must be possible to replace v by u, for otherwise there would be a bad cycle, i.e., an
infinite fullpath satisfying ¬Φ in the original M ′′. Continuing in this fashion, we get
a structure M with no duplicates. It is isomorphic to a structure contained in T with
the desired properties, i.e., M, s0, s1, . . . , sk |= P ∧ A(Φ ∨ FR).

(⇐) By definition, any model M contained in T is also generated by T .

3.6. Pseudomodels. The linear size model theorem also suggests the following.
Definition 3.4. Let T = (D,C,RDC , RCD0, RCD1, LT ) be the transition dia-

gram of a tree automaton A, let s be a state of A, and let p be a formula.
• We say that diagram T at state s is a pseudomodel of p (or that p is satisfiable

in T at s) and write T, s ‖ −con p iff there exists a structure M contained in
T such that M, s |= p. We also write pT,con for {s ∈ T : T, s|| −con p}.
• We say p is generable in T at s and write T, s|| −gen p iff there exists a

structure M generated by T such that M, s |= p. We also write pT,gen for
{s ∈ T : T, s|| −gen p}.
• We say p is true (or modeled) in T at s, considered simply as a structure with

state set D ∪C and transition relation RCD ∪RDC0 ∪RDC1 iff T, s |= p. We
also write pT,mod for {s ∈ T : T, s |= p}.

Remark. For a proposition symbol P we have PT,mod = PT,con = PT,gen.
Our overall approach to testing nonemptiness can now be summarized in the

following rephrasing of the linear size model theorem.
Theorem 3.5. Automaton A with diagram T and pairs acceptance condition Φ

is nonempty iff q0 ∈ AΦT,con.
We will check nonemptiness by calculating AΦT,con by a process of “pseudomodel

checking” (cf. [4]).

4. Complexity of pairs tree automata. In this section we prove that nonemp-
tiness of pairs tree automata can be tested in time polynomial in the number of states
and exponential in the number of pairs, even though, as we show, the problem is
NP-complete in general.

Theorem 4.1. Nonemptiness of a pairs automaton A having m states and n

pairs can be tested in deterministic time (mn)O(n).
Proof. Let A be a tree automaton with transition diagram T of size m states and

pairs acceptance condition ΦΓ =
∨

γ∈Γ (GFQγ ∧ FGPγ), where Γ is the index set

[1 : n] of pairs. Here, Qγ and Pγ stand for greenγ and ¬redγ , respectively. When Γ
is understood from context we can drop it and write just Φ for ΦΓ. We also let Φ−γ

denote ΦΓ\{γ}.
The basic idea of the algorithm is to inductively compute the set of states in T at

which AΦ is satisfiable, viz., AΦT,con = {s ∈ T : T, s||−conAΦ}. For this purpose, we
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use the fixpoint characterization µY.τ(Y ) of AΦ from Lemma 4.2 below and evaluate
it iteratively using the Tarski–Knaster theorem specialized to pseudomodel checking
in Lemma 4.3 below. To compute each Y i+1 = τ(Y i) we evaluate the body τ(Y ) com-
positionally,5 using Lemmas 4.2–4.9 as appropriate. This in turn entails the recursive
calculation of (essentially) AΦ−γ with one fewer pair. The recursion terminates when
Φ−γ ≡ false has 0 pairs, in which case Lemma 4.4 is used instead of Lemma 4.3. For
technical reasons, we actually pseudomodel check a modified pairs condition of the
form A(Φ ∨ FR), which specializes to the ordinary pairs conditions when R ≡ false.

If each OR-node in T had a unique successor, then the pseudomodel checking of
A(Φ ∨ FR) would simply amount to model checking in the Mu-calculus [12]. But in
general, each OR-node has more than one successor. Therefore, our algorithm must
simultaneously exhaust the search space of all structures contained in T and check
if one of these structures is a model of the pairs condition. Lemmas 4.2–4.9 below
permit both steps to be done together, thereby performing the desired pseudomodel
checking. The proofs of the lemmas are given in Appendix A.

Lemma 4.2 (fixpoint characterization for modified pairs condition). Let Φ =

∨γ(
∞

GPγ ∧
∞

FQγ) denote the pairs condition where Γ = [1 : n]; let R be propositional.
Then A(Φ∨FR) ≡ µY.τ(Y ), where τ(Y ) = R∨∨γAXsA(gγUwR) and gγ = A(Φ−γ ∨
F (R ∨Qγ)) ∧ (Pγ ∨ Y ) ∧AXstrue.

Lemma 4.3 (pseudomodel checking via Tarski–Knaster approximation6). Set
Y0 := falseT,con; set Yi+1 := τ(Y i)T,con. Then A(Φ ∨ FR)T,con = µY.τ(Y )T,con =⋃

i≤|T | Y
i.

Lemma 4.4 (pseudomodel checking inevitability).

AFRT,con = (µV.R ∨ EXsAXsV )T,mod.

Observation 4.5 (pseudomodel checking of disjunctions).

(R ∨
∨

γ

(AXsA[gγUwR]))T,con = RT,con ∪
⋃

γ

(AXsA[gγUwR])T,con.

Observation 4.6 (pseudomodel checking of nexttime).

(AXsA[gγUwR])T,con = {s ∈ T : T, s |= EXsAXsW},whereW = A[gγUwR]T,con.

Definition 4.7. Let U be a transition diagram for an automaton, and let Z be a
set of OR-nodes of U . We define the AND/OR-graph denoted U |Z, called U restricted
to Z, to be the result of deleting from U all OR-nodes not in Z and incident arcs, and
then deleting all AND-nodes, which do not have all successors in Z, along with all
incident arcs. By a convenient abuse of notation, we shall write Z for U |Z when it is
clear that an AND/OR-subgraph of U is intended. In particular, if f is a temporal
formula, we write fZ,con for fU |Z,con.

Lemma 4.8 (pseudomodel checking of weak until). Set Z0 := trueT,con; set

Zi+1 := ((gγ ∧ AXsZ
i) ∨ R)Z

i,con. Then for some least k, Zk = Zk+1 is the fixpoint
of the descending chain Zi ⊇ Zi+1 and A[gγUwR]T,con = Zk.

5That is, by induction on formula structure.
6It is to be understood below that “set Yi+1 := τ(Y i)T,con,” for example, means to assign to the

set Yi+1 exactly the set of states in τ(Y i)T,con and label the resulting states in the set Yi+1 with
the symbol Y i+1
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Lemma 4.9 (pseudomodel checking of conjunctions in gγ). gT,con
γ = A(Φ−γ ∨

F (R ∨Qγ))T,con ∩ (Pγ ∨ Y )T,con ∩AXstrue
T,con.

