
Scalable Analysis of Real-Time Requirements
Vincent Langenfeld, Daniel Dietsch, Bernd Westphal, Jochen Hoenicke

Department of Computer Science, University of Freiburg
Email: {langenfv,dietsch,westphal,hoenicke}@informatik.uni-freiburg.de

Amalinda Post
Robert Bosch GmbH, Email: Amalinda.Post@de.bosch.com

Abstract—Detecting issues in real-time requirements is usually
a trade-off between flexibility and cost: the effort expended
depends on how expensive it is to fix a defect introduced by
faulty, ambiguous or incomplete requirements. The most rigorous
techniques for real-time requirement analysis depend on the
formalisation of these requirements. Completely formalised real-
time requirements allow the detection of issues that are hard
to find through other means, like real-time inconsistency (i.e.,
“do the requirements lead to deadlocks and starvation of the
system?”) or vacuity (i.e., “are some requirements trivially sat-
isfied”). Current analysis techniques for real-time requirements
suffer from scalability issues – larger sets of such requirements
are usually intractable. We present a new technique to analyse
formalised real-time requirements for various properties. Our
technique leverages recent advances in software model checking
and automatic theorem proving by converting the analysis
problem for real-time requirements to a program analysis task.
We also report preliminary results from an ongoing, large scale
application of our technique in the automotive domain at BOSCH.

I. INTRODUCTION

The specification of requirements is a critical activity in
software and system development because the set of require-
ments is supposed to partition the set of possible systems
into acceptable and non-acceptable (or correct and incorrect)
systems. A defect in a requirements specification can lead
to a situation where a software or system is delivered that
is formally correct, i.e., that satisfies the (erroneous) require-
ments but does not satisfy the customer’s needs. To mitigate
the risk of defects in requirements specification, the analysis
of requirements specifications for generic properties like con-
sistency or unambiguity is recommended [12]. An established
approach to the analysis of requirements for generic properties
is the review. Yet reviews, as a human activity, are error-prone
and do not scale well for large sets of requirements.

Recent works have proposed automated formal analyses of
requirements for generic properties (e.g., [5], [9], [16], [17]).
In order to apply automated formal analyses, two problems
need to be solved. Firstly, requirements need to be specified in
a precise, formal, machine-readable language. There are efforts
to bridge the gap between the classical formal behaviour
specification languages, like different temporal logics, and the
practice of requirements engineers in industry contexts. For
example, Crapo et al. [16] propose the ASSERT language,
Teige et al. [5] advocate the so-called Universal Pattern [22],
and Post et al. [20] have developed a restricted English

The third author was supported by the DFG, reference no. WE 6198/1-1.

grammar based on the specification pattern system by Konrad
et al. [13]. Secondly, scalable algorithms for the actual analysis
for generic properties are necessary.

In this work, we address the second problem of analysing
requirements for generic properties. We consider real-time
requirements, that is, requirements that specify the behaviour
of systems which have to react to inputs within given time
bounds in continuous time. We assume that the requirements
to be analysed are specified using restricted English gram-
mar [20] with the underlying Duration Calculus [6] semantics.
The generic properties of requirements that we consider are
partly specific to real-time requirements. The most prominent
considered property is real-time-consistency [18], a property
that implies but is not equivalent to general consistency. An
rt-inconsistency in a requirements specification is particularly
hard to spot in large sets of requirements and may only
manifest during implementation and hence incur unnecessary
effort and cost. It has been shown [17] that rt-inconsistency
does occur in industrial requirements specifications and that
it is often the source of difficult-to-detect defects in later
stages of system development. Post et al. [18] have shown
rt-inconsistency to be decidable by a reduction to real-time
model-checking [2]. The reduction inherits the theoretical
exponential worst-case complexity and does not scale well for
larger sets of requirements.

In this work, we present a new algorithm for the analysis
of a given set of real-time requirements for, among others, rt-
inconsistency. The new algorithm is based on a reduction of
the rt-inconsitency problem to a program analysis problem and
also supports analyses for the generic requirements properties
vacuity and consistency (both in their elaboration for real-
time requirements). We have implemented the new algorithm
in the open-source program analysis framework ULTIMATE 1

in the form of the tool ULTIMATE REQANALYZER. We
evaluated the performance of REQANALYZER on a selection
of real-time requirements specifications from two sources. One
source is the benchmarks provided in previous works regarding
analysing real-time requirements [18], [19]. The other source
is an ongoing collaboration with an industry partner from
the automotive domain. The new tool REQANALYZER has
three major improvements over previous approaches. Firstly,
it is able to analyse significantly larger sets of real-time re-
quirements than the original approach [18]. Secondly, the new

1https://github.com/ultimate-pa/ultimate

https://github.com/ultimate-pa/ultimate

algorithm provides gradual results (in contrast to the original
approach that terminates with an inconclusive result if time or
memory resources are exceeded) and thereby promises to be
effectively applicable to industry scale real-time requirements
specifications. Thirdly, the algorithm allows us to pinpoint the
source of an issue, i.e., it does not only yield whether an issue
is present, but also where.

The paper is organised as follows. Section II recalls the
property rt-inconsistency and motivates the need for scalable
property analysis tools. Section III provides preliminaries for
the reduction of real-time requirements analysis to a program
analysis problem in Sections IV to VI. In Section VII, we
present and discuss preliminary results from an ongoing,
extensive, industrial scale case-study with the new real-time
requirements analysis tool in the automotive domain. Sec-
tion VIII discusses related work and Section IX concludes.

II. PROBLEM ANALYSIS

In this section we give an overview over the formalisation
of requirements using restricted English grammar, the formal
semantics of patterns from this grammar in terms of phase
event automata (PEA), and properties to analyse a require-
ments specification for [17]–[20]. We motivate the need for a
new scalable automated analysis of the considered properties
for a set of requirements.

A. Requirements Formalisation

Following [17], [20], requirements are formalised using
sentence patterns that are parameterised by expressions over
system observables and durations. In the following examples
we limit the discussion to boolean observables for simplicity,
although our overall approach supports a much richer set of
types of observables. For example, consider a system with
boolean observables A, B, and C. In order to require that the
value of A is not true at all times on all computations of the
system we would write

req1: Globally, it is never the case that ‘A’ holds.
The requirement that A evaluates to true at all times on all
computations of the system would be formalised as

req2: Globally, it is always the case that ‘A’ holds.
Timing requirements can be specified, e.g., with the following
two patterns. The bounded response requirement

req3: Globally, it is always the case that if ‘B’ holds
then ‘C’ holds after at most ‘5’ time units.

is satisfied by systems where, on each computation, each phase
where B evaluates to true for a positive duration is followed
by a phase where C evaluates to true after 5 time units the
latest. The duration of phases can be constrained as follows:

req4: Globally, it is always the case that if ‘A’ holds
then ‘!C’ holds for at least ‘2’ time units.

This requirement is satisfied by systems where each phase with
positive A is followed by a phase of C evaluating to false for
at least 2 time units.

