
Abstract 

MODAL LOGIC OF CONCURRENT NONDETERMINISTIC PROGRAMS e 

Karl Abrahamson 
Department of Computer Science 

University of Washington 
Seattle, Wa., 98195/USA 

This paper describes a logic, L, for reasoning about concurrent programs. 

Programs are similar to those of dynamic logic, with a shuffle operator included. L 

is a modal logic including the modalities [], meaning "throughout the future," and 
+ 

<> , meaning "sometime in the future." These modalities are extended by constraints, 

so that they can be used to express assertions such as "p holds as long as q does." 

Programs contain labels. Using labels, it is possible to isolate the behavior of a 

single process or segment of a process, while at the same time keeping the segment 

in the context of the whole parallel system. A certain subset of the propositional 

ease of L is known to be decidable. 

I. Introduction. 

After writing many a bug-ridden program, many computer scientists and pro- 

grammers have come to the conclusion that some formal verification method for pro- 

grams is needed. Consequently, a number of logics of (sequential) programs have 

been developed [4,6,8,12]. When programs run concurrently, they are enormously more 

complex, and formal verification is proportionately more desirable. A number of 

concurrent program logics have been proposed [1,7,9,10,11]. I will assume familiar- 

ity with some of them. Some desirable properties of concurrent program logics are 

described below. 
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simple. Basiely, we wish to know about program A: 

Does A always halt? 

When A halts, will P be true? 

The situation is not so cut and dried when programs are running concurrently. 

......................... 
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current processes can interact with each other in complex ways. In order to 

describe their interaction we must be able to make statements about what a program 

does while it is running. Desirable properties of programs may be quite complex. 

For example, we may require A to eventually set condition P true, provided request Q 

is held true by B until acknowledgement R becomes true. 

2) For the purposes of this paper, I will assume that sequential proofs 

are relatively well understood. It is therefore desirable to apply sequential pro- 

gram proof techniques to concurrent programs. Owieki [9] gives a method for doing 

this. In her method, one must show that two proofs are "interference-free." But the 

property to be proved, namely the non-interference of two proofs, cannot itself be 

stated within the logic! This is more than a matter of elegance. Because of it, 

the shortest proof of any statement about any n line concurrent program has 0(2) 

steps. A reasonable logic of concurrent programs should be powerful enough that the 

intermediate steps in proofs, as well as the ultimate goals, are expressible. 

3) As noted~ we wish to apply sequential proof techniques to concurrent 

programs. Therefore a sequential logic should be a subset of our concurrent program 

logic. Many sequential program logics,for example those of Hoare [6], Pratt [12], 

Manna and Waldinger [8] have programs as syntactic entities. A concurrent logic 

containing these must also have syntactic programs. This is in contrast to the log- 

ics of [7,10,11]. 

This paper describes a logic, denoted L, which at least approaches the 

goals of I - 3. L is a temporal logic of programs, as described by Lamport [14]o L 

is described in detail in sectios 2 and 3. Section 4 briefly considers proofs in L. 

Section 5 gives some theorems concerning decidability and expressiveness in L. 

~. Programs of L. 

Programs are built from some set of basic programs. These could include 

assignment statements, synchronization primitives, or just about anything else. 

Their exact nature does not concern us. There is one restriction on the semantics 

of basic programs; they are indivisible, in both the sense that they cannot be in- 

terrupted by other programs, and that intermediate steps are invisible when consid- 

ering such properties as global invariance. This is not an unreasonable restric- 

tion. Assignment statements can be thought of as indivisible provided they contain 

at most one instance of any shared variable. At any rate, interleaving must take 

place at some levle of detail. It is simplest to make that level the level of basic 

programs. 
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Programs are built from basic programs using the operations ?, ;, u, * of 

dynamic logic [12], plus the parallel operator //. Dynamic logic-type programs have 

some advantages over the usual Algol-like programs. 

i) Programs are nondeterministic. Dijkstra [2] has shown that nondeter- 

minism is a useful concept, even in sequential programming. Also, since concurrent 

programs are inherently nondeterministic, we have a symmetry which can be exploited. 

