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1. INTRODUCTION

In part I of this study we established two existence theorems for mixed-strategy equilibrium
in games with discontinuous payoff functions (see Theorems 4(4*) and 5(5*) in Dasgupta
and Maskin (1986); hereafter D-M (1986)). In this second part we use the second of
these two theorems to prove the existence of mixed-strategy equilibrium in some well-
known discontinuous economic games that fail to have pure-strategy equilibria. The
models we analyse are the Bertrand-Edgeworth example of price setting duopolists with
capacity constraints (see Section 2.2) ; price competition among firms producing differenti-
ated products (Hotelling (1929) and d’Aspremont, Gabszewicz and Thisse (1979); see
Section 2.3) ; spatial competition (Eaton and Lipsey (1975) and Shaked (1975); see Section
3); and models of market dependent information (Rothschild and Stiglitz (1976) and
Wilson (1977); Section 4). The paper concludes (Section 5) with a classification of these
models.

2. PRICE COMPETITION
2.1. Introduction

Consider a market for N (possibly differentiated) products, where commodity i is supplied
by firm i. Firms choose prices as strategic variables, and a given consumer purchases
from that firm which charges the lowest price, corrected for his perception of product
quality. In this section we present two well-known special cases of such a market, the
Bertrand-Edgeworth and Hotelling duopoly models which are known for failing, in
general, to have pure strategy equilibria. We show, however, that these models satisfy
the hypotheses of Theorem 1, and so have equilibria where firms choose prices randomly.

2.2. The Bertrand- Edgeworth duopoly model'

We consider a market for a single commodity with a continuum of consumers represented

by the unit interval [0, 1]. Consumers are identical, and the representative consumer’s

demand for the commodity is a continuous, monotonically decreasing function, Q(a),
27
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where a (=0) is the price. We assume that the demand curve cuts both axes and denote
by a (>0) the choke-off price for the representative consumer (i.e. Q(a)=0 for a= 4,
and Q(a)>0 for 0=a <a).

There are two firms in the industry i =1,2. (It is easy to generalize all the results
that follow to any number of firms). Firm i has an endowment of S; units of the commodity;
(alternatively we can think of S; as the capacity of a zero-cost technology). Firms choose
prices and play non-cooperatively. It is assumed that the firm quoting the lower price
serves the entire market up to its capacity, and that the residual demand is met by the
other firm. The residual demand depends, of course, on which consumers purchase from
which firm. We assume that all consumers are identical and that rationing at the lower
price is on a first-come-first-serve basis. On the other hand, if the duopolists set the same
price they share the market demand in proportion to their capacities, so long as their
capacities are not met.

Formally, let @ be the competitive price of the commodity; that is, @ solves the market
clearing equation Q(a)=S,+S, if S;+5,<Q(0), and equals zero otherwise. Let a; be
the price chosen by firm i. We may as well suppose that a;€ A; =[a, d]. We define the
profit functions, U,(a,, a,) and U,(a,, a,) of the duopolists to be:>

min {a,S;, a,Q(a;)} ifa,<a,

. . Q(ay)s;
min {a,S;, a,Q(a,)S;/(S,+ S if aj=a, and S, =z———-—=
{ 121 IQ( l) 1/( 1 2)} 1 2 2 (Sl+Sz)

U(ay, ay) = (1)
a,Q(a;)—-S, if a,=a, and S2<(QS(%:_Z%

max {0, a;Q(a,)[Q(a,) — S,1/ Q(ay)} if a;> a,,

and
min {a,S,, a,Q(a,)} if a,<a,

2 Sl
min {a,S,, a,Q(a,)S,/(S,+S,)} if a,=a, and S, é(—?g%
U(a,, a,) = 0(a,)S (2)
a,Q(a,)— S, if a=a, and S, <(_sj+l_s$
max {0, a,Q(a,)[Q(a,) - S,1/ Q(a,)} if a,> a,.

It is well known that this duopoly market may not possess a Nash equilibrium in
pure strategies; (see e.g. Chamberlin (1956) and d’Aspremont and Gabszewicz (1980)).>
We now confirm that the market always possesses an equilibrium in mixed strategies.

Define the diagonal of the product of the strategy sets:

A*(1) = A*(2) ={(a,, @) €[d, dTl|a, = a,}. (3)

From (1) and (2) it is immediate that the discontinuities in U;(a) are restricted to
A*(i)—{(a, a), (d, a)}. Furthermore, it is simple to confirm that by lowering its price
from a position where @ > a, = a,> 4, a firm discontinuously increases its profit. Therefore
Ui(a,, a,) is everywhere left lower semi-continuous in a, and hence weakly lower semi-
continuous. Obviously U; is bounded. Finally, U,+ U, is continuous, because discon-
tinuous shifts in clientele from one firm to another occur only where both firms derive
the same profit per customer. We may therefore use Theorem 5 (D-M (1986)) to conclude:
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Theorem 1. Consider the price-setting duopoly game [(A,, U;): i=1,2], where A; =
[a, a], with =0, and U;: A, XA,~> R" is defined by (1) and (2). The game has a
mixed-strategy equilibrium.

There has been some interest in the symmetric version of the Bertrand-Edgeworth
model (see e.g. Beckmann (1965)), to which we now turn. Thus, let S;=S,. It is well
known that under those parametric conditions (e.g. S;> Q(0) for i=1,2) where the
duopoly game does have a pure-strategy equilibrium, the equilibrium is unique, and
consists of firms choosing the competitive price &. We now proceed to confirm that under
all parametric conditions the symmetric version of the game possesses a symmetric
mixed-strategy equilibrium such that the equilibrium probability measure is atomless at
all prices in excess of a.