The formal semantics of the patterns shown above is given
by a phase event automaton (PEA). A PEA is a timed

p0
¬B∨C

p1
¬B∧¬C
c3≤5

p2
B∧¬C
c3≤5

c3 := 0

C′
C′

(a) PEA Areq3 .

p0
¬A

p1
¬A∧¬C
c4≤2

p2
A∧¬C

c4 ≥ 2

c4 := 0

(b) PEA Areq4 .

Fig. 1. Formal semantics of req3 and req4.

t1 2 3 4 5

1
0

A

1
0

B

1
0

C req4 req3

Fig. 2. A and B occur at the same point in time for one time unit, then !C
for two time units satisfies req4, and C occurring at time 5 satisfies req3.

automaton and uses clocks to measure passing of time. A clock
is a special variable that is automatically incremented when
time passes and can be reset to zero by the transitions of the
automaton. Figure 1 shows the PEAs for requirements req3
and req4 introduced above. The PEA Areq3

uses the clock c3
to measure the five time units specified in requirement req3.
The clock variable is reset to zero, when B changes from false
to true while C is false. The invariants c3 ≤ 5 in the bottom
two locations ensure that these locations must be left at the
latest when five time units have passed. The transitions leaving
these locations check that C holds.

The runs of a PEA are modelled as timed sequences of
observables over dense real-time, i.e., each element of the
sequence gives a valuation of the considered observables and a
duration. A set of pattern instances is modelled by the parallel
composition of the PEAs of the requirements in the set (cf.
Section III for details). For the full set of patterns the reader
is referred to [17], [20] since the technical discussion in the
subsequent sections directly works on the PEAs that represent
a set of requirements.

B. Properties of Real-Time Requirements

Based on this definition of the semantics of a set of
requirements specified using patterns, a number of generic
properties for requirements are defined. The most natural
generic property of a set of requirements may be consistency.
A set of requirements is consistent if the specified set of
interpretations is not empty, that is, if there is at least one
interpretation satisfying all requirements in the set.

Requirements req1 and req2 shown above are obviously
not consistent: there is no interpretation where observable A
evaluates to true and to false at each point in time. The
set {req3, req4} is an example for consistent requirements.

t1 2 3 4 5

1
0

A

1
0

B

1
0

C
req3
req4

Fig. 3. This execution leads to an inconsistency at time five: Requirement
req3 allows the system to delay the reaction to B until time 5, yet since A
occurs at time four, requirement req4 needs !C at time 5. From time four (and
the occurrence of A) on, the system steers toward inevitable rt-inconsistency.

Figure 2 gives (in form of a timing diagram) an example of
an interpretation of A, B, and C that satisfies both requirements.

Yet the set {req3, req4} is not rt-consistent. The property
of rt-(in)consistency has been introduced in [18]. A set of
requirements is rt-inconsistent if and only if there exists a finite
prefix of an interpretation (modelling a system computation)
such that there does not exist any extension of this prefix which
satisfies all requirements in the set. The rt-inconsistency of
{req3, req4} can be seen by the prefix on the interval [0, 5] of
the interpretation shown in Figure 3. If A and B change values
as shown in the figure, then at time 5, requirement req4 would
only be satisfied if C remained false while requirement req3
would only be satisfied if C changed to true . Thus it is not
possible to extend the prefix of the interpretation beyond time
5 without violating either req3 or req4.

In general, rt-consistency implies consistency but rt-
consistency is a stronger property. Note that the rt-
inconsistency of the particular set {req3, req4} can be resolved
by adding the following requirement (that disallows behaviour
that leads to the identified rt-inconsistency):

Globally, it is always the case that if ‘B’ holds then
‘!A’ holds for at least ‘5’ time units.

For the industrial practice it is relevant to detect rt-
inconsistencies already during requirements analysis, because
rt-inconsistent requirements may lead to erroneous system
behaviour that is hard to detect. From the perspective of pure
consistency, the set of requirements {req3, req4} could be
read as the request to the developers to develop a system
that has only satisfying computations. Such computations exist
(as shown above), yet it is in general hard to see which
computations these are: If requirements req3 and req4 are,
e.g., realised by different parts of a program, these parts may
just write a boolean variable C. One part with the intention to
satisfy req4 and one part with the intention to satisfy req3, the
actual value of C will depend on the scheduling of these parts.
The resulting system would clearly be incorrect since it does
not deal correctly with the situation shown in Figure 3. Yet the
resulting system has some computations that perfectly satisfy
both requirements. Uncovering such a defect depends on the
timing of changes on A and B. Hence, there is a significant
risk of not detecting the defect during quality assurance.

Next to consistency and rt-consistency, we consider vacuity
of real-time requirements. Intuitively, a requirement is vacuous

in a set of requirements if the behaviour it specifies cannot be
triggered in a system satisfying all requirements. A vacuous
requirement is similar to dead code in an implementation in the
sense that is could be removed without changing the meaning.
An example of a vacuous set of requirements is {req1, req4},
where req4 is vacuous. In order to satisfy req1, the value of
A will continuously be false in all correct computations. If
A is continuously false in all computations, then the premise
of req4 is never satisfied and thus req4 is trivially satisfied.
Detecting vacuous requirements is practically relevant since
the vacuous requirement may indeed be unnecessary (then it
should be removed from the set of requirements to simplify
the overall specification) or it may be the case that other
requirements erroneously cause the vacuity (then there is a
defect in the requirements specification, the specification may
not validly reflect customer needs).

C. Analysis of Real-Time Requirements for Properties

Note that it is not sufficient to check whether the pre-
conditions of two real-time requirements with inconsistent
effects are independent, as this would neither uncover all rt-
inconsistencies (rt-inconsistencies may as well involve, e.g.,
an invariant) nor would all uncovered problems actually be
rt-inconsistencies (as other requirements often prevent the rt-
inconsistency from happening). Post et al. [18] present an
analysis for rt-inconsistency by reducing the rt-inconsistency
problem to a real-time model-checking problem. Their ap-
proach has shown that it is principally feasible to detect rt-
inconsistency for industrial requirements as demonstrated in
the case-study reported on in [17].

Yet the case-study [17] already points out two issues with
this particular approach. Firstly, the analysis of [18] does not
scale well. The case-study article does not report individual
time consumption figures but reports that the longest exe-
cution time took over 90 minutes. Secondly, some analysis
are reported to have terminated prematurely due to memory
exhaustion. In this case, the analysis of [18] yields an incon-
clusive result. We can then neither conclude rt-consistency nor
rt-inconsistency.

In this work we present a technique to overcome these two
problems. We present an automated method that allows us to
handle much larger sets of requirements while at the same
time being able to pin-point which requirements of a large
set are rt-inconsistent and why. Our method leverages recent
advances in automated theorem proving as well as automatic
software model checking by reducing the task of checking the
requirements to a program analysis task.