Finally, we analyze the complexity as follows. Let Com(T, f) stand for the com-
plexity of computing {s|T, s ‖− f}. For size of the transition diagram |T | = m, and
number of pairs |Γ| = n, let C(m,n) denote Com(T,A(ΦΓ ∨ R)).

Com(T,A(ΦΓ ∨ FR)) ≤ O(m) · Com(T, Y i),

Com(T, Y i) ≤ n · Com(T,R ∨AXsA(gγUwR)),

Com(T,R ∨AXsA(gγUwR)) ≤ O(m) + O(m) · Com(Zi, gγ ∧ AXsZ
i),

Com(Zi, gγ ∧ AXsZ
i) ≤ O(m) + Com(U,A(ΦΓ\{γ} ∨ FR′)),

where |Zi|, |U | ≤ |T |. Thus, for some constant k > 0 we have

C(m,n) ≤ kmn(km + km(km + C(m,n− 1)))

= kmn(km + k2m2 + kmC(m,n− 1))

= k2m2n + k3m3n + k2m2nC(m,n− 1)

≤ 2k3m3n + k2m2nC(m,n− 1).

The above accounts for the cost for 1 or more pairs (n > 0). Lemma 4.4 implies
n = 0 pairs can be handled in O(m) time. Hence, for some sufficiently large constant
c ≥ 2k3 we have

C(m,n) ≤ cm3n + cm2nC(m,n− 1),

C(m, 0) ≤ cm.

We must thus solve a recurrence of the form

C(m,n) = x + yC(m,n− 1),

C(m, 0) = z,

which is readily expanded to show that its solution is x(yn− 1) + ynz ≤ yn(x+ z). It
follows that C(m,n) is at most

= (cm + cm3n)(cm2n)n

≤ (dm3n)(dm2n)n for some constant d > 2c
= dn+1m2n+3nn+1

≤ nn+1m2n+3nn+1 for all n ≥ d

≤ (mn)2n+3

= (mn)O(n) for all n,m ≥ 1.
Note that m is the size of the transition diagram, which for an automaton on

binary trees can be cubic in the number of states, m0, i.e., m = O(m3
0). As a

function of the number of states, however, we still get the same order of growth, i.e.,
(mn)O(n) = (m3

0n)O(n) = (m0n)3·O(n) = (m0n)O(n). In general, for k-ary trees, the
size of the transition diagram m can be O(mk+1

0 ). Thus we get time (m0n)(k+1)O(n).
This is still (m0n)O(n) for fixed k. Moreover, if k grows linearly with n, the bound is

still (m0n)O(n2), which is sufficient for obtaining the complexity bounds on logics of
programs of section 6.

Theorem 4.10. Pairs tree automaton nonemptiness is NP-complete.
Proof. Pairs automaton nonemptiness was shown to be in NP in [6]: a nondeter-

ministic Turing machine can guess a linear size model M contained in the automaton
diagram and verify that it satisfies the acceptance condition using the model checking
algorithm for fairness of [11b] (cf. [41]).
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To show NP-hardness we reduce from 3-SAT. Let f be a 3-CNF formula with m

clauses C1, C2, . . . , Cm over n variables v1, . . . , vn. We will reduce satisfiability of f
to the nonemptiness problem of a pairs tree automaton A with number of states and
pairs polynomial in |f |.

We will describe A in terms of its AND/OR-graph transition diagram as usual
and pairs acceptance condition.7 Since we are only concerned about the nonemptiness
problem, A is assumed to have a one symbol alphabet. Corresponding to each clause
Ci of f , A will have an OR-node of the same name, Ci. For each possible literal
x, i.e., for each variable vj and its negation ¬vj , there is an AND-node of the same
name, x. If clause Ci contains literal x, then there is an edge Ci → x in the diagram.
If clause Ci contains the literal ¬x, then there is an edge x → Ci in the diagram.
Here we identify ¬¬x with x. We also let S0 be the start state OR-node with a single
AND-node successor which has as its successors C1, . . . , Cm. Finally, for each literal
x there is a pair of lights (GREENx, REDx) such that GREENx colors AND-node x

and REDx colors AND-node ¬x. Let Φ be the corresponding pairs condition.

The basic idea is that a structure M contained in (the diagram of) A specifies a
choice of literal for each clause. From these literals we can try to recover a satisfying
truth assignment for f and vice versa. However, there may be conflicts with one
clause using x, another ¬x. The following argument shows that there is a conflict-free
choice of literals when there is an M satisfying AΦ.

The following claims are equivalent:

(i) A is nonempty.
(ii) There is a structure M contained in A, accepted by A so that M,S0 |= AΦ.
(iii) There exists H = ao(M), where M is contained in A, such that in H, each

Cj has an edge to some xl and no other Ck has an edge to the negation of xl.
(iv) f is satisfiable.

Claims (i) and (ii) are equivalent by the linear size model theorem. The equiv-
alence of (iii) and (iv) is immediate from the construction of A. The equivalence of
(ii) and (iii) follows from a slightly sharper equivalence. Let H = ao(M), where M is
contained in A. Then the following are equivalent:

(ii)′ M,S0 |= AΦ.
(iii)′ In H, each Cj has an edge to some xl and no other Ck has an edge to the

negation of xl.

Condition (iii)′ implies that for every green light labeling a node in H, its corre-
sponding red light does not occur in H. Hence, along every infinite path some green
light appears infinitely often but its corresponding red light never appears, and Φ
holds along the path. Condition (ii)′ follows. Now assume (ii)′. Then M is total
as is H. It must be that (iii)′ holds of H. Otherwise, there is a Cj with an edge
to xl and a Ck with an edge to ¬xl. Then we have the following subgraph in H.

7We will actually describe the diagram of an automaton on trees of arity at most m, where, more-
over, the propositions (or “colors”) defining acceptance label AND-nodes rather than OR-nodes. It
is not difficult to show that it can be converted into an “equivalent, ordinary” automaton. Here
“equivalent” means that the original automaton accepts iff the derived automaton accepts. Conver-
sion to a binary tree automaton is effected by inserting “dummy” nodes in the transition diagram
to reduce fan-in m to fan-in 2. This causes a linear blowup in size. The acceptance condition colors
can be moved to the OR-nodes by having each derived node be of the form (OR-node, AND-node
predecessor causing transition). This can cause a quadratic blowup in size.
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Here (G, R) and (G′, R′) are the pairs corresponding to the literals xl and ¬xl,
respectively. The arcs xl → Ck and ¬xl → Cj exist by definition of A, considering
that ¬xl is in Ck and xl is in Cj . The above subgraph generates a path which has for
all green lights flashing infinitely often its corresponding red light flashing infinitely
often, too. But then there would be a “bad” path in M violating Φ, contrary to
our assumption of (ii)′. The equivalence of (ii) and (iii) follows. This completes the
reduction.

