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Abstract.  Traditional methods for specifying and reasoning about concurrent 
systems work for real-time systems. However, two problems arise: the real-time 
programming version of Zeno's paradox, and circularity in composing real-time as- 
sumption/guarantee specifications. Their solutions rest on properties of machine 
closure and realizability. TLA (the temporal logic of actions) provides a formal 
framework for the exposition. 

1 I n t r o d u c t i o n  

A new class of systems is often viewed as an opportunity to invent a new semantics. A 
number of years ago, the new class was distributed systems. More recently, it has been 
real-time systems. The proliferation of new semantics may be fun for semanticists, but 
developing a practical method for reasoning about systems is a lot of work. It would be 
unfortunate if every new class of systems required inventing new semantics, along with 
proof rules, languages, and tools. 

Fortunately, no fundamentM change to the old methods for specifying and reasoning 
about systems has been needed for these new classes. It has long been known that the 
methods originally developed for shared-memory multiprocessing apply equally well to 
distributed systems [7, 9]. The first application we have seen of a clearly "off-the-shelf" 
method to a real-tlme algorithm was in 1983 [13], but there were probably earlier ones. 
Indeed, the "extension" of an existing temporal logic to real-time programs by Bernstein 
and Harter in 1981 [6] can be viewed as an application of that logic. 

The old-fashioned methods handle real time by introducing a variable, which we call 
now, to represent time. This idea is so simple and obvious that it seems hardly worth 
writing about, except that few people appear to be aware that it works in practice. We 
therefore present a brief description of how to apply conventional methods to real-time 
systems. We also discuss two problems with this approach that seem to have received 
little attention, and we present new solutions. 

The first problem is the real-time programming version of Zeno's paradox. If time 
becomes an ordinary program variable, then one can inadvertently write programs in 
which time behaves improperly. An obvious danger is deadlock, where time stops. A 
more insidious possibility is that time keeps advancing but is bounded, approaching closer 
and closer to~ some limit. One way to avoid such "Zeno" behaviors is to place an a priori 
lower bound on the duration of any action, but this can complicate the representation of 
some systems. We provide a more general and, we feel, a more natural solution. 
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Figure 1: The composition of two systems. 

The second problem arises in open system specifications, in which a system is required 
to operate correctly only under some assumptions on its environment. A modular spec- 
ification method requires a rule asserting that, if each component behaves correctly in 
isolation, then it behaves correctly in concert with other components. Consider the two 
components $1 and $2 of Figure 1. Suppose that S~ guarantees to produce a sequence 
of outputs on x satisfying P~ assuming it receives a sequence of inputs on y satisfying 
P~, and $2 guarantees to produce a sequence of outputs on y satisfying Pv assuming it 
receives a sequence of inputs on x satisfying P~. If P~ and Pv are safety properties, then 
existing composition principles permit the conclusion that, in the composite system $12, 
the sequence of values on x and y satisfy P~ and Pv [1]. Now, suppose P~ and Py both 
assert that the value 0 is sent by noon. These are safety properties, asserting that the 
undesirable event of noon passing without a 0 having been sent does not occur. Hence, 
the composition principle apparently asserts that $12 sends O's along both x and y by 
noon. However, specifications $1 and $2 are satisfied by systems that wait for a 0 to be 
input, whereupon they immediately output a 0. The composition of those two systems 
does nothing. 

This paradox depends on the ability of a system to respond instantaneously to an 
input. It is tempting to rule out such systems--perhaps even to outlaw specifications like 
$1 and $2. We show that this Draconian measure is unnecessary. Indeed, if S~ is replaced 
by the specification that a 0 must unconditionally be sent over y by noon, then there is no 
paradox, and the composition does guarantee that a 0 is sent on each wire by noon. All 
paradoxes disappear when one carefully examines how the specifications must be written. 

Our results are relevant for any method whose semantics is based on sequences of 
states or actions. However, we will describe them only for TLA--the temporal logic of 
actions [11]. 

2 Closed Sys tems  

We briefly review here how to represent closed systems in TLA. A closed system is one that 
is self-contained and does not communicate with an environment. No one intentionally 
designs autistic systems; in a closed system, the environment is represented as part of the 
system. Open systems, in which the environment and system are separated, are discussed 
in Section 4. 
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Figure 2: A simple queue. 

We begin our review of TLA with an example. Section 2.2 summarizes the formal 
definitions--a more leisurely exposition can be found in [11]. Section 2.3 reviews the 
concepts of safety [4] and machine closure [2] (also known as feasibility [5]) and relates 
them to TLA, and Section 2.4 defines a useful class of history variables [2]. 

2.1 The Lossy-Queue Example 

We introduce TLA with the example of the lossy queue shown in Figure 2. The interface 
consists of two pairs of "wires", each pair consisting of a val wire that holds a message 
and a boolean-valued bit wire. A message m is sent over a pair of wires by setting the val 
wire to m and complementing the bit wire. Input to the queue arrives on the wire pair 
(ival, ibit), and output is sent on the wire pair (oval, obit). There is no acknowledgment 
protocol, so inputs are lost if they arrive faster than the queue processes them. The 
property guaranteed by this lossy queue is that the sequence of output messages is a 
subsequence of the sequence of input messages. In Section 3.1, we add timing constraints 
to rule out the possibility of lost messages. 

The specifcation of the lossy queue is a TLA formula describing the set of allowed 
behaviors of the queue, where a behavior is the sequence of states produced by an execu- 
tion. The specification mentions the four variables ibit, obit, ival, and oval, as well as two 
internal variables: q, which equals the sequence of messages received but not yet output; 
and last, which equals the value of ibit for the last received message. (The variable last 
is used to prevent the same message from being received twice.) These six variables are 
flexible variables; their values can change during a behavior. We also introduce a rigid 
variable Msg denoting the set of possible messages; it has the same value throughout a 
behavior. We usually refer to flexible variables simply as variables, and to rigid variables 
as constants. 

The TLA specification is shown in Figure 3, using the following notation. A list of 
formulas prefaced by A's denotes the conjunction of the formulas, and indentation is used 
to eliminate parentheses. The expression ((// denotes the empty sequence, ((rn// denotes 
the singleton sequence having m as its one element, "o" denotes concatenation, Head(a) 
denotes the first element of a, and Tail(a) denotes the sequence obtained by removing 
the first element of a. The symbol "=~" means is defined to equal. 

The first definition is of the predicate InitQ, which describes the initial state. This 
predicate asserts that the values of variables ibit and obit are arbitrary booleans, the 
values of ival and oval are elements of Msg, the values of last and ibit are equal, and the 
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Figure 3: The TLA specification of a lossy queue. 

value of q is the empty sequence. 
Next is defined the action Inp, which describes all state changes that represent the 

sending of an input message. (Since this is the specification of a closed system, it includes 
the environment's Inp action.) The first conjunct, ibit' = -~ibit, asserts that the new 
value of ibit equals the complement of its old value. The second conjunct asserts that the 
new value of ival is an element of Msg. The third conjunct asserts that the value of the 
four-tuple (obit, oval, q, last) is unchanged; it is equNalent to the assertion that the value 
of each of the four variables obit, oval, q, and last is unchanged. The action Inp is always 
enabled, meaning that, in any state, a new input message can be sent. 

Action EnQ represents the  receipt of a message by the system. The first conjunct 
asserts that last is not equal to ibit, so the message on the input wire has not yet been 
received. The second conjunct asserts that the new value of q equals the sequence obtained 
by concatenating the old value of ival to the end of q's old value. The third conjunct 
asserts that the new value of last equals the  old value of ibit. The final conjunct asserts 
that the values of ibit, obit, ival, and oval are unchanged. Action EnQ is enabled in a 
state iff (if and on]y if) the values of last and ibit in that state are unequal. 

The action DeQ represents the operation of removing a message from the head of 
q and sending it on the output wire. It is enabled iff the value of q is not the empty 

sequence. 



The action Af O is the specification's next-state relation. It describes all allowed changes 
to the queue system's variables. Since the only allowed changes are the ones described by 
the actions Inp, EnQ, and DeQ, action A/'Q is the disjunction of those three actions. 