The new algorithm furthermore allows us to compute par-
tial results by analysing all subsets consisting of real-time
requirements together with all untimed requirements of a set of
requirements R of a given size k. For example, for k = 2, all
pairs of real-time requirements from R would be considered
and one would thus detect all rt-inconsistencies between two
real-time requirements, even if their observables are only
related through untimed requirements in R. Because checking
each subset can be performed with a separate resource limit,

we can provide partial results for a given set of requirements.
While these results are weaker than a complete analysis, they
allow us to find and fix defects and thus increase confidence
in the quality of the considered requirements. In practice, it
can also be expected that most rt-inconsistencies can be found
with small values of k.

III. PRELIMINARIES

Our approach leverages the power of state-of-the-art pro-
gram verifiers by translating the requirements given as a set
of PEAs into a program. In this section we will give the
formal definitions needed to describe this translation, namely
the definition of programs and their executions, as well as the
definition of PEAs and their runs.

We represent a program as a control flow graph whose edges
are labelled with statements defined by the following grammar.

s ::= assume bexpr | v := expr | havoc v | s;s

These statements represent a small subset of the intermediate
verification language Boogie [15], which uses these state-
ments to express assumptions, assignments, non-deterministic
assignments and sequential composition. Given a set of typed
variables Var , v ∈ Var is a variable, expr is an expression
over Var , and bexpr is a Boolean expression over Var . For
brevity, we do not define the complete expression syntax but
rather assume the availability of Boolean and Real expressions
and the usual logical and arithmetic operators.

A program is a labelled graph P = (Loc, δ, `0) with
• Loc being a set of nodes, called locations,
• δ ⊆ Loc×Stmt×Loc being a finite set of edges labelled

with statements, and
• `0 ∈ Loc being an initial location.

Note that control-flow statements like while(bexpr) and
if(bexpr) are represented by the graph structure, i. e.,
by loops and branching in the graph guarded by assume
statements on the Boolean expression bexpr.

The behaviour of the program is given by traces and
executions. A trace of a program P is a sequence of statements
τ = st0, st1, st2, ... so that there is a path in P labelled with τ .
A program state σ : Var → D is a function from the set of
variables Var into the set of value domains D of the variables.
The update of a program state σ′ = σ[v 7→ d] with v ∈ V and
d ∈ D is the valuation where σ′(v) = d and σ′(v′) = σ(v′) for
v′ 6= v. With σ(expr) we denote the result of the evaluation
of expr in the program state σ.

In order to describe the behaviour of a program, we define
for each statement st ∈ Stmt a binary successor relation
ρst ⊆ S × S over the set of all program states S as follows.

ρst =



{(σ, σ′) | σ(expr) = true and σ = σ′}
if st ≡ assume expr

{(σ, σ′) | σ′ = σ[v 7→ σ(expr)]}
if st ≡ v := expr

{(σ, σ′) | ∃σ′′ • (σ, σ′′) ∈ ρst1 and (σ′′, σ′) ∈ ρst2}
if st ≡ st1; st2

{(σ, σ′) | ∃x ∈ D • σ′ = σ[v 7→ x]}
if st ≡ havoc v

A sequence of program states σ0, σ1, . . . is an execution of a
trace τ = st0, st1, . . . iff (σi, σi+1) ∈ ρsti for i ∈ {0, 1, . . . }.

A Phase Event Automaton (PEA) is defined as a tuple
A = (P, V,C,E, s, I, P 0) with
• P , V , C being sets of locations, clocks, and variables,
• E ⊆ P × expr × 2C × P being a set of edges of the

form (p, g,X, p′) where p is the source location, p′ is the
target location, g is a Boolean expression over unprimed
clock variables in C and primed and unprimed variables
in V , and X ⊆ C is a set of clocks to be reset,

• s : P → expr assigning a state invariant to each location
where s(p) is a Boolean expression over the variables V ,

• I : P → expr assigning a clock invariant to each
location where I(p) is of the form

∧
ci ≤ ti with ci ∈ C

and ti ∈ Q+, and
• P 0 ⊆ P being a set of initial locations.
A configuration of a PEA is a sequence of tuples (p, β, γ, t)

with a location p, a valuation of the variables β, a valuation
of clocks γ : C → R+

0 , and a non-zero duration t.
A run of a PEA A is a sequence of configurations r =

(p0, β0, γ0, t0), (p1, β1, γ1, t1), ... with p0 ∈ P 0 such that for
each configuration
• the valuation fulfils the location invariant (βi |= s(pi)),
• the clock valuation (uniformly increased by the duration)

fulfils the location’s clock invariant (γi + ti |= I(pi)),
and for every pair of consecutive configurations there is an
edge (pi, g,X, pi+1) ∈ E such that
• guard g is fulfilled by the valuations βi for unprimed

variables, by β′i+1 for primed variables, and by γi+ t for
the clocks (βi, β′i+1, γi + t |= g), and

• the next clock valuation resets all clock in X and in-
crements all others by ti: γi+1(c) = 0 for c ∈ X and
γi+1(c) = γi(c) + ti for c /∈ X .

A run (p0, β0, γ0, t0), (p1, β1, γ1, t1) . . . is non-Zeno if it is
infinite and

∑∞
i=0 ti =∞.

The parallel composition [11] of two PEAs A1 ‖A2 is de-
fined as (P1×P2, V1∪V2, C1∪C2, E, s1∧s2, I1∧I2, P 0

1 ×P 0
2)

with ((p1, p2), g1 ∧ g2, X1 ∪X2, (p
′
1, p
′
2)) ∈ E for every pair

of edges in E1 and E2. Note that in the parallel composition
of a set of PEAs, a transition can only be made if all automata
can make a transition.

IV. TRANSLATION OF PEAS TO BOOGIE

Our analysis of the requirements is based on a translation of
the requirements into a program encoding the requirements. In
this paper we assume that the requirements are already given
in the form of phase event automata (PEAs). An algorithm
that translates requirements from pattern language into PEAs
was given by Post et al. [18]. In this section we present the
translation of the set of PEAs into a program that encodes the
parallel composition.

The construction of a program encoding the parallel com-
position of PEAs exploits the power of using a program-
ming language that supports real-valued variables and non-
deterministic assignments. Then, (1) real-time can be encoded

by a real-valued variable that represents the current time and is
non-deterministically chosen, and (2) the parallel composition
can be encoded by first guessing a new state and then sequen-
tially checking for each automaton that it has a transition to
this new configuration.

The overall encoding of the parallel composition is realised
by a loop where each iteration corresponds to one config-
uration and subsequent transition. In the beginning of the
loop, all clocks are incremented by a non-deterministically
chosen duration. Then, for each automaton, the invariant of the
current location is checked. A variable valuation for the next
configuration is guessed by non-deterministically assigning
values to primed variables. For each automaton, it is checked
that there is a transition that leads from the current unprimed
to the chosen primed variables. Finally the new values of
the primed variables are copied to the unprimed variables.
Thus the translation of PEAs to a program keeps track of
two configurations at once and verifies that they are related
by an enabled edge.

