
An Old-Fashioned Recipe for Real Time

Martin Abadi and Leslie Lamport
Digital Equipment Corporation

130 Lytton Avenue
Palo Alto, California 94301, USA

Abstract. Traditional methods for specifying and reasoning about concurrent
systems work for real-time systems. However, two problems arise: the real-time
programming version of Zeno's paradox, and circularity in composing real-time as-
sumption/guarantee specifications. Their solutions rest on properties of machine
closure and realizability. TLA (the temporal logic of actions) provides a formal
framework for the exposition.

1 I n t r o d u c t i o n

A new class of systems is often viewed as an opportunity to invent a new semantics. A
number of years ago, the new class was distributed systems. More recently, it has been
real-time systems. The proliferation of new semantics may be fun for semanticists, but
developing a practical method for reasoning about systems is a lot of work. It would be
unfortunate if every new class of systems required inventing new semantics, along with
proof rules, languages, and tools.

Fortunately, no fundamentM change to the old methods for specifying and reasoning
about systems has been needed for these new classes. It has long been known that the
methods originally developed for shared-memory multiprocessing apply equally well to
distributed systems [7, 9]. The first application we have seen of a clearly "off-the-shelf"
method to a real-tlme algorithm was in 1983 [13], but there were probably earlier ones.
Indeed, the "extension" of an existing temporal logic to real-time programs by Bernstein
and Harter in 1981 [6] can be viewed as an application of that logic.

The old-fashioned methods handle real time by introducing a variable, which we call
now, to represent time. This idea is so simple and obvious that it seems hardly worth
writing about, except that few people appear to be aware that it works in practice. We
therefore present a brief description of how to apply conventional methods to real-time
systems. We also discuss two problems with this approach that seem to have received
little attention, and we present new solutions.

The first problem is the real-time programming version of Zeno's paradox. If time
becomes an ordinary program variable, then one can inadvertently write programs in
which time behaves improperly. An obvious danger is deadlock, where time stops. A
more insidious possibility is that time keeps advancing but is bounded, approaching closer
and closer to~ some limit. One way to avoid such "Zeno" behaviors is to place an a priori
lower bound on the duration of any action, but this can complicate the representation of
some systems. We provide a more general and, we feel, a more natural solution.

& S2 &2

Figure 1: The composition of two systems.

The second problem arises in open system specifications, in which a system is required
to operate correctly only under some assumptions on its environment. A modular spec-
ification method requires a rule asserting that, if each component behaves correctly in
isolation, then it behaves correctly in concert with other components. Consider the two
components $1 and $2 of Figure 1. Suppose that S~ guarantees to produce a sequence
of outputs on x satisfying P~ assuming it receives a sequence of inputs on y satisfying
P~, and $2 guarantees to produce a sequence of outputs on y satisfying Pv assuming it
receives a sequence of inputs on x satisfying P~. If P~ and Pv are safety properties, then
existing composition principles permit the conclusion that, in the composite system $12,
the sequence of values on x and y satisfy P~ and Pv [1]. Now, suppose P~ and Py both
assert that the value 0 is sent by noon. These are safety properties, asserting that the
undesirable event of noon passing without a 0 having been sent does not occur. Hence,
the composition principle apparently asserts that $12 sends O's along both x and y by
noon. However, specifications $1 and $2 are satisfied by systems that wait for a 0 to be
input, whereupon they immediately output a 0. The composition of those two systems
does nothing.

This paradox depends on the ability of a system to respond instantaneously to an
input. It is tempting to rule out such systems--perhaps even to outlaw specifications like
$1 and $2. We show that this Draconian measure is unnecessary. Indeed, if S~ is replaced
by the specification that a 0 must unconditionally be sent over y by noon, then there is no
paradox, and the composition does guarantee that a 0 is sent on each wire by noon. All
paradoxes disappear when one carefully examines how the specifications must be written.

Our results are relevant for any method whose semantics is based on sequences of
states or actions. However, we will describe them only for TLA--the temporal logic of
actions [11].

2 Closed Sys tems

We briefly review here how to represent closed systems in TLA. A closed system is one that
is self-contained and does not communicate with an environment. No one intentionally
designs autistic systems; in a closed system, the environment is represented as part of the
system. Open systems, in which the environment and system are separated, are discussed
in Section 4.

ival

ibit

q:l I I I I 1""

last: []

oval

obit

Figure 2: A simple queue.

We begin our review of TLA with an example. Section 2.2 summarizes the formal
definitions--a more leisurely exposition can be found in [11]. Section 2.3 reviews the
concepts of safety [4] and machine closure [2] (also known as feasibility [5]) and relates
them to TLA, and Section 2.4 defines a useful class of history variables [2].

2.1 The Lossy-Queue Example

We introduce TLA with the example of the lossy queue shown in Figure 2. The interface
consists of two pairs of "wires", each pair consisting of a val wire that holds a message
and a boolean-valued bit wire. A message m is sent over a pair of wires by setting the val
wire to m and complementing the bit wire. Input to the queue arrives on the wire pair
(ival, ibit), and output is sent on the wire pair (oval, obit). There is no acknowledgment
protocol, so inputs are lost if they arrive faster than the queue processes them. The
property guaranteed by this lossy queue is that the sequence of output messages is a
subsequence of the sequence of input messages. In Section 3.1, we add timing constraints
to rule out the possibility of lost messages.

The specifcation of the lossy queue is a TLA formula describing the set of allowed
behaviors of the queue, where a behavior is the sequence of states produced by an execu-
tion. The specification mentions the four variables ibit, obit, ival, and oval, as well as two
internal variables: q, which equals the sequence of messages received but not yet output;
and last, which equals the value of ibit for the last received message. (The variable last
is used to prevent the same message from being received twice.) These six variables are
flexible variables; their values can change during a behavior. We also introduce a rigid
variable Msg denoting the set of possible messages; it has the same value throughout a
behavior. We usually refer to flexible variables simply as variables, and to rigid variables
as constants.

The TLA specification is shown in Figure 3, using the following notation. A list of
formulas prefaced by A's denotes the conjunction of the formulas, and indentation is used
to eliminate parentheses. The expression ((// denotes the empty sequence, ((rn// denotes
the singleton sequence having m as its one element, "o" denotes concatenation, Head(a)
denotes the first element of a, and Tail(a) denotes the sequence obtained by removing
the first element of a. The symbol "=~" means is defined to equal.

The first definition is of the predicate InitQ, which describes the initial state. This
predicate asserts that the values of variables ibit and obit are arbitrary booleans, the
values of ival and oval are elements of Msg, the values of last and ibit are equal, and the

InitQ

lnp

EnQ

DeQ

V

IIQ

eQ

~- A ibit, obit E {true, false}
A ival, oval E Msg
h last = ibit
A q = (0)

= A ibit' = -~ibit
A ival' E Msg
A (obit, oval, q, last) t = (obit, oval, q, last)

= A last ~ ibit
A q '= q o ((ival))
A last' = ibit
A (ibit, obit, ival, oval)' = (ibit, obit, ival, oval)

A

= A q # (O)
A oval' = Head(q)
A q '= Tail(q)
A obit' = -~obit
A (ibit, ival, last) ~ = (ibit, ival, last)

~= Inp V E n Q V DeQ

~- (ibit, obit, ival, oval, q, last)

Initq ^
A

= 2q, last: IIQ

Figure 3: The TLA specification of a lossy queue.

value of q is the empty sequence.
Next is defined the action Inp, which describes all state changes that represent the

sending of an input message. (Since this is the specification of a closed system, it includes
the environment's Inp action.) The first conjunct, ibit' = -~ibit, asserts that the new
value of ibit equals the complement of its old value. The second conjunct asserts that the
new value of ival is an element of Msg. The third conjunct asserts that the value of the
four-tuple (obit, oval, q, last) is unchanged; it is equNalent to the assertion that the value
of each of the four variables obit, oval, q, and last is unchanged. The action Inp is always
enabled, meaning that, in any state, a new input message can be sent.