In TLA specifications, it is convenient to give a name to the tuple of all relevant 
variables. Here, we call it v. 

Formula H O is the internal specification of the lossy queuc the formula specifying 
all sequences of values that may be assumed by the queue's six variables, including the 
internal variables q and last: Its first conjunct asserts that InitQ is true in the initial 
state. Its second conjunct, o[Af0]~ , asserts that every step is either an NO step (a state 
change allowed by A/O) or else leaves v unchanged, meaning that it leaves all six variables 
unchanged. 

Formula eQ is the actual specification, in which the internal variables q and last have 
been hidden. A behavior satisfies r  iff there is some way to assign sequences of values 
to q and last such ~that H O is satisfied. The free variables of r are ibit, obit, ival, 
and oval, so r  specifies what sequences of values these four variables can assume. All 
the preceding definitions just represent one possible way of structuring the definition of 
frO; there are infinitely many ways to write formulas that are equivalent to eQ and are 
therefore equivalent specifications. 

TLA is an untyped logic; a variable may assume any value. Type correctness is 
expressed by the formula DT, where T is the predicate asserting that all relevant variables 
have values of the expected "types". For the internal queue specification, the type- 
correctness predicate is 

Tq ~ A ibit, obit, last E {true, false) (1) 
h ival, oval E Msg 
A q E Msg* 

where Msg* is the set of finite sequences of messages. Type correctness of HQ is asserted 
by the formula HQ ~ OTQ, which is easily proved [11]. Type correctness of r follows 
from IIQ =~ DTQ by the usual rules for reasoning about quantifiers. 

Formulas HQ and eQ are safety properties, meaning that they are satisfied by an 
infinite behavior iff they are satisfied by every finite initial portion of the behavior. Safety 
properties allow behaviors in which a system performs properly for a while and then the 
values of all variables are frozen, never to change again. In asynchronous systems, such 
undesirable behaviors are ruled out by adding fairness properties. We could strengthen 
our lossy-queue specification by conjoining the weak fairness property WF.(DcQ) and 
the strong fairness property SF~(EnQ) to IIQ, obtaining 

3 q, last: (InitQ A O[AfQ]~ A WF~(DeQ) A SF~(EnQ)) (2) 

Property WF~(DeQ) asserts that if action DeQ is enabled forever, then infinitely many 
DeQ steps must occur. This property implies that every message reaching the queue is 
eventually output. Property SF,(EnQ) asserts that if action EnQ is enabled infinitely 
often, then infinitely many EnQ steps must occur. It implies that if infinitely many inputs 
are sent, then the queue must receive infinitely many of them. The formula (2) implies 
the liveness property [4] that an infinite number of inputs produces an infinite number 
of outputs. This formula also implies the same safety properties as ~Q. A formula such 
as (2), which is the conjunction of an initial predicate, a term of the form o[.41i , and a 
fairness property, is said to be in canonical form. 



2 . 2  T h e  S e m a n t i c s  o f  T L A  

We begin with some definitions. We assume a set of constant values, and we let ~F~ 
denote the semantic meaning of a formula F. 

s t a t e  A mapping from variables to values. We let s.x denote the value that state s 
assigns to variable x. 

s t a te  funct ion  An expression formed from variables, constants, and operators. The 
meaning of a state function is a mapping from states to values. For example~ x + 1 
is a state function such that Ix + 1](s) equals s.x + 1, for any state ~. 

p red ica te  A boolean-valued state function~ such as x > y + 1. 

t rans i t ion  funct ion  An expression formed from variables, primed variables, constants, 
and operators. The meaning of a transition function is a mapping from pairs of 
states to values. For example, x + y'+ 1 is a transition function and Ix + y '+  l~(s, t) 
equals the value s.x + t.y + 1, for any pair of states s,t .  

ac t ion A boolean-valued transition function, such as x > (y~ + 1). 

s tep  A pair of states s, t. It is called an A step iff [A](s, t) equals true, for an action A. 
It is called a stuttering step iff s = t. 

f~ The transition function obtained from the state function f by priming all the free 
variables of f ,  so [[fr](s, t) = [f](t) for any states s and t. 

[,4]f The action ,4 V (f '  = f ) ,  for any action A and state function f.  

(A)f The action A A (f '  ~ f) ,  for any action A and state fnnction f .  

Enabled A For any action ,4, the predicate such that [Enabled ~4](s) equals 3t :  [A](s, t), 
for any state s. 

Informally, we often confuse a formula and its meaning. For example we say that a 
predicate P is true in state s instead of [P~(s) = true. 

An RTLA (raw TLA) formula is an expression built from actions, classical operators 
(boolean operators and quantification over rigid variables), and the unary temporal op- 
erator D. The meaning of an RTLA formula is a boolean-valued function on behaviors, 
where a behavior is an infinite sequence of states. The meaning of the operator [] is 

defined by 
~ �9  ~ Vn_>O:iF~(s~,s~+l,s~+2,. . . )  

Intuitively, � 9  asserts that F is ~'always" true. The meaning of an action as an RTLA 
formula is defined in terms of its meaning as an action by letting [,4](s0, sl, s2,. . .)  equal 
~A](so, sl). A predicate P is an action; P is true for a behavior iff it is true for the first 
state of the behavior, and � 9  is true iff P is true in all states. For any action A and 
state function f ,  the formula [][A]] is true for a behavior iff each step is an A step or else 
leaves f unchanged. The classical operators have their usual meanings. 

A TLA formula is one that can be constructed from predicates and formulas [][A]/ 
using classical operators~ •, and existential quantification over flexible variables. The 



semantics of actions, classical operators, and c3 are defined as before. The approximate 
meaning of quantification over a flexible variable is that  3x : F is true for a behavior iff 
there is some sequence of values that  can be assigned to x that makes F true. The precise 
definition is in [11]. As usual, we write 3 x l , . . . ,  xn : F instead of 3 xl : . . . ,  3 x~ : F.  

A property is a set of behaviors that  is invariant under stuttering, meaning that it 
contains a behavior a iff it contains every behavior obtained from ~r by adding and/or 
removing stuttering steps. The set of all behaviors satisfying a TLA formula is a property, 
which we often identify with the formula. 

For any TLA formula F ,  action A, and state function f :  

<>F ~ ~ n--,F 
WFf( .4)  ~ nOw(Enabled (.4)/) V DO(A)] 
SFs(.4 ) ~- OD~(Enabled (A)S) V nO(`4)s 

These are TLA formulas, since 0( `4) /equals  -~[]['~.4]S. 

2.3 Safety and Fairness 

A finite behavior is a finite sequence of states. We identify the finite behavior So, . . . ,  sn 
with the behavior So,. . . ,sn,sn,  s~, . . . .  A property F is a safety property [4] iff the 
following condition holds: F contains a behavior iff it contains every finite prefix of the 
behavior. Intuitively, a safety property asserts that  something "bad" does not happen. 
Predicates and formulas of the form D[`4]] are safety properties. 

Safety properties form closed sets for a topology on the set of all behaviors. Hence, if 
two TLA formulas F and G are safety properties, then F A G is also a safety property. 
The closure C(F) of a property F is the smallest safety property containing F.  It can be 
shown that  C(F) is expressible in TLA, for any TLA formula F.  

If II is a safety property and L an arbitrary property, then the pair (H, L) is machine 
closed iff every finite behavior satisfying H can be extended to an infinite behavior satis- 
fying II A L. If H is the set of behaviors allowed by the initial condition and next-state 
relation of a program, then machine closure of (II, L) corresponds to the intuitive concept 
that  L is a fairness property of the program. The canonical form for a TLA formula is 

3x : (Init h o[Nqv h L) (3) 

where (Init A D[Af]v, L) is machine closed and x is a tuple of variables called the internal 
variables of the formula. The state function v will usually be the tuple of all variables 
appearing free in Init, N', and L (including the variables of x). A behavior satisfies (3) 
iff there is some way of choosing values for x such that  (a) Init is true in the initial state, 
(b) every step is either an N" step or leaves all the variables in v unchanged, and (c) the 
entire behavior satisfies L. 