We have already noted that A**(i)= A*(i)—{(a, @), (4, a)}. Thus A¥*(i)=(a, a).
We have also noted above that for all de (4, @), lim, s;inf Uy(a,, d)> U,(4, a) and
lim, 5 inf U,(4, a,) > U,(4, @). Thus the game satisfies property (™). We may therefore
appeal to Theorem 6 in D-M (1986) to assert

Theorem 2. The symmetric version of the Bertrand - Edgeworth duopoly game possesses
a symmetric mixed-strategy Nash equilibrium (u*, u*), such that u* is atomless in the open
interval (a, a).*

We can easily establish a bit more about the nature of symmetric equilibrium in the
Bertrand-Edgeworth model. Define

R(a)=aQ(a)
R*(a)=min {aS,, R(a)}

R**(a) =max;=, R*(d).

Corollary.” Ifu* is an equilibrium strategy of a symmetric equilibrium in the symmetric
Bertrand - Edgeworth game, there exist a’ and a” with @ = a' < a"= a such that the support

of u* is

T=[a/,a"]n{a|R**(a) = R*(a) and if ac (4, a),
R** is increasing either from the left or right at a}.

Proof. Let a’=infsupp u* and a”"=supsupp u*. Define T as in the statement of
the corollary. Consider a such that R*(a) < R**(a). Choose d < a such that R**(d) =
R*(a). Then, R*(d)> R*(a). Because aS, < aS,; we know that R(d)> R(a) and as,>
R(a). We have, therefore,

I U,(a, ay)dp™*(ay) > J Ui(a, ay)du*(a,).

We conclude that a € supp u*.

Next consider a such that a € (a, @), R**(a) = R*(a), and R** is constant at a. If
aesupp ¥, then because u* has no atoms in (a, @) there exist a® and a® such that
a’<a®, ae[a® a®]<supp u*. Because R** is constant at a, we may assume that R**
is constant on [a°, a®]. Furthermore, from the above argument, R** = R* on [a°, a®].
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Therefore, in particular R*(a’) = R*(a®). Then R(a®)> R(a®), and so
J Ul(aoa a)du*(ay) > J’ Ul(aoo’ ay)du*(a,).

Thus a £ supp u*, after all. ,

Finally, consider ae T. If a #supp u* there exist a’ and a® such that a € (a°, a®)
and [a°%, a®]nsupp u*={a’ a®}. Because R** is non-decreasing everywhere, and, in
particular strictly increasing either from the left or right at a, R**(a®) < R**(a®). There-
fore, because {a°, a®} < supp u*, R*(a®) <R*(a®). Furthermore, because (a°, a®)n
supp u* = ¢ the probability firm 2’s price is greater than a° is the same as that it is greater
than a®. Therefore,

J Uy(a’, a,)du*(a,) <J' Uy(a®, a,)du*(a,),

a contradiction. We conclude that a e supp u*. ||

We may now confirm that @ <a’ when a pure strategy equilibrium does not exist.
Now a pure strategy equilibrium does not exist if market demand is inelastic at a. For
in this case, if say, firm 2 chooses 4, firm 1 gains by raising its price marginally above a.
This immediately implies that at a symmetric mixed strategy equilibrium a is not in the
support of the equilibrium strategy. Finally, one notes that a firm makes zero profit at
a. An argument similar to the one above then demonstrates that a” < 4.

2.3. The Hotelling model of price competition

The model concerns a market for differentiated products. Consumers are distributed
uniformly along the unit interval [0,1].° There are two firms (i =1, 2) located at the
points x, and x, (with x,> x,). They costlessly produce products that are identical except
for their location. The firms choose mill prices, and the cost of transporting a unit of the
commodity is ¢ (>0) per unit distance. Each consumer purchases precisely one unit of
the commodity from the cheapest source (i.e. the firm minimizing mill price plus transport
cost), so long as his payment does not exceed his reservation price V (>0). Otherwise
he does without the product. We may then restrict each of the two firms to choose its
(mill) price from the range [0, V]. Let a;€ A;=[0, V] denote the i-th firm’s (mill) price.
Then the profit functions of the two firms can be expressed as:

0 if a;>a,+c(x,—x,)

a, min {x,, (V—a,)/c}+a, min {1 -x,, (V—a,)/c}

Ulay, ay) =4 if a;<a,—c(x,—x,) 4
a,; min {x,, (V—a,)/c}+(a,/2¢) min {(a,— a,) + c(x,—x,), 2(V—a,)}

if lal - a2| é C(xz_xl)

and
0 if a;>a,+c(x,—x)
a, min {x,, (V- a,)/ c}+ a, min {1—x,, (V—a,)/c}
Uy(a,, ay) = if a,<a;—c(x,—x,) (5)

a, min {1—-x,, (V—a,)/c}+(a,/2¢) min {c(x2—x)—(a,—ay), 2(V—-a,)}

if |a; — a5 = ¢(x, — x,).
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For the problem to be interesting we must suppose that V> ¢(x,—x,)/2. Otherwise
the potential market areas of the two firms will not intersect, and there will be no room
for competition—the essence of the investigation. In fact, for simplicity of exposition
we assume the stronger condition that V> c. Define

A*(1)=A*(2)={(a,, a;) €[, V]ZHal —a,| = c(x,— x;)}. (6)

In Figure 1 A*(1) (= A*(2)) is depicted by the two straight lines in the square [0, V]*.
Let A**(i) denote the discontinuity set of U;(a). From (4) and (5) we conclude that
A**(i)c A¥(i)=A*(2) for i=1,2.

