
Abstract

MODAL LOGIC OF CONCURRENT NONDETERMINISTIC PROGRAMS e

Karl Abrahamson
Department of Computer Science

University of Washington
Seattle, Wa., 98195/USA

This paper describes a logic, L, for reasoning about concurrent programs.

Programs are similar to those of dynamic logic, with a shuffle operator included. L

is a modal logic including the modalities [], meaning "throughout the future," and
+

<> , meaning "sometime in the future." These modalities are extended by constraints,

so that they can be used to express assertions such as "p holds as long as q does."

Programs contain labels. Using labels, it is possible to isolate the behavior of a

single process or segment of a process, while at the same time keeping the segment

in the context of the whole parallel system. A certain subset of the propositional

ease of L is known to be decidable.

I. Introduction.

After writing many a bug-ridden program, many computer scientists and pro-

grammers have come to the conclusion that some formal verification method for pro-

grams is needed. Consequently, a number of logics of (sequential) programs have

been developed [4,6,8,12]. When programs run concurrently, they are enormously more

complex, and formal verification is proportionately more desirable. A number of

concurrent program logics have been proposed [1,7,9,10,11]. I will assume familiar-

ity with some of them. Some desirable properties of concurrent program logics are

described below.

17

simple. Basiely, we wish to know about program A:

Does A always halt?

When A halts, will P be true?

The situation is not so cut and dried when programs are running concurrently.

.........................

*This Research was supported by the National Science Foundation under Grant

MCS77-02474.

The fundamental properties of sequential programs are comparatively

Con-

No.

22

current processes can interact with each other in complex ways. In order to

describe their interaction we must be able to make statements about what a program

does while it is running. Desirable properties of programs may be quite complex.

For example, we may require A to eventually set condition P true, provided request Q

is held true by B until acknowledgement R becomes true.

2) For the purposes of this paper, I will assume that sequential proofs

are relatively well understood. It is therefore desirable to apply sequential pro-

gram proof techniques to concurrent programs. Owieki [9] gives a method for doing

this. In her method, one must show that two proofs are "interference-free." But the

property to be proved, namely the non-interference of two proofs, cannot itself be

stated within the logic! This is more than a matter of elegance. Because of it,

the shortest proof of any statement about any n line concurrent program has 0(2)

steps. A reasonable logic of concurrent programs should be powerful enough that the

intermediate steps in proofs, as well as the ultimate goals, are expressible.

3) As noted~ we wish to apply sequential proof techniques to concurrent

programs. Therefore a sequential logic should be a subset of our concurrent program

logic. Many sequential program logics,for example those of Hoare [6], Pratt [12],

Manna and Waldinger [8] have programs as syntactic entities. A concurrent logic

containing these must also have syntactic programs. This is in contrast to the log-

ics of [7,10,11].

This paper describes a logic, denoted L, which at least approaches the

goals of I - 3. L is a temporal logic of programs, as described by Lamport [14]o L

is described in detail in sectios 2 and 3. Section 4 briefly considers proofs in L.

Section 5 gives some theorems concerning decidability and expressiveness in L.

~. Programs of L.

Programs are built from some set of basic programs. These could include

assignment statements, synchronization primitives, or just about anything else.

Their exact nature does not concern us. There is one restriction on the semantics

of basic programs; they are indivisible, in both the sense that they cannot be in-

terrupted by other programs, and that intermediate steps are invisible when consid-

ering such properties as global invariance. This is not an unreasonable restric-

tion. Assignment statements can be thought of as indivisible provided they contain

at most one instance of any shared variable. At any rate, interleaving must take

place at some levle of detail. It is simplest to make that level the level of basic

programs.

23

Programs are built from basic programs using the operations ?, ;, u, * of

dynamic logic [12], plus the parallel operator //. Dynamic logic-type programs have

some advantages over the usual Algol-like programs.

i) Programs are nondeterministic. Dijkstra [2] has shown that nondeter-

minism is a useful concept, even in sequential programming. Also, since concurrent

programs are inherently nondeterministic, we have a symmetry which can be exploited.

2) The concepts of sequencing, choice, looping and testing are separated.

The familiar if-then-else construct does both a test and a choice (based on the out-

come of the test.) Both the formal semantics and proofs can be simpler if we deal

with only one type of action at a time.