5. Complexity of complemented pairs tree automata. In this section, we
will show that there is also a deterministic algorithm to test nonemptiness of a com-
plemented pairs tree automaton (cf. [33]) which runs in time (mn)O(n), where m is
the number of states of the automaton and n is the number of pairs in its acceptance
condition. Moreover, we will show that testing nonemptiness of such automata is
co-NP-complete.

The key idea is that for a tree automaton A over a one symbol alphabet we can
define its dual tree automaton Ã such that A is nonempty iff Ã is empty. The dual
is essentially obtained by swapping AND-nodes with OR-nodes and complementing
the acceptance condition. Since we view the transition diagram of a nondeterministic
tree automaton as a bipartite AND/OR graph, the dual is also a bipartite AND/OR
graph and hence can be viewed as a nondeterministic automaton. Moreover, the dual
of a pairs automaton is a complemented pairs automaton and vice versa. Muller and
Schupp also define a dual automaton in [24], but for a nondeterministic automaton
their dual automaton is in general an alternating automaton. For the purpose of
checking nonemptiness of automata over one symbol alphabets, the dual defined in
this new way suffices.

For an automaton A and its dual Ã, we are interested in showing that A is
nonempty iff Ã is empty. In other words, we must show that

∃ Run ρ of A for all paths in ρ ΦA(5.1)

≡ ¬ ∃ Run ρ of Ã for all paths in ρ ΦÃ,(5.2)

where ΦA is the acceptance condition of A and ΦÃ ≡ ¬ΦA is the acceptance condition

of Ã. We can argue this informally as follows. By expanding (1) we get that

(1) ≡ ∀!d0∃c0∀d1∃c1∀d2∃c2 . . . d0c0d1c1d2c2 . . . |= ΦA,

meaning that for the unique start OR-node d0 ofA there exists an AND-node successor
c0 such that for all OR-node successors d1 of c0 there exists an AND-node successor
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c1, etc., ad infinitum such that d0c0d1c1d2c2 . . . |= ΦA. Similarly, by expanding (2),
we get that

(2) ≡ ¬∀!e0∃!d0∀c0∃d1∀c1∃d2∀c2 . . . e0d0c0d1c1d2c2 . . . |= ¬ΦA,

where e0 is the unique “dummy” start state of Ã, all of whose successors are d0. (This
is explained in more detail below.) Applying the well-known quantifier negation law
to the infinite string of quantifiers for (2), we get after driving the negation inside
that

(2) ≡ ∃!e0∀!d0∃c0∀d1∃c1∀d2∃c2 . . . e0d0c0d1c1d2c2 . . . |= ΦA.

Since the truth of ΦA is oblivious to the initial e0 we should be able to conclude that
(1) ≡ (2) as desired. But the quantifier negation law for infinite strings of quantifiers
is known to contradict the axiom of choice in general. Therefore to formally prove the
above, we show that the set of paths ΦA and its complement are “nice” in the sense
that they are finite automaton definable (and hence Borel) and conclude the desired
equivalence using Martin’s theorem on determinacy of infinite Borel games (cf. [22]).8

The above notions are formalized in what follows.
Definition 5.1. Let λ denote the empty sequence. For an infinite sequence

x0x1 . . . , let xi be the suffix xixi+1 . . . . In particular, tail(x) stands for x1. If x =
x0x1 . . . and y = y0y1 . . . are two infinite sequences, then let x^y (“zip”) denote the
sequence x0y0x1y1 . . . . We let λω = λn = λ and xλ = x. Then we can define zip of
two finite/infinite sequences by appending finite sequences with λω.

We are given an automaton A over a one symbol alphabet with acceptance con-
dition ΦA. Without loss of generality we may stipulate that each node of its tran-
sition diagram has exactly two successors.9 Thus we may assume A is of the form
(D,C,R, d0, L) with OR-node set D, AND-node set C, start OR-node d0, labeling L,
and transition relation R = RDC ∪ RCD0 ∪ RCD1. Since each node has exactly two
successors we may view R as a function so that R(d, i) = c indicates that c is the
AND-node successor of OR-node d of index i ∈ {0, 1} and R(c, j) = d indicates that d
is the OR-node successor of AND-node c in direction j ∈ {0, 1}. We also assume that
the labeling L assigning “colors” associated with ΦA to each node has been extended
to AND-nodes so that each AND-node is colored exactly as is its unique OR-node
parent.10

We shall define the dual automaton Ã essentially by swapping OR-nodes and
AND-nodes in A. However, we shall have to do a bit more to ensure that the result
meets the technical definition of being an automaton as we have defined them to be.

Definition 5.2. We first define Â with diagram of the form (D̂, Ĉ, R̂, d̂0, L̂),
where D̂ = C ∪ {e0}, Ĉ = D, R̂(e0, 0) = R̂(e0, 1) = d0 with R̂(b, i) = R(b, i) for all
b ∈ C ∪ D and i ∈ [0, 1], and L̂ is the same as L but it includes e0 in its domain,
assigning it the empty set of color propositions. We see that Â is the result of swapping
OR-nodes and AND-nodes from A and adding a new dummy start state e0 both of
whose successors are d0, start state of A. Â is almost what we want for the dual
except that its AND-nodes, which were OR-nodes of A, are not guaranteed to have
unique predecessors. Technically, this violates the definition of an automaton.

8Since ΦA is finite automaton definable, a weaker result of Büchi–Landweber [3], showing deter-
minacy of such games, will do.

9The argument generalizes in a straightforward way to k successors.
10Thus, if x is a path through A, we have x |= ΦA iff x|D |= ΦA iff x|C |= ΦA.
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Therefore, to get Ã from Â we must create duplicates of the AND-nodes in Ĉ. In
other words, we locally unravel Â: if d̂ → ĉ and ĉ → d̂′ appear in Â, then d̂ → (d̂, ĉ)

and (d̂, ĉ) → d̂′ appear in Ã with the AND-node (d̂, ĉ) of Ã labeled exactly as is
AND-node ĉ of ĉa. The result is the underlying diagram of Ã. Formally, we let Ã

have diagram (D̃, C̃, R̃, d̃0, L̃). Here D̃ = D̂ and d̃0 = d̂0. We define C̃ ⊆ D̂ × Ĉ

such that if AND-node ĉ has OR-node predecessors d̂1, . . . , d̂k in Â, then AND-nodes
(d̂1, ĉ), . . . , (d̂k, ĉ) are in C̃. If R̂(d̂, i) = ĉ, then R̃(d̂, i) = (d̂, ĉ) for i ∈ {0, 1}. If

R̂(ĉ, j) = d̂, then R̃((d̂l, ĉ), j) = d̂ for j ∈ {0, 1} and where d̂l is any predecessor of ĉ

in Â. Finally, L̃(d̂) = L̂(d̂) and L̃((d̂l, ĉ)) = L̂(ĉ). This transformation of Â into Ã
can cause at worst a quadratic blowup in size.