2) The concepts of sequencing, choice, looping and testing are separated. 

The familiar if-then-else construct does both a test and a choice (based on the out- 

come of the test.) Both the formal semantics and proofs can be simpler if we deal 

with only one type of action at a time. 

I will briefly describe the operations of sequential (regular) dynamic log- 

ic programs before going on to parallel programs. 

Tests. If p is a formula then p? is a program, p? acts as a no-op when p 

is true, and may not be executed when p is false, p? is an indivisible program. 

For example, (p wq)? tests the values of both p and q instantaneously. Tests which 

are not indivisible can be written, if desired, using p?uq? for (p v q)? and p?;q? 

for (pA q)? Examples of programs with tests are given under "choice" and "looping" 

below. I should point out that any formula can be tested (actually any closed for- 

mula.) p could, for instance, be a partial correctness assertion about a program. 

My reason for allowing arbitrary tests is not so much a practical one as a matter of 

elegance. I don't need to define separate "testable" and "writable" formulas. 

Sequencing. A;B means simply run A then run B. 

Choice. Since programs are nondeterministic, this operation is simple. 

Av B means "nondeterministically choose to execute either A or B." The familiar con- 

struct "if p then A else B" is simulated by the program (p?;A)u(~p?;B). 

Looping. The program A* means "repeat A zero or more times, the choice be- 

ing made nondeterministically." The familiar construct "while p do A" is simulated 

by the program (p?;A)*;~p?. 

Concurrent programs differ in syntax from sequential programs in two 

respects. 

I) There is one more operator, //. A//B denotes the interleaving of exe- 

cution sequences of A with those of B. The interleaving is not assumed to have the 
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finite delay property. 

2) Every program in given a unique label. This both facilitates the for- 

mal semantics definition, and gives us a means of identifying points and regions of 

a program. Non-essential labels are omitted for readability. 

Syntax of concurrent programs. 

If £ is a label, ~ a basic program, p a closed formula, A and B 

then the following are also programs. 

I. k:~ 2. ~:p? 

3. ~:(AuB) 4. ~:(A;B) 

5. ~:(A*) 6. 2:(A//B) 

provided no label appears twice in the same program. 

programs, 

Semantics of concurrent programs. 

A sequential program can be completely described by a sat of transitions 

between states which the program can make. Essentially, because there are no other 

processes, it does no harm to consider the entire program as one indivisible step. 

The relational semantics of [3] exploit that. Relational semantics will not work 

for concurrent programs. Pratt [13] has described a semantics of processes based on 

trajectories. A trajectory is a finite or infinite sequence of states, through 

which a program can travel. However, as Pratt has noted~ even trajectories are 

inadequate for concurrent programs~ if programs are to be built using an operator 

such as //. Tnere is not enough information in a trajectory to tell how it inter- 

leaves with other trajectories. The semantics of L gets around this problem by let- 

ting a program describe a set of sequences of moves. A move is an indivisible tran- 

sition between two states. The move sequence ...(u,v)(w,z)... contains a move from 

state u to state v, followed by a move from state w to state z. For a sequential 

program this sequence would make sense only if v = w. But we must take into account 

the fact that the "phantom" move from v to w may have been made by some other pro- 

cess. For example, suppose A has semantics ((u,v)(w,z)}, and B has semantics 

{(v,w)}. Then the semantics of A//B is {(v,w)(u,v)(w,z), (u,v)(v,w)(w,z), 

(u,v)(w,z)(v,w)}. There is only one legal sequence in A//B, namely (u,v)(v,w)(w,z). 

Illegal sequences are ignored when the semantics of formulas are defined. 
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There are two kinds of formula, open and closed. An open formula makes a 

statement about a single program, G. Open formulas can make complex statements 

about G, without ever having to state explicitly what G is. The same formula may be 

true for many different programs. Open formulas are described in detail below. 