I will briefly describe the operations of sequential (regular) dynamic log-

ic programs before going on to parallel programs.

Tests. If p is a formula then p? is a program, p? acts as a no-op when p

is true, and may not be executed when p is false, p? is an indivisible program.

For example, (p wq)? tests the values of both p and q instantaneously. Tests which

are not indivisible can be written, if desired, using p?uq? for (p v q)? and p?;q?

for (pA q)? Examples of programs with tests are given under "choice" and "looping"

below. I should point out that any formula can be tested (actually any closed for-

mula.) p could, for instance, be a partial correctness assertion about a program.

My reason for allowing arbitrary tests is not so much a practical one as a matter of

elegance. I don't need to define separate "testable" and "writable" formulas.

Sequencing. A;B means simply run A then run B.

Choice. Since programs are nondeterministic, this operation is simple.

Av B means "nondeterministically choose to execute either A or B." The familiar con-

struct "if p then A else B" is simulated by the program (p?;A)u(~p?;B).

Looping. The program A* means "repeat A zero or more times, the choice be-

ing made nondeterministically." The familiar construct "while p do A" is simulated

by the program (p?;A)*;~p?.

Concurrent programs differ in syntax from sequential programs in two

respects.

I) There is one more operator, //. A//B denotes the interleaving of exe-

cution sequences of A with those of B. The interleaving is not assumed to have the

24

finite delay property.

2) Every program in given a unique label. This both facilitates the for-

mal semantics definition, and gives us a means of identifying points and regions of

a program. Non-essential labels are omitted for readability.

Syntax of concurrent programs.

If £ is a label, ~ a basic program, p a closed formula, A and B

then the following are also programs.

I. k:~ 2. ~:p?

3. ~:(AuB) 4. ~:(A;B)

5. ~:(A*) 6. 2:(A//B)

provided no label appears twice in the same program.

programs,

Semantics of concurrent programs.

A sequential program can be completely described by a sat of transitions

between states which the program can make. Essentially, because there are no other

processes, it does no harm to consider the entire program as one indivisible step.

The relational semantics of [3] exploit that. Relational semantics will not work

for concurrent programs. Pratt [13] has described a semantics of processes based on

trajectories. A trajectory is a finite or infinite sequence of states, through

which a program can travel. However, as Pratt has noted~ even trajectories are

inadequate for concurrent programs~ if programs are to be built using an operator

such as //. Tnere is not enough information in a trajectory to tell how it inter-

leaves with other trajectories. The semantics of L gets around this problem by let-

ting a program describe a set of sequences of moves. A move is an indivisible tran-

sition between two states. The move sequence ...(u,v)(w,z)... contains a move from

state u to state v, followed by a move from state w to state z. For a sequential

program this sequence would make sense only if v = w. But we must take into account

the fact that the "phantom" move from v to w may have been made by some other pro-

cess. For example, suppose A has semantics ((u,v)(w,z)}, and B has semantics

{(v,w)}. Then the semantics of A//B is {(v,w)(u,v)(w,z), (u,v)(v,w)(w,z),

(u,v)(w,z)(v,w)}. There is only one legal sequence in A//B, namely (u,v)(v,w)(w,z).

Illegal sequences are ignored when the semantics of formulas are defined.

3. Formulas.

25

There are two kinds of formula, open and closed. An open formula makes a

statement about a single program, G. Open formulas can make complex statements

about G, without ever having to state explicitly what G is. The same formula may be

true for many different programs. Open formulas are described in detail below.

A closed formula simply applies an open formula to an explicitly mentioned

program. Pnueli [11] describes program logics as either endogenous, where sentences

apply to a single, known, program, or exogenous, where programs are explicitly men-

tioned. He discusses the merits of both. Basicly, in an endogenous logic, it is

easier to make complex statements about the program in question. Exogenous logics

allow for statements about equivalence of programs. Programs are more a part of the

logic, rather than special outside objects. Since most sequential program logics

are exogenous (e.g. those of Hoare [6], Pratt [12,13]), an exogenous concurrent pro-

gram logic can include a sequential one. In a sense, the open formulas form an en-

dogenous logic, and the closed formulas form a powerful exogenous logic.