Definition 5.3. Given an infinite string z ∈ {0, 1}ω and automaton A with
diagram (D,C,R, d0, L), we can associate with z, by starting at d0 and following the
arc labels spelling out z, a unique infinite path through the diagram of A and vice
versa.

Formally, we define pathA : {0, 1}ω→(DC)ω such that for z = x^y, pathA(z) =
s^ t, where x = x0x1 . . ., y = y0y1 . . ., s = s0s1 . . ., t = t0t1 . . ., s0 = d0 is the start
node in D, tn = R(sn, xn), and sn+1 = R(tn, yn).

Observation 5.4. π̃ = pathÃ(z) is the same as π̂ = pathÂ(z), except that each
AND-node c̃ along π̃ is a duplicate of the corresponding AND-node ĉ along π̂ of the
form (d̂, ĉ), where d̂ is the predecessor of ĉ along π̂. Therefore, π̃ |= ΦA iff π̂ |= ΦA.

Observation 5.5. pathÃ(x^y) = e0 · pathA(y^tail(x)).
This follows because, all successors of e0 are d0, and hence x0 is redundant.
Definition 5.6. We now define a two player infinite game G associated with

A. There are two players I and II. I goes first and picks x0 ∈ {0, 1}, then II picks
some y0 ∈ {0, 1}, then I picks some x1 ∈ {0, 1}, and so on alternatively. The resulting
infinite string z = x0y0x1y1 . . . is a play of the game. Player I wins this particular play
z if z is in the winning set Γ, which is defined by letting Γ={x : x ∈ {0, 1}ω pathG(x)
satisfies ΦA}; otherwise II wins the play.

A strategy for I is a function fI {0, 1}
∗ → {0, 1}, and a strategy for II is a function

fII : {0, 1}+ → {0, 1}. The family of all such strategy function will be denoted Strat

I and Strat II, respectively, with typical elements denoted fI and fII, respectively.
Any function f {0, 1}∗→Σ induces a map f : {0, 1}ω→Σω. If z = z0z1 . . . and

x = x0x1 . . ., f(x) = z such that, for all n, zn = f(x0x1 . . . xn−1) and z0 = f(λ).
Similarly, a function f : {0, 1}+→Σ induces a map f : {0, 1}ω→Σω such that zn =
f(x0x1 . . . xn).

We say that Player I follows strategy fI if it chooses fI(y0y1 . . . yn−1) when II has
chosen y0y1 . . . yn−1. Similarly for Player II. If II builds up y during a play, and I
follows fI, then the resulting play is fI(y)^y. Similarly, if I builds up x, and II follows
fII, the resulting play is x^fII(x).

We say that fI is a winning strategy for I if for all y ∈ {0, 1}ω fI(y)^y ∈ Γ.
Similarly, fII is a winning strategy for II if for all y ∈ {0, 1}ω y^fII(y) 6∈ Γ.

Remark. When the transition diagram is presented as in this section, the defini-
tion of a run ρ is formulated as

ρ(λ) = d0

for all y ∈ {0, 1}∗ ∃i ∈ {0, 1} ∃c ∈ C c = R(ρ(y), i) and for all j ∈
{0, 1} ρ(yj) = R(b, j).

The first condition asserts that ρ annotates the root node with the start state.
The second condition asserts that each node y of the tree has its successors y0, y1
annotated in a manner consistent with the diagram because there is an AND-node



COMPLEXITY OF TREE AUTOMATA 149

c from OR-node ρ(y) to OR-nodes ρ(y0), ρ(y1) in the diagram. Note also that the
condition that “along all paths of a run ρ, ΦA holds,” is now formulated as “for all
y ∈ {0, 1}ω ρ(y) satisfies ΦA,” since y here is spelling out a path through the tree in
terms of edge labels.

Lemma 5.7. Let A be an automaton with acceptance condition ΦA. Then,

∃ run ρ of A for all y ∈ {0, 1}ω ρ(y) satisfies ΦA

iff

∃fI for all y ∈ {0, 1}ω pathA(fI(y)^y) satisfies ΦA.

This lemma says that an accepting run defines a corresponding winning strategy
and vice versa. Intuitively, given a run as shown in Figure 5.1 (a) we can extend it to
indicate the intermediate AND-nodes and edges, indexed by 0 or 1, between nodes, as
shown in Figure 5.1 (b). These edges indicating that cn is the xn-successor of dn, that
dn+1 is the yn+1-successor of cn, and so forth constitute an edge-labeled tree defining
the strategy, as shown in Figure 5.1 (c). Conversely, given the strategy we can view
it as an edge-labeled tree, and given the start node d0, infer the corresponding run.
This argument is formalized below.

Proof. Given ρ, let fI(y) = min{i : ∃b b = R(ρ(y), i) and for all j ρ(yj) = R(b, j)}
so that fI picks, for the sake of definiteness, the AND-node successor of least index.
The above definition is well defined by the definition of a run.

We show that ρ(y) is exactly s, where s^t= pathA(fI(y)^x). By the definition of
pathA, sn+1 = R(tn, yn) and tn = R(sn, xn), where x = fI(y). We show by induction
that ρ(y0y1 . . . yn) = sn+1.

The base case is trivial because ρ(λ) = s0. By induction hypothesis, ρ(y0y1 . . .

yn−1) = sn. By definition of fI, tn = g(ρ(y0y1 . . . yn−1), xn) = b and ρ(y0y1 . . . yn) =
g(b, yn) = g(tn, yn) = sn+1.

For the other direction, given fI we define ρ:

ρ(λ) = s0,

ρ(yj) = R(R(ρ(y), fI(y)), j).

It follows from this definition of ρ and the definition of pathA that, if s^t =
pathA(fI(y)^y), then s = ρ(y).

In the definition of Ã, we required that the proposition labels be the same on the
OR-nodes and their AND-node successors. For the dual automaton, it follows that
the labels on the OR-nodes are the same as on their predecessor AND-nodes. Thus,
pathA(fI(y)^x) satisfies ΦA iff ρ(y) satisfies ΦA.

Lemma 5.8. Let Ã be the dual automaton which has acceptance condition ¬ΦA.
Then,

∃ run ρ of Ã for all y ∈ {0, 1}ω ρ(y) satisfies ¬ΦA

iff

∃fII for all x ∈ {0, 1}ω pathÃ(x^fII(x)) satisfies ¬ΦA.