Action EnQ represents the receipt of a message by the system. The first conjunct
asserts that last is not equal to ibit, so the message on the input wire has not yet been
received. The second conjunct asserts that the new value of q equals the sequence obtained
by concatenating the old value of ival to the end of q's old value. The third conjunct
asserts that the new value of last equals the old value of ibit. The final conjunct asserts
that the values of ibit, obit, ival, and oval are unchanged. Action EnQ is enabled in a
state iff (if and on]y if) the values of last and ibit in that state are unequal.

The action DeQ represents the operation of removing a message from the head of
q and sending it on the output wire. It is enabled iff the value of q is not the empty

sequence.

The action Af O is the specification's next-state relation. It describes all allowed changes
to the queue system's variables. Since the only allowed changes are the ones described by
the actions Inp, EnQ, and DeQ, action A/'Q is the disjunction of those three actions.

In TLA specifications, it is convenient to give a name to the tuple of all relevant
variables. Here, we call it v.

Formula H O is the internal specification of the lossy queuc the formula specifying
all sequences of values that may be assumed by the queue's six variables, including the
internal variables q and last: Its first conjunct asserts that InitQ is true in the initial
state. Its second conjunct, o[Af0]~ , asserts that every step is either an NO step (a state
change allowed by A/O) or else leaves v unchanged, meaning that it leaves all six variables
unchanged.

Formula eQ is the actual specification, in which the internal variables q and last have
been hidden. A behavior satisfies r iff there is some way to assign sequences of values
to q and last such ~that H O is satisfied. The free variables of r are ibit, obit, ival,
and oval, so r specifies what sequences of values these four variables can assume. All
the preceding definitions just represent one possible way of structuring the definition of
frO; there are infinitely many ways to write formulas that are equivalent to eQ and are
therefore equivalent specifications.

TLA is an untyped logic; a variable may assume any value. Type correctness is
expressed by the formula DT, where T is the predicate asserting that all relevant variables
have values of the expected "types". For the internal queue specification, the type-
correctness predicate is

Tq ~ A ibit, obit, last E {true, false) (1)
h ival, oval E Msg
A q E Msg*

where Msg* is the set of finite sequences of messages. Type correctness of HQ is asserted
by the formula HQ ~ OTQ, which is easily proved [11]. Type correctness of r follows
from IIQ =~ DTQ by the usual rules for reasoning about quantifiers.

Formulas HQ and eQ are safety properties, meaning that they are satisfied by an
infinite behavior iff they are satisfied by every finite initial portion of the behavior. Safety
properties allow behaviors in which a system performs properly for a while and then the
values of all variables are frozen, never to change again. In asynchronous systems, such
undesirable behaviors are ruled out by adding fairness properties. We could strengthen
our lossy-queue specification by conjoining the weak fairness property WF.(DcQ) and
the strong fairness property SF~(EnQ) to IIQ, obtaining

3 q, last: (InitQ A O[AfQ]~ A WF~(DeQ) A SF~(EnQ)) (2)

Property WF~(DeQ) asserts that if action DeQ is enabled forever, then infinitely many
DeQ steps must occur. This property implies that every message reaching the queue is
eventually output. Property SF,(EnQ) asserts that if action EnQ is enabled infinitely
often, then infinitely many EnQ steps must occur. It implies that if infinitely many inputs
are sent, then the queue must receive infinitely many of them. The formula (2) implies
the liveness property [4] that an infinite number of inputs produces an infinite number
of outputs. This formula also implies the same safety properties as ~Q. A formula such
as (2), which is the conjunction of an initial predicate, a term of the form o[.41i , and a
fairness property, is said to be in canonical form.

2 . 2 T h e S e m a n t i c s o f T L A

We begin with some definitions. We assume a set of constant values, and we let ~F~
denote the semantic meaning of a formula F.

s t a t e A mapping from variables to values. We let s.x denote the value that state s
assigns to variable x.

s t a te funct ion An expression formed from variables, constants, and operators. The
meaning of a state function is a mapping from states to values. For example~ x + 1
is a state function such that Ix + 1](s) equals s.x + 1, for any state ~.

p red ica te A boolean-valued state function~ such as x > y + 1.

t rans i t ion funct ion An expression formed from variables, primed variables, constants,
and operators. The meaning of a transition function is a mapping from pairs of
states to values. For example, x + y'+ 1 is a transition function and Ix + y '+ l~(s, t)
equals the value s.x + t.y + 1, for any pair of states s,t .

ac t ion A boolean-valued transition function, such as x > (y~ + 1).

s tep A pair of states s, t. It is called an A step iff [A](s, t) equals true, for an action A.
It is called a stuttering step iff s = t.

f~ The transition function obtained from the state function f by priming all the free
variables of f , so [[fr](s, t) = [f](t) for any states s and t.

[,4]f The action ,4 V (f ' = f) , for any action A and state function f.

(A)f The action A A (f ' ~ f) , for any action A and state fnnction f .

Enabled A For any action ,4, the predicate such that [Enabled ~4](s) equals 3t : [A](s, t),
for any state s.

Informally, we often confuse a formula and its meaning. For example we say that a
predicate P is true in state s instead of [P~(s) = true.

An RTLA (raw TLA) formula is an expression built from actions, classical operators
(boolean operators and quantification over rigid variables), and the unary temporal op-
erator D. The meaning of an RTLA formula is a boolean-valued function on behaviors,
where a behavior is an infinite sequence of states. The meaning of the operator [] is

defined by
~ �9 ~ Vn_>O:iF~(s~,s~+l,s~+2,. . .)

Intuitively, � 9 asserts that F is ~'always" true. The meaning of an action as an RTLA
formula is defined in terms of its meaning as an action by letting [,4](s0, sl, s2,. . .) equal
~A](so, sl). A predicate P is an action; P is true for a behavior iff it is true for the first
state of the behavior, and � 9 is true iff P is true in all states. For any action A and
state function f , the formula [][A]] is true for a behavior iff each step is an A step or else
leaves f unchanged. The classical operators have their usual meanings.

A TLA formula is one that can be constructed from predicates and formulas [][A]/
using classical operators~ •, and existential quantification over flexible variables. The

semantics of actions, classical operators, and c3 are defined as before. The approximate
meaning of quantification over a flexible variable is that 3x : F is true for a behavior iff
there is some sequence of values that can be assigned to x that makes F true. The precise
definition is in [11]. As usual, we write 3 x l , . . . , xn : F instead of 3 xl : . . . , 3 x~ : F.

A property is a set of behaviors that is invariant under stuttering, meaning that it
contains a behavior a iff it contains every behavior obtained from ~r by adding and/or
removing stuttering steps. The set of all behaviors satisfying a TLA formula is a property,
which we often identify with the formula.

For any TLA formula F , action A, and state function f :

<>F ~ ~ n--,F
WFf(.4) ~ nOw(Enabled (.4)/) V DO(A)]
SFs(.4) ~- OD~(Enabled (A)S) V nO(`4)s

These are TLA formulas, since 0(`4) /equals -~[]['~.4]S.

2.3 Safety and Fairness

A finite behavior is a finite sequence of states. We identify the finite behavior So, . . . , sn
with the behavior So,. . . ,sn,sn, s~, A property F is a safety property [4] iff the
following condition holds: F contains a behavior iff it contains every finite prefix of the
behavior. Intuitively, a safety property asserts that something "bad" does not happen.
Predicates and formulas of the form D[`4]] are safety properties.

Safety properties form closed sets for a topology on the set of all behaviors. Hence, if
two TLA formulas F and G are safety properties, then F A G is also a safety property.
The closure C(F) of a property F is the smallest safety property containing F. It can be
shown that C(F) is expressible in TLA, for any TLA formula F.

If II is a safety property and L an arbitrary property, then the pair (H, L) is machine
closed iff every finite behavior satisfying H can be extended to an infinite behavior satis-
fying II A L. If H is the set of behaviors allowed by the initial condition and next-state
relation of a program, then machine closure of (II, L) corresponds to the intuitive concept
that L is a fairness property of the program. The canonical form for a TLA formula is

3x : (Init h o[Nqv h L) (3)

where (Init A D[Af]v, L) is machine closed and x is a tuple of variables called the internal
variables of the formula. The state function v will usually be the tuple of all variables
appearing free in Init, N', and L (including the variables of x). A behavior satisfies (3)
iff there is some way of choosing values for x such that (a) Init is true in the initial state,
(b) every step is either an N" step or leaves all the variables in v unchanged, and (c) the
entire behavior satisfies L.