A. PEA to Boogie Translation

Let A = A1 ‖ · · · ‖ An be the parallel composition of
the PEAs Ai = (Pi, Vi, Ci, Ei, si, Ii, P

0
i). A Boogie program

P(A) = (Loc, δ, `0) encoding the parallel composition A is
defined as follows. The variable set of the program statements
is defined as Var = VP ∪ V ′P ∪ CP ∪ PP ∪ {delta} with:
V ′P =

⋃
V ′i being the set of primed (accordingly typed)

variables, VP =
⋃
Vi being the set of un-primed (accordingly

typed) variables, CP =
⋃
Ci being the set of real-typed

clock variables, PP = {pc1, ...,pcn} being a set of auxiliary
variables representing the current location of each PEA in
A, and delta being a real-valued auxiliary variable that
represents the duration ti of the current configuration.

We illustrate our encoding with our running example, the re-
quirements set {req3, req4}. The encoding of the requirements
set is shown in Figures 4 to 6. Figure 4 shows the initialization,
the main loop, the various locations that represent requirement
checks, and references Figure 5 for the encoding of state
invariants as well as Figure 6 for the edge relation of the
parallel composition.

Initially we restrict the possible locations of each PEA to
its initial locations and set all clock variables to zero. The
program has one edge with `0 as its source location,

(`0, stP 0 ; stC , `loop)

with stP 0 being the concatenation of the assume statements
assume

∨
p∈P 0

i
pci = p restricting the value of each pci

to correspond to an element in P 0
i , and stC being the con-

catenation of the statements c := 0 for each c ∈ CP . This
initialisation edge is executed only once in the beginning of the
program. Note that the initialisation edge does not check if the
invariant of the initial location is satisfied. This is checked at
the beginning of each execution of the main loop (cf. Fig. 5).

The remaining edges of P(A) form the main loop that is
executed in correspondence to each transition between two
configurations of the set of PEAs. The loop begins with an

edge non-deterministically assigning a positive value to the
variable delta that represents the duration the automata stay
in the current location. This value corresponds to t of a PEA
configuration (p, β, γ, t). The clock variables are updated by
adding the newly chosen duration to compute γ+ t. The edge
has the following form:

(`loop , havoc delta; assume delta > 0; stu , `0inv)

with stu being the concatenation of ci := ci + delta
for all ci ∈ CP updating all clock variables.

The edges connecting locations `0inv , . . . , `
n
inv sequentially

check for each PEA Ai the state and clock invariants. For each
PEA Ai and location p ∈ Pi there is an edge originating in
location `i−1inv that checks that the location invariant and the
clock invariant are fulfilled. It has the following form:

(`i−1inv , assume pci = p; assume sti(p) ∧ Ii(p) , `iinv)

A configuration extends a previous run if it fulfils all
invariants and thus program location `ninv is reached. A valu-
ation for the successor configuration βi+1 is guessed by non-
deterministically assigning new values to the primed variables:

(`ninv , stguess , `0step)

where stguess is the concatenation of havoc x’ , x′ ∈ V ′P .
Figure 6 shows how we encode the edge relation of the

parallel composition (locations `0step , . . . , `
n
step). This encoding

ensures that for each automaton there is an edge leading to a
successor location such that the guard of the edge is fulfilled.
The variable pci and the clock variables of the corresponding
automaton are updated accordingly. For each PEA Ai and each
location p ∈ Pi there is an instance of the edge

(`i−1step , assume pci == p , `i,pstep)

and every edge (p, g,X, p′) ∈ Pi is encoded by an instance
of the following edge in the program

(`i,pstep , assume g; streset(X); pci := p′ , `istep)

with streset(X) being the concatenation of the assignments
c := 0 for each c ∈ X .
Finally, the variable valuation of the successor configuration

is copied into the current variable valuation and the main loop
is closed by returning to `loop (cf. Figure 4):

(`nstep , stcopy , `loop)

with stcopy being the concatenation of v := v′ , v ∈ VP .
This construction avoids the overhead of constructing the

explicit parallel composition A. Nonetheless, the resulting
program P(A) encodes A = (P, V,C,E, s, I, P 0) with P =
P1×· · ·×Pn, i. e., there is an equivalence relation between runs
of the PEAs and executions of the program. This is formalised
by the following theorem.

Theorem 1: For each run r = (p0, β0, γ0, t0), . . . of PEA
A there is an execution σ0, σ1, . . . of the program P(A) and
vice versa, such that for each configuration (pi, βi, γi, ti) and

`0

`loop

State
Invariants

Fig. 5
`
Bj
err

`cns

`3nvac

`4nvac
Edges
Fig. 6

assume pc_req3==0 || pc_req3==2

assume pc_req4==0 || pc_req4==2

c_3:=0.0; c_4:=0.0

havoc delta

assume delta>0.0

c_3:=c_3+delta

c_4:=c_4+delta

assume ¬Ndc(
∥∥
i∈Bj

Ai)

assume true

assume
∨

p∈vac(A4)
pc4 = p

assume
∨

p∈vac(A3)
pc3 = p

havoc A’,B’,C’

A:=A’

B:=B’

C:=C’

Fig. 4. Program P(A) of the parallel composition A = Areq3 ‖ Areq4 .

State Invariants

`0inv

`1inv

...

`2inv

assume pc_req3==2

assume c_3<=5.0

assume B && !C

assume pc_req3==1

assume c_3<=5.0

assume !B && !C

assume pc_req3==0

assume !B || C

Fig. 5. The encoding of state invariants in P(A).

Edges

`0step `1,1step

`1,2step

`1,0step

`1step . . . `2step

assume pc_req3==0

assume pc_req3==2

assume pc_req3==1

c_3:=0.0

pc_req3:=2

pc_req3:=0

assume c_3<5.0

pc_req3:=2

assume c_3<5.0

pc_req3:=1

assume C’
pc_req3:=0

assume c_3<5.0

pc_req3:=2

assume c_3<5.0

pc_req3:=1

assume C’
pc_req3:=0

Fig. 6. The encoding of the set of edges of A in P(A).

the corresponding valuation σi′ where `ninv is reached the i-th
time (i′ is (3n+ 3)i+ n+ 2) the following holds:

pi = (σi′(pc1), . . . , σi′(pcn))

βi(v) = σi′(v) for all v ∈ V
γi(c) + ti = σi′(c) for all c ∈ C

ti = σi′(delta)

V. RT-INCONSISTENCY CHECK

A set of requirements is rt-inconsistent if it is possible to
reach a configuration which will inevitably be followed by the
violation of a requirement in the future.

By definition of Post [18] a PEA is rt-inconsistent iff it
has a finite run, that is not a prefix of a non-Zeno run. Post et
al. proved that rt-inconsistence can be expressed equivalently
as the reachability a deadlock, i. e., there is a finite run of that
cannot be extended by any configuration (p′, β′, γ′, t′). For
each configuration in the PEA we can effectively construct
a formula that expresses the existence of a successor config-
uration. A configuration is a valid successor, if there is an
edge in each component automaton from the corresponding
component, such that the guard g of each edge is satisfied
and the state and clock invariant of the destination location
of the edge is satisfied. By the definition of PEA, there must
be a non-zero time spent in the new location. Thus, the clock
invariant has to hold strictly on entry. The following definition
gives the formula for the non-deadlock condition, i. e., that
the current location has a successor location. The problem of
detecting a deadlock thus is reduced to the reachability of a
configuration in which the non-deadlock condition is violated.