One can show that this game does not possess pure-strategy equilibria at all location
points, (x,, x,).” We demonstrate, however, that an equilibrium exists for any pair of
locations if firms choose price distributions.

\4

c(x;—xy)

0 c(x~x,) a, v

FIGURE 1

One may first verify from (4) and (5) that although U, + U, is not continuous, it is
upper-semi-continuous. (For a,> a,+ ¢(x,— x,), all customers buy at price a,, whereas
at a, = a,; + c¢(x, — x;), some customers buy at a,. Thus, total profit jumps up. Similarly,
profit jumps up moving from a, > a, +¢(x,— x,) to a, = a,+ ¢(x,—x;)). Note as well that
U, is bounded and that for all a, € AF*(1),

lim,, 54, inf U,(a,, a;) = Uy(a,, a,) for all a,e A*f(a,)

and likewise for i =2. That is, U;(a; a_;) is weakly lower semi-continuous in a;, We may
therefore appeal to Theorem 5 in D-M (1986) and assert

Theorem 3. The two-firm Hotelling model of price competition has a mixed strategy
equilibrium for any pair of product qualities.

Remark 1. The Hotelling model is a symmetric game if either x, = x, or x, =1—x,.
For the first case—i.e. when firms are located at the same point—there is a unique
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pure-strategy equilibrium, and it is given by a, = a,=0. This is the competitive outcome.
Notice that with x, = x,, A*(1) (= A*(2)) in (6) is in fact the diagonal. But from (4) and
(5) it is clear that (0, 0) is not a point of discontinuity of U, Thus 0 AF*(1) = AF*(2).
It follows that the competitive outcome is consistent with Theorem 6 in D-M (1986).

Remark 2. 1t should be clear that our analysis and results extend immediately to
a market with three or more firms. They also extend to the case where firms’ “locations”
are points in spaces of two or more dimensions. This second extension, however, is less
interesting from the point of view of this paper, since in two or more dimensions, the
discontinuities of the one-dimensional model vanish. Therefore, in more than one
dimension the standard Glicksberg and Fan existence theorems apply (see Theorem 1 in
D-M (1986)).

3. PRODUCT COMPETITION

In the previous section we assumed that firms competed in prices and that their locations
were fixed. In this section we look at the opposite case, where the product price is fixed
and firms compete in the characteristics of the product they offer.

Consider a product consisting of m characteristics. The feasible set of characteristics
is assumed to be a non-empty, compact, subset of R™, which we denote by A. Consumers
differ in their preferences over characteristics and it is supposed that there is a continuum
of consumer types. A consumer whose favourite vector of characteristics is x€ A is
labelled as type x, and we assume a non-atomic distribution of consumers over A, which
we denote by the (Borel) measure p.

There are N firms (i,j=1,..., N), which produce the commodity costlessly. The
product price is fixed in advance and is the same for all firms. A firm chooses the vector
of characteristics it will offer. It can offer at most one vector. Each consumer purchases
at most one unit of the product from the firm nearest the consumer’s favourite vector.
To be precise, the realized utility level (net of payment for the product) of consumer of
type x € A from consuming a unit of the product with characteristic a € A is:

W(x,a)=V—c|la—x|, where V,c>0. 7)

For simplicity we assume that V> ¢ sup,c4sup.c ||a —x||, so that each consumer pur-
chases precisely one unit. }
Let a; be firm i’s location in the feasible set of characteristics A. Now define

B(a)=B(a,a_)={xe Al|x—a =|x-a ¥j#i}. (8)

If no other firm coincides with i in its choice of location, then B;(a), firm i’s market
region, is the set of consumers who purchase from i. However, if n firms (0=n=N—1),
other than i, are located at a; then each of these (n+1) congruent firms has a 1/(n+1)
share of B;(a). Therefore, the profit function of firm i is:

U(a, a—i)=(1+”)_1 J dp(x),

By(a)
where (1+ n) is the number of firms located at a;. )
Firms are profit maximizing, and their strategies are locations. The market is thus

represented by the game [(A, U;): i=1,..., N] where U; is given by (9). Notice that the
game is symmetric. Eaton and Lipsey (1975) noted that if m=1, A =[0,1], N=3 and p
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is uniform, then the game does not possess a Nash equilibrium in pure strategies.® In
an accompanying paper, Shaked (1975) proved an identical result for the case where
m=2, A is the unit circle, N =3 and p is uniform.

The payoff function (9) violates two hypotheses of the classical pure-strategy existence
theorems (see Theorem 1 in D-M (1986)): namely continuity, and quasi-concavity in a;.
A slight modification of the payoff function suggests, however, that the decisive factor
in the non-existence of equilibrium is the failure of the second rather than the first
hypothesis. In particular, suppose that for given ¢ >0 we redefine a firm’s profit to be
zero if it is within & of any other firm but suppose that otherwise the profit function is
(9). It is a straightforward matter to check-that such a modified payoff function satisfies
all the hypotheses of Theorem 2 in D-M (1986), except the required quasi-concavity.
. Therefore, the “blame” for the non-existence of equilibrium in pure strategies in this
modified model—and therefore by extension, in the unmodified model—can be assigned
to the violation of quasi-concavity. ~