An action `4 is said to be a subaction of a safety property II iff for every finite behavior
So, . . . , s~ in I] with Enabled `4 true in state ~n, there exists a state s~+l such that (s~, s~+l)
is an `4 step and s o , . . . , S=+x is in II. By this definition, A is a subaction of Init A [][A{]v
i f f I

Init A n[A~v ~ n(Enabled .4 ~ Enabled (.4 A [A/qv))

1We let =r have lower precedence than the other boolean operators.

Two actions Jt and /3 are disjoint for a safety property II iff no behavior satisfying H
contains an A A/3 step. By this definition, A and 13 are disjoint for Init A [][Af]v iff

Init A O[Af]v ~ U-,Enabled (A A B A [Af].)

The following result shows that the conjunction of WF and SF formulas is a fairness
property.

P r o p o s i t i o n 1 If[[is a safety property and L is the conjunction of a finite or countabIy
infinite number of formulas of the form WFw(.A) and/or SF~,(.A) such that each (fl.}~ is
a subaction of H, then (H, L) is machine closed.

In practice, each w will usually be a tuple of variables changed by the corresponding
action .4, so (~4}~ will equal A. 2 In the informal exposition, we often omit the subscript
and talk about A when we really mean (A}~.

Machine closure for more general classes of properties can be proved with the following
two propositions. To apply the first, one must prove that 3x : H is a safety property. By
Proposition 2 of [2, page 265], it suffices to prove that H has finite internal nondeterminism
(fin), with x as its internal state component. Here, fin means roughly that there are only
a finite number of sequences of values for x that can make a finite behavior satisfy H.

P r o p o s i t i o n 2 If (l-I, L) is machine closed, x is a tupte of variables that do not occur
free in L, and 3x : II is a safety property, then ((Sx : H), L) is machine closed.

P r o p o s i t i o n 3 If (II, L1) is machine closed and II A L I implies L2, then (H, L2) is
machine closed.

2.4 History-Determined Variables
A history-determined variable is one whose current value can be inferred from the current
and past values of other variables. For the precise definition, let

Hist (h , f ,g ,v) ~ (h = f) A [::][(h' = 9) A (v ' # V)](h,,) (4)

where f and v are state functions and g is a transition function. A variable h is a history-
determined variable for a formula II iff H implies Hist(h, f ,g , v), for some f , g, and v such
that h does not occur free in f and v, and h ~ does not occur free in g.

If f and v do not depend on h and g does not depend on h r, then 3h : Hist(h, f , g, v)
is identically t r u e . Therefore, if h does not occur free in formula (I), then 3h : (~ A
Hist(h, f , g, v)) is equivalent to ~. In other words, conjoining Hist(h, f , g, v) to �9 does
not change the behavior of its variables, so it makes h a "dummy variable" for (~--in fact,
it is a special kind of history variable [2, page 270].

As an example, we add to the lossy queue's specification CQ a history variable hin
that records the sequence of values transmitted on the input wire. Let

H, . ~ A h i n = (()) (5)
A D[A hin' = hin o ((ival')}

A (ival, ibit)' r (ival, ibit)](~i.,i~1,ibl,)

2More precisely, T A .4 will imply w ~ r w, where T is the type-correctness invari~nt.

His equals Hist(hin, (<)>, hin o (< ival'>), (ival, ibit)), so bin is a history-determined variable
for ~Q A Hi~, and 3 bin : (r A Hi~) equals ~Q.

If h is a history-determined variable for a property H, then FI is fin, with h as its
internal state component. Hence, if II is a safety property, then 3h : II is also a safety
property.

3 R e a l - T i m e Closed S y s t e m s

3.1 T i m e and T im e r s

In real-time TLA specifications, real t ime is represented by the variable now. Although
it has a special interpretation, now is just an ordinary variable of the logic. The value of
now is always a real number, and it never decreases--conditions expressed by the TLA
formula

R T ~= (now E R) h [][now' e (now,cc)]~o,~

where R is the set of real numbers and (r, oc) is {t e R : t > r}.
It is convenient to make time-advancing steps distinct from ordinary program steps.

This is done by strengthening the formula R T to

RTv ~ (now �9 R) A z][(now' � 9 oo)) A (v' = v)]~o~

This property differs from R T only in asserting that v does not change when now advances.
Thus, R T , is equivalent to R T h [][now t = now],, and

Init A n[A/']v A R T , = I n i t A D[A/" A (now' = now)], A R T

Real-time constraints are imposed by using timers to restrict the increase of now. A
timer for H is a state function t such that II implies o (t E R U {=kec}). Timer t is used
as an upper-bound t imer by conjoining the formula

MaxTime(t) ~ (now <_ t) A D[now' < t'],o~

to a specification. This formula asserts that now is never advanced past t. Timer t is
used as a lower-bound t imer for an action J[by conjoining the formula

MinTime(t , A, v) ~= [][A =:~ (t < now)],

to a specification. This formula asserts that an (A/ , step cannot occur when now is less
than t. 3

A common type of timing constraint asserts that an fl. step must occur within
seconds of when the action .A becomes enabled, for some constant 5. After an .A step,
the next .A step must occur within 5 seconds of when action .A is re-enabled. There are
at least two reasonable interpretations of this requirement.

3Unlike the usual timers in computer systems that represent an increment of time, our timers represent
an absolute time. To allow the type of strict time bound that would be expressed by replacing < with <
in the definition of MazTime or MinTime, we could introduce, as additional possible values for timers,
the set of all "infinitesimally shifted" real numbers r - , where t < r- iff t < r, for any reals t and r.

10

The first interpretation is that the M step must occur if .A has been continuously
enabled for ~ seconds. This is expressed by MaxTime(t) when t is a state function
satisfying

VTimer(t,A,~,v) ~ A t = if Enabled (A}~ t h e n now +
else 0r

A D[A t ' = if (Enabled (,A),~)'
t h e n i f (A}~ V ".Enabled (A}~

Such a t is called a volatile 6-timer.

else
A v' r v

t h e n now +
else t

OO

Another interpretation of the timing requirement is that an A step must occur if .A
has been enabled for a total of g seconds, though not necessarily continuously enabled.
This is expressed by MaxTime(t) when t satisfies

PTimer(t,A,g,v) a_ A t = n o w + 6
A D[A t ' = if Enabled (A}~

t h e n if (A)~ t h e n now +
else t

else t + (now' - now)
A (v, now)' # (,, mow)

Such a t is called a persistent g-timer. We can use &timers as lower-bound timers as well
as upper-bound timers.

Observe that VTimer(t, A, ~, v) has the form Hist(t, f, g, v) and PTimer(t, A, ~, v) has
the form Hist(t, f ,g, (v, now)), where Hist is defined by (4). Thus, if formula II implies
that a variable t satisfies either of these formulas, then t is a history-determined variable

for II.
As an example of the use of timers, we make the lossy queue of Section 2.1 nonlossy

by adding the following timing constraints.

�9 Values must be put on a wire at most once every ~,,d seconds. There are two
condit ions--one on the input wire and one on the output wire. They are expressed
by using ~s,d-timers tx, p and tD,Q, for the actions Inp and DeQ, as lower-bound
timers.

�9 A value must be added to the queue at most A~c~ seconds after it appears on the
input wire. This is expressed by using a A,c,-timer TEnQ, for the enqueue action,
as an upper-bound timer.

�9 A value must be sent on the output wire within A,,d seconds of when it reaches the
head of the queue. This is expressed by using a ~,,,d-timer TD,Q, for the dequeue
action, as an upper-bound timer.

The t imed queue will be nonlossy if Arc, < 6,,d. In this case, we expect the Inp, EnQ, and
DeQ actions to remain enabled until they are "executed", so it doesn't mat te r whether

]1

we use volatile or persistent timers. We use volatile timers because they are a little easier
to reason about.