Definition 1 (Non-Deadlock-Condition): Let P(A) be the
program encoding the parallel composition A = A1 ‖ · · · ‖
An where Ai = (Pi, Vi, Ci, Ei, si, Ii, P

0
i), the non-deadlock-

condition for P(A) is defined as:

Ndc(A) =
∧

(p1,...,pn)∈P1×···×Pn

pc1 = p1 ∧ · · · ∧ pcn = pn

→ ∃~v′. Ndc(A1, p1) ∧ · · · ∧Ndc(An, pn)

with

Ndc(Ai, p) =
∨

(p,g,X,p′)∈Ei

g ∧ s′(p′) ∧ strict(I(p′))[X/0]

The non-deadlock condition Ndc(A) is a formula over the
variables V encoding the current variable valuation β, V ′

encoding the variable valuation of the successor configuration
β′, clock variables C representing the clocks updated by
the duration of the current phase, and the program counter
variables pci encoding the current program location.

The formula states for the i-th automaton that there is an
edge (p, g,X, p′) ∈ Ei from location p to some successor
location p′, such that the guard of the edge is satisfied and the
state and clock invariant hold for the next configuration. Here
s′(p′) stands for the state invariant s(p′) where all variables
are replaced by their primed counterpart, which encodes the
fact that s(p′) should hold in the successor configuration. The

clock invariant I(p′) of the successor state must hold strictly,
which is expressed by strict(I(p′)). This formula is obtained
from I(p′) by replacing all occurrences of c ≤ t by c < t. It
guarantees that there is some time left to stay in the successor
location p′i after it has been entered, which is required by our
definition of runs. Finally by strict(I(p′))[X/0] we denote the
formula where all variables in the reset set X are replaced by
the constant 0, in other words, where the constraints c < t are
replaced by true for c ∈ X .

The formula Ndc(A) encodes the non-deadlock condition of
A. For each location (p1, . . . , pn) in the parallel composition
A, there is a conjunct in Ndc(A) in Definition 1 that encodes
the existence of a successor location in case the current
location is (p1, . . . , pn). Here we existentially quantify over
the primed variables in the formula Ndc(A1, p1) ∧ · · · ∧
Ndc(An, pn). Often all existential quantifiers can be elimi-
nated to simplify the non-deadlock condition.

A. Non-Deadlock-Condition example

We return to our example from Figure 1. The formulas
Ndc(Ai, p) for each component automaton Ai and each of
its location p can be simplified as follows

Ndc(Areq3
, 0) = true

Ndc(Areq3
, 1) = C′ ∨ c3 < 5

Ndc(Areq3
, 2) = C′ ∨ c3 < 5

Ndc(Areq4
, 0) = ¬A′ ∨ (A′ ∧ ¬C′)

Ndc(Areq4
, 1) = ¬C′ ∨ (¬A′ ∧ c4 ≥ 2)

Ndc(Areq4
, 2) = ¬C′

For example p2 in Areq3
has three outgoing edges, one to p0

that can be taken if C′ ∧ (¬B′ ∨ C′) holds, one to p1 if ¬B′ ∧
¬C′∧c3 < 5 holds, and one to itself if B′∧¬C′∧c3 < 5 holds.
The disjunction simplifies to C′ ∨ c3 < 5. The non-deadlock
condition Ndc(Areq3

‖Areq4
) is (after quantifier elimination):

(pcreq3
= 1 ∧ pcreq4

= 1→ c3 < 5 ∨ c4 ≥ 2)

∧ (pcreq3
= 2 ∧ pcreq4

= 1→ c3 < 5 ∨ c4 ≥ 2)

∧ (pcreq3
= 1 ∧ pcreq4

= 2→ c3 < 5)

∧ (pcreq3
= 2 ∧ pcreq4

= 2→ c3 < 5)

For example, for location pcreq3
= 2 and pcreq4

= 1, the ex-
istentially quantified formula ∃A′,B′,C′. (C′ ∨ c3 < 5)∧ (C′∨
(¬A′ ∧ c4 ≥ 2)) can be simplified to c3 < 5∨ c4 ≥ 2. Thus, a
run reaching the configuration ((2, 1), β, {c3 7→ 4, c4 7→ 0}, 1)
is a witness for the rt-inconsistency of req3 and req4 from
Section II. This is, because the non-deadlock condition does
not hold for γ + t, which is {c3 7→ 5, c4 7→ 1}.

Given the non-deadlock condition, we can easily transform
the problem of detecting deadlocks in A to a reachability
problem of P(A). For this, we add a new error location `err
to Loc and an edge (`ninv , assume ¬Ndc(A) , `err).

Theorem 2: A requirement set is rt-inconsistent if
and only if the location `err is reachable in the
corresponding program P(A) with the additional edge
(`ninv , assume ¬Ndc(A) , `err).

B. c-Non-Deadlock-Condition

The formula generated by the non-deadlock condition as
presented in Definition 1 is growing exponentially in the
number of component automata, as every combination of
locations is checked. In practice rt-inconsistencies are seldom
the result of a combination of all requirements. They are
frequently caused by subtle errors in the formulation of a
few related requirements (like in the running example), or
can be reduced to the interaction between two or three real-
time requirements together with the transitive relation of their
observables through invariants.

Therefore we suggest an approximation of the non-deadlock
condition by the non-deadlock-conditions of all c-sized sub-
sets of A. We call c the combination number. For each
subset B ⊆ {1, . . . , n} of size |B| = c, we add the
edge (`ninv , assume ¬Ndc(

∥∥
i∈B Ai) , `Berr) to the program

graph. If the error location `Berr is reachable, the requirements
in B cause an rt-inconsistency. Note that not all rt-inconsistent
requirement sets are detected, because deadlocks caused by
more than c requirements are not checked. The number of
subsets B and the size of each Non-Deadlock-Condition grows
polynomial in n and exponential in c.

The size of a non-deadlock condition depends on the
number of locations in the parallel composition. Since the
number of locations does not change if a component with only
a single location is added, we improve our approximation by
always adding all invariant automata (those that have only one
location) to the set B. This optimisation increases the number
of rt-inconsistent sets we can detect.

VI. CONSISTENCY AND VACUITY

In the previous section we have shown how rt-inconsistency
can be reduced to a reachability problem in a program. In
this section we will go further and encode other well-known
properties, namely consistency and vacuity [3].

A set of requirements is consistent iff there is at least one
non-Zeno run fulfilling the requirements. To check consistency
in the encoding of A we check if there exists at least one initial
configuration for the set of PEAs by adding a test location `cns
and inserting the following edge into P(A):

(`ninv , assume true , `cns)

If there is an execution that reaches `cns , there exists an initial
configuration that satisfies all requirements. The existence
of an initial configuration is sufficient to prove that an rt-
consistent set of requirements is also consistent. Note, that
although the existence of an initial configuration might look
like a rather weak property, we had one case of an inconsistent
set of requirements in our case study.