We now prove that the location game [(A, U;):i=1,..., N] we have defined in
(7)-(9) possesses a symmetric mixed-strategy equilibrium where, for N = 3 the equilibrium
mixed strategy is atomless. To do this we merely confirm that the game satisfies the
hypotheses of Theorem 6* in D-M (1986). Define

A*(i)={(a; a_;) e AN|Fj £ i, a;= a}}. (10)

It is immediate from (9) that the discontinuities of U, are confined to a subset of A*(i).
Notice further that U, is bounded and that the game is constant —sum. If » is the uniform
distribution on the unit circle (for m =1, v places probability one-half on each of 1 and
—1), then for all (a; a_;)

J lim infy.o Ui(a;+ Oe, a_;)dv(e) = J lim infq_ [I dp(x)]dv(e)
B™ m B,

i(a;+0e,a_,)

B
J' dp(x), ifn=0
B,(a)

%J' dp(x), if n>0
Bi(a)

1
n+1

v

J' dp(x)=U(a; a_;),
B,(a)

where n is the number of firms other than i located at a; and the inequality is strict if
n=2. Therefore U, satisfies property (a*). (The preceding argument applies to a; in the
interior of A. If a; lies on boundary, the distribution » must be modified accordingly.)
Let A_*"Z(i) (< A*(i)) denote the set of discontinuities of U. For N >2 note that
A¥*(i) = A; that is, any location by a firm is a potential point of discontinuity. (This is
not true in the case N =2, since for example, if firms locate along a one-dimensional
line segment (m = 1), the mid-point is not an element of Af*(i)). We may now state:

Theorem 4. For N>2, let AcR™ (m=1) be non-empty, and compact, and let
U;: AN > R! satisfy (9). Then the game [(A, U,):i=1,..., N] possesses a symmetric
mixed-strategy Nash equilibrium

(v* ..., %)
~ N times
where u* is atomless on A¥*(i) = A.
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Remark 1. Shaked (1982) has computed a symmetric mixed-strategy equilibrium
for the case m =1, A,=[0, 1], N =3 and v uniform (the example discussed in footnote
8). It consists of each firm choosing a uniform distribution on the interval [4 3] and zero
weight on the outer quartiles. Osborne and Pitchik (1982) show that, in this case, there
are other equilibria which involve a mixture of pure and mixed strategies.

Remark 2. We have studied the choices of location and price separately, but our
analysis carries over to some cases where firms choose both. Suppose that a strategy
consists of choosing a price and location simultaneously. Then our arguments can easily
be modified to establish the existence of a mixed strategy equilibrium in this more elaborate
model. The model originally considered by Hotelling (1929), however, was one where
firms first choose locations and then prices. Because the strategy spaces of this two-stage
model are infinite dimensional, our theorems do not immediately apply.

4. INSURANCE MARKETS

We next consider a model of the market for insurance due to Rothschild and Stiglitz
(1976) and Wilson (1977). Our formulation relies substantially on Hahn’s (1978) analysis
of the Rothschild-Stiglitz model.

There is one commodity (money) in this model, and, for each consumer, there are
two states of nature: that of having an accident and that of not. Let goods 1 and 2 be
money in the “no accident” and “accident” states, respectively. Each consumer has a
strictly positive initial endowment w € R} representing his initial allocation of money in
the two states. His preferences are represented by a strictly concave von Neumann-
Morgenstern utility function u. We normalize u so that u(w)=0. For convenience we
suppose that w and u are the same for all individuals.

Consumers fall into two classes according to their accident proneness. High risk
consumers have accidents with probability py and low risks with p;, where p; <py. A
consumer knows which risk class he belongs to. Therefore, u and p, (J=L or H)
determine his preferences over goods 1 and 2. Clearly, the preferences of a high risk
consumer differ from those of a low risk. Indeed, at any consumption pair, the marginal
rate of substitution between goods 2 and 1 is greater for the low-risk consumer (see Figure
2). Let us assume a (large) fixed population n of consumers, of whom n, are low risks
and ny are high risks.

There are two firms (insurance companies).” Firms sell insurance contracts which
are vectors ¢ =(c,, ¢,) € R%. One interprets ¢, as the insurance premium and c, as the
accident benefit net of premium. Each consumer can purchase at most one insurance
contract. Consumers of a given risk class buy from the firm offering the most desirable
contract for them. (Of course, they will buy that contract only if they prefer it to their
initial endowment.) If the two firms offer equally desirable contracts for a given risk
class, the consumers in that class divide themselves equally between them.

Firms are expected profit maximizers—their revenues are premia and costs are claim
payments—and they regard different consumers’ chances of having an accident as indepen-
dent. They know u, py, p;, ny and n;, but cannot tell to which class any given consumer
belongs.

A strategy for a firm is to offer a set of contracts. Since there are only two risk
classes, it is never necessary for a firm to offer more than two contracts.'® Therefore we
shall only consider strategies consisting of pairs of contracts (c”, c¢*), where without loss



DASGUPTA & MASKIN DISCONTINUOUS GAMES: APPLICATIONS 35

of generality we adopt the convention that high risk consumers find ¢ at least as desirable
as ¢k, and low risks find c” at least as desirable as c”.
For J=H, L and contract ¢ = (¢, ¢,), let V;(c) denote the expected ntility of ¢ for
a consumer of class J. That is,
Vi(c) = pu(wr+c;) + (1 —py)u(w,—cy).

i

Let ;(c) be the expected profit from the sale of contract ¢ to a consumer of risk class
J. Then

mr(c)=—psc,+(1—p;s)ec.