Proof. We argue as follows:

∃fII for all x ∈ {0, 1}ω pathA(x^fII(x)) satisfies ¬ΦA

iff (since ΦA is oblivious to finite prefixes being altered)

∃fII for all x ∈ {0, 1}ω e0 · pathA(x^fII(x)) satisfies ¬ΦA

iff (taking fI to be the same as fII, except fI(λ) is defined arbitrarily)

∃fI for all x ∈ {0, 1}ω e0 · pathA(x^tail(fI(x))) satisfies ¬ΦA

iff (by Observation 5.4)

∃fI for all x ∈ {0, 1}ω pathÂ(fI(x)^x) satisfies ¬ΦA

iff (by Observation 5.5)
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∃fI for all x ∈ {0, 1}ω pathÃ(fI(x)^x) satisfies ¬ΦA

iff (by Lemma 5.7)
∃ run ρ of Ã for all x ∈ {0, 1}ω ρ(x) satisfies ¬ΦA.

This completes the proof.
Lemma 5.9. Γ is Borel.
Proof. We show that Γ is accepted by a deterministic string automata Ā with

acceptance condition ΦA. Ā has as its alphabet {0, 1}. Let the states of Ā be from
S ∪T . The transition function δ is g itself, i.e., δ(u, i) = R(u, i). A routine inspection
shows that Ā accepts Γ.

Landweber [20] showed that every set accepted by a deterministic Muller string
automaton is in the Borel class Gδω ∩ Fωδ with the usual product topology on the
set of all infinite binary sequences. Since we are interested in ΦA being either pairs
or complemented pairs acceptance condition, the ω-string automaton with such ΦA

are well known to be equivalent to deterministic Muller string automaton (see, e.g.,
[20]).

Now, we are ready to prove the main lemma.
Lemma 5.10. A is nonempty iff Ã is empty.
Proof. By Lemma 5.9, the acceptance condition of A, Γ, is Borel, and hence

the game G associated with Γ is determined by Martin’s theorem [22]. Thus, I has
a winning strategy iff II does not have a winning strategy. By Lemma 5.7, Player I
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has a winning strategy iff A is nonempty. By Lemma 5.8, Player II has a winning
strategy iff Ã is nonempty. It immediately follows then that A is nonempty iff Ã is
empty.

Given a complemented pairs automaton A, we can construct with at most a
quadratic blowup its pairs dual automaton Ã such that A is nonempty iff Ã. Since
by Theorem 4.10 of the previous section testing nonemptiness of pairs automata is
NP-complete, we immediately get the following corollary.

Corollary 5.11. Testing nonemptiness of complemented pairs automata is co-
NP-complete.

Since the quadratic reduction is deterministic, we also get the following.

Corollary 5.12. There is a deterministic algorithm to test nonemptiness of
complemented pairs automata with m states and n pairs that runs in time (mn)O(n).

6. Applications to logics of programs. Using existing reductions and our
new algorithms for tree automata, we give essentially optimal algorithms for CTL∗,
PDL-delta, and the Mu-calculus. The “standard” algorithms for each of these log-
ics are of triple exponential complexity (cf. [13, 33, 35]). The existing reductions to
which we appeal reduce satisfiability of these logics to nonemptiness of tree automata.
These reductions employ determinization of a nondeterministic Büchi automaton on
ω-strings. With preexisting algorithms for testing nonemptiness of (pairs) tree au-
tomata of [6] (cf. [41]) and the McNaughton determinization construction [23],11 we
can get a nondeterministic double exponential algorithm for testing (un)satisfiability
of PDL-delta and the Mu-calculus. Using the new ω-string automaton determiniza-
tion construct of Safra [32], we can get a nondeterministic single exponential time
algorithm for these two logics. As described below, using our new nonemptiness test-
ing algorithms we get a deterministic single exponential time algorithm. The best
previously existing upper bounds for these logics, viz., nondeterministic single expo-
nential time (which amounts to deterministic double exponential time in practice),
employed “hybrid automata” (cf. [41]). The Safra construction alone does not help
reduce the complexity using the hybrid automata. For CTL∗, the existing reduc-
tions [13], which use a special structure of the ω-string automata associated with the
logic, viz., uniqueness of accepting runs, to determinize with only a single exponential
blowup, Safra’s construction provides no additional help. The previous nonempti-
ness algorithms give a nondeterministic double exponential time algorithm. Our new
nonemptiness algorithm reduces the upper bound to deterministic double exponential
time. In what follows exp(n) denotes the class of functions bounded above by 2q(n)

for some polynomial q(n).

Theorem 6.1. There is an exp(exp(|p|)) time reduction of a CTL∗ formula p

into a pairs automaton Ap on infinite trees with exp(exp(|p|)) states and exp(|p|) pairs
such that p is satisfiable iff Ap is nonempty.

Theorem 6.2. The satisfiability problem for CTL∗ is complete for deterministic
double exponential time.

Proof. Applying the nonemptiness algorithm (Theorem 4.1) to the pairs tree
automaton obtained by Theorem 6.1, it follows directly that CTL∗ can be decided in
deterministic double exponential time. CTL∗ was shown hard for double exponential
time in [41].

Theorem 6.3. Satisfiability of the Mu-calculus is in deterministic exponential
time.

11Here we also use our Lemma 5.10.
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Proof. For a Mu-calculus formula p a complemented pairs automaton Ap of size
exp(|p|) and number of pairs polynomial in |p| can be constructed in time exp(|p|)
such that p is satisfiable iff Ap is nonempty. This reduction follows by the technique
described in [35], but by using Safra’s construction instead of McNaughton’s construc-
tion. The upper bound follows by using the nonemptiness algorithm for complemented
pairs automata (Corollary 5.12).

PDL-delta has a linear blowup translation into the Mu-calculus [12, 19] (pro-
vided we allow consolidation of common subformulae). Hence, we have the following
theorem.

Theorem 6.4. Satisfiability of PDL-delta is in deterministic exponential time.
Remark. A direct algorithm, similar to the one mentioned for the Mu-calculus,

can also be given (see [33, 41]).
Because of the known deterministic exponential time lower bound for PDL [14],

it follows that the above algorithms for the Mu-calculus and PDL-delta are essentially
optimal (i.e., up to polynomial blowup). Moreover, we have the next corollary.

Corollary 6.5. Satisfiability of the Mu-calculus and PDL-delta are complete
for deterministic exponential time.

7. Conclusion. We have investigated the complexity of testing nonemptiness of
finite state automata on infinite trees. For the classical pairs acceptance condition of
Rabin [30] we show the problem is NP-complete, while for the complemented pairs
condition of Streett [33] we show the problem is co-NP-complete. In both cases, we
are still able to give a deterministic algorithm that runs in time polynomial in the
number of states but exponential in the number of pairs. These nonemptiness algo-
rithms improve previous results in the literature and permit us to give exponentially
improved, essentially tight, upper bounds on the complexity of testing satisfiability for
a number of important modal logics of programs including CTL∗, PDL-delta, and the
propositional Mu-calculus. Moreover, we believe that the technique of pseudomodel
checking may be useful in connection with other types of automata (cf. [11]).