Open formulas.

An open formula describes how the state evolves with time, starting in the

current state, during the execution of program G. In addition to such important in-

formation as variable values, the state includes program counter(s) values. Program

counters change in the obvious way as G executes. Since G is generally nondeter-

ministic, from any current state, there may be several different paths which G can

take, each a different evolution of the state with time. By a future, I mean a se-

quence of states through which G could possibly travel, starting in the present

state. When an open formula makes an assertion about the future behavior of G, it

always considers all possible futures. The open formulas of L are as follows. Let

P be a closed formula, E and F open formulas, and let ~ be a label.

i. P is an open formula. G is ignored.

2. ~E, EvF, E=F, etc. are open formulas.

3. a) before(~) is an open formula, meaning "some program counter is

at the point labeled by • in G."

b) in(~) is an open formula, meaning "some program counter is within the

region labeled by L in G." If G contains ~:(~l:a; ~2:b), in(~) would

mean before ~i or before R 2.

26

c) after(~) is an open formula, meaning "some program counter is at the

point immediately following region 4."

4. (Special case of rule 5.)

a) []E is an open formula meaning "E is true now and in every

every possible future."

state of

b) <>+E is an open formula meaning "Every possible future contains some

state where E holds."

c) The duels of [] and <>+ are defined as <>E = ~[]~E, and []+E =

~<>+~E.

Closed formulas

We assume a base logic, such as propositional or predicate calculus.

Closed formulas are just sentences of the base logic, augmented with the "closures"

of open formulas. If q is an open formula and a is a program, then A.q is a closed

formula meaning "apply q to program A." A.q can be combined with other formulas in

the usual ways of the base logic.

Constraints

The modalities [] and <>+, and their duals, allow one to proceed blindly

into the future. Constraints give a means of "watching the states as they go by."

More precisely, constraints restrict the allowable futures of G. A constraint res-

tricts not just the individual states in the future, but the sequence of states as a

whole.

5. If c is a constraint, then

a) [e] E is an open formula, meaning "in every possible

remain true as long as c does,"

future, E will

b) <c>+E is an open formula, meaning "in every possible future, E be-

comes true before c becomes false."

We still have left unanswered the question of just what a constraint is. I

will give three kinds of constraints below. There may be others which are useful,

27

and for that reason constraints are left loosely defined.

No constraints.

Many interesting statements about programs can be made without any con-

straints at all. When there are no constraints, boxes and diamonds are left empty.

i. (Global invariance.) A.[]p means "p is true throughout the execution of

A."

2. (Partial correctness.) (t:A). [] (after(~) ~ p) means "whenever A halts, p

is true."

3. (A preserves p.) A.[](pm[]p) means "once p becomes true, it remains true

during execution of A."

4.(no divergences.) (~:A.)<>+after(~) says that all paths of A terminate.

5. We can state that, in A//~whenever A halts, p is true, regardless of

what B has done. This is written ((~:A)//B).[](after(~)~ p). This sort of explicit

label referencing is handy in isolating the behavior of a single process. Another

method of isolating a process is discussed under label constraints.

Label constraints.

Constraints apply to prefixes of paths. The constraint "~" means "every

move within the path is made by some program within the region labeled by ~." The
i!

constraint "~, ~2 '~n allows moves to be made by programs within ~I or ~2 or ...

or 2 , Label constraints are particularly useful when the label applies to a single n
component of a parallel program, for then the moves made by that compone~It can be

isolated. Another use of label constraints is discussed under proofs. Notice that

~]p is not the same as [in(2)]p. The latter states only that one process must

remain within region ~. [~]p states that every move is made by that process which is

in region ~. Other processes are suspended.

Example. Suppose program A works according to specifications provided con-

current programs preserve the truth of Q. A itself does not preserve Q. We can

state thet B preserves Q in A//B by (A//(~:B)).[](Qm[~]Q). This says "after run-

ning A//B for any number of steps, if Q is found true, then running B any further

will leave Q true."

The section on single step constraints gives another example using label

28

constraints.

Formula Constraints.

Owicki [i0] has developed a logic which includes the statement ~'p while q",

meaning "p remains true as long as q remains true." If we say that constraint q on

paths means that every point on the path satisfies q, then p while q can be written

[q] p.