An action `4 is said to be a subaction of a safety property II iff for every finite behavior 
So, . . . ,  s~ in I] with Enabled `4 true in state ~n, there exists a state s~+l such that  (s~, s~+l) 
is an `4 step and s o , . . . ,  S=+x is in II. By this definition, A is a subaction of Init A [][A{]v 
i f f  I 

Init A n[A~v ~ n(Enabled .4 ~ Enabled (.4 A [A/qv)) 

1We let =r have lower precedence than the other boolean operators. 



Two actions Jt and /3  are disjoint for a safety property II iff no behavior satisfying H 
contains an A A/3 step. By this definition, A and 13 are disjoint for Init A [][Af]v iff 

Init A O[Af]v ~ U-,Enabled (A A B A [Af].) 

The following result shows that  the conjunction of WF and SF formulas is a fairness 
property. 

P r o p o s i t i o n  1 If[[ is a safety property and L is the conjunction of a finite or countabIy 
infinite number of formulas of the form WFw(.A) and/or SF~,(.A) such that each (fl.}~ is 
a subaction of H, then (H, L) is machine closed. 

In practice, each w will usually be a tuple of variables changed by the corresponding 
action .4, so (~4}~ will equal A. 2 In the informal exposition, we often omit the subscript 
and talk about A when we really mean (A}~. 

Machine closure for more general classes of properties can be proved with the following 
two propositions. To apply the first, one must prove that 3x : H is a safety property. By 
Proposition 2 of [2, page 265], it suffices to prove that  H has finite internal nondeterminism 
(fin), with x as its internal state component. Here, fin means roughly that there are only 
a finite number of sequences of values for x that can make a finite behavior satisfy H. 

P r o p o s i t i o n  2 If (l-I, L) is machine closed, x is a tupte of variables that do not occur 
free in L, and 3x : II is a safety property, then ((Sx : H), L) is machine closed. 

P r o p o s i t i o n  3 If  (II, L1) is machine closed and II A L I  implies L2, then (H, L2) is 
machine closed. 

2.4 History-Determined Variables 
A history-determined variable is one whose current value can be inferred from the current 
and past values of other variables. For the precise definition, let 

Hist (h , f ,g ,v)  ~ (h = f )  A [::][(h' = 9) A ( v ' #  V)](h,,) (4) 

where f and v are state functions and g is a transition function. A variable h is a history- 
determined variable for a formula II iff H implies Hist(h, f ,g ,  v), for some f ,  g, and v such 
that  h does not occur free in f and v, and h ~ does not occur free in g. 

If f and v do not depend on h and g does not depend on h r, then 3h : Hist(h, f ,  g, v) 
is identically t r u e .  Therefore, if h does not occur free in formula (I), then 3h : (~ A 
Hist(h, f ,  g, v)) is equivalent to ~. In other words, conjoining Hist(h, f ,  g, v) to �9 does 
not change the behavior of its variables, so it makes h a "dummy variable" for (~--in fact, 
it is a special kind of history variable [2, page 270]. 

As an example, we add to the lossy queue's specification CQ a history variable hin 
that  records the sequence of values transmitted on the input wire. Let 

H, .  ~ A h i n = ( ( ) )  (5) 
A D[ A hin' = hin o ((ival')} 

A (ival, ibit)' r (ival, ibit) ](~i.,i~1,ibl,) 

2More precisely, T A .4 will imply w ~ r w, where T is the type-correctness invari~nt. 



His equals Hist( hin, (<)>, hin o (< ival'>), ( ival, ibit ) ), so bin is a history-determined variable 
for ~Q A Hi~, and 3 bin : (r A Hi~) equals ~Q. 

If h is a history-determined variable for a property H, then FI is fin, with h as its 
internal state component.  Hence, if II is a safety property, then 3h : II is also a safety 
property. 

3 R e a l - T i m e  Closed  S y s t e m s  

3.1 T i m e  and T im e r s  

In real-time TLA specifications, real t ime is represented by the variable now. Although 
it has a special interpretation, now is just an ordinary variable of the logic. The value of 
now is always a real number, and it never decreases--conditions expressed by the TLA 
formula 

R T  ~= (now E R) h [][now' e (now,cc)]~o,~ 

where R is the set of real numbers and (r, oc) is {t e R :  t > r}. 
It is convenient to make time-advancing steps distinct from ordinary program steps. 

This is done by strengthening the formula R T  to 

RTv ~ (now �9 R) A z][(now' � 9  oo)) A (v' = v)]~o~ 

This property differs from R T  only in asserting that  v does not change when now advances. 
Thus, R T ,  is equivalent to R T  h [][now t = now],, and 

Init A n[A/']v A R T ,  = I n i t  A D[A/" A (now' = now)], A R T  

Real-time constraints are imposed by using timers to restrict the increase of now. A 
timer for H is a state function t such that  II implies o ( t  E R U {=kec}). Timer t is used 
as an upper-bound t imer by conjoining the formula 

MaxTime(t)  ~ (now <_ t) A D[now' < t'],o~ 

to a specification. This formula asserts that now is never advanced past t. Timer t is 
used as a lower-bound t imer for an action J[ by conjoining the formula 

MinTime(t ,  A,  v) ~= [][A =:~ (t < now)], 

to a specification. This formula asserts that  an (A/ ,  step cannot occur when now is less 
than t. 3 

A common type of timing constraint asserts that  an fl. step must occur within 
seconds of when the action .A becomes enabled, for some constant 5. After an .A step, 
the next .A step must occur within 5 seconds of when action .A is re-enabled. There are 
at least two reasonable interpretations of this requirement. 

3Unlike the usual timers in computer systems that represent an increment of time, our timers represent 
an absolute time. To allow the type of strict time bound that would be expressed by replacing < with < 
in the definition of MazTime or MinTime, we could introduce, as additional possible values for timers, 
the set of all "infinitesimally shifted" real numbers r - ,  where t < r-  iff t < r, for any reals t and r. 
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The first interpretation is that the M step must occur if .A has been continuously 
enabled for ~ seconds. This is expressed by MaxTime(t) when t is a state function 
satisfying 

VTimer(t,A,~,v) ~ A t = if  Enabled (A}~ t h e n  now + 
else  0r 

A D[A t ' =  if  (Enabled (,A),~)' 
t h e n  i f  (A}~ V ".Enabled (A}~ 

Such a t is called a volatile 6-timer. 

else  
A v' r v 

t h e n  now + 
else  t 

OO 

Another interpretation of the timing requirement is that  an A step must occur if .A 
has been enabled for a total of g seconds, though not necessarily continuously enabled. 
This is expressed by MaxTime(t) when t satisfies 

PTimer(t,A,g,v) a_ A t = n o w + 6  
A D[A t ' =  if  Enabled (A}~ 

t h e n  if  (A)~ t h e n  now + 
else  t 

else t + (now' - now) 
A (v, now)' # (,, mow) 

Such a t is called a persistent g-timer. We can use &timers as lower-bound timers as well 
as upper-bound timers. 

Observe that VTimer( t, A, ~, v) has the form Hist( t, f, g, v) and PTimer( t, A, ~, v) has 
the form Hist(t, f ,g, (v, now)), where Hist is defined by (4). Thus, if formula II implies 
that  a variable t satisfies either of these formulas, then t is a history-determined variable 

for II. 
As an example of the use of timers, we make the lossy queue of Section 2.1 nonlossy 

by adding the following timing constraints. 

�9 Values must be put  on a wire at most once every ~,,d seconds. There are two 
condit ions--one on the input wire and one on the output  wire. They are expressed 
by using ~s,d-timers tx, p and tD,Q, for the actions Inp and DeQ, as lower-bound 
timers. 

�9 A value must be added to the queue at most A~c~ seconds after it appears on the 
input wire. This is expressed by using a A,c,-timer TEnQ, for the enqueue action, 
as an upper-bound timer. 

�9 A value must be sent on the output wire within A,,d seconds of when it reaches the 
head of the queue. This is expressed by using a ~,,,d-timer TD,Q, for the dequeue 
action, as an upper-bound timer. 

The t imed queue will be nonlossy if Arc, < 6,,d. In this case, we expect the Inp, EnQ, and 
DeQ actions to remain enabled until they are "executed", so it doesn't  mat te r  whether 
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we use volatile or persistent timers. We use volatile timers because they are a little easier 
to reason about. 