Among related work we mention the following. Historically, Rabin [30] gave
an exponential time algorithm for pairs tree automaton nonemptiness but did not
perform a multiparameter analysis or provide a lower bound. Hossley and Rackoff [18]
gave an elegant reduction to the nonemptiness problem for automata on finite trees,
but the complexity stated for their algorithm was triple exponential. More recently,
subsequent to the appearance of the preliminary version of this work in [10], Pnueli
and Rosner [28] independently developed a different nonemptiness algorithm for pairs
tree automata providing essentially the same upper bound as ours and intended for
program synthesis applications; however, they did not consider lower bounds. Their
work was extended to a corresponding upper bound for complemented pairs tree
automata in [29]. A control-theoretic view of tree automata is given in [36] and [37],
while an authoritative survey of automata on infinite objects is presented in [38].

Appendix A.

Proof of Lemma 4.2. We will establish the dual claim. Note that given a pairs

condition Φ =
∨

γ(
∞

GPγ ∧
∞

FQγ), the corresponding “complemented” pairs condition

Φ̂ = ∧γ(
∞

FPγ ∨
∞

GQγ) is intended to capture the dual property. Interpreted over

fullpaths in total structures, which must be infinite paths, Φ̂ ≡ Φ̃, the actual dual of
Φ, i.e., ¬Φ(¬P1, . . . ,¬Pγ ,¬Q1, . . . ,¬Qγ). However, over partial structures, as we are
permitting, finite fullpaths are allowed and we do not necessarily have the equivalence
of Φ̂ and Φ̃. Rather, Φ ≡ Φ∧ inf ≡ ∨γ(FGPγ ∧GFQγ)∧ inf. Thus, Φ̃ ≡ ∧γ(GFPγ ∨
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FGQγ) ∨ fin ≡ (∧γ(GFPγ ∨ FGQγ) ∧ inf) ∨ fin ≡ Φ̂ ∨ fin. We thus have that

A(Φ ∨ FR) ≡ A((Φ ∧ inf) ∨ FR) so that the dual E(Φ̃ ∧GR) ≡ E((Φ̂ ∨ fin) ∧GR).
We must show that E(Φ̃ ∧GR) ≡ νY.τ̃(Y ), where

τ̃(Y ) = R ∧ ∧γEXwE[RUsR ∧ (E(Φ̃−γ ∧G(R ∧Qγ)) ∨ (Pγ ∧ Y ) ∨AXwfalse)].

In the following, let M be an arbitrary structure, which is understood but not explic-
itly mentioned.

We first show that E(Φ̃∧GR) is a fixpoint of τ̃(Y ), i.e., E(Φ̃∧GR) ≡ τ̃(E(Φ̃∧GR))
is valid. For the forward (⇒) direction, assume s0 |= E(Φ̃ ∧ GR). Then there is a
fullpath x starting at s0 satisfying Φ̃∧GR, which is equivalent to (Φ̂∨fin)∧GR. By
virtue of x and by definition of Φ̃, for each γ we also have s0 |= R ∧ EXwE[RUsR ∧
(AXwfalse∨ (Pγ∧E(Φ̃∧GR))∨ E(Φ̃−γ∧G(R∧Qγ)))], where the AXwfalse disjunct

ultimately obtains if the fullpath x is finite, the (Pγ ∧E(Φ̃∧GR)) disjunct ultimately

obtains if Pγ occurs along the fullpath x, and the E(Φ̃−γ ∧ G(R ∧ Qγ)) disjunct
ultimately obtains otherwise, since if Pγ never occurs, then eventually Qγ must always

hold. Hence, s0 satisfies all conjuncts of τ̃(E(Φ̃ ∧ R)), and s0 |= τ̃(E(Φ̃ ∧GR)). For
the converse (⇐) direction, assume s0 |= τ̃(E(Φ̃ ∧ GR)). Pick an arbitrary γ. We
have by definition of τ̃(Y ) that s0 |= R ∧EXwE[RUsR ∧ (AXwfalse∨ (Pγ ∧E(Φ̃∧

GR)) ∨ E(Φ̃−γ ∧ G(R ∧ Qγ)))]. Whichever disjunct ultimately obtains, it follows

that s0 |= E(Φ̃ ∧GR). Thus E(Φ̃ ∧GR) is a fixpoint of τ̃(Y ) as desired.
We now show that E(Φ̃∧GR) is the greatest fixpoint of τ̃(Y ). Suppose Z ≡ τ̃(Z)

is an arbitrary fixpoint. We will show that Z ⇒ E(Φ̃ ∧GR) is valid.
For any state s such that s |= Z, since Z is a fixpoint, we have two cases by

analyzing Z ≡ τ̃(Z).
(a) For some index γ,

s |= R ∧ EXwE[RUsR ∧ (E(Φ−γ ∧G(R ∧Qγ)) ∨AXwfalse)],

or
(b) for all indices γ, s |= R ∧ EXwE[RUsR ∧ (Pγ ∧ Z)].
If (b) holds, then we either have the strengthened
(b)′ for all indices γ, s |= R ∧ EXsE[RUsR ∧ (Pγ ∧ Z)], or
(b)′′ for some index γ, s |= R ∧ EXwfalse.
But case (b)′′ implies case (a). Thus either (a) or (b)′ must obtain.
Observation A.1. If state s can reach state t by a finite path y where R holds

everywhere along y, then if case (a) applies to t, it applies to s, also.
Now let s0 be an arbitrary state such that s0 |= Z. If case (a) applies to s0, then

s0 |= E((Φ̂∨ fin)∧GR) and we are done. Otherwise, case (b)′ applies. We will show
how to use the recursion Z ≡ τ̃(Z) infinitely many times to construct an infinite path
satisfying E(Φ̃ ∧GR).

Since (b)′ applies to s0, there exists a path from s0 to some state s1 of the form
s0 = t0, t1, . . . , tk = s1 (k ≥ 0) such that s1 |= P1 ∧ Z and for all i ∈ [0 : k], ti |= R.

We now do case analysis on s1. By Observation A.1, we see that case (a) cannot
apply to s1, for if it did, it would apply to s0 also. So case (b)′ applies to s1, and
there exists a path from s1 to some state s2 of the form s1 = u0, u1, . . . , ul (l ≥ 0)
such that s2 |= P2 ∧ Z and for all j ∈ [0 : l], uj |= R.