A requirement in a set of requirements is vacuous if it could
be replaced by a more simple requirement without changing
the runs of the whole set. This means that some behaviour of
the requirement cannot be triggered due to other requirements.

As an example the requirement req4 is vacuous in a set
{req1, req4} as A can never be set. In this case the requirement
can never be violated and could be removed from the set.

Post et al. [19] have shown that vacuity can be expressed
as a reachability problem. For example the requirement req3
is vacuous if and only if the locations p1 and p2 of Areq3

are unreachable. In general one can identify a set of locations
vac(Ai) for each requirement (for details see [19] and [11]).
Intuitively this is the last phase that can be reached before
the requirement is violated. In the example, this is the phase
where B has been seen and less than 5 time units have passed
without the occurrence of C.

The i-th requirement is vacuous if and only if all locations
in vac(Ai) are unreachable. Vacuity can be checked by adding
the edge (`ninv , assume

∨
p∈vac(Ai)

pci = p , `invac) to the
program graph. If the location `invac is reachable, the i-th
requirement is non-vacuous in the set of requirements. Con-
versely if `invac is not reachable, then requirement i is vacuous
in the given requirements set.

VII. EVALUATION AND APPLICATION

In this section we describe the implementation of our
algorithm in the tool ULTIMATE REQANALYZER. We report
on the results of a comparison with the method [18] (as
implemented in the tool req2ta2UPPAAL) on the small to
medium sized requirements sets from [18] and we show results
from an ongoing case-study in an automotive project at BOSCH
with an order of magnitude larger sets of requirements.

The information shown in Table I and II can be reproduced
using the artifact [14] that includes the tools and (anonymized)
benchmarks used here together with a control script.

A. Implementation

In order to apply our technique, we implemented the trans-
lation of formalised requirements to programs (cf. Section
IV) and the subsequent analysis of this program as the open-
source tool ULTIMATE REQANALYZER2. We use the program
analysis framework ULTIMATE, as it already provides multiple
program verification tools (e.g., ULTIMATE AUTOMIZER [10])
which support parsing and analysing Boogie programs. It also
provides support for the interactions with SMT solvers, e.g.,
to simplify or even omit program edges to the error location.

The general architecture of REQANALYZER consists of two
new modules, Req2Pea and Pea2Boogie, and an interface
to ULTIMATE AUTOMIZER. Module Req2Pea expects a set
of requirements in the form of a .req file, consisting of
a declaration of typed observables followed by a list of
requirement patterns as described in Section II. The module
performs syntax- and type-checking and can thereby already
uncover various simple issues with requirements. Afterwards,
it converts each requirement into a phase event automaton and
and compares the PEAs pairwise for structural equality. The
occurrence of structurally equal PEAs indicates requirements
duplication. If the input is well-formed, well-typed, and free of
duplicates, the set of PEAs is passed to the translation module.

The translation module Pea2Boogie generates the Boogie
program representing the parallel composition of the PEAs

2https://ultimate-pa.github.io/hanfor

(cf. Section IV) and the program edges to the error location
labelled with, e.g., non-deadlock conditions (cf. Section V).
We also perform an important optimization in this module
that decides whether a check is already locally satisfied, i.e.,
whether it already simplifies to true . To this end, we first
simplify Ndc(·) by inferring the implication relation for each
sub-tree of the formula [8]) and then removing all covered
sub-trees. Next, we try to eliminate the existentially quantified
sub-formulas one by one. The majority (approx. 90%) of Ndc-
checks can be simplified to true . In this case, no corresponding
edge to the error location is added to the program. In the
last step, the resulting Boogie program is transferred to the
default toolchain of AUTOMIZER, which then decides whether
the error locations are reachable or not.

B. Comparison with req2ta2UPPAAL

For our comparison, we applied both of the tools to a
benchmark set using the benchmarking tool benchexec [4].
We conducted our comparison on a machine with an AMD
EPYC 7351P 16-Core CPU with 2.4GHz and 128GB RAM
running Linux 4.20.1 and Java 1.8.0 202 64bit. Each tool was
given 900s of CPU time, 2 CPU cores and 8GB of memory to
analyse each benchmark. We also set the combination number
for the rt-inconsistency checks to 2 and specified a timeout
per non-trivial rt-inconsistency check of 300 seconds. For
REQANALYZER we used ULTIMATE 0.1.24-c551399 and for
req2ta2UPPAAL we used 64bit-UPPAAL in version 4.1.22.

The results of our experiment are shown in Table I. The
table is separated in four parts. In the first and second part
we used benchmarks from [18] and [19], which stem from
examples from the automotive domain. Unfortunately, not all
benchmarks from these sources were still available, so we
had to limit ourselves to a subset. The third part contains
benchmarks obtained during regression testing of our tool and
various handcrafted examples. The last part consists of only
one example (“all”) that was obtained by taking the union
of all requirement sets, removing duplicates, and removing
simple invariants (“Always”, “Never”). For this benchmark,
we increased the timeout to 9000s and the memory limit to
32GB because we wanted to see whether req2ta2UPPAAL
would generate an answer or not.

Column “R.” and “RT. R.” show the total number of
requirements and the number of real-time requirements of the
benchmark, respectively. The column “Vac.” shows how many
vacuous requirements REQANALYZER found, “rt-inc.” shows
how many (REQANALYZER) or if any (req2ta2UPPAAL) rt-
inconsistencies have been found, and “T. (s)” shows the needed
runtime in seconds. The shorthand “TO” in various columns
stands for timeout, while “OOM” stands for out of memory.

We can see from this table that our approach always
produces results and never runs into a timeout, although it
is sometimes slower. This is mainly due to the fact that we
try to find all rt-inconsistencies and report them instead of just
giving a yes/no answer. In contrast to req2ta2UPPAAL, we
can report results for each of the examples, in particular for
the concatenation of requirements; even with 9000s timeout

https://ultimate-pa.github.io/hanfor

TABLE I
COMPARISON BETWEEN ULTIMATE REQANALYZER AND

REQ2TA2UPPAAL USING BENCHMARKS FROM [18], [19].

ULTIMATE
REQANALYZER

req2ta2UPPAAL

ID R. RT.
R.