The timed version H~ of the queue's internal specification IIQ is obtained by conjoining 
the timing constraints to IIQ: 

n 0 An ART  (6) 
^ VTimer(t~p, Inp,,5,~d, v) /~ MinTime(t~p, Inp, v) 
^ VTime (to Q, OeQ, ^ MinTi,ne(t  Q, D Q, 
^ VTimer(TE  , E Q, v) ^ M  Time(T  Q) 
A VTimer(T~Q, DeQ, A,~d, v) A MaxTime(TDr 

The external specification r of the timed queue is obtained by existentially quantifying 
first the timers and then the variables q and last. 

Formula H~ of (6) is not in the canonical form for a TLA formula. A straightforward 
calculation, using the type-correctness invariant (1) and the equivalence of ([2F)/~ ([]G) 
and [3(F A G), converts the expression (6) for II~ to the canonical form given in Figure 4. 4 
Observe how each subaction A of the original formula has a corresponding timed version 
A t. Action A t is obtained by conjoining A with the appropriate relations between the old 
and new values of the timers. If A has a lower-bound timer, then .A * also has a conjunct 
asserting that it is not enabled when now is less than this timer. (The lower-bound timer 
ti,~ for Inp does not affect the enabling of other subactions because Inp is disjoint from 
all other subactions; a similar remark applies to the lower-bound timer tD~Q.) There is 
also a new action, QTick, that advances now. 

Formula II~ is the TLA specification of a program that satisfies each maximum-delay 
constraint by preventing now from advancing before the constraint has been satisfied. 
Thus, the program "implements" timing constraints by stopping time, an apparent ab- 
surdity. However, the absurdity results from thinking of a TLA formula, or the abstract 
program that it represents, as a prescription of how something is accomplished. A TLA 
formula is really a description of what is supposed to happen. Formula II~ says only 
that an action occurs before now reaches a certain value. It is just our familiarity with 
ordinary programs that makes us jump to the conclusion that now is being changed by 
the system. 

3 .2  R e a s o n i n g  A b o u t  T i m e  

Formula H~ is a safety property; it is satisfied by abehavior in which no variables change 
values. In particular, it allows behaviors in which time stops. We can rule out such 
behaviors by conjoining to H~ the liveness property 

NZ ~ Vt e R : O(now > t) 

which asserts that now gets arbitrarily large. However, when reasoning only about real- 
time properties, this is not necessary. For example, suppose we want to show that our 
timed queue satisfies a real-time property expressed by formula g2 t, which is also a safety 

4Further simplification of this formulais possible, but it requires an invariant. In particular, the fourth 
conjunct of DeQ ~ can be replaced by T~,Q = TE, q. 
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initto = A InitQ 
A now E R 
A tl~p = now + 6sng 
A tD,o = TE.O = TD,O = oo 

inpt  = A lnp  
h tt~p < now 
h t~.p = now' + 5..d 
h Tk. Q = if last ~ ~ ibit ~ t h e n  now ~ + Arc~ else oo 
^ (to,e,To,Q)' = if q = (()) t h e n  ( ~ , ~ )  e lse  (to,Q,To,Q) 
A n O W  t .~- n O W  

EnQt  = A EnQ 
h T~.Q = oo 
A (tooo, To,o)'  = if q = (()) t h e n  (now + 5,~d, now + A.~d) 

else (to,Q, TD,Q) 
A (tz~p, now)' = (tz~p, now) 

DeQt a = A DeQ 
A toeq < now 
A (tD.Q,TD.Q) ~= i f q ' =  (()) t h e n  ( ~ , o o )  

else (now + 6.~,  now + A.~d) 
A T~Q = if last ~ = ibit' t h e n  ~ else  TEnQ 
^ (t~.~, ~o~)' = ( tr . ,  ~o~) 

QTick ~ ^ now' E (now, min(TD~Q, TE.Q)] 
T A (v, tI~p, to,Q, TO,Q, E.Q) = (v, t1~p, to,o,  To,O, TE~Q) 

vt a (v, now, tI~p,toeQ,ToeQ,TEnQ) 

IP 0 ~- A Init~ 
A D[Inp t V EnQ t V DeQ t V QTick]~ 

Figure 4: The canonical form for II~, where (r, s] denotes the set of reals u such that 
r < u < s .  
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property. If II~ implies qlt, then II~ A NZ implies q~t A NZ. Conversely, we don't expect 
conjoining a liveness property to add safety properties; if II~ A NZ implies qd t, then II~ 
by itself should imply qdt--a point discussed in Section 3.3 below. Hence, there is no need 
to introduce the liveness property NZ. 

A safety property we might want to prove for the timed queue is that it does not lose 
any inputs. To express this property, let his be the history variable, determined by Hi~ 
of (5), that records the sequence of input values; and let hout and Ho~ be the analogous 
history variable and property for the outputs. The assertion that the timed queue loses 
no inputs is expressed by 

ntQ A Hi. A Ho,, ~ O(hout -4 hinp) 

where a _ /3 iff a is an initial prefix of ft. This is a standard invariance property. The 
usual method for proving such properties leads to the following invariant 

^ Tq A sow e R) A (Ts.Q, tD, , TD.Q e R u {oo}) 
A now <_ min(TE,#, TDr 

A (last=ibit)  ~ (TE.Q=C~) A (h inp=houtoq)  

A (last # ibit) ~ (TE=Q < tl.~) A (hinp = hout o q o ((ival))) 
^ (q  = ( ( ) ) )  =_ = 

and to the necessary assumption A,~ < 58~d. (Recall that TQ is the type-correctness 
predicate (1) for IIQ.) 

Property NZ is needed to prove that real-time properties imply liveness properties. 
The desired liveness property for the timed queue is that the sequence of input messages 
up to any point eventually appears as the sequence of output messages. It is expressed in 
TLA by 

II~Q A NZ =~ Va : o((hinp = cr) ~ O(hout = a)) 

This formula is proved by first showing 

IItQ A NZ ~ WF,(EnQ) A WF,(DeQ) (7) 

and then using a standard TLA liveness argument to prove 

IItQ A WF,(EnQ) A WF,(DeQ) ~ Va : O((hinp = ~) ~ <)(hour = a)) 

The proof that II~ A NZ implies WF,(EnQ) is by contradiction. Assume EnQ is forever 
enabled but never occurs. An invariance argument then shows that H~ implies that TE,r 
forever equals its current value, preventing now from advancing past that value; and this 
contradicts NZ. The proof that II~ A NZ implies WF~(DeQ) is similar. 

3 .3  T h e  N o n Z e n o  C o n d i t i o n  

The timed queue specification II~ asserts that a DeQ action must occur between 58~d 
and A,~d seconds of when it becomes enabled. What if A,,a < 5,.~? If an input occurs, 
it eventually is put in the queue, enabling DeQ. At that point, the value of now can 
never become more than A , ~  greater than its current value, so the program eventually 
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reaches a "time-blocked state". In a time-blocked state, only the QTick action can be 
enabled, and it cannot advance now past some fixed time. In other words, eventually a 
state is reached in which every variable other than now remains the same, and now either 
remains the same or keeps advancing closer and closer to some upper bound. 

We can at tempt to correct such pathological specifications by requiring that now 
increase without bound. This is easily done by conjoining the liveness property NZ to 
the safety property [i~, but that  doesn't accomplish anything. Since II~ A NZ rules out 
behaviors in which now is bounded, it allows only behaviors in which there is no input, if 
As~d < 5,~d. Such a specification is no better than the original specification II~. The fact 
that  the safety property allows the possibility of reaching a time-blocked state indicates 
an error in the specification. One does not add timing constraints on output actions with 
the intention of forbidding input. 

We call a safety property Zeno if it allows the system to reach a state from which 
now must remain bounded. More precisely, a safety property [i is nonZeno iff every finite 
behavior satisfying II can be completed to an infinite behavior satisfying 1I in which now 
increases without bound. In other words, II is nonZeno iff the pair (l-I, NZ) is machine 
closed. NonZenoness means that  the liveness property NZ cannot help in proving safety 
properties, s The following result is used to prove that  a real-time specification written in 
terms of 5-timers is nonZeno. 