A closed formula simply applies an open formula to an explicitly mentioned 

program. Pnueli [11] describes program logics as either endogenous, where sentences 

apply to a single, known, program, or exogenous, where programs are explicitly men- 

tioned. He discusses the merits of both. Basicly, in an endogenous logic, it is 

easier to make complex statements about the program in question. Exogenous logics 

allow for statements about equivalence of programs. Programs are more a part of the 

logic, rather than special outside objects. Since most sequential program logics 

are exogenous (e.g. those of Hoare [6], Pratt [12,13]), an exogenous concurrent pro- 

gram logic can include a sequential one. In a sense, the open formulas form an en- 

dogenous logic, and the closed formulas form a powerful exogenous logic. 

Open formulas. 

An open formula describes how the state evolves with time, starting in the 

current state, during the execution of program G. In addition to such important in- 

formation as variable values, the state includes program counter(s) values. Program 

counters change in the obvious way as G executes. Since G is generally nondeter- 

ministic, from any current state, there may be several different paths which G can 

take, each a different evolution of the state with time. By a future, I mean a se- 

quence of states through which G could possibly travel, starting in the present 

state. When an open formula makes an assertion about the future behavior of G, it 

always considers all possible futures. The open formulas of L are as follows. Let 

P be a closed formula, E and F open formulas, and let ~ be a label. 

i. P is an open formula. G is ignored. 

2. ~E, EvF, E=F, etc. are open formulas. 

3. a) before(~) is an open formula, meaning "some program counter is 

at the point labeled by • in G." 

b) in(~) is an open formula, meaning "some program counter is within the 

region labeled by L in G." If G contains ~:(~l:a; ~2:b), in(~) would 

mean before ~i or before R 2. 
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c) after(~) is an open formula, meaning "some program counter is at the 

point immediately following region 4." 

4. (Special case of rule 5.) 

a) []E is an open formula meaning "E is true now and in every 

every possible future." 

state of 

b) <>+E is an open formula meaning "Every possible future contains some 

state where E holds." 

c) The duels of [] and <>+ are defined as <>E = ~[]~E, and []+E = 

~<>+~E. 

Closed formulas 

We assume a base logic, such as propositional or predicate calculus. 

Closed formulas are just sentences of the base logic, augmented with the "closures" 

of open formulas. If q is an open formula and a is a program, then A.q is a closed 

formula meaning "apply q to program A." A.q can be combined with other formulas in 

the usual ways of the base logic. 

Constraints 

The modalities [] and <>+, and their duals, allow one to proceed blindly 

into the future. Constraints give a means of "watching the states as they go by." 

More precisely, constraints restrict the allowable futures of G. A constraint res- 

tricts not just the individual states in the future, but the sequence of states as a 

whole. 

5. If c is a constraint, then 

a) [e] E is an open formula, meaning "in every possible 

remain true as long as c does," 

future, E will 

b) <c>+E is an open formula, meaning "in every possible future, E be- 

comes true before c becomes false." 

We still have left unanswered the question of just what a constraint is. I 

will give three kinds of constraints below. There may be others which are useful, 
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and for that reason constraints are left loosely defined. 

No constraints. 

Many interesting statements about programs can be made without any con- 

straints at all. When there are no constraints, boxes and diamonds are left empty. 

i. (Global invariance.) A.[]p means "p is true throughout the execution of 

A." 

2. (Partial correctness.) (t:A). [] (after(~) ~ p) means "whenever A halts, p 

is true." 

3. (A preserves p.) A.[](pm[]p) means "once p becomes true, it remains true 

during execution of A." 

4.(no divergences.) (~:A.)<>+after(~) says that all paths of A terminate. 

5. We can state that, in A//~whenever A halts, p is true, regardless of 

what B has done. This is written ((~:A)//B).[](after(~)~ p). This sort of explicit 

label referencing is handy in isolating the behavior of a single process. Another 

method of isolating a process is discussed under label constraints. 

Label constraints. 