Vac. rt-inc. T. (s) rt-inc. T. (s)

2 [18] 10 10 no 5 15.41 yes 156.51
3 [18] 10 10 no 5 22.83 yes 17.71
4 [18] 13 3 no no 12.61 no 0.83
5 [18] 17 3 no no 12.22 no 1.21
6 [18] 17 9 no 1 20.16 yes 94.09

3 [19] 12 12 no no 21.50 OOM 803.13
6 [19] 18 8 no 1 17.16 yes 22.87
7 [19] 27 6 no no 16.46 no 113.20
8 [19] 28 1 no no 13.46 no 0.76
9 [19] 39 1 no no 30.56 no 1.29

10 [19] 81 3 1 no 22.79 no 0.84
10’ [19] 81 3 no no 20.82 no 3.40

1 8 2 no no 9.79 no 0.75
2 30 7 no no 16.32 no 379.91
3 10 5 no no 11.56 no 1.94
4 13 3 no no 12.68 no 1.05
5 30 7 no no 16.37 no 417.00
6 8 4 4 1 22.88 yes 0.73
7 5 4 no no 351.64 no 0.45
8 28 1 no no 12.96 no 0.85
9 15 14 no no 38.87 no 812.26

10 48 28 1 89 307.51 TO 900.21
11 3 2 no no 8.31 no 0.38
12 2 0 no no 7.65 no 0.32
13 5 5 1 1 13.15 yes 0.36
14 24 10 no no 24.95 TO 900.55
15 11 6 no no 4.55 no 0.58
16 22 5 no no 14.46 no 247.83
17 2 1 1 no 7.92 yes 0.31

all 65 33 1 no 95.65 TO 9002.19

req2ta2UPPAAL could not provide a verdict. There are two
reasons for this significant improvement. Firstly, our transla-
tion does not construct the parallel product from the PEAs, but
uses a much smaller representation. Secondly, our check for
local satisfaction allows us to discharge most of the expensive
verification problems for a fraction of the cost.

Table I shows one case where the results of both tools
differ: REQANALYZER classify benchmark 17 as vacuous but
not rt-inconsistent, while req2ta2UPPAAL reports it as rt-
inconsistent. This is due to a misinterpretation of UPPAAL’s
deadlock semantics by req2ta2UPPAAL. The parallel compo-
sition of the PEAs of this example contains a non-Zeno run,
even though it has only a single location and no transitions.
From UPPAAL’s point of view, it is trivially deadlocked. The
requirements that cause this discrepancy are the following.

Globally, it is always the case that if ‘A’ holds
then ‘B’ holds after at most ‘10’ time units.
Globally, it is never the case that ‘A’ holds.

C. Preliminary results from ongoing case-study with BOSCH

Table II shows analysis results and time consumption of
ten sets of requirements from the automotive domain. These

TABLE II
RESULTS OF APPLYING ULTIMATE REQANALYZER ON REQUIREMENT

SETS OBTAINED FROM AN ONGOING CASE STUDY AT BOSCH.

ID R. RT.
R.

Vac. rt-inc. TO Time

Dev. 1 26 21 no 6 no 48s
Dev. 2 50 47 no 13 no 5m 40s
Dev. 3 53 12 no no no 1m 33s
Dev. 4 58 53 no 13 no 6m 21s
Dev. 5 68 64 no 4 1 7m 11s
Dev. 6 100 95 no 109 no 3m 29s
Dev. 7 107 80 no 38 no 5m 9s
Dev. 8 263 234 6 73 18 3h 58m 36s
Dev. 9 407 358 2 44 no 3h 58m 03s
Dev. 10 701 545 1 no no 4h 14m 12s

stem from an ongoing large-scale case study with BOSCH.
Each set of requirements is supposed to specify the behaviour
of one device under development. Note that the size of the
specification of Device 10 is an order of magnitude larger
than any example in Table I. The reported figures have been
obtained on the same machine and with the same settings as
in the previous section, except that we increased the number
of cores per benchmark to 4, the memory limit to 100 GB
and the timelimit to 72 hours. The columns are the same as in
Table I except for column “TO”, which states for how many
rt-inconsistency checks no result could be obtained due to a
timeout, and the different format of column “Time”. We can
see that even for modestly sized sets (e.g., “Mod. 2”) our
approach finds cases of rt-inconsistency and vacuity that need
to be corrected. The time needed to analyse complete modules
is manageable, although there is room for further improvement
by, e.g., introducing techniques from regression verification to
reuse results from previous analysis runs [21].

Note that the figures in Table II provide the observed analy-
sis time given sets of formalised requirements. From a process
perspective, the effort for the formalization of natural language
requirements into the ones referred to in Table II needs to
be considered. The observed times needed to formalise and
validate given natural language specifications corresponds to
the ones reported in [17]. Hence the initial step from hundreds
of informal to formal requirements requires substantial effort
(in the case-study, there are ca. 5000 different observables
declared, and a similar number of expressions over observables
to characterise observable system behaviour (cf. Section II)).
Yet this effort is considered well acceptable by BOSCH for the
following reasons. First of all, the issues that are found by our
process and our tool are precise and actionable. So far, nearly
70% of our findings (including questions, typos, duplications,
type issues) have resulted in a fix in the requirements, while
the rest resulted in changes to the formalisation. We were told
that we discovered severe defects that would have led to major
issues in later stages of the system development. From the ca.
310 results of the tool, 100 were classified as major issues,
although the requirements had been reviewed manually several
times before we started analysing them. The remaining results

were already superseded by new requirements and currently
await classification by the company.

The practically more relevant aspect is the turnaround
time once a body of requirements has been formalised. The
formalisation effort observed in our case-study is insofar
partly artificial as our case-study accompanied an established
development using natural language specifications. Hence
there is some redundant effort, and there are entry costs: all
requirements to be analysed needed a formalisation, new ones
and re-used ones. Since our case-study runs in parallel to the
development at the company, the requirements specifications
evolved. This allowed us to observe how well our approach
supports changes to requirements and agile development.
Interestingly, updating the formalized requirements proved to
be very fast. The changes the company made while the base set
was formalised could be integrated within a few days, and our
current set is now comparably stable. New changes are usually
formalised in mere minutes. This allows for an effective intro-
duction of automatic regression analysis on requirement sets,
and an overall acceleration of development and requirements
engineering in a traditionally slow domain [1].

VIII. RELATED WORK

From the body of research on the analysis of formalised
requirements the following three approaches and tools are
closest to the work presented here as they explicitly address
the automatic analysis of industrial scale requirements spec-
ifications described in pattern languages that are designed to
be used in industrial practice. All three approaches and tools
have in common that they only support untimed or discrete-
time requirements specifications in contrast to our work that
addresses continuous-time requirements. As a consequence,
none of the tools discussed below provides an analysis for
rt-inconsistency of real-time requirements.

The BTC EMBEDDED PLATFORM tool [5] works on re-
quirements specified using the so-called simple universal pat-
tern [22]. The simple universal pattern basically expresses if-
then relations between so-called triggers and so-called actions
with an upper time bound for completion of the whole
requirement. Evaluation of the trigger can be modified (initial,
first occurrence, or reoccurring). Yet the resulting requirements
specification language of BTC EMBEDDED PLATFORM lacks
the expressiveness of the PEAs underlying our work or the
pattern language [17] that is used as input to our tool. In
addition, the BTC EMBEDDED PLATFORM tool allows the
engineer to specify the behaviour of an environment relative to
which the requirements are to be considered. The tool is based
on a definition of the quantitative measure basic consistency
that combines consistency, non-vacuity, and requirements cov-
erage. Whether absence of inconsistency or vacuity is checked
by the tool depends on a user-selected coverage criterion. The
BTC EMBEDDED PLATFORM tool particularly emphasises
test case generation wrt. the specified environment. Test case
generation is not in the scope of the work presented here.