T h e o r e m  1 Let 

I f  1. 

2. 

�9 1I be a safety property. 

�9 t~ and Tj be timers for II and let A~ be an action, for all i E I, j E J, and k E IUJ ,  
where I and J are sets, with J finite. 

�9 [it ~- II A R T ,  A V i E I : M i n T i m e ( t i ,  A~,v) A V j E J : M a x T i m e ( T j )  

(A~), and (Aj}~ are disjoint for [i, for all i E I and j E J with i ~ j .  

(a) now does not occur free in v. 

(b) (now' = r) A (v' = v) is a subaction of H, for all r E R .  

3. For all j E J:  

(a) A (now' =  ow) is a subaetio  of [i. 

(b) II =~ VTimer(Tj,  Aj ,  Aj ,  v) or 
II ~ PTimer (T j ,A j ,  Aj, v), where Aj  E (0, ~ ) .  

(c) [it ::~ D(Enabled (Aj) ,  = Enabled ((Aj)~ A (now'= now))) 

4. [i~ ~ O(tk <_Tk), forall  k E I M J .  

then (II t, NZ) is machine closed 

~An arbitrary property II is nonZeno iff (C(II), II A NZ) is machine closed. We restrict our attention 
to real-time constraints for safety specifications. 
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We can apply the theorem to prove that the specification II~ is nonZeno if **.d _< As,d 
by substituting 

HQ A VTimer(Q~p, Inp, ~,~d, v) A VTimcr(tDeQ, DeQ, 6,,d, v) 
A VTimer(T~,Q, EnQ, A~c~, v) A VTimer(TD~Q, neQ, A,,d, v) 

for H, so 1-I t equals H~. The hypotheses of the theorem are checked as follows. 

1. The actions (Inp),, (DeQ)~, and (EnQ)~ are pairwise disjoint, so they are pairwise 
disjoint for II~. (Two actions are said to be disjoint if their conjunction equals 
false.) 

. (a) 
(b) 

Trivially satisfied. 

Intuitively, this asserts that II allows an arbitrary change to now when v re- 
mains unchanged, which holds because neither HQ nor the VTimer formu- 
las constrain now. Formally, the hypothesis asserts that Enabled ((now' = 
r) A (v' = v)) implies Enabled (.A/[A (now' ---- r) A (v' = v)), for any r e R,  
where AJ is the conjunction of [AfQ], and the VTimer actions. The definitions 
of AfQ and VTimer imply that now' does not occur in .~4, from which it follows 
that both Enabled predicates equal true. (The hypothesis would also hold if 
persistent instead of volatile A-timers had been used, but  a rigorous proof is a 
bit more complicated.) 

. (a) Actions (Inp)~, (DeQ)v, and (EnQ)v imply AfQ, so they are subactions of IIQ. 
Since these three actions have no primed variables in common with the VTimer 
formulas, they are subactions of II. The hypothesis then follows because now' 
does not occur in the VTimer formulas. (Again, the hypothesis is true for 
persistent timers, but  the proof is more involved.) 

(b) Immediate from the definition of II. 

(c) Holds because now' does not occur in the actions Inp, DeQ, and EnQ. 

4. Follows from the general result that g < A implies 

RT~ A VTimer(t,.4, ~, v) A VTimer(T,,4, A, v) ~ [2(t < T) 

which is proved by a simple invariance argument. (The analogous result holds for 
persistent timers.) 

Theorem 1 can be generalized in two ways. First, J can be infinite if 1-i t implies that 
only a finite number of actions ~4j with j E J are enabled before time r, for any r E R .  
For example, by letting .4j be the action that sends message number j ,  we can apply 
the theorem to a program that sends messages number 1 through n at t ime n, for every 
integer n. This program is nonZeno even though the number of actions per second that 
it performs is unbounded. Second, we can extend the theorem to the more general class 
of timers obtained by letting t h e / k j  be arbitrary real-valued state functions, rather than 
just constants-- i f  all the Aj are bounded from below by a positive constant A. 
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Theorem 1 is proved using Propositions 1 and 3 and ordinary TLA reasoning. By 
these propositions, it suffices to display a formula L that is the conjunction of fairness 
conditions on subactions of l,i * such that II * A L implies NZ. A suitable L is defined by 

,45 ~ (now'=now)  A (if j E I  then  AjA(now>__tj) else Aj) 

JE ~= {J E J :  Enabled (A)j} 

T ~- min(now + minAj,  minTj) 
jEJ jEJE 

B ~ ((now = T) A A~.) V ((now 7~ T) A (now' = T) A (v' = v)) 

L 

We omit the proof. 
Most nonaxiomatic approaches, including both real-time process algebras and more 

traditional programming languages with timing constraints, essentially use S-timers for 
actions. Hence, our theorem implies that they automatically yield nonZeno specifications. 

Theorem 1 does not cover all situations of interest. For example, one can require of 
our timed queue that the first value appear on the output line within e seconds of when it 
is placed on the input line. This effectively places an upper bound on the sum of the times 
needed for performing the EnQ and DeQ actions; it cannot be expressed with ~-timers 
on individual actions. For these general timing constraints, nonZenoness must be proved 
for the individual specification. The method of proof is the same as we used to prove 
Theorem 1: we add to the timed program II ~ a liveness property L that is the conjunction 
of any fairness properties we like, including fairness of the action that advances now, and 
prove that l'I t A L implies NZ. NonZenoness then follows from Propositions 1 and 3. 

There is another possible approach to proving nonZenoness. One can make granular- 
ity assumptions--lower bounds both on the amount by which now is incremented and on 
the minimum delay for each action. Under these assumptions, nonZenoness is equivalent 
to the absence of deadlock, which can be proved by existing methods. Granularity as- 
sumptions are probably adequate--Mter all, what harm can come from pretending that 
nothing happens in less than 10 -l~176 nanoseconds? However, they can be unnatural and 
cumbersome. For example, distributed algorithms often assume that only message delays 
are significant, so the time required for local actions is ignored. The specification of such 
an algorithm should place no lower bound on the time required for a local action, but 
that would violate any granularity a.ssumptions. We believe that any proof of deadlock 
freedom based on granularity can be translated into a proof of nonZenoness using the 
method outlined above. 

So far, we have been discussing nonZenoness of the internal specification, where both 
the timers and the system's internal variables are visible. Timers are defined by adding 
history-determined variables, so existentially quantifying over them preserves nonZenoness 
by Proposition 2. We expect most specifications to be fin [2, page 263], so nonZenoness 
will also be preserved by existentially quantifying over the system's internal variables. 
This is the case for the timed queue. 

3.4 A n  E x a m p l e :  F i s c h e r ' s  P r o t o c o l  

As another example of real-time closed systems, we treat a simplified version of a real-time 
mutual exclusion protocol proposed by Michael Fischer [10, page 2]. The example was 
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Init F ~- 

Go(i, u, v) 

V i E Proc : pc[i] = "a" 

~- ^ pc[i] = u 
^ pc'[i] = v 
h Vj  E Proc: (j # i) ~ (pc'~] = pc[j]) 

~t~ ~- Go(i ,  "~", "b") ^ (~ = ~' = o) 

Bi ~ Go(i,"b","c") h ( x ' =  i) 

c ,  ~ a o ( i ,  "e' ,  "c~") ^ (~ = x' = i) 

A/'F g 3 i E P r o c : ( A i  V B i V G )  

[IF a_ InitF A I"l[.]~fF](x,pc ) 

1-I~ ~- A HE A RT(~,p~) 
A Vi E Proc: A VTimer(Tb[i], Bi, Ab, (x,pc)) 

A MaxTime(Tb[i]) 
A V i e  Proc:  A VTimer(t~[i], Go(i, "c", "cs"), 6c, (x,pc)) 

A MinTirae(t~[i], Ci, (x,pc)) 

= 3Tb, t r  

Figure 5: The TLA specification of Fischer's real-time mutual exclusion protocol. 

suggested by Fred Schneider [14]. The protocol consists of each process i executing the 
following code, where angle brackets denote instantaneous atomic actionsi 

a: a w a i t  (x = 0); 
b: (x :=  i); 
c: a w a i t  (x = i); 

cs: critical section 

There is a maximum delay As between the execution of the test in statement a and the 
assignment in statement b, and a minimum delay ~ between the assignment in statement 
b and the test in statement c. The problem is to prove that, with suitable conditions on 
Ab and 6~, this protocol guarantees mutual exclusion (at most one process can enter its 
critical section). 