The timed version H~ of the queue's internal specification IIQ is obtained by conjoining
the timing constraints to IIQ:

n 0 An ART (6)
^ VTimer(t~p, Inp,,5,~d, v) /~ MinTime(t~p, Inp, v)
^ VTime (to Q, OeQ, ^ MinTi,ne(t Q, D Q,
^ VTimer(TE , E Q, v) ^ M Time(T Q)
A VTimer(T~Q, DeQ, A,~d, v) A MaxTime(TDr

The external specification r of the timed queue is obtained by existentially quantifying
first the timers and then the variables q and last.

Formula H~ of (6) is not in the canonical form for a TLA formula. A straightforward
calculation, using the type-correctness invariant (1) and the equivalence of ([2F)/~ ([]G)
and [3(F A G), converts the expression (6) for II~ to the canonical form given in Figure 4. 4
Observe how each subaction A of the original formula has a corresponding timed version
A t. Action A t is obtained by conjoining A with the appropriate relations between the old
and new values of the timers. If A has a lower-bound timer, then .A * also has a conjunct
asserting that it is not enabled when now is less than this timer. (The lower-bound timer
ti,~ for Inp does not affect the enabling of other subactions because Inp is disjoint from
all other subactions; a similar remark applies to the lower-bound timer tD~Q.) There is
also a new action, QTick, that advances now.

Formula II~ is the TLA specification of a program that satisfies each maximum-delay
constraint by preventing now from advancing before the constraint has been satisfied.
Thus, the program "implements" timing constraints by stopping time, an apparent ab-
surdity. However, the absurdity results from thinking of a TLA formula, or the abstract
program that it represents, as a prescription of how something is accomplished. A TLA
formula is really a description of what is supposed to happen. Formula II~ says only
that an action occurs before now reaches a certain value. It is just our familiarity with
ordinary programs that makes us jump to the conclusion that now is being changed by
the system.

3 .2 R e a s o n i n g A b o u t T i m e

Formula H~ is a safety property; it is satisfied by abehavior in which no variables change
values. In particular, it allows behaviors in which time stops. We can rule out such
behaviors by conjoining to H~ the liveness property

NZ ~ Vt e R : O(now > t)

which asserts that now gets arbitrarily large. However, when reasoning only about real-
time properties, this is not necessary. For example, suppose we want to show that our
timed queue satisfies a real-time property expressed by formula g2 t, which is also a safety

4Further simplification of this formulais possible, but it requires an invariant. In particular, the fourth
conjunct of DeQ ~ can be replaced by T~,Q = TE, q.

12

initto = A InitQ
A now E R
A tl~p = now + 6sng
A tD,o = TE.O = TD,O = oo

inpt = A lnp
h tt~p < now
h t~.p = now' + 5..d
h Tk. Q = if last ~ ~ ibit ~ t h e n now ~ + Arc~ else oo
^ (to,e,To,Q)' = if q = (()) t h e n (~ , ~) e lse (to,Q,To,Q)
A n O W t .~- n O W

EnQt = A EnQ
h T~.Q = oo
A (tooo, To,o)' = if q = (()) t h e n (now + 5,~d, now + A.~d)

else (to,Q, TD,Q)
A (tz~p, now)' = (tz~p, now)

DeQt a = A DeQ
A toeq < now
A (tD.Q,TD.Q) ~= i f q ' = (()) t h e n (~ , o o)

else (now + 6.~, now + A.~d)
A T~Q = if last ~ = ibit' t h e n ~ else TEnQ
^ (t~.~, ~o~)' = (tr . , ~o~)

QTick ~ ^ now' E (now, min(TD~Q, TE.Q)]
T A (v, tI~p, to,Q, TO,Q, E.Q) = (v, t1~p, to,o, To,O, TE~Q)

vt a (v, now, tI~p,toeQ,ToeQ,TEnQ)

IP 0 ~- A Init~
A D[Inp t V EnQ t V DeQ t V QTick]~

Figure 4: The canonical form for II~, where (r, s] denotes the set of reals u such that
r < u < s .

]3

property. If II~ implies qlt, then II~ A NZ implies q~t A NZ. Conversely, we don't expect
conjoining a liveness property to add safety properties; if II~ A NZ implies qd t, then II~
by itself should imply qdt--a point discussed in Section 3.3 below. Hence, there is no need
to introduce the liveness property NZ.

A safety property we might want to prove for the timed queue is that it does not lose
any inputs. To express this property, let his be the history variable, determined by Hi~
of (5), that records the sequence of input values; and let hout and Ho~ be the analogous
history variable and property for the outputs. The assertion that the timed queue loses
no inputs is expressed by

ntQ A Hi. A Ho,, ~ O(hout -4 hinp)

where a _ /3 iff a is an initial prefix of ft. This is a standard invariance property. The
usual method for proving such properties leads to the following invariant

^ Tq A sow e R) A (Ts.Q, tD, , TD.Q e R u {oo})
A now <_ min(TE,#, TDr

A (last=ibit) ~ (TE.Q=C~) A (h inp=houtoq)

A (last # ibit) ~ (TE=Q < tl.~) A (hinp = hout o q o ((ival)))
^ (q = (())) =_ =

and to the necessary assumption A,~ < 58~d. (Recall that TQ is the type-correctness
predicate (1) for IIQ.)

Property NZ is needed to prove that real-time properties imply liveness properties.
The desired liveness property for the timed queue is that the sequence of input messages
up to any point eventually appears as the sequence of output messages. It is expressed in
TLA by

II~Q A NZ =~ Va : o((hinp = cr) ~ O(hout = a))

This formula is proved by first showing

IItQ A NZ ~ WF,(EnQ) A WF,(DeQ) (7)

and then using a standard TLA liveness argument to prove

IItQ A WF,(EnQ) A WF,(DeQ) ~ Va : O((hinp = ~) ~ <)(hour = a))

The proof that II~ A NZ implies WF,(EnQ) is by contradiction. Assume EnQ is forever
enabled but never occurs. An invariance argument then shows that H~ implies that TE,r
forever equals its current value, preventing now from advancing past that value; and this
contradicts NZ. The proof that II~ A NZ implies WF~(DeQ) is similar.

3 .3 T h e N o n Z e n o C o n d i t i o n

The timed queue specification II~ asserts that a DeQ action must occur between 58~d
and A,~d seconds of when it becomes enabled. What if A,,a < 5,.~? If an input occurs,
it eventually is put in the queue, enabling DeQ. At that point, the value of now can
never become more than A , ~ greater than its current value, so the program eventually

14

reaches a "time-blocked state". In a time-blocked state, only the QTick action can be
enabled, and it cannot advance now past some fixed time. In other words, eventually a
state is reached in which every variable other than now remains the same, and now either
remains the same or keeps advancing closer and closer to some upper bound.

We can at tempt to correct such pathological specifications by requiring that now
increase without bound. This is easily done by conjoining the liveness property NZ to
the safety property [i~, but that doesn't accomplish anything. Since II~ A NZ rules out
behaviors in which now is bounded, it allows only behaviors in which there is no input, if
As~d < 5,~d. Such a specification is no better than the original specification II~. The fact
that the safety property allows the possibility of reaching a time-blocked state indicates
an error in the specification. One does not add timing constraints on output actions with
the intention of forbidding input.

We call a safety property Zeno if it allows the system to reach a state from which
now must remain bounded. More precisely, a safety property [i is nonZeno iff every finite
behavior satisfying II can be completed to an infinite behavior satisfying 1I in which now
increases without bound. In other words, II is nonZeno iff the pair (l-I, NZ) is machine
closed. NonZenoness means that the liveness property NZ cannot help in proving safety
properties, s The following result is used to prove that a real-time specification written in
terms of 5-timers is nonZeno.

T h e o r e m 1 Let

I f 1.

2.

�9 1I be a safety property.

�9 t~ and Tj be timers for II and let A~ be an action, for all i E I, j E J, and k E IUJ ,
where I and J are sets, with J finite.

�9 [it ~- II A R T , A V i E I : M i n T i m e (t i , A~,v) A V j E J : M a x T i m e (T j)

(A~), and (Aj}~ are disjoint for [i, for all i E I and j E J with i ~ j .

(a) now does not occur free in v.

(b) (now' = r) A (v' = v) is a subaction of H, for all r E R .