Single ~ constraints.

Let the constraint ss mean "the path is of length 2" (involving one state

transition.) Some interesting formulas are

i. A cannot deadlock: A~<ss>true~ This says "no matter how A runs, it

can always go one more step."

2. In A//B, A never waits: ((£:A)//B).[]<ss,~>true~

3. In A//B, A cannot starve: ((£A:A)//(~B:B)).~]

<>+(<ss,£A>true ^ ~<ss,£B>true)

4. We might say that a program inherently deadlocks if it can never reach a

state where it is free from deadlock. "A inherently deadlocks" can be stated as ID=

A.[]<>~<ss>trueo ID involves alternation of quantifiers of paths. In Owicki's log-

ic [I0], paths are always implicitly universally quantified. Hence neither ID nor

its negation can be stated in her logic.

4. Proofs,

I have as yet no proof system for L. This section will briefly describe

how partial correctness assertions might be proved. The basic idea is to modify

sequential proof methods to make them work for parallel programs. This is the ap-

proach taken by Owicki [9], and others [1,7]. In Owicki's method, a sequential

proof is done for each process of a parallel system, and then each step of each

proof is shown not to be invalidated by other processes. In L~ it is possible to

integrate the non-interference proof with the sequential proofs. Suppose, for exam-

ple, I wish to use the Hoare-style rule

29

(1) P{A}Q , Q{B}R

P{A;B}R

Suppose A;B occurs in process C of C//D. Assuming that the proofs of P{A}Q and

Q{B}R have been carried out with due consideration to the action of process D, rule

(i) can be applied provided it is proved that D preserves the truth of Q. Thus,

tentatively, D.[](Q~Q) becomes another condition for rule (I). But it is not just

D which must preserve Q~ it is D, running concurrently with C, which must preserve

Q. The additional condition should he (C//~D:D).[](Q = [~]Q). Above it was as-

sumed that P{A}Q was proved with due consideration for process D. That assumption

should not be part of the proof rule. Rather, it should be part of the statement of

what has been proved, namely P{A}Q. Ordinarily P{A}Q is written in L as

(~A:A).((before(~A)^P) ~[](after(~A) mQ)). To show that D was accounted for, we

could change the program to (~A:A//D). But the actions of D can be affected by the

rest of C. The correct way to state P{A}Q is ((~.._~A:A..~)//

C
~D:D) • ((before(~ A) A P) m [~A,~D] (after(~A)= Q). The labels in the box prevent C from

exitting A and then looping back through A. Rule (2), related to rule (i), can now

b e s t a t e d . L e t E = (. . . k : (~ : A ; ~ 0 : B) . . .) / / g : D .
A "B D

(2)

p r o v e : E . ((b e f o r e (~ A) ^ P) : = [~A,~] (after(~A)~ Q),

E. ((before (~B)^Q) m [~B' ~] (after (~B) = R),

E. [] (Q= [~D]q)

conclude: E. ((before(£)^P)~ [~,l D] (after(£)= R).

Rule (2) is certainly not simple. In fact, the statements of seemingly simple

ideas, such as P{A}Q, are rather long. Other proof rules for L are bound to be at

least as complex. I offer the following defense of these rules.

I. Abbreviations can be used to shorten 1~he rules and simplify statements.

2. Consider rule (2). E.[](Q= [~]Q) needs to be proven only once, even

though it may be used many times, for instance to prove P{A;B}R, P(S;T}R, and so on.

Short proofs are possible in some cases.

Label Constraints in proofs.

Rule (2) makes use of label constraints. There is good reason for this.

An elegant way to do sequential proofs is inductively on program structure. Rule

(I) is such an inductive rule. First we prove a statement about A, then one about

B, and we combine them to get a statement about A;B. Concurrent programs are more

difficult to handle inductively. Unless explicit reference is made to how the

30

proofs of P(C) and Q(D) are carried out, we can conclude nothing from them about a

statement R(C//D). We can't conclude anything about R((A;B)//D) from P(A//D) and

Q(B//D), since it may be the interaction of A and B which causes disaster in D. A

solution is to use label constraints. Statements are made about E = C//D, and, as

was the case with rule (2), programs are referred to by their labels. The "label

structure" can be built up inductively without constantly changing programs. In

rule 2, a statement about =~^ is combined with one about ~B to obtain a statement

about ~, which covers both • and • . ~ represents the program A;B. It appears
A B

that labels can play a useful role in proofs.