As written, Fischer's protocol permits only one process to enter its critical section 
one time. The protocol can be converted to an actual mutual exclusion algorithm. The 
correctness proof of the protocol is easily extended to a proof of such an algorithm. 

The TLA specification of the protocol is given in Figure 5. The formula liE describing 
the untimed version is standard TLA. We assume a finite set Proc of processes. Variable 
x represents the program variable x, and variable pc represents the control state. The 
value of pc will be an array indexed by Proc, where pc[i] equals one of the strings "a", 
"b", "c", "cs" when control in process i is at the corresponding statement. The initial 
predicate Init.F asserts that pc[i] equals "a" for each process i, so the processes start with 
control at statement a. No assumption on the initial value of x is needed to prove mutual 
exclusion. 

Next come the definitions of the three actions corresponding to program statements 
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a, b, and c. They are defined using the formula Go, where Go(i, u, v) asserts that control 
in process i changes from u to v, while control remains unchanged in the other processes. 
Action jl~ represents the execution of statement a by process i; actions Bi and Ci have 
the analogous interpretation. In this simple protocol, a process stops when it gets to its 
critical section, so there are no other actions. The program's next-state action AfF is the 
disjunction of all these actions. Formula HE asserts that all processes start at statement 
a, and every step consists of executing the next statement of some process. 

Action Bi is enabled by the execution of action gi~. Therefore, the maximum delay 
of Ab between the execution of statements a and b can be expressed by an upper-bound 
constraint on a volatile Ab-timer for action B~. The variable Tb is an array of such timers, 
where Tb[i] is the timer for action B~. 

The constant ~c is the minimum delay between when control reaches statement c and 
when that statement is executed. Therefore, we need an array t~ of lower-bound timers 
for the actions C~. The delay is measured from the time control reaches statement c, 
so we want tc[i] to be a ~c-timer on an action that becomes enabled when process i 
reaches statement c and is not executed until C~ is. A suitable choice for this action is 
Go(i, "c', "cs"). 

Adding these timers and timing constraints to the untimed formula 1-IF yields formula 
II~ of Figure 5, the TLA specification of the real-time protocol with the timers visible. 
The final specification, ~ ,  is obtained by quantifying over the timer variables Tb and 
t~. Since Bj is a subaction of HE and pc[i] = "c" is disjoint from Bj, for all i and j in 
Proc, Theorem 1 implies that II~ is nonZeno if Ab is positive. Proposition 2 can then be 
applied to prove that q)~ is nonZeno. 

Mutual exclusion asserts that two processes cannot be in their critical sections at the 
same time. It is expressed by the predicate 

Mutex ~ Vi , j  E eroc:  (pc[i] = pc[j] = "cs') =~ (i = j )  

The property to be proved is 

Assump h r ~ [3Mutex (8) 

where Assump expresses the assumptions about the constants Proc, Ab, and 5c needed for 
correctness. Since the timer variables do not occur in Mutex or Assump, (8) is equivalent 
to 

Assump A IItF ~ DMutex 

The standard method for proving this kind of invariance property leads to the invariant 

A now E R 
A V i  E Proc : 

A Tb[i],t~[i] E R U {co} 
A pc[i] e {"a", "b', "c", "cs"} 
A (pc[i]="cs") ~ A x = i  

A Vj  E Proc: pc[?'] ~ "b" 
A (pc[i] = "c") A �9 # o 

A Vj E Proc: (pc[j] = "b') ~ (t~[i] > Tb[j]) 

A (pc[i] = "b") =~ (Tb[i] < now + 5~) 
A now < Tb[i] 
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and the assumption 

Assump (0 q~ Proc) A (Ab,6c �9 R)  A (Ab < 6c) 

4 Open Systems 

4 . 1  R e a l i z a b i l i t y  

We begin by recasting the definitions of [1] into TLA. In the semantic model of [1], a 
behavior is a sequence of alternating states and agents of the form 

So 41, sz _2~ s2 a s  . . .  (9) 

To translate from this semantic model into that of TLA, we identify agents with state 
transitions. Agents are pairs of states, and a behavior So, s l , . . ,  in TLA's model is iden- 
tified with the behavior (9) in which c~ equals (s~-z, s~). An action # is identified with 
the set of all agents that  are # steps. All the important definitions and results in [1] that 
do not concern agent-abstractness continue to hold--except  that some results require the 
assumption that # does not allow stuttering steps. (An action # does not allow stuttering 
steps iff # implies v' ~ v, where v is the tuple of all variables occurring in/~.)' 

If # is an action and 1I a safety property, then II does not constrain # iff for any 
finite behavior So, . . . ,  s~ and state sn+l, if So, . . . ,  s~ satisfies 1] and (s~, S~+l) is a # step, 
then So,.. . ,s,~+l satisfies 1]. Property II constrains at most # iff II does not constrain 
-~# and every behavior consisting of a single state satisfies II. Any safety property 1] can 
be written as the conjunction of a property 111 that does not constrain/~ and a property 
H2 that constrains at most #. If 1-I equals Init A E][A/~, then we can take 1]z to be 
Init A D[2q" V #Iv and 1-[2 to be [][Af V ~#]~. 

A predicate P is said to be a # invariant of a property II i f fno # step of a behavior 
satisfying II can make P false. More precisely, P is a # invariant of II iff 

II ~ n[# A P =~ P']p 

For an action # and property II, the #-realizable part 7~u(II ) is the set of behaviors that 
can be achieved by an implementation of II that performs only # s teps- - the  environment 
being able to perform any "-,# step. The reader is referred to [1] for the precise definition. 6 
(The concept of receptiveness is due to Dill [8].) Property 1] is said to be #-receptive iff 
it equals 7~,(II). The realizable part 7~u(II ) of any TLA formula II can be written as a 
TLA formula. 

The generalization of machine closure to open systems is machine realizabiIity. Intu- 
itively, (II, L) is #-machine realizable iff an implementation that performs only # steps can 
ensure that any finite behavior satisfying II is completed to an infinite behavior satisfying 
II A L. Formally, (II, L) is defined to be #-machine realizable iff (H, L) is machine closed 
and II A L is #-receptive. For # equal to true, machine realizability reduces to machine 
closure. Corresponding to Propositions 1, 2 and 3 are: 

eT~u(II ) was not defined in [1] if # equals true or false. The appropriate definitions are 7~true(II ) ~ II 
and T~false(II) -= false. 
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P r o p o s i t i o n  4 If  II is a safety property that constrains at most #, and L is the con- 
junction of a finite or countably infinite number of formulas of the form WFw(.A) and/or 
SF~o(.A), where (a) each (.A)~o is a subaction of II and (b) Enabled (A)w is a "~# invariant 
of II for each A appearing in a formula SF~(A), then (H, L) is #-machine realizable. 

P r o p o s i t i o n  5 ([1], P r o p o s i t i o n  10) If  # does not allow stuttering steps, x is a tuple 
of variables that do not occur free in # or L, and 

(a) 3x : Init holds. 

(b) (D[H V 1nit ^ V (x' = L) is #-machine realizable, 

(c) 3x : (Init A =[# V (x' = x)]~ A O[A/" V -~#],) is a safety property. 

then (3x :  (Init A D[# V (x' = x)]~ A C[.N" V --'#]v), L) is ,-machine realizable. 

P r o p o s i t i o n  6 If  (I-I, L1) is #-machine realizable and H A Lx implies L~, then (II, L2) is 
#-machine realizable. 

For properties ~ and H, we define �9 --~ II to be the property satisfied by a behavior 
a iff cr satisfies ~ =~ H and every finite prefix of a satisfies C(r  ~ C(H). 7 If ~ and H 
are safety properties, then ~ --~ H is the safety property asserting that II remains true 
at least as long as r does. The property ~) -~ II is sometimes written II while r it is 
expressible in TLA~ for any TLA formulas ~ and II. 