The SPEAR tool [9] uses a requirements language rooted
in linear temporal logic (LTL). In addition to some type-based

analyses, SPEAR is able to check whether an inconsistency is
reachable within a given upper bound of (discrete) computa-
tion steps. Our work, in contrast, considers continuous time.
Using the bounded analysis, the SPEAR approach promises to
yield partial results (it can prove that up to the given bound
there is no inconsistency) and early inconsistencies in the
requirements can be addressed by the requirements engineers,
yet we expect the results to be unsatisfactory in general. Our
approach can be used to obtain partial results for subsets of
the given requirements and negative results, i.e., that there is
no rt-inconsistency for any number of computation steps. The
property checked by SPEAR is similar to rt-consistency in
that it does not only ask for the existence of a computation
satisfying all requirements (classical consistency) but searches
for possible inconsistencies.

The ASSERT (Analysis of Semantic Specifications and
Efficient generation of Requirements-based Tests) tool suite
[7], [16] also emphasises test case generation. The specifica-
tion language of ASSERT is another variant of a restricted
English grammar that in particular supports system structure
descriptions and a static analysis for type-consistency by
providing means to declare types of system inputs and outputs.
These aspects are orthogonal to the behavioural requirements
properties of rt-inconsistency, vacuity, etc. considered in our
work. ASSERT does not use a detailed time model but models
time implicitly. Requirements may relate values at the current
to the next (discrete) step and refer to time qualitatively,
e.g. by the ‘previous’ keyword. The analysis engine uses the
given requirements and ontological information captured in
the requirements definition for, e.g., type checking and unit
checking. Although the possibility of timed requirements is
mentioned in the requirements definition language [7], real
time requirements, especially rt-consistency analysis is not part
of the ASSERT tool.

IX. CONCLUSION

We presented a scalable approach for the analysis of rt-
consistency, vacuity, and consistency for real time require-
ments specifications. The ongoing cooperation with a BOSCH
automotive project showed that our implementation in form
of the open-source tool ULTIMATE REQANALYZER scales
an order of magnitude better than previous approaches and
works well for industrial requirements. It delivers precise and
actionable results in the form of small subsets of requirements
responsible for the issues. Many of the issues we found were
classified as severe defects that would have led to major issues
in later stages of the system development, and thus prompted
changes to the requirements.

Our approach allows many possible extensions for future
work. For example, by adding additional information in form
of discrimination of input, output, and internal observables, we
can extend our algorithm and our tool with the ability to gen-
erate system test cases from requirements specifications and
with a completeness analysis that detects missing treatment of
input observable ranges.

REFERENCES

[1] S. M. Ågren, E. Knauss, R. Heldal, P. Pelliccione, G. Malmqvist, et al.
The manager perspective on requirements impact on automotive systems
development speed. In RE, pages 17–28. IEEE, 2018.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[3] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of
vacuity in temporal model checking. FMSD, 18(2):141–163, 2001.

[4] D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: require-
ments and solutions. STTT, 21(1):1–29, 2019.

[5] T. Bienmüller, T. Teige, A. Eggers, and M. Stasch. Modeling re-
quirements for quantitative consistency analysis and automatic test case
generation. In FM&MDD, 2016.

[6] Z. Chaochen and M. R. Hansen. Duration Calculus: A Formal Approach
to Real-Time Systems. Monographs in Theoretical Computer Science.
Springer, 2004. An EATCS Series.

[7] A. W. Crapo, A. Moitra, C. McMillan, and D. Russell. Requirements
capture and analysis in ASSERT. In RE, pages 283–291. IEEE, 2017.

[8] I. Dillig, T. Dillig, and A. Aiken. Small formulas for large programs: On-
line constraint simplification in scalable static analysis. In SAS, volume
6337 of LNCS, pages 236–252. Springer, 2010.

[9] A. W. Fifarek, L. G. Wagner, J. A. Hoffman, B. D. Rodes, M. A. Aiello,
et al. Spear v2.0: Formalized past LTL specification and analysis of
requirements. In NFM, volume 10227 of LNCS, pages 420–426, 2017.

[10] M. Heizmann, Y. Chen, D. Dietsch, M. Greitschus, J. Hoenicke, Y. Li,
A. Nutz, B. Musa, C. Schilling, T. Schindler, et al. Ultimate automizer
and the search for perfect interpolants - (competition contribution). In
TACAS (2), volume 10806 of LNCS, pages 447–451. Springer, 2018.

[11] J. Hoenicke. Combination of processes, data, and time. PhD thesis,
Carl von Ossietzky University of Oldenburg, 2006.

[12] IEEE Recommended Practice for Software Requirements Specifications,
1998. Std 830-1998.

[13] S. Konrad and B. H. C. Cheng. Real-time specification patterns. In
ICSE, pages 372–381. ACM, 2005.

[14] V. Langenfeld, D. Dietsch, B. Westphal, J. Hoenicke, and
A. Post. Scalable Analysis of Real-Time Requirements (Artifact).
https://doi.org/10.5281/zenodo.3341453, June 2019.

[15] K. R. M. Leino. This is Boogie 2. Manuscript KRML, 178(131), 2008.
[16] A. Moitra, K. Siu, A. W. Crapo, H. R. Chamarthi, M. Durling, M. Li,

H. Yu, P. Manolios, and M. Meiners. Towards development of complete
and conflict-free requirements. In RE, pages 286–296. IEEE, 2018.

[17] A. Post and J. Hoenicke. Formalization and analysis of real-time
requirements: A feasibility study at BOSCH. In VSTTE, volume 7152
of LNCS, pages 225–240. Springer, 2012.

[18] A. Post, J. Hoenicke, and A. Podelski. rt-inconsistency: A new property
for real-time requirements. In FASE, volume 6603 of LNCS, pages 34–
49. Springer, 2011.

[19] A. Post, J. Hoenicke, and A. Podelski. Vacuous real-time requirements.
In RE, pages 153–162. IEEE, 2011.

[20] A. Post, I. Menzel, and A. Podelski. Applying restricted english
grammar on automotive requirements — does it work? In REFSQ,
pages 166––180, 2011.

[21] B. Rothenberg, D. Dietsch, and M. Heizmann. Incremental verification
using trace abstraction. In SAS, volume 11002 of LNCS, pages 364–382.
Springer, 2018.

[22] T. Teige, T. Bienmüller, and H. J. Holberg. Universal pattern: Formaliza-
tion, testing, coverage, verification, and test case generation for safety-
critical requirements. In MBMV, pages 6–9. Albert-Ludwigs-Universität
Freiburg, 2016.

	Introduction
	Problem Analysis
	Requirements Formalisation
	Properties of Real-Time Requirements
	Analysis of Real-Time Requirements for Properties

	Preliminaries
	Translation of PEAs to Boogie
	PEA to Boogie Translation

	RT-Inconsistency Check
	Non-Deadlock-Condition example
	c-Non-Deadlock-Condition

	Consistency and Vacuity
	Evaluation and Application
	Implementation
	Comparison with req2ta2UPPAAL
	Preliminary results from ongoing case-study with BOSCH

	Related Work
	Conclusion
	References