Continuing in this fashion, we construct an infinite path x of the form

s0 . . . s1 . . . s2 . . . si . . .
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along which R always holds and which successively visits states where P1, P2, . . . , Pm,

P1, P2, . . . , Pm, . . ., etc. hold in succession. Technically, we have x |= GR, and for
each i, si |= Pi modd m, where i modd m is defined to be i mod m (the remainder of i
on division by m) if i mod m 6= 0 and to be m if i mod m = 0.

Proof of Lemma 4.3. We have
⋃

i τ
i(false)T,con = A(Φ ∨ FR)T,con = A(Φ ∨

FR)T,gen =
⋃

i τ
i(false)T,gen, where the first and third equalities follow from the

Tarski–Knaster theorem together with the disjunctivity of con and gen, while the
second equality follows from the generalized linear size model theorem.

It will thus be sufficient to show that for all i,

(∗) τ i(false)T,con ⊆ Y
i ⊆ τ i(false)T,gen.

We do this by induction on i.
The base case i = 0 is immediate since Y0 = falseT,con.
For the induction step, we assume that (*) holds for i and argue that it holds for

i + 1.
To establish the first containment τ i+1(false)T,con ⊆ Yi+1, assume that s ∈

τ(τ i(false))T,con. Then M, s |= τ(τ i(false)) for some M contained in T . It follows,
as justified below, that M, s |= τ(Y i), from which we conclude that s ∈ τ(Y i)T,con =
Yi+1.

The key step to be justified is that τ i(false)M ⊆ (Y i)M . Note that for any
temporal formula f and for any M contained in T , fM ⊆ fT,con ∩M . And we have
by induction hypothesis that τ i(false)T,con ⊆ (Y i)T,con. Thus

τ i(false)M ⊆ τ i(false)T,con ∩M ⊆ (Y i)T,con ∩M = (Y i)M

. To establish the second containment Yi+1 ⊆ τ i+1(false)T,gen, assume s ∈ Yi+1 =
τ(Y i)T,con. There exists M contained in T such that M, s |= τ(Y i). We will construct
from M a new structure M ′ that will be generated by T and will satisfy τ i+1(false)
at s.

For each state y ∈ M ∩ Yi, let My be a structure generated by T rooted at ŷ (a
copy of y) such that My, ŷ |= τ i(false). Such an My is guaranteed to exist by the
induction hypothesis. Let M ′ be the structure obtained from M by replacing each y

by My, i.e., redirecting edges from predecessors of y into ŷ.
It follows that M ′ is generated by T by virtue of its construction from structures

generated by T . It is also the case that M ′, s |= τ(Y i) since each ŷ has the same
labeling with Y i as y. Moreover, each ŷ is the root of My, so M ′, s |= τ i+1(false)
and s ∈ τ i+1(false)T,gen. Hence, s ∈ τ i+1(false)T,gen, establishing the second con-
tainment.

Remark. In the construction above, there may be multiple copies of nodes from
T in M ′; since we do not have a generalized linear size model theorem for τ j(false)
for j ≥ 2, it is not, in general, possible to get a structure contained in T . For this
reason Y i 6= τ i(false)T,con. However, a more involved argument than that above can
be given to show that Y i = τ i(false)T,gen.

Proof of Lemma 4.4. We use the fixpoint characterization µV.(R ∨ AXsV ) for
AFR. Let q(V ) = R ∨AXsV and q′(V ) = R ∨ EXsAXsV .

Now, T, s ‖−AFR iff ∃ a structure M contained in T such that M, s |= AFR iff
∃j > 0 ∃ a structure M contained in T such that M, s |= qj(false).

We will argue by induction on j that
∃ a structure M contained in T such that M, s |= qj(false) iff T, s |=
(q′)j(false) (*),
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which will, by taking the disjunction over j, establish the lemma.

The base case j = 1 is immediate since R is a proposition. Therefore assume (*)
holds for j and show that it holds for j + 1.

(⇒) Assume ∃ a structure M contained in T such that M, s |= qj+1(false). Then
M, s |= R ∨ AXsq

j(false). If M, s |= R, we are done, since R is propositional. If
M, s |= AXsq

j(false), then all successors ti of s in M (there is at least one) are
such that M, ti |= qj(false). Hence, T, ti|| − qj(false) as M is contained in T , and
T, ti |= (q′)j(false) by induction hypothesis. Also, there exists an AND-node cs from
s to the ti’s in T . So T, s |= EXsAXs(q

′)j(false) and T, s |= (q′)j+1(false) as desired.

(⇐) Suppose T, s |= (q′)j+1(false). Then T, s |= R ∨ EXsAXs(q
′)j(false). If

T, s |= R, then because R is propositional, T, s|| − R, and we are done. If T, s |=
EXsAXs(q

′)j(false), then there is an AND-node successor cs from s to OR-nodes
t0, t1 such that each T, ti |= (q′)j(false). By induction hypothesis, for each ti, T, ti||−
qj(false), and ∃ a structure Mi contained in T such that Mi, ti |= qj(false).

We let M ′
0,M

′
1 be copies12 of M0,M1, respectively, and graft them onto s by let-

ting t′0, t
′
1 (the copies of t0, t1, respectively) be the successors of s. Then the resulting

M ′ is a structure generated by T such that M ′, s |= qj+1(false). Now we can get a
structure M̂ contained in T such that M̂, s |= qj+1(false), as follows.

Suppose nodes u, u′ of M ′ are copies of the same OR-node of T , i.e., map to the
same OR-node under the generation function. There is a smallest k ≤ j and a smallest
k′ ≤ j such that M ′, u |= qk(false) and M ′, u′ |= qk

′

(false), respectively. If k ≤ k′,
then let u replace u′ by redirecting all arcs going from predecessors of u′ into u′ so
that they go from predecessors of u′ into u instead. Thus u′ is no longer accessible and
may be deleted. Similarly, if k > k′, then let u′ replace u. Call the resulting structure,
which has one of u, u′ “chopped out,” M ′′. Note that for every node v common to
M ′ and M ′′, if M ′, v |= ql(false), then M ′′, v |= ql(false). Accordingly, we have that
the “q-rank” of nodes does not increase in going from M ′ to M ′′. Moreover, M ′′ is
still a structure generated by T with one fewer pair of duplicates than M ′ such that
M ′′, s |= qj(false). This process can be repeated until all duplicates are eliminated.
Call the resulting final structure M̂ . Then M̂, s |= qj+1(false) and is (a copy of) a
structure contained in T .

Proof of Lemma 4.8. The argument depends on the following.

Merging property. If for all s ∈ Zk there exists M contained in Zk such that
M, s |= gγ ∧ AXsZ

k ∨R, then there exists a single M0 contained in Zk such that for
all s ∈ Zk, M0, s |= gγ ∧AXsZ

k ∨R.

Proof of property. Let s1, . . . , sn be an enumeration without repetitions of Zk \R.
We will show that we can repeatedly apply the generalized linear size model theorem
to get M contained in Zk such that M, s1, . . . , sn |= gγ ∧AXsZ

k.