Suppose that firm 1 offers the contract pair a,=(c”(1), c*(1)) and firm 2, a,=
(c"(2), ¢"(2)). Firm 1’s expected profit from risk class J customers is therefore

nymy(c’ (1)), if V(' (1))> V,(c’(2))
m(ay, @) =1 (1/2)nm; (¢’ (1)), if Vi(c’(1)) = Vi(c’(2))

0 otherwise.

Naturally, 75 is defined symmetrically. Firm i’s total expected profit is therefore,
Ui(a, a;) = 7TiH(‘11, a,)+ 77'{"(‘11, ay).

Consider the contract pair a*=(c*", c*") satisfying w,+ ¢ =w,—cf" (i.e. high
risks are perfectly insured); my(c*™)=m (c*")=0 (i.e. each of the two risk classes
generates zero expected profit); and Vy(c*")= Vu(c*"), (i.e. high risk customers are
indifferent between the low risk contract and their own). (See Figure 2.) We shall call
a* the “Rothschild-Stiglitz-Wilson” (R-S-W) contract pair. It is easy to see that, if a
pure strategy equilibrium exists, both firms must offer a*. First, no contract can earn
positive profit because if, say, firm 1 offered such a contract, firm 2 could offer a contract
with slightly better terms for high or low risks (whichever is the profitable class), thereby
getting nearly all firm 1’s profit for itself. (This is the “Bertrand’-like feature of the
R-S-Wmodel.) Second, among high risk contracts that earn zero profit, the most desirable
from the customers’ viewpoint is c*”. Therefore c*" is the only high risk contract not
subject to the ““‘undercutting” argument that ruled out positive profits. Finally, the most
favourable zero-profit contract for low risks that has the property that high risks do not
prefer it to their own is c*".

However, a* may not be an equilibrium contract because if there is a sufficiently
high proportion of low risks in the population, there exists a “‘pooling” contract ¢** that
earns positive profit overall (i.e. 7y (c**)+ 7 (c**)>0), and which both high and low
risks prefer to a*. (See Figure 2.)'' We shall show below that nonetheless, a mixed
strategy equilibrium always exists.

To place the insurance problem within the framework of our general existence
theorem, we shall identify a contract ¢ with the utility pair (Vy(c), Vi(¢)). This iden-
tification is legitimate, since the mapping ¢ - (Vy(c), Vi(c)) is one-to-one. A strategy
thus consists of offering a quadruple (Vy, V,, V}, V1), where, by the convention we have
adopted, Vy = Vi and Vi = V;. That is, (Vy, V) corresponds to the high risk contract
and (VYy, V1) to the low risk contract. We can therefore confine attention to the compact
set

V={(Vy, Vo)|3c with (Vg(c), Vi(c)) = (Vi V1), m(c) 20, max {V,, Vg} =0},
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FIGURE 2

I is a high-risk indifference curve and I* is a low-risk indifference curve. EFY denotes the “fair-odds” line

for high risks, (the locus my =0), and EF* denotes the “fair-odds” line for low-risks. EF™ is the ‘‘zero-profit”

pooling line. (c*¥, ¢*%) is the R-S-W contract pair. c¢**is a pooling contract. The figure depicts a case where
a pure strategy equilibrium does not exist

since any other contract either earns negative profit or is never purchased. Thus we can
take firm i’s strategy space to be

A;={(Vy, Vi, Vi, 'L)l{( Vi, V), (Vig, VDI V, V=V, and Vg = Vi)

We can now state,

Theorem 5. The insurance market game has a symmetric equilibrium (u*, u*). Further-
more, for all (¢, c")# (c*", ¢*b), with my(c™) = m(c") =0, u*(c", ") =0.

Proof. We must verify that the hypotheses of Theorem 6* in D-M (1986) are satisfied.
However, as we have defined the payoff functions, the sum U,+ U, is not continuous,
nor even upper semicontinuous. This is because the discontinuities in firms’ payoffs entail
a shift of clientele from one firm’s contracts to the other’s, and so, if the contracts are
not equally profitable, total profit changes discontinuously.'> We, therefore, slightly
modify the payoff functions to restore upper semicontinuity. After establishing the
existence of equilibrium with these modified payoff functions, we show that such an
equilibrium applies to the original payoffs.
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Observe first that discontinuities in firm i’s payoff function are confined to the set
A*(i)={(a1, @) € A; X Ay| Vi (1) = Vi (2) or V(1) = Vi4(2) where

a; = (Vu (i), VL(i), Vi(i), VL(i)}
For (a,, a,) € A*(1) and i=1, 2, define

L]i(ala aZ) = lime—)O SUP|a}-q | <e Ul(ai, a,2)'

llaz—asll<e

Take

Ui(ah a,), if (a),a)€ A*(1) and a, # a,

U¥(ay, a;) = i
(ay, ay) {U;(al,az)a otherwise.