~. Decidability and Expressiveness.

This section states some theorems concerning the propositional case of L,

denoted L 0. Proofs and other results will appear later. The appendix contains a

formal semantics of L 0. For these theorems, all of the constraint types mentioned

so far can be in L 0. The base logic for L 0 is propositional calculus. Basic pro-

grams are uninterpreted program letters, with no inputs or outputs. A program modi-

fies a "global environment" in some unknown way. A formula of L 0 is valid if it

holds under all interpretations and propositional variable values. Let LO be L 0

without <>+ and []+.

Theorem I. The validity problem for L0 is

n c

NTLME(2 2) for some c.

decidable, and is in Co-

PDL is the propositional case of (sequential regular) dynamic logic [3,13].

It appears on the surface that much more can be said in L than in PDL. While that

is true if formulas are to be kept short, every formula of LO is equivalent to a

(possibly very long) formula of PDL.

Theorem 2. Every length n formula of LO is equivalent

n

Q of length at most 22c for some c.

to some PDL formula

Theorem 3. Let PDL + be PDL augmented with the formula loop(A) = "A can

diverge," for every program A (see [5]). Theorem 2 holds with L 0 replaced by L 0

and PDL replaced by PDL +.

Acknowledgement. I would like to thank Michael J. Fischer for many helpful sugges-

tions. It was he who suggested the general form of constraints.

31

Appendix - Formal Semantics of~_.

Preliminaries

~O = basic programs

~O = basic formulas

= labels

(propositional variables)

A structure (or interpretation) is a triple (W,~0,P0) consisting of a set

of "worlds", or states, W, a function~0: ~ -->~)(W) assigning to each basic formula

the worlds where it holds, and a function p0:~0 -#~(W~W), assigning to each basic

program a set of transitions between worlds.

M = W~(r)X W (the set of labeled moves);

= M ~ = the set of paths, finite and infinite sequences of labeled moves;

Hr = {h6}{ : h = ...(Ul,tl,Vl)(U2,t2,v2)...4b Vl=U 2 }

= the set of legal paths.

The paths in H are "discontinuous." The path X= (u,s,v)(w,t,z) is in H, even if v @

w. X denotes a move from state u to state v, followed by a move from state w to

state z. Only continuous paths, members of Hr, are of ultimate interest. However,

since interleaving discontinuous paths can result in a continuous path, discontinu-

ous paths cannot be ignored. The label set s in (u,s,v) denotes that this move is

made by a program with all of the labels in s. A program can have several labels.

For example, A is labeled by both ~I and z ~ in ~ z~':(~:Au~3:B)"

If X is a set of paths, then [X]~ is defined as the set of paths in X, with

every label set s of every move replaced by s ~ {~}.

~o~rsms -

The set ~ of programs, and semantics p:~--~(H), assigning to each program

a set of paths, are given inductively below. Let~ & G0 , A,B@~, pG ~, J~e~. Then

1. £ : ,~ .F . , ,o(L:~) = { (u , . ~ ,v) : (u , v) 6 P O (, O }

2. l : p ? ~ , p (l : P ?) = { (u , l , u) : u G w (p) }

3. a:(AoB) 6E, p(t:(AuB)) = [p(A) up(B)] L

4. ~:(A;B) 6 ~, p(~:(A;B)) = [p(A).p(B)]~ (concatenation of sequences, a.b=a if]al=~)

5. L:(A*)G ~, p(~:A*) = [;kop(A).p(A*)]~ , and is the least solution which is closed
1

under least upper bound of prefix chains.

6. ~:(a//B) e [, ~(~: (A//B)) = [shuffle(~(A), ~(B))~ , where shuffle interleaves

This says that a program which can make arbitrarily much progress can make infinite-
ly much progress. A prefix chain is an infinite chain of sequences Sll s21 ...,
where i denotes the prefix relation.

32

sequences.

Ope q Formulas.

~). is the set of open formulas. For every GG~(H), there is a function

~G:~I--)~(WKH r) assigning to each open formula the complete states where it holds.