For s1 there exists M1 contained in Zk such that M1, s1 |= gγ ∧AXsZ
k. A similar

M2 for s2 exists. Let M ′
1 be a copy of M1 that is disjoint from M1 except that the

original node s1 is retained. Similarly, let M ′
2 be a copy of M2 that is also disjoint

from M ′
1. Then, defining the union of two disjoint structures in the obvious way, the

structure M ′
12 = M ′

1∪M
′
2 is generated by Zk, and we have M ′

12, s1, s2 |= gγ ∧AXsZ
k.

By the generalized linear size model theorem, we can collapse out duplicates
yielding M ′′

12 contained in Zk such that M ′′
12, s

′′
1 , s

′′
2 |= gγ , where M ′′

12 contains no
duplicates and s′′1 , s

′′
2 are (possibly copies of) s1, s2, respectively.

12We say M ′ is a copy of M if it is an isomorphic structure, i.e., labeled graph, with a fresh set
of nodes disjoint from those of M .
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Note that for any node t in M ′′
12, if t had successors in M ′

12, it also has successors
in M ′′

12 by the nature of the method of chopping out duplicates. Hence, M ′′
12, s

′′
1 , s

′′
2 |=

gγ ∧ AXsZ
k. Of course, M ′′

12 is isomorphic to a structure M12 contained in Zk with
s′′1 , s

′′
2 corresponding to s1, s2, respectively, and M12, s1, s2 |= gγ ∧AXsZ

k.
We now continue with s3 and use M12, M3 to get M123 contained in Zk such

that M123, s1, s2, s3 |= gγ ∧ AXsZ
k. Continue this process until Zk \ R is exhausted,

yielding M1,...,k contained in Z such that M1,...,k, s1, . . . , sk |= gγ ∧ AXsZ
k. Now let

M0 = M1,...,k ∪N , where N is the structure formed by just those single nodes t in Zk

satisfying R such that a copy of t does not appear in M1...k. Then M0 is contained
in Zk and for all s ∈ Zk we have M0, s |= gγ ∧AXsZ

k ∨R.
This completes the proof of the merging property.
To establish soundness of the calculation, i.e., Zk ⊆ A(gγUwR)T,con, we first note

that Zk = (g∧AXsZ
k∨R)Z

k

implies, by definition of the fZ
k

notation, for each s ∈ Zk

that Zk, s ‖− cong ∧ AXsZ
k ∨ R. By the merging property, this in turn implies that

there exists a single M0 contained in Zk such that for every s ∈ Zk \R, M0, s |= g. It
follows that for each s0 ∈M0, M0, s0 |= A(gγUwR). To see this, let x = s0, s1, s2, . . .

be a fullpath in M0. For each si, M0, si |= g or M0, si |= R. So M0, x |= (gγUwR) as
desired.

By virtue of M0, for every s0 ∈ Zk \R, we now have that Zk, s0 ‖− conA(gγUwR).
Since M0 is contained in Zk and Zk ⊆ T , we also have that M0 is contained in T ,
and for each s0 ∈ Zk \R, we get T, s0 ‖− conA(gγUwR). Since for all s0 ∈ RT,con, we
have T, s0 ‖− conA(gγUwR), we get for all s0 ∈ Zk that T, s0 ‖− conA(gγUwR). Thus,
Zk ⊆ A(gγUwR)T,con.

In order to show completeness, i.e., A(gγUwR)T,con ⊆ Zk, we argue that for any
i and for any state s0

(∗) Z
i, s0 ‖− conA(gγUwR) implies Z

i+1, s0 ‖− conA(gγUwR).

Assume that Zi, s0 ‖− conA(gγUwR). Thus for some M contained in Zi we have
M, s0 |= A(gγUwR). Without loss of generality, we may assume that every state t of
M is reachable from s0 and M, t |= A(gγUwR).

We claim that M is contained in Zi+1. For all t ∈M , since M, t |= A(gγUwR), it
follows that M, t |= (g ∧ AXsZ

i) ∨ R, and thus t ∈ Zi+1 = {u ∈ Zi : Zi, u ‖− con(g ∧
AXsZ

i) ∨ R}. Hence, M ⊆ Zi+1. Since M is contained in Zi and M ⊆ Zi+1 ⊆ Zi, it
follows by the definition of containment that M is contained in Zi+1.

Thus, M, s0 |= A(gγUwR) and M is contained in Zi+1, so Zi+1, s0 ‖− conA(gγUwR)
as desired. (Note that by definition of the ‖− con notation, Zi+1, s0 ‖− conA(gγUwR)
implies s0 ∈ Zi+1 and the above argument guarantees this.)

Since Z0 = T , for any s ∈ A(gγUwR)T,con, Z0, s ‖− conA(gγUwR) and by in-
duction on i using (∗), we have that for all i, Zi, s ‖− conA(gγUwR). In particular,
Zk, s ‖− conA(gγUwR). Since s was an arbitrary member of A(gγUwR)T,con, we con-
clude A(gγUwR)T,con ⊆ Zk, as desired.

To implement the calculation, we see by using disjunctivity of con that ((gγ ∧

AXsZ
i) ∨R)Z

i,con = (gγ ∧AXsZ
i)Z

i,con ∪RZ
i,con. Now

(gγ ∧AXsZ
i)Z

i,con = (gγ ∧AXstrue)
Z
i,con

within the scope of Zi, con = gZ
i,con

γ , since gγ already has AXstrue as a conjunct.
Now apply Lemma 4.9.

Proof of Lemma 4.9. The ⊆ direction is immediate.
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For the ⊇ direction, pick an arbitrary element s of the right-hand side. Because
s is in the first term, it must be that there exists an M contained in T such that
M, s |= A(Φ−γ ∨ F (R ∨ Qγ)). Since s is also in the second term, it follows that
M, s |= A(Φ−γ∨F (R∨Qγ))∧(Pγ∨Y ). If s has successors in M , then M, s |= A(Φ−γ∨
F (R∨Qγ))∧ (Pγ ∨Y )∧AXstrue, and we are done. If s has no successors in M , then
since we still have M, s |= A(Φ−γ∨F (R∨Qγ)) it must be that M, s |= R∨Qγ . Attach
to s the successors t, u it must have by virtue of membership in the third term and call
the resulting structure M ′. We have M ′, s |= A(Φ−γ∨F (R∨Qγ))∧(Pγ∨Y )∧AXstrue,
the first conjunct holding because s satisfies R∨Qγ in M and M ′, the second conjunct
holding because s satisfies Pγ ∨ Y in M and M ′, and the third conjunct holding by
virtue of t, u. Again, s ∈ gT,con

γ and we are done.
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