Clearly U¥ isbounded. To see that UF + U¥ is upper semicontinuous, consider a sequence
{(af, a3)} converging to (a,, a,). If (a,, a,) € A*(1) then U¥ and U¥ are continuous at
(a1, ay). If a,=a, then U¥+ U¥% is continuous at (a,, a,) because the discontinuities in
U, and U, simply entail shifting profit from one firm to another. If (a,, a,) € A*(1) and
a, # a,, then U¥ is upper semicontinuous at (a,, a,) by construction. Therefore U¥+ U%
is upper semicontinuous. Observe that the discontinuities in firm 1’s payoft function,
U¥, are confined to A*(1), which meets the requirements of Theorem 2 on the form of
the discontinuity set. Consider a point (a,, a,) € A*(1). Let a,=(c"(1), ¢*(1)). Suppose
that V(1) = V4 (2). (The argument is similar if V(1) = V{(2)). If 7y (c™(1))>0, then
U, and hence U¥ is right lower semicontinuous in the V(1) component at (a,, a,). If
mu (¥ (1)) =0, then U¥ is left lower semicontinuous in that component.
Now

AF(1) ={(c", ") e AF(1)| 7y (c™) #0 or m(c*) #0}.

Consider (¢, c¢")e A¥*(1). If, say, w7 (c)<0, then for every (¢, &%) such that
(c", ¢t &%, &%) e A¥*(1) Utisleftlower semicontinuousin V. Moreover, when (¢, &) =
(c", ¢"), U,,and hence U%, fails to be left upper semicontinuousin V. Similar conclusions
can be reached when my (¢")> 0 or 7 (c") # 0. Therefore property (a*) of Theorem 6* in
D-M (1986) holds. From this theorem, we conclude that there exists a symmetric
equilibrium (u*, u*) for the payoff functions U§ and U%, where u* is atomless on A**(i).
Because w* is atomless and U; and U? differ only on A¥*,

J Ui(, ay)du*(ay) = J Uf(-, a)du*(a,).

Therefore (u*, u*) is an equilibrium for U, and U, as well.

To see that u*(¢", ¢°) =0, if my(¢™) = m.(c%) =0 but (¢, &%) # (c*¥, c*L), observe
that if, say, firm 2 placed positive probability on (&, %), where ¢ # ¢*¥ firm 1 could
obtain a positive expected profit by choosing (¢, ") where 7y (¢7)> 0 but Vi, (¢%)>
Vu ("), contradicting the supposition that a zero-profit contract pair is part of an equi-
librium strategy. ||

Appealing to Dasgupta and Maskin (1977), Appendix, we can say more about the
nature of mixed strategy equilibrium.”” First, as in pure strategy equilibrium, firms earn
zero expected profit. Second, any high risk contract offered provides full insurance and
either loses money or breaks even. That is, if (uf, u¥) is an equilibrium,
pH(c", M| ma(c”)=0 and w,+c5' =w,—cf} =1, for i=1,2. Third, any low risk con-
tract offered provides less than full insurance and either makes money or breaks even.
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That is, w*{(c”, ¢")|m(c¥)=0 and w,+c5<w,—ci}=1, i=1,2. Finally, high risk cus-
tomers are indifferent between any high risk-low risk pair offered: u*{(c"”, ¢")|Vy(c") =
Va(cH}=1, i=1,2."

5. CLASSIFICATION

Because they take prices as given, agents in the Arrow-Debreu theory of resource
allocation have payoff functions that are continuous (see Arrow and Debreu (1954)).
Therefore it is no accident that the discontinuities that we have reviewed arise in models
of imperfect competition.

One conclusion we can draw from our work, however, is that these discontinuities
are inessential—not only in the sense that they do not prevent the existence of mixed-
strategy equilibrium—but, more importantly, that the discontinuous games can be approxi-
mated arbitrarily closely by games to which the classical existence theorems (Theorem 3
of D-M (1986)) apply. In the Introduction to D-M (1986) we mentioned one form of
approximation, namely the selection of a finite set of strategies (to which Nash’s (1951)
theorem then applies). Indeed, our method of proving Theorems 5* and 6* in D-M
(1986) is through successively finer finite approximations. Alternatively, we could have
retained the infinite strategy spaces, but introduced exogenous uncertainty in such a way
that agents’ expected payoffs are continuous. (For an application of this device to patent
race games, see Dasgupta and Stiglitz (1980)). If the uncertainty is “small” the game is
an approximation to the original discontinuous game. By analogy with our “finite”
arguments one can show that as the uncertainty diminishes a subsequence of mixed-
strategy equilibria in these smoothed games converges to a mixed-strategy equilibrium
in the discontinuous game. Therefore in this alternative sense the equilibria of the
discontinuous games are ‘“‘robust”.

The economic games we have studied can be classified according to the extent that
there are “winners” and “losers”. One should note that in all the examples, except for
Hotelling’s location model, a firm can always increase its market share by moving in a
single consistent direction. Thus, under price competition firms increase their market
share by cutting prices. In extreme cases, such as the Rothschild-Stiglitz- Wilson game,
a firm can capture the entire market by undercutting its rivals infinitesimally. Such models
are pure ‘“‘winner-loser” games, or contests, in the sense that the winner takes all by
outdoing its rivals. Other examples of such games are wars of attrition (Riley (1980)),
patent races (Dasgupta and Stiglitz (1980)) and auctions where the higher bid wins (e.g.
Dasgupta (1982)). In the symmetric versions of pure winner-loser games symmetric
equilibria invariably involve a zero expected payoft for each player (where zero is the
utility level of a non-participating player).'> Some models that we have examined, namely
the Bertrand-Edgeworth and Hotelling price competition models, share with contests the
property that undercutting increases market share; however these are not pure winner-
loser games because either the firm cannot physically accommodate all customers (as in
Bertrand-Edgeworth) or else has inherent monopoly power over some portion of the
market (as in Hotelling). Even the symmetric equilibria of such games need not entail
zero expected payofs.