The operator -~ is the implication operator for an intuitionistic logic of safety prop- 
erties [3]. Most valid propositional formulas without negation remain valid when =~ is 
replaced by --% if all the formulas that appear on the left of a --~ are safety properties. 
For example, the following formulas are valid if r and II are safety properties. 

-~ (II -~ ~) =- (~ A H) -~ '~ (10) 

(V -~ ~) ^ (~  -~ m) = (r  V H) -~ 

Valid formulas can also be obtained by certain partial replacements of =~ by -~ in valid 
formulas. For example, the following equivalence is valid if P is a safe~y property. 

(E =~ (P  -~ M,))  =~ (E =~ (P  --~ Ms)) (11) 

- (EAPAM ) (EAPAM ) 

A precise relation between -~ and ~ is established by: 

P r o p o s i t i o n  7 ([1], P r o p o s i t i o n  8) I f  # is an action that does not permit stuttering 
steps, r and II are safety properties, ~ does not constrain #~ and II constrains at most 
#, then Tt~(r =~ II) equals �9 -~ H. 

Substituting true for �9 in Proposition 7 proves that a safety property is #-receptive if it 
constrains at most #. 

The following variant of Proposition 6 is useful. Note that if (true, L) is #-machine 
realizable, then L is a liveness property. 

7This definition is slightly different from the one in [1]; but the two definitions agree when r and II 
are safety properties. 
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P r o p o s i t i o n  8 I f  # is an action that does not allow stuttering steps, r and II are safety 
properties, (~ -~ H, L~) and (true, L2) are It-machine realizable, and r AII  A L1 implies 
L2, then (r --~ II, L2) is It-machine realizable. 

By using Propositions 4 and 8 instead of Propositions 1 and 3, the proof of Theorem 1 
generalizes to the proof of the following result. If H has the form Init A o[Af]~, we write 
II0 to denote Init and Tin to denote DIAl].. 

T h e o r e m  2 With the notation and hypotheses of Theorem 1, if E and M are safety 
properties such that 1-I = E A M, # is an action that does not allow stuttering steps, and 

5. M constrains at most It. 

6. (a) (Ak)~ ~ It, for all k E I U J. 

(bJ (now' # now) It 

then (E t --r M t, NZ) is #-machine realizable, where 

E ~ ~= E A (Rrv)o ^ V j  �9 J :  MaxTime(TAo 

M t ~= M A (RT,)o A V i E I : M i n T i m e ( t i , A , , v )  A V j E J : M a x T i m e ( T j ) D  

Observe how the initial predicates of RT,  and MaxTime(Tj) appear in the environment 
assumption E t. (Formula MinTime(ti, Ai, v) has no initial predicate.) If P is a predicate, 
then P -~ II is equivalent to P =v II, and (P AII, L) is machine closed if (P =~ H, L) 
is. Since machine realizability implies machine closure, Theorem 1 can be obtained from 
Theorem 2 by letting E and It equal true and M equal II. 

4.2 Open Systems as Implications 

An open system specification is one in which the system guarantees a property M only if 
the environment satisfies an assumption E. The set of allowed behaviors is described by 
the formula E ~ M. The specification also includes an action # that defines which steps 
are under the control of (or blamed on) the system. For a reasonable specification, C(E) 
must not constrain #, and C(M) must constrain at most #.s The following result shows 
that, under reasonable hypotheses, E can be taken to be a safety property. 

P ro p os i t i on  9 ([1], T h e o r e m  1) If I is a predicate, Es and Ms are safety properties, 
and (Es, Es A EL) is "~#-machine realizable, then 

T~u(I A Es A EL ~ Ms A ML) = Tiu(I A Es ~ Ms A (EL ~ ML)) 

An open system specification can then be written as E =~ M, with 

E g Init IX 3e:(Ini t~ A D [ ( i t h ( e ' = e ) )  VAPE](.,.)) 

M ~ 3 m : (Initm ik D[(-~# A (m' = m)) V AFM](..,.) A (LE ~ LM)) 

SThe slight asymmetry in these conditions results from the arbitrary choice that initial conditions 
appear in E and not in M. 
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where e and m denote the internal variables of the environment and module, which are 
each disjoint from all variables appearing in the scope of the other's "3"; LE and LM are 
conjunctions of suitable fairness properties; 3e : Init~ and 3m : Initm are identically true; 
the system's next-state action A/'M implies #, and the environment's next-state action 
AlE implies --#. Under these assumptions, it can be shown that C(E) does not constrain 
#, and C(M) constrains at most #. It is easy to show that E A M, the TLA formula 
describing the closed system formed by the open system and its environment, equals 

3 e ,m: ( In i t  A InitE A InitM A [3[A/'E v.AfM](e . . . .  ) A (LE ::# LM)) (12) 

Thus, E A M has precisely the form we expect for a closed system comprising two com- 
ponents with next-state actions HE and HM. 

Implementat~n means implication. A system with guarantee M implements a system 
with guarantee M, under environment assumption E, iff E =~ M implies E =~ M. But 
this is logically equivalent to E A M implying E A M. In other words, proving that one 
open system implements another is equivalent to proving the implementation relation for 
the corresponding closed systems. Hence, implementation for open systems reduces to 
implementation for closed systems? 

4.3 Composition 
The distinguishing feature of open systems is that they can be composed. The proof that 
the composition of two specifications implements a third specification is based on the 
following result, which is a slight generalization of Theorem 2 of [1]. 

T h e o r e m  3 I f  P, E, El, and E2 are safety properties, M1 and M2 are arbitrary proper- 
ties, and #1 and #2 are actions such that 

1. (a) E1 does not constrain gl, (b) E2 does not constrain #2, and (c) E does not 
constrain #1 V #2, 

2. C(M1) constrains at most #1, and C(M2) constrains at most #2, 

3. #1 V #2 does not allow stuttering steps, 

then the following proof rule is valid. 

P A E A C(M1) A C(M2) ~ E1 h E2 
7~,l(E1=~M1) A 7~,2(E2=~M2 ) =~ (E ~ ( P - ~ M 1 )  A(P--~M~))  

This theorem differs from Theorem 2 of [1] in two significant ways: 

�9 The assumption #1 A#2 ---- O is missing, and the conclusion of the proof rule has been 
weakened by removing the T~,lv~2. An examination of the proof of the theorem in 
[1] reveals that the assumption is not needed for this weaker conclusion. 

�9 The hypothesis has been weakened to include the conjunct P and the conclusion 
weakened by adding the "P --v"s. The original theorem is obtained by letting P be 
true. A simple modification to the argument in [1] proves the generalization. 

9A similar argument shows that we can replace Lz ~ LM by LEA LM in (12) when proving that 
E A M implements E A M. 
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5 R e a l - T i m e  O p e n  S y s t e m s  

5.1 T h e  P a r a d o x  R e v i s i t e d  

We now consider the paradoxical example of the introduction, illustrated in Figure 1. For 
simplicity, let the possible output actions be the setting of-x and y to 0. The untimed 
version of $1 then asserts that, if the environment does nothing but set y to 0, then the 
system does nothing but set x to 0. This is expressed in TLA by letting 

-]~x ~ (;T/ ~-" 0) A (Y/= Y) /21 ~'~ X' ~ x 
My g (y'=0) ^ (~'=~)  

and defining the untimed version of specification $1 to be 

a[,,~ v .M~](.,~) ~ a[--,,., v M.](. ,~) (13) 

To add timing constraints, we must first decide whether the system or the environment 
should change now. Since the advancing of now is a mythical action that does not have to 
be performed by any device, either decision is possible. Somewhat surprisingly, it turns 
out to be more convenient to let the system advance time. Remembering that initial 
conditions must appear in the environment assumption, we define 

= .M~ A (now'= now) MT~ " MaxTime(T~) 

A/'~ ~= .h4~ A (now'=now) MT~ & MaxTime(T~) 

Tx ~ i f x # 0 t h e n 1 2 e l s e o o  #1 ~ ul Y (now'~now)  

T u -~ if y # 0 t h e n 1 2  else 

El ~- (now = O) A (MT~)o A D[#I V Af~](~,~,,0~) 

M1 ~ D[-~#I V A/'x](~,u,~o~ ) h (RT(~,y))n A (MT~)a 

Adding timing constraints to (13) the same way we did for closed systems then leads to 
the following timed version of specification $1. 