3. For all j E J:

(a) A (now' = ow) is a subaetio of [i.

(b) II =~ VTimer(Tj, Aj , Aj , v) or
II ~ PTimer (T j ,A j , Aj, v), where Aj E (0, ~) .

(c) [it ::~ D(Enabled (Aj) , = Enabled ((Aj)~ A (now'= now)))

4. [i~ ~ O(tk <_Tk), forall k E I M J .

then (II t, NZ) is machine closed

~An arbitrary property II is nonZeno iff (C(II), II A NZ) is machine closed. We restrict our attention
to real-time constraints for safety specifications.

15

We can apply the theorem to prove that the specification II~ is nonZeno if **.d _< As,d
by substituting

HQ A VTimer(Q~p, Inp, ~,~d, v) A VTimcr(tDeQ, DeQ, 6,,d, v)
A VTimer(T~,Q, EnQ, A~c~, v) A VTimer(TD~Q, neQ, A,,d, v)

for H, so 1-I t equals H~. The hypotheses of the theorem are checked as follows.

1. The actions (Inp),, (DeQ)~, and (EnQ)~ are pairwise disjoint, so they are pairwise
disjoint for II~. (Two actions are said to be disjoint if their conjunction equals
false.)

. (a)
(b)

Trivially satisfied.

Intuitively, this asserts that II allows an arbitrary change to now when v re-
mains unchanged, which holds because neither HQ nor the VTimer formu-
las constrain now. Formally, the hypothesis asserts that Enabled ((now' =
r) A (v' = v)) implies Enabled (.A/[A (now' ---- r) A (v' = v)), for any r e R,
where AJ is the conjunction of [AfQ], and the VTimer actions. The definitions
of AfQ and VTimer imply that now' does not occur in .~4, from which it follows
that both Enabled predicates equal true. (The hypothesis would also hold if
persistent instead of volatile A-timers had been used, but a rigorous proof is a
bit more complicated.)

. (a) Actions (Inp)~, (DeQ)v, and (EnQ)v imply AfQ, so they are subactions of IIQ.
Since these three actions have no primed variables in common with the VTimer
formulas, they are subactions of II. The hypothesis then follows because now'
does not occur in the VTimer formulas. (Again, the hypothesis is true for
persistent timers, but the proof is more involved.)

(b) Immediate from the definition of II.

(c) Holds because now' does not occur in the actions Inp, DeQ, and EnQ.

4. Follows from the general result that g < A implies

RT~ A VTimer(t,.4, ~, v) A VTimer(T,,4, A, v) ~ [2(t < T)

which is proved by a simple invariance argument. (The analogous result holds for
persistent timers.)

Theorem 1 can be generalized in two ways. First, J can be infinite if 1-i t implies that
only a finite number of actions ~4j with j E J are enabled before time r, for any r E R .
For example, by letting .4j be the action that sends message number j , we can apply
the theorem to a program that sends messages number 1 through n at t ime n, for every
integer n. This program is nonZeno even though the number of actions per second that
it performs is unbounded. Second, we can extend the theorem to the more general class
of timers obtained by letting t h e / k j be arbitrary real-valued state functions, rather than
just constants-- i f all the Aj are bounded from below by a positive constant A.

16

Theorem 1 is proved using Propositions 1 and 3 and ordinary TLA reasoning. By
these propositions, it suffices to display a formula L that is the conjunction of fairness
conditions on subactions of l,i * such that II * A L implies NZ. A suitable L is defined by

,45 ~ (now'=now) A (if j E I then AjA(now>__tj) else Aj)

JE ~= {J E J : Enabled (A)j}

T ~- min(now + minAj, minTj)
jEJ jEJE

B ~ ((now = T) A A~.) V ((now 7~ T) A (now' = T) A (v' = v))

L

We omit the proof.
Most nonaxiomatic approaches, including both real-time process algebras and more

traditional programming languages with timing constraints, essentially use S-timers for
actions. Hence, our theorem implies that they automatically yield nonZeno specifications.

Theorem 1 does not cover all situations of interest. For example, one can require of
our timed queue that the first value appear on the output line within e seconds of when it
is placed on the input line. This effectively places an upper bound on the sum of the times
needed for performing the EnQ and DeQ actions; it cannot be expressed with ~-timers
on individual actions. For these general timing constraints, nonZenoness must be proved
for the individual specification. The method of proof is the same as we used to prove
Theorem 1: we add to the timed program II ~ a liveness property L that is the conjunction
of any fairness properties we like, including fairness of the action that advances now, and
prove that l'I t A L implies NZ. NonZenoness then follows from Propositions 1 and 3.

There is another possible approach to proving nonZenoness. One can make granular-
ity assumptions--lower bounds both on the amount by which now is incremented and on
the minimum delay for each action. Under these assumptions, nonZenoness is equivalent
to the absence of deadlock, which can be proved by existing methods. Granularity as-
sumptions are probably adequate--Mter all, what harm can come from pretending that
nothing happens in less than 10 -l~176 nanoseconds? However, they can be unnatural and
cumbersome. For example, distributed algorithms often assume that only message delays
are significant, so the time required for local actions is ignored. The specification of such
an algorithm should place no lower bound on the time required for a local action, but
that would violate any granularity a.ssumptions. We believe that any proof of deadlock
freedom based on granularity can be translated into a proof of nonZenoness using the
method outlined above.

So far, we have been discussing nonZenoness of the internal specification, where both
the timers and the system's internal variables are visible. Timers are defined by adding
history-determined variables, so existentially quantifying over them preserves nonZenoness
by Proposition 2. We expect most specifications to be fin [2, page 263], so nonZenoness
will also be preserved by existentially quantifying over the system's internal variables.
This is the case for the timed queue.

3.4 A n E x a m p l e : F i s c h e r ' s P r o t o c o l

As another example of real-time closed systems, we treat a simplified version of a real-time
mutual exclusion protocol proposed by Michael Fischer [10, page 2]. The example was

17

Init F ~-

Go(i, u, v)

V i E Proc : pc[i] = "a"

~- ^ pc[i] = u
^ pc'[i] = v
h Vj E Proc: (j # i) ~ (pc'~] = pc[j])

~t~ ~- Go(i , "~", "b") ^ (~ = ~' = o)

Bi ~ Go(i,"b","c") h (x ' = i)

c , ~ a o (i , "e' , "c~") ^ (~ = x' = i)

A/'F g 3 i E P r o c : (A i V B i V G)

[IF a_ InitF A I"l[.]~fF](x,pc)

1-I~ ~- A HE A RT(~,p~)
A Vi E Proc: A VTimer(Tb[i], Bi, Ab, (x,pc))

A MaxTime(Tb[i])
A V i e Proc: A VTimer(t~[i], Go(i, "c", "cs"), 6c, (x,pc))

A MinTirae(t~[i], Ci, (x,pc))

= 3Tb, t r

Figure 5: The TLA specification of Fischer's real-time mutual exclusion protocol.

suggested by Fred Schneider [14]. The protocol consists of each process i executing the
following code, where angle brackets denote instantaneous atomic actionsi

a: a w a i t (x = 0);
b: (x := i);
c: a w a i t (x = i);

cs: critical section

There is a maximum delay As between the execution of the test in statement a and the
assignment in statement b, and a minimum delay ~ between the assignment in statement
b and the test in statement c. The problem is to prove that, with suitable conditions on
Ab and 6~, this protocol guarantees mutual exclusion (at most one process can enter its
critical section).

As written, Fischer's protocol permits only one process to enter its critical section
one time. The protocol can be converted to an actual mutual exclusion algorithm. The
correctness proof of the protocol is easily extended to a proof of such an algorithm.

The TLA specification of the protocol is given in Figure 5. The formula liE describing
the untimed version is standard TLA. We assume a finite set Proc of processes. Variable
x represents the program variable x, and variable pc represents the control state. The
value of pc will be an array indexed by Proc, where pc[i] equals one of the strings "a",
"b", "c", "cs" when control in process i is at the corresponding statement. The initial
predicate Init.F asserts that pc[i] equals "a" for each process i, so the processes start with
control at statement a. No assumption on the initial value of x is needed to prove mutual
exclusion.