A complete state consists of a world and a prefix computation, which essentially en-

codes all program counter values. Let pt~, q,rtf~, ~G~, and let c be a con-

straint. The semantics of constraints is omitted. Then

i. p~'~ ~G(p) = {(w,h)G WKH : weT(p) }.
r

2. ~qen, ~G(~q) = WZHr - ~G (q)"

3. qvr6~, SG(qvr) = ~G(q)u gG(r).

4. a) in(~)6J%, ~G(in(£)) = {(w,h) t W~H r :Bu,raW, t~@(F),h'~H.

[h(u,t,v)h'G G,~6t] }.

Note that h(u,t,v) does not have to be in H • The process at ~ may be blocked.
r

b) before(~)G/~, 8G(before(~)) =

{(w,h)G WZHr :BUl,U2,Vl,V2G w, tl,t 2 G ~, h',h''~ H.

[((h = h''(Ul,tl,Vl)^~tl) v h=A)

^ h(u2,t2,v2)h'~ G ^ ~Gt 2] }

C) after(~)~ll, ;G is similar to ~G for before(~).

5. a) [c]qe/%, 8G([c]q) =

{(w,h) G W~H r : (Vh 2. hh2G G)(Vh I prefix of h2, hhle Hr, h I satisfies e)

[(w',hhl) ~ ~G(q), where w" is the second world of the last move

of hhl (w" = w if hhl = ;~)] }"

b) <c>+q~, semantics same as for [c]q, but replace ~n I by Bh I.

Closed formulas.

The closed formulas ~, and their semantics ~:~-~(W),

Let A~, rGf&, P,qt~, P~0" Then

i. e~ 6, ~(P) = T0(P)-

2. ~p~, T(~p) = W - It(p).

3. pvq%~, 9r(pvq) = T(p)u~'(q).

4. A.rE~, ~r(A.r)= {weW : (w,A) eS#(A)(r) }.

are given below.

33

References.

i. Aschcroft, E. A. and Z. Manna. "Formalization of Properties of Parallel Pro-
grams." Machine Intelligence ~, Edinburgh University Press.

2. Dijkstra, E. W. "Guarded Commands, Nondeterminacy and Formal Derivation of
Programs," C.A.C.M. 18,8, 1975.

3. Fischer, M. J. and R. E. Ladner. "Propositional Modal Logic of Programs,"
Proc. 9th ann. ACM Symp. on Theory of Computing, 286-294, Boulder, Col., May,
1977.

4. Floyd, R.W. "Assigning Meaning to Programs," Proc. AMS Symp. Appl. Math. 19,
1967, 19-32.

5. Harel, D. and V. R. Pratt. "Nondeterminism in Logics of Programs," Proc. 5th
ann ACM Symp. on Principles of Prog. Lang., 203-213, Tuscon, Arizona, Jan.,
1978.

6. Hoare, C. A. R. "An Axiomatic Basis for Computer Programming," C.A.C.M. 12,10,
1969, 576-580.

7. Lamport~ L. "Proving the Correctness of Multiprocess Programs," Mass. Computer
Associates, Inc. Mass. 01880.

8. Manna, Z. and R. Waldinger. "Is "Sometime" Sometimes Better tl~an "Always~?, ''
C.A.C.M. 21,2, 1978.

9- Owickl, S. and D. Gries. "An Axiomatic Proof Technique for Parallel Programs
I," Acta Informatica 6, 319-339.

i0. Owickl, S. Colloquium presentation, Dept. of Comp. Sci., University of Wash-
ington, Nov. 16, 1978.

ii. Pnueli, A. "The Temporal Logic of Programs," 18th IEEE Symp. on Foundations
of Computer Science, 46-57, Oct. 1977.

12. Pratt V. R. "Semantical Considerations on Floyd-Hoare Logic," 17th IEEE Symp.
on Foundations of Computer Science, 109-121, 1976.

13. Pratt V. R. "A Practical Decision Method for Propositional Dynamic Logic,"
Proc. 10th ACM Symp. on Theory of Computing, 326-337, 1978.

14. Lamport, L. "'Sometime" is Sometimes SNot Never'~" S.R.I. International Re-
port, Menlo Park, California, January, 1979.