Constraints apply to prefixes of paths. The constraint "~" means "every 

move within the path is made by some program within the region labeled by ~." The 
i! 

constraint "~, ~2 .... '~n allows moves to be made by programs within ~I or ~2 or ... 

or 2 , Label constraints are particularly useful when the label applies to a single n 
component of a parallel program, for then the moves made by that compone~It can be 

isolated. Another use of label constraints is discussed under proofs. Notice that 

~]p is not the same as [in(2)]p. The latter states only that one process must 

remain within region ~. [~]p states that every move is made by that process which is 

in region ~. Other processes are suspended. 

Example. Suppose program A works according to specifications provided con- 

current programs preserve the truth of Q. A itself does not preserve Q. We can 

state thet B preserves Q in A//B by (A//(~:B)).[](Qm[~]Q). This says "after run- 

ning A//B for any number of steps, if Q is found true, then running B any further 

will leave Q true." 

The section on single step constraints gives another example using label 
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constraints. 

Formula Constraints. 

Owicki [i0] has developed a logic which includes the statement ~'p while q", 

meaning "p remains true as long as q remains true." If we say that constraint q on 

paths means that every point on the path satisfies q, then p while q can be written 

[q] p. 

Single ~ constraints. 

Let the constraint ss mean "the path is of length 2" (involving one state 

transition.) Some interesting formulas are 

i. A cannot deadlock: A~<ss>true~ This says "no matter how A runs, it 

can always go one more step." 

2. In A//B, A never waits: ((£:A)//B).[]<ss,~>true~ 

3. In A//B, A cannot starve: ((£A:A)//(~B:B)).~] 

<>+(<ss,£A>true ^ ~<ss,£B>true) 

4. We might say that a program inherently deadlocks if it can never reach a 

state where it is free from deadlock. "A inherently deadlocks" can be stated as ID= 

A.[]<>~<ss>trueo ID involves alternation of quantifiers of paths. In Owicki's log- 

ic [I0], paths are always implicitly universally quantified. Hence neither ID nor 

its negation can be stated in her logic. 

4. Proofs, 

I have as yet no proof system for L. This section will briefly describe 

how partial correctness assertions might be proved. The basic idea is to modify 

sequential proof methods to make them work for parallel programs. This is the ap- 

proach taken by Owicki [9], and others [1,7]. In Owicki's method, a sequential 

proof is done for each process of a parallel system, and then each step of each 

proof is shown not to be invalidated by other processes. In L~ it is possible to 

integrate the non-interference proof with the sequential proofs. Suppose, for exam- 

ple, I wish to use the Hoare-style rule 
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(1) P{A}Q , Q{B}R 

P{A;B}R 

Suppose A;B occurs in process C of C//D. Assuming that the proofs of P{A}Q and 

Q{B}R have been carried out with due consideration to the action of process D, rule 

(i) can be applied provided it is proved that D preserves the truth of Q. Thus, 

tentatively, D.[](Q~Q) becomes another condition for rule (I). But it is not just 

D which must preserve Q~ it is D, running concurrently with C, which must preserve 

Q. The additional condition should he (C//~D:D).[]( Q = [~]Q). Above it was as- 

sumed that P{A}Q was proved with due consideration for process D. That assumption 

should not be part of the proof rule. Rather, it should be part of the statement of 

what has been proved, namely P{A}Q. Ordinarily P{A}Q is written in L as 

(~A:A).((before(~A)^P) ~[](after(~A) mQ)). To show that D was accounted for, we 

could change the program to (~A:A//D). But the actions of D can be affected by the 

rest of C. The correct way to state P{A}Q is ((~.._~A:A..~)// 

C 
~D:D) • ((before(~ A) A P) m [~A,~D] (after(~A)= Q). The labels in the box prevent C from 

exitting A and then looping back through A. Rule (2), related to rule (i), can now 

b e  s t a t e d .  L e t  E = ( . . . k : ( ~ : A ; ~ 0  : B ) . . . ) / / g : D .  
A "B D 

(2) 

p r o v e :  E . ( ( b e f o r e ( ~ A ) ^ P ) : =  [~A,~] (after(~A)~ Q), 

E. ( (before (~B)^Q ) m [~B' ~] (after (~B) = R), 

E. [] (Q= [~D]q) 

conclude: E. ((before(£)^P)~ [~,l D] (after(£)= R). 