By contrast, Hotelling’s spatial location model is not a contest at all. It has no
winners and losers and the direction of increasing market share depends on the actions
of other firms. If, say, in the case of three firms on a line the firm in the middle moves
in either direction it encroaches on the market area of the firm it is moving towards, but
at the same time loses clientele to the third firm, and these effects counter-balance.
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The fact that, in contests, and partial contests (like Bertrand-Edgeworth), there is a
favoured direction of movement—and hence a distinguished point at the extremity of
this direction—helps us understand the nature of equilibrium to such games. In particular,
it helps explain why symmetric equilibrium may involve atoms at such distinguished
points. For example, symmetric equilibrium in the insurance game may have an atom at
the Rothschild-Stiglitz-Wilson contract. Similarly the pure Bertrand game has all firms
setting the competitive price.'® Viewed in the light of Theorem 6* in D-M (1986) these
atoms are possible because at the distinguished point firms’ payoff functions may not be
discontinuous, since “undercutting” is no longer possible.
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NOTES

1. The Bertrand-Edgeworth model has been much studied. See e.g. Chamberlin (1956), Shubik (1955),
Beckmann (1965) and d’Aspremont and Gabszewicz (1980). The original references are Bertrand (1883) and
Edgeworth (1925).

2. When a, = a,, firm 1 serves the minimum of S; and Q(a,)S,/(S,+S,) customers as long as firm 2 is
not capacity constrained (i.e. as long as S, = Q(a,)S,/(S,+S,)). If firm 2 is capacity constrained, then firm 1
supplies the remainder of the market. When a, > a,, if Q(a,) < S, then clearly U, =0. If, however, Q(a,)> S,,
then the fraction of consumers that are served by firm 2 is @ =S,/Q(a,). Thus (1—«) is the proportion of
consumers not served by 2. Total sales by firm 1 amount to (1—-a)Q(a,).

3. There cannot be an equilibrium with a, <a,, since, if Q(a,)>S,, firm 1 will wish to raise its price
and, if Q(a,)=S,, firm 2 will wish to lower its price. Similarly, no equilibrium is possible with a,> a,. There
cannot be an equilibrium with a, = a,> a (the competitive price), since both firms have the incentive to lower
their prices slightly. Consider now the case where a>0. If Q(a) is inelastic at @ then a, = a, = a cannot be
an equilibrium because either firm can increase its profit by raising its price slightly above a if the other firm
were to charge a. In this case an equilibrium does not exist. One may argue that non-existence of an equilibrium
in pure strategies is due to the fact that a firm’s payoff function is not quasi-concave in its own price. To see
this consider a slight modification of the above model. Suppose that there is a positive number 7, such that if
the firms choose prices within a distance of 7 of each other both receive zero profits; but if their price difference
exceeds or is equal to 7 their profit functions are as in (1) and (2). It is easy to check that if 5 is small enough
the model does not have an equilibrium in pure strategies if market demand is inelastic at a. However, the
payoft functions of this modified game are both upper-semi-continuous and graph continuous (Definitions (2),
and (3) in D-M (1986)). From Theorem 3 of D-M (1986) we may conclude that the failure of the modified
game to possess an equilibrium in pure strategies is due to the fact that a firm’s profit function is not quasi-concave
in its own price.

4. This theorem also helps explain why the technique, used by Beckmann (1965), of expressing the
equilibrium conditions as a differential equation actually works.

5. We are indebted to Martin Hellwig for drawing our attention to an error in an earlier version of the
proof of this Corollary.

6. We assume a uniform distribution for expository ease. Any non-atomic distribution can be assumed.

7. See d’Aspremont et al. (1979). To see this, one argues first that if an equilibrium exists, say (a¥, a¥),
then it must be the case that |a¥ — a¥|= c(x,—x,), and so both serve the market. (If |a¥*—a¥|> c(x,—x,), the
firm charging the higher price makes zero profit, and can gain by lowering its price sufficiently.) But if, say,
firm 1 sets a, = a¥ — ¢(x,— x,) — ¢ (where ¢ is positive and “small”) it captures the entire market. If the firms
are located near each other then firm 1 does better by charging this than a¥.

8. This is easy to check. If all firms coincide at a point, any one can increase its profit by moving slightly
away in some direction. But if they do not coincide, the outer flank firms can gain by moving closer to the
firm in the middle. Hence there is no equilibrium configuration of locations. Eaton and Lipsey demonstrate,
however, that for any value of N other than three, an equilibrium in pure strategies exists in the one-dimensional
case.

9. We could as easily handle more than two.

10. To see this, suppose C is the set of contracts that firm i (i=1, 2) offers. C can be subdivided into
Cy, C;, Cy, the contracts which, given the contracts offered by the other firm, are optimal for high risks, low
risks, and neither class, respectively. But since u is strictly concave, there are unique (expected) profit maximizing
contracts ¢ and ¢* within Cy and Cy, respectively. Hence, offering (c”, c*) is at least as good as offering C
and strictly better if Cy or C, contain contracts other than ¢ and c~.
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11. One can argue, as we did when commenting on the Bertrand-Edgeworth problem in footnote 3, that
the reason for the non-existence of an equilibrium in pure strategies in the R-S-W model can be traced to the
fact that a firm’s payoff is not quasi-concave in its own strategy. To see this modify the R-S-W model slightly
by introducing “‘minimal sensibility” on the part of customers. Suppose that there exist positive numbers 7,
and 7, such that if contracts C, and C, are offered and C, is purchased by high risk customers then C, is also
purchased by them if and only if

=1 < Vu(Cy) = Vy(C)) = 1y,
and, likewise, if C, is purchased by low risk customers then C, is also purchased by them if and only if
—n = V()= Vi(Cy) <.