Next come the definitions of the three actions corresponding to program statements

18

a, b, and c. They are defined using the formula Go, where Go(i, u, v) asserts that control
in process i changes from u to v, while control remains unchanged in the other processes.
Action jl~ represents the execution of statement a by process i; actions Bi and Ci have
the analogous interpretation. In this simple protocol, a process stops when it gets to its
critical section, so there are no other actions. The program's next-state action AfF is the
disjunction of all these actions. Formula HE asserts that all processes start at statement
a, and every step consists of executing the next statement of some process.

Action Bi is enabled by the execution of action gi~. Therefore, the maximum delay
of Ab between the execution of statements a and b can be expressed by an upper-bound
constraint on a volatile Ab-timer for action B~. The variable Tb is an array of such timers,
where Tb[i] is the timer for action B~.

The constant ~c is the minimum delay between when control reaches statement c and
when that statement is executed. Therefore, we need an array t~ of lower-bound timers
for the actions C~. The delay is measured from the time control reaches statement c,
so we want tc[i] to be a ~c-timer on an action that becomes enabled when process i
reaches statement c and is not executed until C~ is. A suitable choice for this action is
Go(i, "c', "cs").

Adding these timers and timing constraints to the untimed formula 1-IF yields formula
II~ of Figure 5, the TLA specification of the real-time protocol with the timers visible.
The final specification, ~ , is obtained by quantifying over the timer variables Tb and
t~. Since Bj is a subaction of HE and pc[i] = "c" is disjoint from Bj, for all i and j in
Proc, Theorem 1 implies that II~ is nonZeno if Ab is positive. Proposition 2 can then be
applied to prove that q)~ is nonZeno.

Mutual exclusion asserts that two processes cannot be in their critical sections at the
same time. It is expressed by the predicate

Mutex ~ Vi , j E eroc: (pc[i] = pc[j] = "cs') =~ (i = j)

The property to be proved is

Assump h r ~ [3Mutex (8)

where Assump expresses the assumptions about the constants Proc, Ab, and 5c needed for
correctness. Since the timer variables do not occur in Mutex or Assump, (8) is equivalent
to

Assump A IItF ~ DMutex

The standard method for proving this kind of invariance property leads to the invariant

A now E R
A V i E Proc :

A Tb[i],t~[i] E R U {co}
A pc[i] e {"a", "b', "c", "cs"}
A (pc[i]="cs") ~ A x = i

A Vj E Proc: pc[?'] ~ "b"
A (pc[i] = "c") A �9 # o

A Vj E Proc: (pc[j] = "b') ~ (t~[i] > Tb[j])

A (pc[i] = "b") =~ (Tb[i] < now + 5~)
A now < Tb[i]

]9

and the assumption

Assump (0 q~ Proc) A (Ab,6c �9 R) A (Ab < 6c)

4 Open Systems

4 . 1 R e a l i z a b i l i t y

We begin by recasting the definitions of [1] into TLA. In the semantic model of [1], a
behavior is a sequence of alternating states and agents of the form

So 41, sz _2~ s2 a s . . . (9)

To translate from this semantic model into that of TLA, we identify agents with state
transitions. Agents are pairs of states, and a behavior So, s l , . . , in TLA's model is iden-
tified with the behavior (9) in which c~ equals (s~-z, s~). An action # is identified with
the set of all agents that are # steps. All the important definitions and results in [1] that
do not concern agent-abstractness continue to hold--except that some results require the
assumption that # does not allow stuttering steps. (An action # does not allow stuttering
steps iff # implies v' ~ v, where v is the tuple of all variables occurring in/~.)'

If # is an action and 1I a safety property, then II does not constrain # iff for any
finite behavior So, . . . , s~ and state sn+l, if So, . . . , s~ satisfies 1] and (s~, S~+l) is a # step,
then So,.. . ,s,~+l satisfies 1]. Property II constrains at most # iff II does not constrain
-~# and every behavior consisting of a single state satisfies II. Any safety property 1] can
be written as the conjunction of a property 111 that does not constrain/~ and a property
H2 that constrains at most #. If 1-I equals Init A E][A/~, then we can take 1]z to be
Init A D[2q" V #Iv and 1-[2 to be [][Af V ~#]~.

A predicate P is said to be a # invariant of a property II i f fno # step of a behavior
satisfying II can make P false. More precisely, P is a # invariant of II iff

II ~ n[# A P =~ P']p

For an action # and property II, the #-realizable part 7~u(II) is the set of behaviors that
can be achieved by an implementation of II that performs only # s teps- - the environment
being able to perform any "-,# step. The reader is referred to [1] for the precise definition. 6
(The concept of receptiveness is due to Dill [8].) Property 1] is said to be #-receptive iff
it equals 7~,(II). The realizable part 7~u(II) of any TLA formula II can be written as a
TLA formula.

The generalization of machine closure to open systems is machine realizabiIity. Intu-
itively, (II, L) is #-machine realizable iff an implementation that performs only # steps can
ensure that any finite behavior satisfying II is completed to an infinite behavior satisfying
II A L. Formally, (II, L) is defined to be #-machine realizable iff (H, L) is machine closed
and II A L is #-receptive. For # equal to true, machine realizability reduces to machine
closure. Corresponding to Propositions 1, 2 and 3 are:

eT~u(II) was not defined in [1] if # equals true or false. The appropriate definitions are 7~true(II) ~ II
and T~false(II) -= false.

20

P r o p o s i t i o n 4 If II is a safety property that constrains at most #, and L is the con-
junction of a finite or countably infinite number of formulas of the form WFw(.A) and/or
SF~o(.A), where (a) each (.A)~o is a subaction of II and (b) Enabled (A)w is a "~# invariant
of II for each A appearing in a formula SF~(A), then (H, L) is #-machine realizable.

P r o p o s i t i o n 5 ([1], P r o p o s i t i o n 10) If # does not allow stuttering steps, x is a tuple
of variables that do not occur free in # or L, and

(a) 3x : Init holds.

(b) (D[H V 1nit ^ V (x' = L) is #-machine realizable,

(c) 3x : (Init A =[# V (x' = x)]~ A O[A/" V -~#],) is a safety property.

then (3x : (Init A D[# V (x' = x)]~ A C[.N" V --'#]v), L) is ,-machine realizable.

P r o p o s i t i o n 6 If (I-I, L1) is #-machine realizable and H A Lx implies L~, then (II, L2) is
#-machine realizable.

For properties ~ and H, we define �9 --~ II to be the property satisfied by a behavior
a iff cr satisfies ~ =~ H and every finite prefix of a satisfies C(r ~ C(H). 7 If ~ and H
are safety properties, then ~ --~ H is the safety property asserting that II remains true
at least as long as r does. The property ~) -~ II is sometimes written II while r it is
expressible in TLA~ for any TLA formulas ~ and II.

The operator -~ is the implication operator for an intuitionistic logic of safety prop-
erties [3]. Most valid propositional formulas without negation remain valid when =~ is
replaced by --% if all the formulas that appear on the left of a --~ are safety properties.
For example, the following formulas are valid if r and II are safety properties.

-~ (II -~ ~) =- (~ A H) -~ '~ (10)

(V -~ ~) ^ (~ -~ m) = (r V H) -~

Valid formulas can also be obtained by certain partial replacements of =~ by -~ in valid
formulas. For example, the following equivalence is valid if P is a safe~y property.

(E =~ (P -~ M,)) =~ (E =~ (P --~ Ms)) (11)

- (EAPAM) (EAPAM)

A precise relation between -~ and ~ is established by:

P r o p o s i t i o n 7 ([1], P r o p o s i t i o n 8) I f # is an action that does not permit stuttering
steps, r and II are safety properties, ~ does not constrain #~ and II constrains at most
#, then Tt~(r =~ II) equals �9 -~ H.

Substituting true for �9 in Proposition 7 proves that a safety property is #-receptive if it
constrains at most #.

The following variant of Proposition 6 is useful. Note that if (true, L) is #-machine
realizable, then L is a liveness property.

7This definition is slightly different from the one in [1]; but the two definitions agree when r and II
are safety properties.