Rule (2) is certainly not simple. In fact, the statements of seemingly simple 

ideas, such as P{A}Q, are rather long. Other proof rules for L are bound to be at 

least as complex. I offer the following defense of these rules. 

I. Abbreviations can be used to shorten 1~he rules and simplify statements. 

2. Consider rule (2). E.[](Q= [~]Q) needs to be proven only once, even 

though it may be used many times, for instance to prove P{A;B}R, P(S;T}R, and so on. 

Short proofs are possible in some cases. 

Label Constraints in proofs. 

Rule (2) makes use of label constraints. There is good reason for this. 

An elegant way to do sequential proofs is inductively on program structure. Rule 

(I) is such an inductive rule. First we prove a statement about A, then one about 

B, and we combine them to get a statement about A;B. Concurrent programs are more 

difficult to handle inductively. Unless explicit reference is made to how the 
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proofs of P(C) and Q(D) are carried out, we can conclude nothing from them about a 

statement R(C//D). We can't conclude anything about R((A;B)//D) from P(A//D) and 

Q(B//D), since it may be the interaction of A and B which causes disaster in D. A 

solution is to use label constraints. Statements are made about E = C//D, and, as 

was the case with rule (2), programs are referred to by their labels. The "label 

structure" can be built up inductively without constantly changing programs. In 

rule 2, a statement about =~^ is combined with one about ~B to obtain a statement 

about ~, which covers both • and • . ~ represents the program A;B. It appears 
A B 

that labels can play a useful role in proofs. 

~. Decidability and Expressiveness. 

This section states some theorems concerning the propositional case of L, 

denoted L 0. Proofs and other results will appear later. The appendix contains a 

formal semantics of L 0. For these theorems, all of the constraint types mentioned 

so far can be in L 0. The base logic for L 0 is propositional calculus. Basic pro- 

grams are uninterpreted program letters, with no inputs or outputs. A program modi- 

fies a "global environment" in some unknown way. A formula of L 0 is valid if it 

holds under all interpretations and propositional variable values. Let LO be L 0 

without <>+ and []+. 

Theorem I. The validity problem for L0 is 

n c 

NTLME(2 2 ) for some c. 

decidable, and is in Co- 

PDL is the propositional case of (sequential regular) dynamic logic [3,13]. 

It appears on the surface that much more can be said in L than in PDL. While that 

is true if formulas are to be kept short, every formula of LO is equivalent to a 

(possibly very long) formula of PDL. 

Theorem 2. Every length n formula of LO is equivalent 

n 

Q of length at most 22c for some c. 

to some PDL formula 

Theorem 3. Let PDL + be PDL augmented with the formula loop(A) = "A can 

diverge," for every program A (see [5]). Theorem 2 holds with L 0 replaced by L 0 

and PDL replaced by PDL +. 

Acknowledgement. I would like to thank Michael J. Fischer for many helpful sugges- 

tions. It was he who suggested the general form of constraints. 



31 

Appendix - Formal Semantics of~_. 

Preliminaries 

~O = basic programs 

~O = basic formulas 

= labels 

(propositional variables) 

A structure (or interpretation) is a triple (W,~0,P0) consisting of a set 

of "worlds", or states, W, a function~0: ~ -->~)(W) assigning to each basic formula 

the worlds where it holds, and a function p0:~0 -#~(W~W), assigning to each basic 

program a set of transitions between worlds. 

M = W~(r)X W (the set of labeled moves); 

= M ~ = the set of paths, finite and infinite sequences of labeled moves; 

Hr = {h6}{ : h = ...(Ul,tl,Vl)(U2,t2,v2)...4b Vl=U 2 } 

= the set of legal paths. 