E1A MTy ~ M1 (14) 

However, this does not have the right form for an open system specification because 
MT~ constrains the advance of now, so the environment assumption constrains #1- The 
conjunct MTy must be moved from the environment assumption to the system guarantee. 
This is easily done by rewriting (14) in the equivalent form 

E1 ~ (MT~ ~ M1) 

so the system guarantee becomes MT u ~ M1.1~ However, this guarantee is not a safety 
property. To make it one, we must replace =~ by -% obtaining 

$1 ~- E1 ~ ( MT v ~ M1) 

1~ MT~ appears on the left of an implication, there is no need to put its initial condition in 
the environment assumption. 
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The specification $2 of the second component in Figure 1 is similar, where #2, E2, M2, 
and $2 are obtained from/~1, El, M1, and $1 by substituting 2 for 1, x for y, and y for x. 

We now compose specifications $1 and $2. The definitions and the observation that 
P --~ Q implies P =~ Q yield 

(MT~ V MT~) A E A (MT~ --~ M1) A (MT~ --~ Ms) =~ E1 A E2 

where 
E ~= (now = O) h (MT~)o A (MT~)o h D[/~I V ~2](~,~,,o~) 

We can therefore apply Theorem 3, substituting MT~ V MT~ for P, MT~ --~ M1 for tl//1, 
and MT~ --~ M2 for M2, to deduce 

T~I(Sl) ^ n~(S~) ~ (E ~ ^ (MT, V MT,) -~ (MT~ ~ M~) 
A (MT~ Y MT~) --~ (MT~ --~ Ms)) 

Using the implication-like properties of --~, this simplifies to 

T~,,(S~) A T~,2($2 ) =~ (E =~ (MT~ --~ MI) A (MT, --~ Ms)) (15) 

All one can conclude about the composition from (15) is: either z and y are both 0 when 
now reaches 12, or neither of them is 0 when now reaches 12. There is no paradox. 

As another example, we replace $2 by the specification E2 =~ M2. This specification, 
which we call $3, asserts that the system sets y to 0 by noon, regardless of whether the 
environment sets x to 0. The definitions imply 

MT~ A E A (MT~ --~ M1) A M~ =~ E1A E2 

and Theorem 3 yields 

n, l ( s~)  ^ n~ ( s~ )  ~ (E ~ (MT~ ~ M~) A M~) 

Since Ms implies MT~, this simplifies to 

The composition of S1 and $3 does guarantee that both x and y equal 0 by noon. 

5.2 T iming  Constraints in General  

Our no-longer-paradoxical example suggests that the form of a real-time open system 
specification should be 

E =~ (P --~ M) (16) 

where M describes the system's timing constraints and the advancing of now, and P de- 
scribes the upper-bound timing constraints for the environment. Since the environment's 
lower-bound timing constraints do not constrain the advance of now, they can remain in 
E. By (11)~ proving that one specification in this form implements another reduces to 
the proof for the corresponding dosed systems. 

For the specification (16) to be reasonable, its closed-system version, E A P A M ,  should 
be nonZeno. However, this is not sufficient. Consider a specification guaranteeing that 
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the system produces a sequence of outputs until the environment sends a stop message, 
where the n th output must occur by time (n - 1)In. There is no timing assumption on 
the environment; it need never send a 8top message. This is an unreasonable specification 
because now can't reach 1 until the environment sends its stop message, so the advance of 
time is contingent on an optional action of the environment. However, the corresponding 
closed system specification is nonZeno, since time can always be made to advance without 
bound by having the environment send a stop message. 

If advancing now is a # action, then a system that controls # actions can guarantee time 
to be unbounded while satisfying a safety specification S iff the pair (S, NZ) is #-machine 
realizable. This condition cannot be satisfied if S contains unrealizable behaviors. By 
Proposition 7, we can eliminate unrealizable behaviors by changing "=~" to "--~" in (16). 
Using (10), we then see that the appropriate definition of nonZenoness for an open system 
specification of the form (16), with M a safety property, is that ( (EAP)  --~ M, NZ) be #- 
machine realizable. This condition is proved using Theorem 2. To apply the theorem, one 
must show that M constrains at most #. Any property of the form O[A/" V #]~ constrains 
at most #. To prove that a formula with internal variables (existential quantification) 
constrains at most #, one applies Proposition 5 with true substituted for L, since M 
constrains at most # iff (M, true) is #-machine realizable. 

6 C o n c l u s i o n  

6 .1  W h a t  W e  D i d  

We started with a simple idea--specifying and reasoning about real-time systems by 
representing time as an ordinary variable. This idea led to an exposition that most 
readers probably found quite difficult. What happened to the simplicity? 

About half of the exposition is a review of concepts unrelated to real time. We chose 
to formulate these concepts in TLA. Like any language, TLA seems complicated on 
first encounter. We believe that a true measure of simplicity of a formal language is the 
simplicity of its formal description. The complete syntax and formal semantics of TLA 
are given in about 1-1/2 pages of figures in [11]. 

All the fundamental concepts described in Sections 2 and 4, including machine closure, 
machine realizability, and the --~ operator, have appeared before [1, 2]. However, they are 
expressed here for the first time in terms of TLA. These concepts are subtle, but they are 
important for understanding any concurrent system; they were not invented for real-time 
systems. 

We never claimed that specifying and reasoning about concurrent systems is easy. 
Verifying concurrent systems is difficult and error prone. Our assertions that one formula 
follows from another, made so casually in the exposition, must be backed up by detailed 
calculations. The proofs for our examples, propositions, and theorems occupy some sixty 
pages. 

We did claim that existing methods for specifying and reasoning about concurrent 
systems could be applied to real-time systems. Now, we can examine how hard they were 
to apply. 

We found few obstacles in the realm of closed systems. The second author has more 
than fifteen years of experience in the formal verification of concurrent algorithms, and we 
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knew that old-fashioned methods could be applied to real-time systems. However, TLA 
is relatively new, and we were pleased by how well it worked. The formal specification of 
Fischer's protocol in Figure 5, obtained by conjoining timing constraints to the untimed 
protocol, is as simple and direct as we could have hoped for. Moreover, the formal 
correctness proofs of this protocol and of the queue example, using the method of reasoning 
described in [11], were straightforward. Perhaps the most profound discovery was the 
relation between nonZenoness and machine closure. 

Open systems made up for any lack of difficulty with closed systems. State-based 
approaches to open systems are a fairly recent development, and we have little practical 
experience with them. The simple idea of putting the environment's timing assumptions 
to the left of a --~ in the system's guarantee came only after numerous failed efforts. We 
still have much to learn before reasoning about open systems becomes routine. However, 
the basic intellectual tools we needed to handle real-time open systems were all in place, 
and we have confidence in our basic approach to open-system verification. 

6.2 Beyond Real Time 

Real-time systems introduce a fundamentally new problem: adding physical continuity 
to discrete systems. Our solution is based on the observation that, when reasoning about 
a discrete system, we can represent continuous processes by discrete actions. If we can 
pretend that the system progresses by discrete atomic actions, we can pretend that those 
actions occur at a single instant of time, and that the continuous change to time also 
occurs in discrete steps. If there is no system action between noon and v/2 seconds past 
noon, we can pretend that time advances by those v/2 seconds in a single action. 

Physical continuity arises not just in real-time systems, but in "real-pressure" and 
"real-temperature" process-control systems. Such systems can be described in the same 
way as real-time systems: pressure and temperature as well as time are represented by or- 
dinary variables. The continuous changes to pressure and temperature that occur between 
system actions are represented by discrete changes to the variables. The fundamental as- 
sumption is that the real, physical system is accurately represented by a model in which 
the system makes discrete, instantaneous changes to the physical parameters it affects. 

The observation that continuous parameters other than time can be modeled by pro- 
gram variables has probably been known for years. However, the only published work we 
know of that uses this idea is by Marzullo, Schneider, and Budhiraja [12]. 
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