21

P r o p o s i t i o n 8 I f # is an action that does not allow stuttering steps, r and II are safety
properties, (~ -~ H, L~) and (true, L2) are It-machine realizable, and r AII A L1 implies
L2, then (r --~ II, L2) is It-machine realizable.

By using Propositions 4 and 8 instead of Propositions 1 and 3, the proof of Theorem 1
generalizes to the proof of the following result. If H has the form Init A o[Af]~, we write
II0 to denote Init and Tin to denote DIAl]..

T h e o r e m 2 With the notation and hypotheses of Theorem 1, if E and M are safety
properties such that 1-I = E A M, # is an action that does not allow stuttering steps, and

5. M constrains at most It.

6. (a) (Ak)~ ~ It, for all k E I U J.

(bJ (now' # now) It

then (E t --r M t, NZ) is #-machine realizable, where

E ~ ~= E A (Rrv)o ^ V j �9 J : MaxTime(TAo

M t ~= M A (RT,)o A V i E I : M i n T i m e (t i , A , , v) A V j E J : M a x T i m e (T j) D

Observe how the initial predicates of RT, and MaxTime(Tj) appear in the environment
assumption E t. (Formula MinTime(ti, Ai, v) has no initial predicate.) If P is a predicate,
then P -~ II is equivalent to P =v II, and (P AII, L) is machine closed if (P =~ H, L)
is. Since machine realizability implies machine closure, Theorem 1 can be obtained from
Theorem 2 by letting E and It equal true and M equal II.

4.2 Open Systems as Implications

An open system specification is one in which the system guarantees a property M only if
the environment satisfies an assumption E. The set of allowed behaviors is described by
the formula E ~ M. The specification also includes an action # that defines which steps
are under the control of (or blamed on) the system. For a reasonable specification, C(E)
must not constrain #, and C(M) must constrain at most #.s The following result shows
that, under reasonable hypotheses, E can be taken to be a safety property.

P ro p os i t i on 9 ([1], T h e o r e m 1) If I is a predicate, Es and Ms are safety properties,
and (Es, Es A EL) is "~#-machine realizable, then

T~u(I A Es A EL ~ Ms A ML) = Tiu(I A Es ~ Ms A (EL ~ ML))

An open system specification can then be written as E =~ M, with

E g Init IX 3e:(Ini t~ A D [(i t h (e ' = e)) VAPE](.,.))

M ~ 3 m : (Initm ik D[(-~# A (m' = m)) V AFM](..,.) A (LE ~ LM))

SThe slight asymmetry in these conditions results from the arbitrary choice that initial conditions
appear in E and not in M.

22

where e and m denote the internal variables of the environment and module, which are
each disjoint from all variables appearing in the scope of the other's "3"; LE and LM are
conjunctions of suitable fairness properties; 3e : Init~ and 3m : Initm are identically true;
the system's next-state action A/'M implies #, and the environment's next-state action
AlE implies --#. Under these assumptions, it can be shown that C(E) does not constrain
#, and C(M) constrains at most #. It is easy to show that E A M, the TLA formula
describing the closed system formed by the open system and its environment, equals

3 e ,m: (In i t A InitE A InitM A [3[A/'E v.AfM](e) A (LE ::# LM)) (12)

Thus, E A M has precisely the form we expect for a closed system comprising two com-
ponents with next-state actions HE and HM.

Implementat~n means implication. A system with guarantee M implements a system
with guarantee M, under environment assumption E, iff E =~ M implies E =~ M. But
this is logically equivalent to E A M implying E A M. In other words, proving that one
open system implements another is equivalent to proving the implementation relation for
the corresponding closed systems. Hence, implementation for open systems reduces to
implementation for closed systems?

4.3 Composition
The distinguishing feature of open systems is that they can be composed. The proof that
the composition of two specifications implements a third specification is based on the
following result, which is a slight generalization of Theorem 2 of [1].

T h e o r e m 3 I f P, E, El, and E2 are safety properties, M1 and M2 are arbitrary proper-
ties, and #1 and #2 are actions such that

1. (a) E1 does not constrain gl, (b) E2 does not constrain #2, and (c) E does not
constrain #1 V #2,

2. C(M1) constrains at most #1, and C(M2) constrains at most #2,

3. #1 V #2 does not allow stuttering steps,

then the following proof rule is valid.

P A E A C(M1) A C(M2) ~ E1 h E2
7~,l(E1=~M1) A 7~,2(E2=~M2) =~ (E ~ (P - ~ M 1) A(P--~M~))

This theorem differs from Theorem 2 of [1] in two significant ways:

�9 The assumption #1 A#2 ---- O is missing, and the conclusion of the proof rule has been
weakened by removing the T~,lv~2. An examination of the proof of the theorem in
[1] reveals that the assumption is not needed for this weaker conclusion.

�9 The hypothesis has been weakened to include the conjunct P and the conclusion
weakened by adding the "P --v"s. The original theorem is obtained by letting P be
true. A simple modification to the argument in [1] proves the generalization.

9A similar argument shows that we can replace Lz ~ LM by LEA LM in (12) when proving that
E A M implements E A M.

23

5 R e a l - T i m e O p e n S y s t e m s

5.1 T h e P a r a d o x R e v i s i t e d

We now consider the paradoxical example of the introduction, illustrated in Figure 1. For
simplicity, let the possible output actions be the setting of-x and y to 0. The untimed
version of $1 then asserts that, if the environment does nothing but set y to 0, then the
system does nothing but set x to 0. This is expressed in TLA by letting

-]~x ~ (;T/ ~-" 0) A (Y/= Y) /21 ~'~ X' ~ x
My g (y'=0) ^ (~'=~)

and defining the untimed version of specification $1 to be

a[,,~ v .M~](.,~) ~ a[--,,., v M.](. ,~) (13)

To add timing constraints, we must first decide whether the system or the environment
should change now. Since the advancing of now is a mythical action that does not have to
be performed by any device, either decision is possible. Somewhat surprisingly, it turns
out to be more convenient to let the system advance time. Remembering that initial
conditions must appear in the environment assumption, we define

= .M~ A (now'= now) MT~ " MaxTime(T~)

A/'~ ~= .h4~ A (now'=now) MT~ & MaxTime(T~)

Tx ~ i f x # 0 t h e n 1 2 e l s e o o #1 ~ ul Y (now'~now)

T u -~ if y # 0 t h e n 1 2 else

El ~- (now = O) A (MT~)o A D[#I V Af~](~,~,,0~)

M1 ~ D[-~#I V A/'x](~,u,~o~) h (RT(~,y))n A (MT~)a

Adding timing constraints to (13) the same way we did for closed systems then leads to
the following timed version of specification $1.

E1A MTy ~ M1 (14)

However, this does not have the right form for an open system specification because
MT~ constrains the advance of now, so the environment assumption constrains #1- The
conjunct MTy must be moved from the environment assumption to the system guarantee.
This is easily done by rewriting (14) in the equivalent form

E1 ~ (MT~ ~ M1)

so the system guarantee becomes MT u ~ M1.1~ However, this guarantee is not a safety
property. To make it one, we must replace =~ by -% obtaining

$1 ~- E1 ~ (MT v ~ M1)

1~ MT~ appears on the left of an implication, there is no need to put its initial condition in
the environment assumption.

24

The specification $2 of the second component in Figure 1 is similar, where #2, E2, M2,
and $2 are obtained from/~1, El, M1, and $1 by substituting 2 for 1, x for y, and y for x.

We now compose specifications $1 and $2. The definitions and the observation that
P --~ Q implies P =~ Q yield

(MT~ V MT~) A E A (MT~ --~ M1) A (MT~ --~ Ms) =~ E1 A E2

where
E ~= (now = O) h (MT~)o A (MT~)o h D[/~I V ~2](~,~,,o~)

We can therefore apply Theorem 3, substituting MT~ V MT~ for P, MT~ --~ M1 for tl//1,
and MT~ --~ M2 for M2, to deduce

T~I(Sl) ^ n~(S~) ~ (E ~ ^ (MT, V MT,) -~ (MT~ ~ M~)
A (MT~ Y MT~) --~ (MT~ --~ Ms))

Using the implication-like properties of --~, this simplifies to

T~,,(S~) A T~,2($2) =~ (E =~ (MT~ --~ MI) A (MT, --~ Ms)) (15)

All one can conclude about the composition from (15) is: either z and y are both 0 when
now reaches 12, or neither of them is 0 when now reaches 12. There is no paradox.