One can now verify that with this modification the expected profit function of insurance firms are upper
semi-continuous. (See Dasgupta and Maskin (1977) for details.) They are of course graph-continuous even in
the original R-S-W model. But if 7y and 7, are small enough an equilibrium in pure strategies does not exist.
We may therefore conclude from Theorem 2 in D-M (1986) that the reason for the non-existence of an
equilibrium in pure strategies in this modified model is the fact that the expected profit function of a firm is
not quasi-concave in its own strategy.

12. We are grateful to David Salant, who reminded us of this point, and therefore helped correct an error
in a previous version.

13. Lemma 8 in the Appendix of Dasgupta and Maskin (1977) is false. The remaining Lemmas are correct
and it is these that we are summarizing below in the text.

14. Rosenthal and Weiss (1983) have explicitly computed a symmetric equilibrium in mixed strategies
for a particular specification of preferences in the R-S-W model of insurance.

15. Many winner-loser games have asymmetric equilibria that do not have the zero-expected-payoff
property. See e.g. Riley (1980) and Maskin and Riley (1982).

16. By contrast, in the spatial location model with three or more firms no point is distinguished, and so
symmetric equilibrium entails no atoms.

REFERENCES

ARROW, K. J. and DEBREU, G. (1954), “Existence of Equilibrium for a Competitive Economy”, Econometrica,
22, 265-289.

d’ASPREMONT, C. and GABSZEWICZ, J.-J. (1980), “On Quasi-Monopolies” (CORE Discussion Paper 8011,
Universite Catholique de Louvain).

d’ASPREMONT, C., GABSZEWICZ, J.-J. and THISSE, J. (1979), “On Hotelling’s ‘Stability of Competition’”,
Econometrica, 47 (5), 1145-1150.

BECKMAN, M. J. (1965), ““Edgeworth-Bertrand Duopoly Revisited”, in Henn, R. (ed.), Operations Research-
Verfahren, 111 (Meisenheim: Sonderdruck, Verlag, Anton Hein) 55-68.

BERTRAND, J. (1883), “Review of Cournot’s ‘Rechercher sur la theoric mathematique de la richesse’”’, Journal
des Savants, 499-508.

CHAMBERLIN, E. (1956) The Theory of Monopolistic Competition (Cambridge: Harvard University Press)

DASGUPTA, P. (1982), “The Theory of Technological Competition” (ICERD Discussion Paper, London
School of Economics).

DASGUPTA, P. and MASKIN, E. (1977). “The Existence of Equilibrium: Continuity and Mixed Strategies”
(IMSSS Technical Report No. 252, Stanford University).

DASGUPTA, P. and MASKIN, E. (1986), “The Existence of Equilibrium in Discontinuous Economic Games,
I: Theory”, Review of Economic Studies, this issue.

DASGUPTA, P. and STIGLITZ, J. E. (1980), “Uncertainty, Industrial Structure and the Speed of R & D",
Bell Journal of Economics, (Spring), 1-28.

EATON, C. and LIPSEY, R. (1975), “The Principle of Minimum Differentiation Reconsidered: Some New
Developments in the Theory of Spatial Competition”, Review of Economic Studies, 42, 27-50.

EDGEWORTH, F. M. (1925) Papers Relating to Political Economy I (London: Macmillan).

HAHN, F. H. (1978), “On Equilibrium with Market-Dependent Information”, in Albach, H., Helmstidter, E.
and Henn, E. (eds) Quantitative Wirtschaftsforschung. (Bonn).

HOTELLING, H. (1929), “The Stability of Competition”, Economic Journal, 39, 41-57.

MASKIN, E. and RILEY, J. (1982), “On the Uniqueness of Equilibrium in Sealed Bid and Open Auctions”
(mimeo, University of Cambridge).

NASH, J. (1951), “Non-Cooperative Games”, Annals of Mathematics, 54, 266-295.

OSBORNE, M. J. and PITCHIK, C. (1982), “Equilibria for a Three-Person Location Problem” (Discussion
paper No. 123, Department of Economics, Columbia University).

RILEY, J. (1980), “Strong Evolutionary Equilibria and the War of Attrition”, Journal of Theoretical Biology,
82, 383-400.

ROSENTHAL, R. and WEISS, A. (1983), “Mixed Strategy Equilibria in Markets with Asymmetric Information”
(mimeo).



DASGUPTA & MASKIN DISCONTINUOUS GAMES: APPLICATIONS 41

ROTHSCHILD, M. and STIGLITZ, J. E. (1976), “Equilibrium in Competitive Insurance Markets: An Essay
on the Economics of Imperfect Information”, Quarterly Journal of Economics, 90, 629-649.

SHAKED, A. (1975), “Non-Existence of Equilibrium for the 2-Dimensional 3-Firms Location Problem”, Review
of Economic Studies, 42, 51-56.

SHAKED, A. (1982), “Existence and Computation of Mixed Strategy Nash Equilibrium for 3-Firms Location
Problem”, Journal of Industrial Economics, 31, 93-96.

SHUBIK, M. (1955), “A Comparison of Treatments of a Duopoly Problem; Part II”’, Econometrica, 23, 417-431.

WILSON, C. (1977), “A Model of Insurance Markets with Incomplete Information”, Journal of Economic
Theory, 16, 167-207.