The paths in H are "discontinuous." The path X= (u,s,v)(w,t,z) is in H, even if v @ 

w. X denotes a move from state u to state v, followed by a move from state w to 

state z. Only continuous paths, members of Hr, are of ultimate interest. However, 

since interleaving discontinuous paths can result in a continuous path, discontinu- 

ous paths cannot be ignored. The label set s in (u,s,v) denotes that this move is 

made by a program with all of the labels in s. A program can have several labels. 

For example, A is labeled by both ~I and z ~ in ~ z~':(~:Au~3:B)" 

If X is a set of paths, then [X]~ is defined as the set of paths in X, with 

every label set s of every move replaced by s ~ {~}. 

~o~rsms - 

The set ~ of programs, and semantics p:~--~(H), assigning to each program 

a set of paths, are given inductively below. Let~ & G0 , A,B@~, pG ~, J~e~. Then 

1. £ : ,~ .F . ,  ,o(L:~) = { (u , . ~ ,v )  : ( u , v ) 6 P O ( , O }  

2. l : p ? ~ ,  p ( l : P ? )  = { ( u , l , u )  : u G w ( p ) }  

3. a:(AoB) 6E, p(t:(AuB)) = [p(A) up(B)] L 

4. ~:(A;B) 6 ~, p(~:(A;B)) = [p(A).p(B)]~ (concatenation of sequences, a.b=a if ]al=~) 

5. L:(A*)G ~, p(~:A*) = [;kop(A).p(A*)]~ , and is the least solution which is closed 
1 

under least upper bound of prefix chains. 

6. ~:(a//B) e [, ~(~: (A//B)) = [shuffle(~(A), ~(B))~ , where shuffle interleaves 

This says that a program which can make arbitrarily much progress can make infinite- 
ly much progress. A prefix chain is an infinite chain of sequences Sll s21 ..., 
where i denotes the prefix relation. 
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sequences. 

Ope q Formulas. 

~). is the set of open formulas. For every GG~(H), there is a function 

~G:~I--)~(WKH r) assigning to each open formula the complete states where it holds. 

A complete state consists of a world and a prefix computation, which essentially en- 

codes all program counter values. Let pt~, q,rtf~, ~G~, and let c be a con- 

straint. The semantics of constraints is omitted. Then 

i. p~'~ ~G(p) = {(w,h)G WKH : weT(p) }. 
r 

2. ~qen, ~G(~q) = WZHr - ~G (q)" 

3. qvr6~, SG(qvr) = ~G(q)u gG(r). 

4. a) in(~)6J%, ~G(in(£)) = {(w,h) t W~H r :Bu,raW, t~@(F),h'~H. 

[h(u,t,v)h'G G,~6t] }. 

Note that h(u,t,v) does not have to be in H • The process at ~ may be blocked. 
r 

b) before(~)G/~, 8G(before(~)) = 

{(w,h)G WZHr :BUl,U2,Vl,V2G w, tl,t 2 G ~, h',h''~ H. 

[((h = h''(Ul,tl,Vl)^~tl) v h=A) 

^ h(u2,t2,v2)h'~ G ^ ~Gt 2] } 

C) after(~)~ll, ;G is similar to ~G for before(~). 

5. a) [c]qe/%, 8G([c]q) = 

{(w,h) G W~H r : (Vh 2. hh2G G)(Vh I prefix of h2, hhle Hr, h I satisfies e) 

[(w',hhl) ~ ~G(q), where w" is the second world of the last move 

of hhl (w" = w if hhl = ;~ ) ] }" 

b) <c>+q~, semantics same as for [c]q, but replace ~n I by Bh I. 

Closed formulas. 

The closed formulas ~, and their semantics ~:~-~(W), 

Let A~, rGf&, P,qt~, P~0" Then 

i. e~ 6, ~(P) = T0(P)- 

2. ~p~, T(~p) = W - It(p). 

3. pvq%~, 9r(pvq) = T(p)u~'(q). 

4. A.rE~, ~r(A.r)= {weW : (w,A) eS#(A)(r) }. 

are given below. 
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