As another example, we replace $2 by the specification E2 =~ M2. This specification,
which we call $3, asserts that the system sets y to 0 by noon, regardless of whether the
environment sets x to 0. The definitions imply

MT~ A E A (MT~ --~ M1) A M~ =~ E1A E2

and Theorem 3 yields

n, l (s~) ^ n~ (s~) ~ (E ~ (MT~ ~ M~) A M~)

Since Ms implies MT~, this simplifies to

The composition of S1 and $3 does guarantee that both x and y equal 0 by noon.

5.2 T iming Constraints in General

Our no-longer-paradoxical example suggests that the form of a real-time open system
specification should be

E =~ (P --~ M) (16)

where M describes the system's timing constraints and the advancing of now, and P de-
scribes the upper-bound timing constraints for the environment. Since the environment's
lower-bound timing constraints do not constrain the advance of now, they can remain in
E. By (11)~ proving that one specification in this form implements another reduces to
the proof for the corresponding dosed systems.

For the specification (16) to be reasonable, its closed-system version, E A P A M , should
be nonZeno. However, this is not sufficient. Consider a specification guaranteeing that

25

the system produces a sequence of outputs until the environment sends a stop message,
where the n th output must occur by time (n - 1)In. There is no timing assumption on
the environment; it need never send a 8top message. This is an unreasonable specification
because now can't reach 1 until the environment sends its stop message, so the advance of
time is contingent on an optional action of the environment. However, the corresponding
closed system specification is nonZeno, since time can always be made to advance without
bound by having the environment send a stop message.

If advancing now is a # action, then a system that controls # actions can guarantee time
to be unbounded while satisfying a safety specification S iff the pair (S, NZ) is #-machine
realizable. This condition cannot be satisfied if S contains unrealizable behaviors. By
Proposition 7, we can eliminate unrealizable behaviors by changing "=~" to "--~" in (16).
Using (10), we then see that the appropriate definition of nonZenoness for an open system
specification of the form (16), with M a safety property, is that ((EAP) --~ M, NZ) be #-
machine realizable. This condition is proved using Theorem 2. To apply the theorem, one
must show that M constrains at most #. Any property of the form O[A/" V #]~ constrains
at most #. To prove that a formula with internal variables (existential quantification)
constrains at most #, one applies Proposition 5 with true substituted for L, since M
constrains at most # iff (M, true) is #-machine realizable.

6 C o n c l u s i o n

6 .1 W h a t W e D i d

We started with a simple idea--specifying and reasoning about real-time systems by
representing time as an ordinary variable. This idea led to an exposition that most
readers probably found quite difficult. What happened to the simplicity?

About half of the exposition is a review of concepts unrelated to real time. We chose
to formulate these concepts in TLA. Like any language, TLA seems complicated on
first encounter. We believe that a true measure of simplicity of a formal language is the
simplicity of its formal description. The complete syntax and formal semantics of TLA
are given in about 1-1/2 pages of figures in [11].

All the fundamental concepts described in Sections 2 and 4, including machine closure,
machine realizability, and the --~ operator, have appeared before [1, 2]. However, they are
expressed here for the first time in terms of TLA. These concepts are subtle, but they are
important for understanding any concurrent system; they were not invented for real-time
systems.

We never claimed that specifying and reasoning about concurrent systems is easy.
Verifying concurrent systems is difficult and error prone. Our assertions that one formula
follows from another, made so casually in the exposition, must be backed up by detailed
calculations. The proofs for our examples, propositions, and theorems occupy some sixty
pages.

We did claim that existing methods for specifying and reasoning about concurrent
systems could be applied to real-time systems. Now, we can examine how hard they were
to apply.

We found few obstacles in the realm of closed systems. The second author has more
than fifteen years of experience in the formal verification of concurrent algorithms, and we

26

knew that old-fashioned methods could be applied to real-time systems. However, TLA
is relatively new, and we were pleased by how well it worked. The formal specification of
Fischer's protocol in Figure 5, obtained by conjoining timing constraints to the untimed
protocol, is as simple and direct as we could have hoped for. Moreover, the formal
correctness proofs of this protocol and of the queue example, using the method of reasoning
described in [11], were straightforward. Perhaps the most profound discovery was the
relation between nonZenoness and machine closure.

Open systems made up for any lack of difficulty with closed systems. State-based
approaches to open systems are a fairly recent development, and we have little practical
experience with them. The simple idea of putting the environment's timing assumptions
to the left of a --~ in the system's guarantee came only after numerous failed efforts. We
still have much to learn before reasoning about open systems becomes routine. However,
the basic intellectual tools we needed to handle real-time open systems were all in place,
and we have confidence in our basic approach to open-system verification.

6.2 Beyond Real Time

Real-time systems introduce a fundamentally new problem: adding physical continuity
to discrete systems. Our solution is based on the observation that, when reasoning about
a discrete system, we can represent continuous processes by discrete actions. If we can
pretend that the system progresses by discrete atomic actions, we can pretend that those
actions occur at a single instant of time, and that the continuous change to time also
occurs in discrete steps. If there is no system action between noon and v/2 seconds past
noon, we can pretend that time advances by those v/2 seconds in a single action.

Physical continuity arises not just in real-time systems, but in "real-pressure" and
"real-temperature" process-control systems. Such systems can be described in the same
way as real-time systems: pressure and temperature as well as time are represented by or-
dinary variables. The continuous changes to pressure and temperature that occur between
system actions are represented by discrete changes to the variables. The fundamental as-
sumption is that the real, physical system is accurately represented by a model in which
the system makes discrete, instantaneous changes to the physical parameters it affects.

The observation that continuous parameters other than time can be modeled by pro-
gram variables has probably been known for years. However, the only published work we
know of that uses this idea is by Marzullo, Schneider, and Budhiraja [12].

R e f e r e n c e s

[1] Martin Abadi and Leslie Lamport. Composing specifications. In J. W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed
Systems, volume 430 of Lecture Notes in Computer Science, pages 1-41. Springer-
Verlag, May/June 1989.

[2] Martin Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253-284, May 1991.

27

[3] Martin Abadi and Gordon Plotkin. A logical view of composition and refinement. In
Proceedings of the Eighteenth Annual A CM Symposium on Principles of Programming
Languages, pages 323-332, January 1991.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181-185, October 1985.

[5] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in languages
for distributed programming. Distributed Computing, 2:226-241, 1988.

[6] Arthur Bernstein and Paul K. Hatter, Jr. Proving real time properties of programs
with temporal logic. In Proceedings of the Eighth Symposium on Operating Systems
Principles, pages 1-11, New York, 1981. ACM. Operating Systems Review 15, 5.

[7] K. Mani Chandy and Jayadev Misra. Parallel Program Design. Addison-Wesley,
Reading, Massachusetts, 1988.

[8] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. PhD thesis, Carnegie Mellon University, February 1988.

[9] Leslie Lamport. An assertional correctness proof of a distributed algorithm. Science
of Computer Programming, 2(3):175-206, December 1982.

[10] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1-11, February 1987.

[11] Leslie Lamport. The temporal logic of actions. Technical Report 79, Digital Equip-
ment Corporation, Systems Research Center, 1991. To appear.

[12] Keith Marzullo, Fred B. Schneider, and Navin Budhiraja. Derivation of sequential,
real-time process-control programs. In Andre~ M. van Tilborg and Gary M. Koob,
editors, Foundations of Real-Time Computing: Formal Specifications and Methods,
chapter 2, pages 39-54. Kluwer Academic Publishers, Boston, Dordrecht, and Lon-
don, 1991.

[13] Peter G. Neumann and Leslie Lamport. Highly dependable distributed systems.
Technical report, SRI International, June 1983. Contract Number DAEA18-81-G-
0062, SRI Project 4180.

[14] Fred B. Schneider, Bard Bloom, and Keith Marzullo. Putting time into proof outlines.
This volume.

